
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/161816

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/161816


Resource

Lineage-Specific Genome Architecture Links
Enhancers and Non-coding Disease Variants to
Target Gene Promoters

Graphical Abstract

Highlights

d High-resolution maps of promoter interactions in 17 human

primary blood cell types

d Interaction patterns are cell type specific and segregate with

the hematopoietic tree

d Promoter-interacting regions enriched for regulatory

chromatin features and eQTLs

d Promoter interactions link non-coding GWAS variants with

putative target genes

Authors

Biola M. Javierre, Oliver S. Burren,

Steven P. Wilder, ..., Chris Wallace,

Mikhail Spivakov, Peter Fraser

Correspondence
mf471@cam.ac.uk (M.F.),
cew54@medschl.cam.ac.uk (C.W.),
mikhail.spivakov@babraham.ac.uk
(M.S.),
peter.fraser@babraham.ac.uk (P.F.)

In Brief

This study deploys a promoter capture

Hi-C approach in 17 primary blood cell

types to match collaborating regulatory

regions and identify genes regulated by

noncoding disease-associated variants.

Explore this and other papers at the Cell

Press IHEC webportal at http://www.cell.

com/consortium/IHEC.

Javierre et al., 2016, Cell 167, 1369–1384
November 17, 2016 ª 2016 The Authors. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2016.09.037

mailto:mf471@cam.ac.uk
mailto:cew54@medschl.cam.ac.uk
mailto:mikhail.spivakov@babraham.ac.uk
mailto:peter.fraser@babraham.ac.uk
http://www.cell.com/consortium/IHEC
http://www.cell.com/consortium/IHEC
http://dx.doi.org/10.1016/j.cell.2016.09.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2016.09.037&domain=pdf


Resource

Lineage-Specific Genome Architecture
Links Enhancers and Non-coding
Disease Variants to Target Gene Promoters
Biola M. Javierre,1,11 Oliver S. Burren,2,11 Steven P. Wilder,3,11 Roman Kreuzhuber,3,4,5,11 Steven M. Hill,6,11 Sven Sewitz,1

Jonathan Cairns,1 Steven W. Wingett,1 Csilla Várnai,1 Michiel J. Thiecke,1 Frances Burden,4,5 Samantha Farrow,4,5

Antony J. Cutler,2 Karola Rehnström,4,5 Kate Downes,4,5 Luigi Grassi,4,5 Myrto Kostadima,3,4,5 Paula Freire-Pritchett,1

Fan Wang,6 The BLUEPRINT Consortium, Hendrik G. Stunnenberg,7 John A. Todd,2 Daniel R. Zerbino,3 Oliver Stegle,3

Willem H. Ouwehand,4,5,8,9 Mattia Frontini,4,5,8,* Chris Wallace,2,6,10,* Mikhail Spivakov,1,12,* and Peter Fraser1,*
1Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
2JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research

Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
3European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK
4Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
5National Health Service Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
6MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
7Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen,

Geert Grooteplein Zuid 30, 6525 GA Nijmegen, the Netherlands
8British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Hills Road,
Cambridge CB2 0QQ, UK
9Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
10Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
11Co-first author
12Lead Contact

*Correspondence: mf471@cam.ac.uk (M.F.), cew54@medschl.cam.ac.uk (C.W.), mikhail.spivakov@babraham.ac.uk (M.S.),

peter.fraser@babraham.ac.uk (P.F.)

http://dx.doi.org/10.1016/j.cell.2016.09.037

SUMMARY

Long-range interactions between regulatory ele-
ments and gene promoters play key roles in tran-
scriptional regulation. The vast majority of interac-
tions are uncharted, constituting a major missing
link in understanding genome control. Here, we use
promoter capture Hi-C to identify interacting regions
of 31,253 promoters in 17 human primary hematopoi-
etic cell types. We show that promoter interactions
are highly cell type specific and enriched for links be-
tween active promoters and epigenetically marked
enhancers. Promoter interactomes reflect lineage re-
lationships of the hematopoietic tree, consistent with
dynamic remodeling of nuclear architecture during
differentiation. Interacting regions are enriched in ge-
netic variants linked with altered expression of genes
they contact, highlighting their functional role. We
exploit this rich resource to connect non-coding dis-
ease variants to putative target promoters, priori-
tizing thousands of disease-candidate genes and
implicating disease pathways. Our results demon-
strate the power of primary cell promoter interac-
tomes to reveal insights into genomic regulatory
mechanisms underlying common diseases.

INTRODUCTION

Genomic regulatory elements such as transcriptional en-

hancers determine spatiotemporal patterns of gene expres-

sion. It has been estimated that up to 1 million enhancer

elements with gene regulatory potential are present in

mammalian genomes (ENCODE Project Consortium, 2012).

Although a number of well-characterized enhancers map close

to their target genes, assignment based on linear proximity is

error prone, as many enhancers map large distances away

from their targets, bypassing the nearest gene (Mifsud et al.,

2015; Sanyal et al., 2012; Schoenfelder et al., 2015). Long-

range gene regulation by enhancers in vivo involves close

spatial proximity between distal enhancers and their target

gene promoters in the three-dimensional nuclear space (Carter

et al., 2002), most likely involving a direct interaction (Deng

et al., 2014), while the intervening sequences are looped

out. Thus, a comprehensive catalog of promoter-interacting

regions (PIRs) is a requisite to fully understand genome tran-

scriptional control.

Thousands of disease- and trait-associated genetic variants

have been identified by genome-wide association studies

(GWAS). The vast majority of these variants are located in non-

coding regions of the genome, often at considerable genomic

distances from annotated genes, making assessment of their

potential function in disease etiology problematic. However,

GWAS variants are enriched in close proximity to DNase I
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hypersensitive sites, potentially disrupting transcription factor

binding sites, suggesting that they may contribute to disease

by altering the function of distal regulatory elements in gene con-

trol (Maurano et al., 2012). Therefore, promoter interactions may

link disease-associated variants to their putative target genes

(Mifsud et al., 2015).

Recent advances in chromosome conformation capture

technologies such as Hi-C have increased the potential to un-

derstand long-range gene control. However, the enormous

combinatorial complexity of DNA fragment pairs in Hi-C libraries

impedes high-resolution detection of specific regulatory inter-

actions between individual genetic elements in a robust fashion.

Using sequence capture to enrich for Hi-C interactions that

involve specific regions of interest is a versatile approach to

overcome the limitations imposed by library complexity (Dryden

et al., 2014; Sahlén et al., 2015; Schoenfelder et al., 2015).

We recently developed promoter capture Hi-C (PCHi-C), in

which sequence capture is used to pull down fragments con-

taining nearly all annotated promoters and their interacting

regions from Hi-C libraries, resulting in strong enrichment

for promoter interactions compared with Hi-C (Schoenfelder

et al., 2015).

Here, we apply PCHi-C in primary cells to generate a

comprehensive catalog of the interactomes of 31,253 annotated

promoters in 17 human primary blood cell types. Devising a

statistical methodology to link GWAS SNPs to their putative

target genes based on PCHi-C interaction data, we prioritize

thousands of new candidate genes potentially implicating a

number of gene pathways in susceptibility to common diseases.

RESULTS

Promoter Capture Hi-C
We performed PCHi-C experiments in 17 human primary blood

cell types (three or more biological replicates per cell type).

The Hi-C step was performed using in-nucleus ligation (Nagano

et al., 2015), and 22,076 fragments containing 31,253 annotated

promoters were captured to enrich the Hi-C material for pro-

moter interactions. Sequencing of the PCHi-C samples pro-

duced over 11 billion unique, valid read pairs involving promoters

(Tables 1 and S1). Comparison with Hi-C revealed a 15- to 17-

fold enrichment for promoter interactions, consistent with previ-

ous PCHi-C studies (Schoenfelder et al., 2015), equivalent in this

case to the promoter interaction detection power of over 165

billion conventional Hi-C read pairs. We used the CHiCAGO

pipeline (Cairns et al., 2016) to assign confidence scores to inter-

actions between the captured promoter fragments and PIRs

(Figures 1A–1C), detecting on average �175,000 high-confi-

dence interactions per cell type (CHiCAGO scoreR 5; Figure 1D;

Tables 1 and S1; Data S1), with a median of four interactions per

promoter fragment per cell type. More than half (55%) of PIRs

interacted with a single promoter fragment, while fewer than

10% PIRs had four or more promoter interactions per cell

type. We found abundant examples of tissue-specific and tis-

sue-invariant interactions (Figure 1C). In total, 698,187 high-con-

fidence unique promoter interactions were detected across all

cell types, of which 9.6% were promoter-to-promoter interac-

tions and 90.4% promoter-to-PIR, with a median linear distance

between promoters and their interacting regions of 331 Kb.

Table 1. Summary of PCHi-C Datasets Generated in This Study

Cell Type Acronym

Biological

Replicates Unique Captured Read Pairsa
Detected Promoter

Interactionsb

Megakaryocytes MK 4 653,848,788 150,779

Erythroblasts Ery 3 588,786,672 151,215

Neutrophils Neu 3 736,055,569 142,435

Monocytes Mon 3 572,357,387 165,947

Macrophages M0 M40 3 668,675,248 180,190

Macrophages M1 M41 3 497,683,496 171,031

Macrophages M2 M42 3 523,561,551 186,172

Endothelial precursors EndP 3 420,536,621 145,888

Naive B cells nB 3 629,928,642 189,720

Total B cells tB 3 702,533,922 213,539

Fetal thymus FetT 3 776,491,344 166,743

Naive CD4+ T cells nCD4 4 844,697,853 210,074

Total CD4+ T cells tCD4 3 836,974,777 199,525

Non-activated total CD4+ T cells naCD4 3 721,030,702 211,720

Activated total CD4+ T cells aCD4 3 749,720,649 213,235

Naive CD8+ T cells nCD8 3 747,834,572 216,232

Total CD8+ T cells tCD8 3 628,771,947 204,382

Total 11,299,489,740 698,187c

aTotal numbers of valid read pairs across all biological replicates are listed. See Table S1 for replicate-level statistics.
bInteractions with CHiCAGO scores >5. This excludes 9,396 interactions involving 484 captured non-promoter fragments that are not considered

further in the study.
cUnique interactions detected in at least one cell type.
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698,187 unique interactions across cell types 
~175,000 interactions per cell type

Physical interactions of
 31,253 annotated promoters

CHiCAGO
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Approximately 10%of promoter interactions were between frag-

ments greater than 1 Mb apart and 5,103 mapped across chro-

mosomes (‘‘trans-interactions’’). A total of 230,525 unique PIRs

were detected, linked to 20,676 captured fragments containing

29,992 annotated promoters (Figure 1D).

We also sequenced 16 pre-capture Hi-C libraries from eight

cell types (Table S1) and identified topologically associated

domains (TADs) using the directionality index score (Dixon

et al., 2012) (Figure 1B). We found that about a third of PCHi-

C-identified interactions crossed TAD boundaries, which is

significantly below that expected at random in all eight cell types

(Figures 1E and S1A), consistent with previous results (Schoen-

felder et al., 2015). The frequency of TAD boundary-crossing

interactions was broadly similar for both promoters adjacent

to the boundaries and those located in the centers of TADs

(on average, 32% and 28.5% respectively).

We chose approximately 1,000 identified PIRs for validation,

using them as capture baits in a reciprocal capture system that

we applied to eight Hi-C libraries from four cell types (Figure S2A;

Table S1; and Data S1). The CHiCAGO interaction scores of

PCHi-C and reciprocal capture Hi-C aligned well (Figure S2

and Quantification and Statistical Analysis), thus validating our

approach.

Promoter Interactomes Are Lineage and Cell Type
Specific
Principal component analysis (PCA) of CHiCAGO interaction

scores across all biological replicates of the 17 cell types re-

vealed close clustering of the replicates and separation of the

individual cell types (Figure 2A). This demonstrates signal

reproducibility across replicates and suggests strong cell-type

specificity of the interactomes. We noted that neutrophils

showed a distinct PCA profile, potentially reflecting their unusual

segmented nuclearmorphology. Hierarchical clustering of the 17

cell types based on their CHiCAGO interaction scores demon-

strated that patterns of promoter interactions across the cell

types segregated in a manner generally consistent with the he-

matopoietic tree (Figure 2B, top). We further confirmed the

cell-type specificity and lineage relationships of the interactomes

globally using conventional Hi-C at the level of large-scale A/B

nuclear compartments (Figures S1B–S1D).

We then used Autoclass Bayesian clustering (Cheeseman

et al., 1988) to partition promoter interactions based on their

CHiCAGO scores across cell types, which produced 34 distinct

interaction clusters (Figure 2B, heatmap). Just under half (47.4%)

of interactions mapped to predominantly lymphoid-specific

clusters (1–15, 25, 26) (Figures 2B and 2C). Examples of genes

whose promoter interactions predominantly map to this set of

clusters include T cell receptor components (CD247, CD3D,

and CD3G), as well as IKZF3 coding for the AIOLOS protein

that has a key role in lymphoid development. 38.9% of the inter-

actions mapped to generally myeloid-specific clusters (16–18,

27–34). Promoters with predominant interactions in this set of

clusters include, for example, DIP2C (Disco-Interacting Protein

2 Homolog C) that shows high expression in acute myeloid

leukemia. Clusters 19–24, containing 13.6% of interactions,

showed strong signal in both lineages.

We found that just over 60% of captured promoter fragments

hadat least one interactiondetected inbothmyeloidand lymphoid

lineages, however nearly all of them (>99%) also engaged in

additional lineage- or cell-type-specific interactions (Figure S3A).

On the whole, interactions sharing the same promoter fragment

tended to have more similar cell-type specificities than expected

at random (Figure S3B). This suggests a complex and potentially

cooperative effect of cell-type-specific and invariant interactions

in setting up genome organization and expression.

Collectively, the cell-type specificity and lineage relatedness

of promoter interactomes suggests that higher-order genome

structure undergoes widespread and coordinated remodeling

during lineage specification, dynamically reshaping transcrip-

tional decisions.

Promoter-Interacting Regions Are Enriched for
Regulatory Chromatin Features
PIRs were significantly enriched for regions of accessible

chromatin (Figure S3C), with 56% containing accessible re-

gions detected by assay for transposase-accessible chromatin

sequencing (ATAC-seq) in at least one blood cell type (Corces

et al., 2016). This points to the regulatory potential of many

PIRs. To further investigate this, we studied the chromatin prop-

erties of PIRs using data from the BLUEPRINT project from

the nine blood cell types, for which sufficient information was

Figure 1. Promoter Capture Hi-C across 17 Human Primary Blood Cell Types

(A) Schematic representation of the project.

(B) Interaction landscape of INPP4B gene promoter along a 5-Mb region in naive CD4+ (nCD4) cells (PCHi-C, top panel). Each dot denotes a sequenced di-tag

mapping, on one end, to the captured HindIII fragment containing INPP4B gene promoter, and on the other end, to another HindIII fragment located as per the

x axis coordinate; the y axis shows read counts per di-tag. Red dots denote high-confidence PIRs (CHiCAGO score R5), and their interactions with INPP4B

promoter are shown as red arcs. Gray lines denote expected counts per di-tag according to the CHiCAGO background model, and dashed lines show the upper

bound of the 95% confidence interval. Genes whose promoters were found to physically interact with INPP4B promoter are labeled in bold. Promoters selectively

interact with specific DNase hypersensitivity sites (DHSs, middle panel) defined in the same cell type from the ENCODE project. Some of these interactions occur

within the same topologically associated domain (TADs, black line, as defined according to the standardized directionality index score, sDI), while others span

TAD boundaries. A conventional Hi-C profile for the same locus in nCD4 cells is shown in the bottom panel.

(C) Interaction landscape of the INPP4B, RHAG, ZEB2-AS, and ALAD promoters in naive CD4+ cells (nCD4), erythroblasts (Ery), and monocytes (Mon). Dot plots

as in (B), with high-confidence PIRs shown in red (CHiCAGO score R5) and sub-threshold PIRs (3 < CHiCAGO score < 5) shown in blue.

(D) The numbers of unique interactions (left) and PIRs (right) detected for a given number of analyzed cell types. Lines and dots show the mean values over 100

random orderings of cell types; gray ribbons show SDs.

(E) Proportions of interactions crossing TAD boundaries per cell type; observed and expected frequencies of TAD boundary-crossing interactions. Error bars

show ±SD across 1000 permutations (see Quantification and Statistical Analysis).

See also Figures S1 and S2, Table S1, and Data S1.
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available (Figure 3). We found PIRs to be significantly enriched

for histone marks associated with active enhancers, such as

H3K27ac and H3K4me1, in comparison with distance-matched

random controls (Figures 3A and 3B). We also found enrichment

for H3K4me3 and H3K36me3 at PIRs, which are marks associ-

ated with active promoters and transcribed regions, respec-

tively, consistent with non-coding transcription of regulatory

regions (Natoli and Andrau, 2012).
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Figure 2. Promoter Interactions Reflect the Lineage Relationships of the Hematopoietic Tree

(A) Principal Component Analysis (PCA) of the CHiCAGO interaction scores for each individual biological replicate (nB, naive B cells; tB, total B cells; FetT, fetal

thymus; aCD4, activated CD4+ T cells; naCD4, non-activated CD4+ T cells; tCD4, total CD4+ T cells; nCD8, naive CD8+ T cells; nCD4, naive CD4+ T cells; tCD8,

total CD8+ T cells; Mon, monocytes; Neu, neutrophils; M40–2, Macrophages M0, M1, M2; EndP, endothelial precursors; MK, megakaryocytes; Ery, erythro-

blasts). The inset shows the results of a separately performed PCA for CD4+ and CD8+ T cells only.

(B) Top (dendrogram): hierarchical clustering of the cell types according to their promoter interaction profiles. Bottom (heatmap): Autoclass Bayesian clustering of

interactions according to their cell-type specificity. Cluster IDs are shown on the right. Cluster 9 containing 108,066 interactions is not shown for clarity.

(C) Cell-type specificity of interaction clusters. The heatmap shows cluster specificity scores in each cell type (see Quantification and Statistical Analysis for

details). Cell types and clusters are arranged as in (B).

See also Figures S3A and S3B.
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We then focused on regions annotated as promoters and en-

hancers in the Ensembl Regulatory Build (Zerbino et al., 2015),

defining their activity on the basis of ChromHMM (Ernst and

Kellis, 2012) segmentations of the BLUEPRINT histone ChIP

data. We asked whether the cell-type-specific activity state

of enhancers depended on their connectivity to promoters, or

alternatively, whether enhancer-promoter interactions tended

to be primed irrespective of enhancer activity (Ghavi-Helm

et al., 2014). Consistent with previous findings in the b-globin

locus (Tolhuis et al., 2002), Figures 3C and S3D show that inter-

actions between the Locus Control Region (LCR) enhancers and

theHBB andHBG genes occur in erythroblasts, in which they are

active, but not in monocytes or CD4+ T cells. We observed this

activity-state-dependent connectivity of enhancers with pro-

moters globally (Figure 3D), and formally confirmed it using over-

dispersion-adjusted statistical tests (Figures 3E and 3F). These

results demonstrate that the dynamic nature of enhancer-

promoter interactions is preferentially coupled with the cell-

type-specific activity of the regulatory elements they connect.

Enhancer Activity Associates with Lineage-Specific
Gene Expression
To gain insight into the role of promoter contacts in regulating

lineage-specific gene expression, we integrated information

on chromatin states at promoters and enhancers with global

gene expression profiles in the same cells available from the

BLUEPRINT consortium. Comparing gene expression across

cell types, we observed that promoter interactions with active

enhancers generally had an additive effect on cell-type-specific

expression levels (p < 23 10�16; Figure 4A). Notably, a weak, but

also significant additive effect was observed when all PIRs, irre-

spectively of their annotation, were considered for the analysis

(p < 23 10�16; Figure S4A), with the fraction of active enhancers

among them providing an independent predictor (p < 23 10�16;

data not shown). These results confirm that active enhancers,

and potentially other elements devoid of canonical enhancer

features, quantitatively contribute to gene expression.

We then sought to partition genes based on the cell-type spec-

ificity of their interactions with active enhancers. For each gene,

we used CHiCAGO interaction scores and enhancer activity

states to calculate a ‘‘gene specificity score’’ for each cell type

(see Quantification and Statistical Analysis). Applying k-means

clustering to the resulting gene specificity scores, we obtained

the 12clusters shown inFigure4B.This revealedclustersof genes

with predominant enhancer specificity in one or multiple related

cell types, andaclusterwithnopredominant specificity (cluster 9).

We compared the gene specificity scores based on interac-

tions with active enhancers with analogous scores that capture

cell-type specificity of the respective genes’ expression. As

shown in Figures 4C and S4B, genes mapping to a cell-type-

specific cluster based on their interactions with active enhancers

were, on average, preferentially expressed in the same cell type.

The link between cell-type specificity of active enhancer inter-

actions and gene expression was the most apparent when

focusing on genes expressed with the highest cell-type speci-

ficity (Figures 4D, 4E, and S4C). For example, 46% of the top

100 lymphoid-specifically expressed genes mapped to cluster

eight characterized by lymphoid-specific active enhancer inter-

actions, while an additional 37% mapped to clusters with active

enhancers specific to both nCD4 cells and other cell types

(Figure 4D). Taken together, these results support a direct func-

tional role of the identified enhancer-promoter interactions in

transcriptional control.

Expression Quantitative Trait Loci Provide Evidence for
PIR Regulatory Function
Natural genetic variation has been described as an ‘‘in vivomuta-

genesis screen’’ (Heinz et al., 2013). Here, we used data on

sequence variants associated with altered expression of specific

genes (expression quantitative trait loci, eQTLs) in primary

monocytes and B cells (Fairfax et al., 2012) to demonstrate PIR

function. Integrating eQTL information with PCHi-C results, and

considering at most one ‘‘lead’’ eQTL per gene, we found 899

lead eQTLs in monocyte PIRs and 577 in B cell PIRs that physi-

cally contact the promoters of the genes they regulate (false

discovery rate [FDR] <10%; Table S2). To confirm the specificity

of eQTL localization to PIRs, we randomized PIR locations ac-

counting for interaction distance and compared the proportions

of variants that are eQTLs at PIRs and at these random regions.

We found that PIRs are selectively enriched for eQTLs regulating

the same gene that the PIR is connected to, across a broad

range of linear distances from their target promoters (Figures

5A and 5B). We found a similar enrichment when considering

at most one eQTL variant per gene (Figures S5A and S5B). These

Figure 3. Promoters Preferentially Connect to Active Enhancers

(A) PIR enrichment for histone marks compared with distance-matched random regions. Error bars show SD across 100 draws of random regions.

(B) Significance of PIR enrichment for histone marks from (A), expressed in terms of Z scores.

(C) Promoter interactions and chromatin features in the b-globin locus. PCHi-C data from three cell types, showing regulatory element annotations from the

Ensembl Regulatory Build, colored by feature, and chromatin activities based on ChromHMM segmentations of BLUEPRINT histone modification data. The

image is based on a screenshot produced with Ensembl v83 using GRCh37 assembly and GENCODE v19 gene annotations. The b-globin Locus Control Region

(LCR) is highlighted (blue box).

(D) Enrichment of PIRs for active distal enhancers (shown per biological replicate).

(E) Enrichment of promoter-enhancer interactions for links between active promoters and active enhancers. The observed to expected ratios of each combination

of promoter and enhancer activity connected by an interaction are color coded. The p value is for the overdispersion-adjusted c2 test of independence of

promoter and enhancer states at either ends of interactions. The non-active category includes the ‘‘poised,’’ ‘‘Polycomb-repressed,’’ and ‘‘inactive’’ states

defined with chromHMM.

(F) Interactions between an active promoter and an enhancer are preferentially found in cell types, in which the enhancer is active. Observed to expected ratios for

each combination of enhancer activity and the presence or absence of interaction are color coded. The p value is for the overdispersion-adjusted c2 test of

independence of the enhancer state and the presence of interaction. The non-active category is as in (E).

See also Figure S3C.
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results demonstrate that variants in physical contact with gene

promoters are significantly more likely to have regulatory effects

on the genes they contact compared with other variants

matched by distance. Taken together, these findings provide

robust functional support for over 1,000 promoter interactions

in monocytes and in B cells.

The identification of eQTLs is affected by the power of the

eQTL study. Therefore, we additionally considered eQTLs from

a larger meta-analysis in whole blood (Westra et al., 2013).

We found 1,214 lead cis-eQTLs in whole blood are located in

PIRs that physically contact the respective eQTL target gene

promoters in at least one analyzed cell type (Table S2), which

significantly exceeded random expectation (p < 1e-3; Fig-

ure S5C). In total, PIRs detected in our study overlapped

25.7% of all lead cis-eQTLs in whole blood for the respective

PIR-connected genes. Collectively, these results provide abun-

dant evidence of PIR function.

Examples of eQTLs at PIRs included those with effects

on more than one gene. For instance, eQTL SNP rs71636780

localizes to a PIR of two genes, ARID1A and ZDHHC18 in

monocytes (located 50 and 100 kb away, respectively), with

its variants showing opposite effects on expression of these

genes (Figure 5C). In contrast, eQTL SNP rs117561058 within

a PIR of NDUFAF4 and ZBTB2 shows consistent effects on

the expression of both genes. Strikingly, this PIR is located

�10 and �60 Mb from NDUFAF4 and ZBTB2, respectively (Fig-

ure 5D). Further examples of long-range PIRs harboring eQTLs

are shown in Figures S5D and S5E.

Notably, we found 194 monocyte eQTLs, 118 B cell eQTLs,

and 310 whole-blood eQTLs at PIRs containing promoter re-

gions of other genes, suggesting that promoter-promoter inter-

actions may have regulatory effects. This is consistent with

previous findings for the INS and SYT8 genes (Xu et al., 2011)

and emerging genome-wide data (I. Jung and B. Ren, personal

communication).

Taken together, expression quantitative trait loci provide func-

tional and statistically supported evidence for a regulatory role of

the PCHi-C-identified promoter interactions and demonstrate

their potential to link non-coding regulatory variants with target

genes.

Promoter Interactions Prioritize Putative Target Genes
of Disease-Associated SNPs
We integrated PCHi-C data with summary statistics from 31

GWAS, including eight autoimmune diseases, eight blood cell

traits, and nine metabolic and six other traits (Table S3). To

assess cell-type-specific enrichment of GWAS signals at PIRs,

we devised blockshifter, a method that takes into account corre-

lation structure in both GWAS and PIR datasets (Figure S6A). We

found that variants associated with autoimmune disease are en-

riched at PIRs in lymphoid compared tomyeloid cells (Figure 6A).

In contrast, SNPs associated with platelet- and red-blood-cell-

specific traits were predominantly enriched at PIRs in myeloid

lineages (Figure 6A). Finally, SNPs associated with traits gener-

ally unrelated to hematopoietic cells, such as blood pressure

(systolic, BP S, and diastolic, BP D) and bone mineral density

(in femoral neck, femoral neck mineral density [FNMD], and

lumbar spine, lumbar spine mineral density [LSMD]) were

not selectively enriched at PIRs in any analyzed cell types

(Figure 6B). Collectively, these results confirm the selective

enrichment of GWAS variants at PIRs in putative disease- and

trait-relevant cell types.

We next developed a Bayesian prioritization strategy termed

COGS (Capture Hi-C Omnibus Gene Score) for using promoter

interaction data to rank putative disease-associated genes

and tissues across the 31 GWAS traits. This algorithm integrates

statistical fine mapping of GWAS signals across SNPs mapping

to gene coding regions, promoters, and PIRs to provide a

single measure of support for each gene. Figure 6C shows

an example of the COGS algorithm at work in the 1p13.1

rheumatoid arthritis (RA) susceptibility region, prioritizing RP4-

753F5.1, CD101, TTF2, and TRIM45 as RA candidate genes

(Figure 6C, bottom panel). A possible role for CD101 in RA was

previously reported (Jovanovic et al., 2011). Future work may

establish whether the other genes prioritized on the basis of

the same GWAS SNP-harboring PIR (Figure 6C, white bar) also

contribute toward disease, since a single element may regulate

multiple genes, as evidenced by eQTL examples in Figures 5C

and 5D and previous studies (Hanscombe et al., 1991; Mohrs

et al., 2001).

Using the COGS algorithm genome-wide for 31 diseases and

blood cell traits, we prioritized a total of 2,604 candidate genes

(with a median of 122 genes per trait at gene-level score >0.5;

Table S3). The prioritized genes exhibited both expected and un-

expected enrichments for specific pathways in the Reactome

Pathway Database (Fabregat et al., 2016). In particular, and as

expected, genes prioritized for autoimmune diseases were en-

riched in inflammation and immune-response-related pathways,

such as interleukin and T cell receptor signaling, whereas genes

prioritized for platelet traits were preferentially associated with

platelet production and hemostasis (Figure 6D). Less obvious

pathway associations included free oxygen species metabolism

in celiac disease (Yang et al., 2015), and post-translational and

epigenetic modifications of proteins and nucleic acids in the

Figure 4. Active Enhancers at PIRs Associate with Lineage-Specific Gene Expression

(A) Plot of log2-gene expression as a function of the number of interacting active enhancers in cell types, where the promoter is active. Trendline shows linear

regression. Asterisks above and below the boxplots reflect the fact that some outlying observations have been cropped.

(B) Heatmap of ‘‘gene specificity scores’’ for 7,004 protein-coding genes uniquely mapping to a captured fragment (rows), based on their interactions with active

enhancers in each of eight cell types (columns). Genes are partitioned using k-means clustering.

(C) Mean gene specificity score (based on interactions with active enhancers) for each of the clusters in (B) plotted against analogous mean gene specificity

scores based on expression data for nCD4, MK, Ery and Neu cells. Error bars indicate ±SD. Plots for Mon and M41–3 are shown in Figure S4B.

(D) Subset of the heatmap in (B), showing interaction-based gene specificity scores for the top 100 nCD4-specifically expressed genes, together with cluster IDs.

(E) Enrichment of the 12 clusters shown in (B) for the 100 genes expressed with highest specificity in each analyzed cell type (see Quantification and Statistical

Analysis for details).

See also Figure S4.
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red blood cell traits (Figure 6D), inviting further in-depth vali-

dation by specialist communities. The COGS prioritization strat-

egy produced distinct results from a ‘‘brute-force’’ approach

based on promoter colocalization with disease susceptibility

regions (DSRs) within the same TADs, which yielded con-

siderably more candidates per disease (on average, 5-fold

more), and did not capture all those prioritized with COGS

(Figure S6B).

We further focused on a subset of 421 highest-scoring genes

prioritized for at least one autoimmune disease. Taking into ac-

count known and predicted protein-protein interactions and

pathway co-localization of their products, we constructed a
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Figure 5. Promoter-Interacting Regions Are Enriched for Interacting Gene eQTLs

(A and B) The proportion of SNPs that are eQTLs for the PIR-connected gene compared with the equivalent proportion at matched random regions (‘‘randomized

PIRs’’) in monocytes (A) and total B cells (B). Asterisks represent the significance of enrichment at observed versus randomized PIRs (permutation test *p < 0.05;

**p < 0.01; ***p < 0.001).

(C and D) Examples of a single common eQTL SNP identified for two genes (ARID1A and ZDHHC18, C; NDUFAF4 and ZBTB2, D) with either the opposite (C) or

the same (D) directionality of effect. SNPs have been tested within PIRs plus additional 500-bp windows on both sides of them. The Manhattan plots (bottom

panel) depict the eQTL signals for both genes. The gray dashed line represents the significance threshold.

See also Figure S5 and Table S2.
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consolidated ‘‘autoimmune disease network’’ (Figure 6E). The

highly connected core of this network (Figure 6E, inset) in-

cludes cytokine genes such as IL19 and IL24, signaling and

transcription factors controlling proliferation, inflammation and

lineage identity (such as MYC, JAK1/2, ETS1/2, CDKN1B,

NFKB1, FOXO1, and IKZF2/3). According to ImmunoBase

(http://www.immunobase.org), the majority (76%) of the genes

in the core autoimmune disease network were not previously

implicated as causal candidates for autoimmune diseases, and

65% fall outside of known DSRs (Table S3).

We compared COGS-prioritized genes for Crohn’s disease

(CD) and ulcerative colitis (UC) with genes found to be differen-

tially expressed in at least one of five sorted immune cell

populations from inflammatory bowel disease (IBD) patients

(Peters et al., 2016). A total of 33/182 (18.1%) and 49/278

(17.6%) genes prioritized by COGS for CD and UC, respectively,

were differentially expressed in IBD patients. This corresponds

to a significant enrichment of COGS-prioritized genes for differ-

ential expression in disease (Fisher’s exact test p = 0.007 and

p = 0.016, respectively; Figure S6C). Notably, significant enrich-

ment was not observed for genes prioritized on the basis of

shared TADs (Figure S6C). The majority of the COGS-prioritized

differentially expressed genes (20/33 and 44/49, respectively)

were not previously implicated in these diseases based on

GWAS results. This provides further functional evidence for our

prioritization strategy.

Finally, we used the RA and systemic lupus erythematosus

(SLE) GWAS datasets (Bentham et al., 2015; Okada et al.,

2012), for which imputed results are publicly available, to ask

whether the GWAS signals that drove candidate gene prioritiza-

tion are supported by eQTLs in the respective LD blocks.

Genome-wide, this analysis revealed that out of 456 genes prior-

itized for these two diseases, 136 had eQTLs, of which four

genes (BLK, RASGRP1, SUOX, and GIN1) showed evidence

for possible co-localization of GWAS signals and eQTLs in RA

and two genes (BLK and SLC15A4) in SLE (see Figure S6

for examples). In addition, the genes prioritized for RA included

5/9 candidates (C8Orf13, BLK, TRAF1, FADS2, and SYNGR1)

that were identified in a recent study (Zhu et al., 2016) combining

whole-blood eQTL with RA GWAS data by Mendelian ran-

domization. The relatively large number of prioritized genes

without eQTL support is in agreement with previous reports of

limited overlap of disease variants with eQTLs (Guo et al.,

2015). This demonstrates complementary benefits of eQTL-

based and physical-interaction-based approaches for priori-

tizing candidate target genes of non-coding disease variants.

Taken together, our results reveal large numbers of newly

identified potential disease genes and pathways and demon-

strate the power of high-resolution 3D promoter interactomes

for large-scale interpretation of GWAS data.

DISCUSSION

Wehave presented a comprehensive analysis of promoter-asso-

ciated genome architecture in human primary hematopoietic

cells. We show that promoter interactomes are highly cell type

specific, enriched for links between active promoters and active

enhancers and reflect the lineage relationships of the hemato-

poietic tree. Collectively, these results suggest that three-dimen-

sional genome architecture undergoes stepwise remodeling

during lineage specification.

Theoretically, enhancer-promoter contacts can be either

‘‘instructive’’ (triggering transcriptional activation) or ‘‘permis-

sive’’ (poised for activation) (de Laat and Duboule, 2013). The

mechanistically verified model of instructive interactions are

loops in the b-globin locus (Deng et al., 2014). Our observations

in blood cells provide additional evidence for the ‘‘instructive’’

model. However, it is likely that both mechanisms are opera-

tional, particularly in early development. For example, permis-

sive interactions were previously detected for early mesodermal

enhancers in Drosophila (Ghavi-Helm et al., 2014), in mouse

embryonic stem cells (Schoenfelder et al., 2015), as well as for

tumor necrosis factor alpha (TNF-a) response genes in fibro-

blasts (Jin et al., 2013).

Figure 6. Promoter Interactions Link GWAS SNPs with Putative Target Genes

(A) Enrichment of GWAS summary statistics at PIRs by tissue type. Axes reflect blockshifter Z scores for two different tissue group comparisons, first lymphoid

versus myeloid, then additionally within the myeloid lineage. Traits are labeled and colored by category (BMI, body mass index; BP_D, diastolic blood pressure;

BP_S, systolic blood pressure; CD, Crohn’s disease; CEL, celiac disease; FNBMD, Femoral neck bonemineral density; GLC, glucose sensitivity; GLC_B, glucose

sensitivity BMI-adjusted; HB, hemoglobin; HDL, high-density lipoprotein; HEIGHT, height; INS, insulin sensitivity; INS_B, insulin sensitivity BMI-adjusted; LDL,

low-density lipoprotein; LSBMD, lumbar spine bonemineral density; MCH,mean corpuscular hemoglobin; MCHC,mean corpuscular hemoglobin concentration;

MCV, mean corpuscular volume; MS, multiple sclerosis; PBC, primary biliary cirrhosis; PCV, packed cell volume; PLT, platelet count; PV, platelet volume; RA,

rheumatoid arthritis; RBC, red blood cell count; SLE, systemic lupus erythrematosis; T1D, type 1 diabetes; T2D = type 2 diabetes; TC, total cholesterol; TG,

triglycerides; UC, ulcerative colitis).

(B)Blockshifter enrichment Z scores of GWAS summary statistics in PIRs by individual tissue type using endothelial cells as a control. Red indicates enrichment in

the labeled tissue; green indicates enrichment in the endothelial cell control.

(C) Example of the COGS gene prioritization method in 1p13.1 RA susceptibility region. GWAS summary p values for association with RA (Okada et al., 2012) (top)

are transformed into posterior probabilities for variant being causal (middle), which are then aggregated at all PIRs interacting with a given gene, accounting for

LD, to compute gene scores. Arcs representing promoter-PIR interactions are color coded with genes.

(D) Bubble plot of traits with significant enrichment (p.adj < 0.05) in one or more pathways from the Reactome database (Fabregat et al., 2016). Top numbers

indicate the total number of genes analyzed for each trait (gene score >0.5), bubble size indicates the ratio of test genes to those in the pathway, and blue to red

corresponds to decreasing adjusted p value for enrichment.

(E) The ‘‘core autoimmune disease network’’ containing the 421 highest-scoring genes prioritized for autoimmune disease. Genes (nodes) are color coded based

on diseases for which theywere prioritized as candidates by the COGS algorithm. Edges between genes are drawn based on prior knowledge about their physical

interactions, predicted interactions and pathway associations obtained from GeneMania (Montojo et al., 2010) and are color coded accordingly. Inset shows

gene names for the highest-connected central part of the network. See Quantification and Statistical Analysis.

See also Figure S6 and Table S3.
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High-resolution interaction information makes it possible to

connect genes to their enhancers. Using this approach, we

observe that enhancers show generally additive effects on the

expression of their target genes, which may explain why genes

are often able to buffer the effects of mutations at individual en-

hancers (Frankel et al., 2010;Waszak et al., 2015). This buffering,

in turn, may underlie the fact thatmany non-coding GWASSNPs,

while enriched at regulatory regions, are not detectable as

eQTLs, particularly under normal conditions (Guo et al., 2015).

Interestingly, we also observed additive effects, albeit weaker,

for PIRs that were not annotated as enhancers. This provides

additional support to recent findings that regions without

‘‘classic’’ enhancer or other gene regulatory signatures may

also be involved in activation of gene expression (Rajagopal

et al., 2016). However, we do not imply that all PIRs have gene

regulatory roles in the analyzed cell types. Some promoter inter-

actions may have structural or topological roles, whereas others

could be remnants of past developmental stages or priming for

future activation.

Using naturally occurring sequence variants that affect

expression of specific genes (eQTLs), we provide abundant

evidence for PIR function in gene expression control, demon-

strating the power of PCHi-C to link non-coding regulatory vari-

ants with their target genes. Recent studies by ourselves and

others have made a strong case for using 3D genome

information to interpret non-coding disease-associated variants

(Davison et al., 2012; Dryden et al., 2014; Martin et al., 2015;

Mifsud et al., 2015; Smemo et al., 2014; Stadhouders et al.,

2014). Here, we link thousands of GWAS SNPs to their putative

target genes and prioritize more than 2,500 potential disease-

associated genes, three-quarters of which were not previously

implicated. These candidates map to expected and novel gene

pathways. While further validation will be required to firmly

establish the links to specific diseases, our work establishes a

systematic approach to interpret non-coding genetic variation

and creates an unprecedented opportunity to unlock the seem-

ingly intractable promise created by current and future GWAS.
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Turro, E., Su, S.-Y., Gonçalves, Â., Coin, L.J.M., Richardson, S., and Lewin, A.

(2011). Haplotype and isoform specific expression estimation using multi-

mapping RNA-seq reads. Genome Biol. 12, R13.

van der Harst, P., Zhang, W., Mateo Leach, I., Rendon, A., Verweij, N., Sehmi,

J., Paul, D.S., Elling, U., Allayee, H., Li, X., et al. (2012). Seventy-five genetic

loci influencing the human red blood cell. Nature 492, 369–375.

Wakefield, J. (2009). Bayes factors for genome-wide association studies:

Comparison with P-values. Genet. Epidemiol. 33, 79–86.

Waszak, S.M., Delaneau, O., Gschwind, A.R., Kilpinen, H., Raghav, S.K., Wit-

wicki, R.M., Orioli, A., Wiederkehr, M., Panousis, N.I., Yurovsky, A., et al.

(2015). Population variation and genetic control of modular chromatin archi-

tecture in humans. Cell 162, 1039–1050.

Westra, H.-J., Peters, M.J., Esko, T., Yaghootkar, H., Schurmann, C., Kettu-

nen, J., Christiansen, M.W., Fairfax, B.P., Schramm, K., Powell, J.E., et al.

(2013). Systematic identification of trans eQTLs as putative drivers of known

disease associations. Nat. Genet. 45, 1238–1243.

Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S.,

Fraser, P., and Andrews, S. (2015). HiCUP: pipeline for mapping and pro-

cessing Hi-C data. F1000Res. 4, 1310.

Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafsson, S., Chu,

A.Y., Estrada, K., Luan, J., Kutalik, Z., et al.; Electronic Medical Records and

Genomics (eMEMERGEGE) Consortium; MIGen Consortium; PAGEGE Con-

sortium; LifeLines Cohort Study (2014). Defining the role of common variation

in the genomic and biological architecture of adult human height. Nat. Genet.

46, 1173–1186.

Xu, Z., Wei, G., Chepelev, I., Zhao, K., and Felsenfeld, G. (2011). Mapping of

INS promoter interactions reveals its role in long-range regulation of SYT8

transcription. Nat. Struct. Mol. Biol. 18, 372–378.

Yang, Z., Matteson, E.L., Goronzy, J.J., andWeyand, C.M. (2015). T-cell meta-

bolism in autoimmune disease. Arthritis Res. Ther. 17, 29.

Yu, G., and He, Q.-Y. (2016). ReactomePA: An R/Bioconductor package for

reactome pathway analysis and visualization. Mol. Biosyst. 12, 477–479.

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: An R

package for comparing biological themes among gene clusters. OMICS 16,

284–287.

Zerbino, D.R., Wilder, S.P., Johnson, N., Juettemann, T., and Flicek, P.R.

(2015). The ensembl regulatory build. Genome Biol. 16, 56.

Zerbino, D.R., Johnson, N., Juetteman, T., Sheppard, D.,Wilder, S.P., Lavidas,

I., Nuhn, M., Perry, E., Raffaillac-Desfosses, Q., Sobral, D., et al. (2016). En-

sembl regulation resources. Database (Oxford) 2016, 2016.

Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., Montgom-

ery, G.W., Goddard, M.E., Wray, N.R., Visscher, P.M., and Yang, J. (2016).

Integration of summary data from GWAS and eQTL studies predicts complex

trait gene targets. Nat. Genet. 48, 481–487.

1384 Cell 167, 1369–1384, November 17, 2016

http://refhub.elsevier.com/S0092-8674(16)31322-8/sref61
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref61
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref61
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref61
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref61
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref62
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref62
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref62
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref62
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref63
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref63
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref63
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref63
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref64
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref64
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref64
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref64
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref65
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref65
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref65
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref65
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref66
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref66
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref66
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref66
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref67
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref67
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref67
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref67
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref68
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref68
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref68
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref69
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref69
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref69
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref69
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref70
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref70
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref70
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref71
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref71
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref71
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref72
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref72
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref73
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref73
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref73
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref73
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref74
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref74
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref74
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref74
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref75
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref75
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref75
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref76
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref76
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref76
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref76
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref76
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref76
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref77
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref77
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref77
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref78
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref78
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref79
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref79
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref80
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref80
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref80
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref81
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref81
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref82
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref82
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref82
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref83
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref83
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref83
http://refhub.elsevier.com/S0092-8674(16)31322-8/sref83


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD41 BD cat#555466

CD42 IBGRL cat#9448

CD71 BD cat#551374

CD235 BD cat#555570

CD66b-FITC IBGRL cat#9453FL

CD16PE Miltenyi cat#130-091-245

CD14-FITC BD cat#345784

CCR7-FIT BD cat#5612271

CD25-PE Miltenyi cat#120-001-311

CD14-PEcy5.5 Invitrogen cat#MCHD1418

CD40-PEcy7 BD cat#561215

CD206-P BD cat#555954

CD36-FITC Southern Biotech cat#9605-02

CD36-FITC BD cat#555454

CD45-PEcy5.5 Invitrogen cat#MCHD4518

CD27 PE BD cat#555441

IgD-FITC BD cat#555778

CD19 APC BD cat#555415

CD4-FITC BD cat#555346

CD45ra PE BD cat#555489

CD3 BD cat#555332

CD8 BD cat#555367

CD62L BD cat#559772

CD45RA BD cat#555489

CD8-FITC BD cat#555366

CD3-brilliant violet 421 Biolegend cat#300434

CD4-BUV395 BD cat#563550

CD45RA-brilliant violet 785 Biolegend cat#304123

CD25-APC BD cat#555434 and cat#340907

CD127-PECy7 Biolegend cat#351320

CD62L-brilliant violet 605 BD cat#562719

Critical Commercial Assays

CD34 microbead kit Miltenyi cat#130-046-702

CD16 microbead kit Miltenyi cat#130-045-701

CD14 microbead kit Miltenyi cat#130-050-201

Monocyte negative selection isolation kit StemCell technologies cat#19059

EasySep human naive B cell enrichment kit StemCell technologies cat#19254

EasySep human B cell enrichment kit StemCell technologies cat#19054

EasySep custom kit for Naive CD4 StemCell technologies cat#19309

EasySep human CD4+ T cell enrichment kit StemCell technologies cat#19052

RosetteSep Human CD4+ T cell enrichment

cocktail

StemCell technologies cat#15022

Dynabeads Human T activator CD3/

CD28 beads

Thermofisher cat#111.31D
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EasySep Human Naive CD8+ T cell enrichment kit StemCell technologies cat#19158

EasySep Human CD8+ T cell enrichment kit StemCell technologies cat #19053

Quant-iT PicoGreen dsDNA Assay Kit Thermofisher cat#P7589

SureSelectXT Custom 3-5.9Mb library Agilent Technologies cat#5190-4831

SSEL TE Reagement Kit, ILM PE full adaptor Agilent Technologies cat#931108

SureSelectXT Custom 1Kb-499kb library Agilent Technologies cat#5190-4806

Deposited Data

Raw Promoter Capture Hi-C and reciprocal

capture Hi-C data

This study EGA: EGAS00001001911

Processed data generated in this study This study https://osf.io/u8tzp

BLUEPRINT raw gene expression data BLUEPRINT project EGA: EGAS00001000327

H3K4me3 CHIPseq in human CD20+ cells. ENCODE project https://www.encodeproject.org/experiments/

ENCSR000DQR/ENCFF001WXC

DNase-seq in human naive CD4+ cells ENCODE project https://www.encodeproject.org/experiments/

ENCSR000EML/

Histone modification ChIP data BLUEPRINT project

(GRCh37-based release)

ftp://ftp.ebi.ac.uk/pub/databases/blueprint/

data/homo_sapiens/GRCh37/

Ensembl regulatory build Zerbino et al., 2015 ftp://ftp.ebi.ac.uk/pub/contrib/pchic/hg19/

overview/RegBuild.bb

ATAC-seq data Corces et al., 2016 GEO: GSE74912

Monocyte and B cell eQTL data Fairfax et al., 2012 EGA: EGAS00000000109; ArrayExpress:

E-MTAB-2232

Whole blood eQTL data Westra et al., 2013 http://genenetwork.nl/bloodeqtlbrowser/2012-

12-21-CisAssociationsProbeLevelFDR0.5.zip

Blood trait GWAS summary data Gieger et al., 2011;

van der Harst et al., 2012

Obtained from authors

Autoimmune disease GWAS summary data Anderson et al., 2011;

Barrett et al., 2009; Bentham

et al., 2015; Cordell et al.,

2015; Dubois et al., 2010;

Franke et al., 2010; Sawcer

et al., 2011; Stahl et al., 2010

http://www.immunobase.org

Type 2 diabetes GWAS summary data Morris et al., 2012 http://diagram-consortium.org/downloads.html

Height GWAS summary data Wood et al., 2014 https://www.broadinstitute.org/collaboration/

giant/images/0/01/GIANT_HEIGHT_Wood_et_al_

2014_publicrelease_HapMapCeuFreq.txt.gz

Tryglycerides GWAS summary data Teslovich et al., 2010 http://csg.sph.umich.edu/abecasis/public/

lipids2010/TG2010.zip

High density lipoprotein GWAS summary data Teslovich et al., 2010 http://csg.sph.umich.edu/abecasis/public/

lipids2010/HDL2010.zip

Low density lipoprotein GWAS summary data Teslovich et al., 2010 http://csg.sph.umich.edu/abecasis/public/

lipids2010/LDL2010.zip

Total Cholesterol GWAS summary data Teslovich et al., 2010 http://csg.sph.umich.edu/abecasis/public/

lipids2010/TC2010.zip

Glucose sensitivity BMI adjusted GWAS

summary data

Manning et al., 2012 ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_Manning_

et_al_FastingGlucose_MainEffect.txt.gz

Glucose sensitivity GWAS summary data Manning et al., 2012 ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_

Manning_et_al_FastingGlucose_MainEffect.txt.gz

Insulin sensitivity BMI adjusted GWAS

summary data

Manning et al., 2012 ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_Manning_

et_al_FastingGlucose_MainEffect.txt.gz

Insulin sensitivity GWAS summary data Manning et al., 2012 ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_Manning_

et_al_FastingGlucose_MainEffect.txt.gz

Femoral neck bone mineral density GWAS

summary data

Estrada et al., 2012 http://www.gefos.org/sites/default/files/

GEFOS2_FNBMD_POOLED_GC.txt.gz
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human primary blood cells were obtained from either a single healthy donor (Mon, Neu, M40 (2/3 reps), M41, M42 (1/3 reps), Ery,

EndP, nCD4 (1/4 reps), tCD4, tCD8 (2/3 reps), tB, FetT) or pooled from multiple healthy donors (MK, M40 (1/3 reps), M42 (2/3 reps),

Continued
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Lumbar spine bone mineral density GWAS

summary data

Estrada et al., 2012 http://www.gefos.org/sites/default/files/

GEFOS2_LSBMD_POOLED_GC.txt.gz

Diastolic blood pressure GWAS

summary data

Ehret et al., 2011 http://www.georgehretlab.org/ICBP-summary-

Nature.csv.gz

Systolic blood pressure GWAS

summary data

Ehret et al., 2011 http://www.georgehretlab.org/ICBP-summary-

Nature.csv.gz

Body Mass Index GWAS summary data Locke et al., 2015 https://www.broadinstitute.org/collaboration/

giant/images/1/15/SNP_gwas_mc_merge_

nogc.tbl.uniq.gz

Software and Algorithms

HiCUP Wingett et al., 2015 http://www.bioinformatics.babraham.ac.uk/

projects/hicup

HOMER Heinz et al., 2010 http://homer.salk.edu/homer/

CHiCAGO: calling interactions and computing

feature enrichment at PIRs

Cairns et al., 2016 http://regulatorygenomicsgroup.org/chicago

Sdef method Blangiardo et al., 2010 https://cran.r-project.org/web/packages/sdef

Autoclass Bayesian clustering Cheeseman et al., 1988 https://ti.arc.nasa.gov/tech/rse/synthesis-projects-

applications/autoclass/autoclass-c/

Specificity score computation This paper https://github.com/Steven-M-Hill/PCHiC-

specificity-score-analysis

chromHMM Ernst and Kellis, 2012 http://compbio.mit.edu/ChromHMM/

DESeq2 Love et al., 2014 https://www.bioconductor.org/packages/DESeq2

Ensembl Regulatory Build process Zerbino et al., 2015 http://www.ensembl.org/info/genome/funcgen/

regulatory_build.html

MMSEQ Turro et al., 2011 https://github.com/eturro/mmseq

LIMIX Lippert et al.,2014 https://github.com/PMBio/limix

Poor man’s imputation This paper https://github.com/ollyburren/CHIGP

Blockshifter This paper https://github.com/ollyburren/CHIGP

COGS algorithm This paper https://github.com/ollyburren/CHIGP

Wakefield’s synthesis of approximate

Bayes factors

Wakefield, 2009 https://github.com/ollyburren/CHIGP

GeneMania 3.4.0 plugin Montojo et al., 2010 http://genemania.org/plugin

Cytoscape 3.3.0 Cline et al., 2007 http://www.cytoscape.org

bioMaRt Durinck et al., 2009 https://www.bioconductor.org/packages/

biomaRt

ReactomePA Yu and He, 2016 https://www.bioconductor.org/packages/

ReactomePA

ClusterProfiler Yu et al., 2012 https://www.bioconductor.org/packages/

clusterProfiler

VEP McLaren et al., 2010 https://github.com/Ensembl/

ensembl-tools
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nCD4 (3/4 reps), naCD4, aCD4, nCD8, tCD8 (1/3 reps), nB). The samples were obtained after written informed consent under study

titles ‘‘A Blueprint of Blood Cells,’’ REC reference 12/EE/0040, and ‘‘Genes and mechanisms in type 1 diabetes in the Cambridge

BioResource,’’ REC reference 05/Q0106/20; NRES Committee East of England – Cambridgeshire and Hertfordshire.

METHOD DETAILS

Cell Isolation and Purity Test
Cells were isolated from venous or cord blood and in vitro cultured and differentiated in some cases following standard BLUEPRINT

protocols as detailed below and confirming purity by flow cytometry or morphological examination.

Monocytes were isolated from venous blood after CD16+ depletion and CD14+ selection of peripheral blood mononuclear

cells (PBMCs) by Miltenyi Biotec kits, as described in detail at http://www.blueprint-epigenome.eu/UserFiles/file/Protocols/

UCAM_BluePrint_Monocyte.pdf. Neutrophils were isolated from venous blood after erythrocyte lysis and CD16+ selection by Milte-

nyi Biotec kits. Macrophages were in vitro differentiated from monocytes isolated from venous blood. Briefly, M0 resting macro-

phages were obtained after stimulation with 50ng/ml M-CSF for 7 days of monocytes. M1 inflammatory macrophages were obtained

after stimulation of monocytes with 50ng/ml M-CSF for 6 days followed by LPS alone at 100ng/ml for the last 18 hours. M2 anti-in-

flammatory macrophages were obtained after stimulation of monocytes with of 15ng/ml IL-13 and 0.1uM Rosiglitazone. See http://

www.blueprint-epigenome.eu/UserFiles/file/Protocols/UCAM_BluePrint_Macrophage.pdf for full details.

Erythroblasts and megakaryocytes were cultured from CD34+ cells isolated from cord blood mononuclear cells obtained with the

human CD34 isolation kit (Miltenyi Biotec) as described in (Chen et al., 2014). Erythroblasts were cultured with erythropoietin, SCF

and IL3 for 14 days, while megakaryocytes were obtained by culturing CD34+ cells with thrombopoietin and IL1b in 10 days.

Endothelial precursors (blood outgrowth endothelial cells (BOECs)) were generated from circulating endothelial progenitors in

adult peripheral blood after long-term culturing of PBMCs with endothelial cell growth medium and colony isolation (Ormiston

et al., 2015).

Naive CD4+ lymphocytes were obtained from PBMCs from venous blood by using custom kit (Catalog#19309) from STEMCELL

Technologies. Total CD4+ lymphocytes were obtained from PBMCs from venous blood by negative selection using EasySep Human

CD4+ T Cell Enrichment kit (Catalog#19052) from STEMCELL Technologies.

Activated and non-activated total CD4+ T cells were enriched from whole blood using RosetteSep human CD4+ T cell enrichment

cocktail according to the manufacturer’s protocol (STEMCELL Technologies, Vancouver, Canada). The enriched CD4+ T cell culture

was washed twice in X-VIVO-15 media (Lonza, Basel, Switzerland) supplemented with 1% human AB serum (Lonza) and penicillin/

streptomycin (GIBCO, ThermoFisher). 250,000 CD4+ T cells (93–99% pure) were stimulated with anti-CD3/CD28 T cell activator

beads (Dynal, ThermoFisher). Beads were added at a ratio of 0.3 beads / 1 CD4+ T cell (75,000 beads / well) and the cells ± beads

were cultured for 4 hr at 37�C + 5% CO2.

Naive CD8+ lymphocytes were obtained from PBMCs from venous blood by negative selection using EasySep Human Naive CD8+

T Cell Enrichment kit (Catalog#19158) from STEMCELL Technologies. Total CD8+ lymphocytes were obtained from PBMCs from

venous blood by negative selection using EasySep Human CD8+ T cell Enrichment kit (Catalog#19053) from STEMCELL Techno-

logies. Naive B lymphocytes were obtained from PBMCs from venous blood by negative selection using EasySep Naive B Cell

Enrichment kit (Catalog#19254) from STEMCELL Technologies. Total B lymphocytes were obtained from PBMCs from venous blood

by negative selection using EasySep Human B cell Enrichment kit (Catalog#19054) from STEMCELL Technologies. Foetal thymus

cells were obtained after cell disaggregation from fetal thymus tissue that was sourced from Advanced Bioscience Resources

(Alameda, CA, USA), processed and banked in accordance with UK Human Tissue Act 2004. Ficoll isolation was used to select

healthy cells.

Cell Fixation
�8x107 cells per library were resuspended in 30.625 ml of DMEM supplemented with 10% FBS, and 4.375 ml of formaldehyde was

added (16% stock solution; 2% final concentration). The fixation reaction continued for 10 min at room temperature with mixing and

was then quenched by the addition of 5 ml of 1 M glycine (125mM final concentration). Cells were incubated at room temperature for

5 min and then on ice for 15 min. Cells were pelleted by centrifugation at 400g for 10 min at 4�C, and the supernatant was discarded.

The pellet was washed briefly in cold PBS, and samples were centrifuged again to pellet the cells. The supernatant was removed, and

the cell pellets were flash frozen in liquid nitrogen and stored at �80�C.

Hi-C Library Preparation
Hi-C library generation was carried with in-nucleus ligation as described previously (Nagano et al., 2015). Chromatin was then de-

crosslinked and purified by phenol-chloroform extraction. DNA concentration was measured using Quant-iT PicoGreen (Life Tech-

nologies), and 40 mg of DNA was sheared to an average size of 400 bp, using the manufacturer’s instructions (Covaris). The sheared

DNAwas end-repaired, adenine-tailed and double size-selected using AMPure XP beads to isolate DNA ranging from 250 to 550 bp.

Ligation fragments marked by biotin were immobilized using MyOne Streptavidin C1 DynaBeads (Invitrogen) and ligated to

paired-end adaptors (Illumina). The immobilized Hi-C libraries were amplified using PE PCR 1.0 and PE PCR 2.0 primers (Illumina)

with 7–8 PCR amplification cycles.
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Biotinylated RNA Bait Library Design
Biotinylated 120-mer RNA baits were designed to the ends of HindIII restriction fragments that overlap Ensembl-annotated pro-

moters of protein-coding, noncoding, antisense, snRNA, miRNA and snoRNA transcripts (Mifsud et al., 2015). A target sequence

was accepted if its GC content ranged between 25% and 65%, the sequence contained no more than two consecutive Ns and

was within 330 bp of the HindIII restriction fragment terminus. A total of 22,076 HindIII fragments were captured, containing a total

of 31,253 annotated promoters for 18,202 protein-coding and 10,929 non-protein genes according to Ensembl v.75 (http://grch37.

ensembl.org).

PCHi-C
Capture Hi-C of promoters was carried out with SureSelect target enrichment, using the custom-designed biotinylated RNA bait

library and custom paired-end blockers according to the manufacturer’s instructions (Agilent Technologies). After library enrich-

ment, a post-capture PCR amplification step was carried out using PE PCR 1.0 and PE PCR 2.0 primers with 4 PCR amplification

cycles.

Sequencing
Hi-C and PCHi-C libraries were sequenced on the Illumina HiSeq2500 platform. 3 sequencing lanes per PCHi-C library and 1

sequencing lane per Hi-C library were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hi-C and PCHi-C Sequence Alignment
Raw sequencing reads were processed using the HiCUP pipeline (Wingett et al., 2015), which maps the positions of di-tags against

the human genome (GRCh37), filters out experimental artifacts, such as circularized reads and re-ligations, and removes all duplicate

reads. Library statistics are presented in Table S1.

Hi-C Data Processing and the Definition of TAD Boundaries
Aligned Hi-C data were analyzed using HOMER (Heinz et al., 2010). Using binned Hi-C data, we computed the coverage- and dis-

tance-related background in the Hi-C data at 25kb, 100kb and 1Mb resolutions, based on an iterative correction algorithm (Imakaev

et al., 2012). General genome organization in the eight selected cell types was compared by plotting the distance-and-coverage cor-

rected Hi-C matrices at 1Mb resolution, and by computing the compartment signal related (1st or 2nd) principle component of the

distance-and-coverage corrected interaction profile correlation matrix (Lieberman-Aiden et al., 2009) at 100kb resolution, with pos-

itive values aligned with H3K4me3 CHIP-seq in human CD20+ cells (https://www.encodeproject.org/experiments/ENCSR000DQR/

ENCFF001WXC). The compartment signal for the selected cell types in each replicate was plotted for comparison, and the genome-

wide concatenated ChIP-seq aligned principal components were clustered using hierarchical clustering (using 1 - Pearson correla-

tion as the distance metric). Directionality indices (Dixon et al., 2012) were calculated from the number of interactions 1Mb upstream

and downstream using a 25kb sliding window every 5kb steps, and were smoothed using a ± 25kb window. Topological domain

boundaries (TAD) were called between consecutive negative and positive local extrema of the smoothed directionality indices

with a standard score above 0.5. For each analyzed cell type, TADs called on individual biological replicates were merged by taking

the mean of the TAD boundary genome locations; TADs showing an overlap of less than 75% between biological replicates were

removed from the analysis.

PCHi-C Interaction Calling
Interaction confidence scores were computed using the CHiCAGO pipeline (Cairns et al., 2016). Briefly, CHiCAGO calls interactions

based on a convolution background model reflecting both ‘Brownian’ (real, but expected interactions) and ‘technical’ (assay and

sequencing artifacts) components. The resulting p values are adjusted using a weighted false discovery control procedure that spe-

cifically accommodates the fact that increasingly larger numbers of tests are performed at regions where progressively smaller

numbers of interactions are expected. The weights were learned based on the decrease of the reproducibility of interaction calls

between the individual replicates of macrophage samples with distance. Interaction scores were then computed for each fragment

pair as –log-transformed, soft-thresholded, weighted p values. Interactions with a CHiCAGO scoreR 5 in at least one cell type were

considered as high-confidence interactions.

Reciprocal Capture CHi-C
A capture system containing 949 PIRs identified in the PCHi-C experiments in at least one of the following cell types: activated, non-

activated CD4+ T cells, erythroblasts, and monocytes was used to probe the Hi-C material in these cell types. Data processing and

interaction detection were performed in the same way as for PCHi-C.
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Comparing PCHi-C and Reciprocal Capture Hi-C
Determining consistent signals between genomics datasets is a non-trivial problem that requires leveraging both false-positive and

false-negative rates (Blangiardo and Richardson, 2007; Jeffries et al., 2009), particularly in undersampled datasets such as PCHi-C

(Cairns et al., 2016). Here we took advantage of the sdefmethod (Blangiardo et al., 2010) to determine the so-called q2 thresholds on

CHiCAGO interaction scores that minimize the global misclassification error by balancing sensitivity and specificity. The q2 thresh-

olds (Ery: 0.27; MK: 0.14; nCD4: 1.23; aCD4: 1.20) were below 5 in all cases, indicating that the consistency range between PCHi-C

and reciprocal capture Hi-C datasets extends considerably below the high-confidence threshold used throughout the study (as also

evident from Figure S2A). The proportion of high-confidence interactions called in PCHi-C (CHiCAGO score > = 5) that fell within con-

sistency range in the reciprocal capture (score > = q2 in both experiments) were, respectively 96.3% (Ery), 98.7% (MK), 92.9%

(nCD4), and 91.6% (aCD4).

Promoter Interaction Localization with Respect to TADs
High-confidence PCHi-C interactions (CHiCAGO score > = 5) were classified as either ‘‘within-TAD’’ or ‘‘TAD boundary-crossing’’

(only interactions with baits located within TAD boundaries were considered in the analysis). Localization expected at random

was estimated by randomly reshuffling the distances between baits and the TAD boundaries on both their flanks across baits,

thus preserving the overall structure of promoter interactions and bait positioning within TADs.

Interaction Clustering and Principal Component Analysis
Interactions with a CHiCAGO score R 5 in at least one cell type were clustered by the Bayesian algorithm ‘‘autoclass’’ (Cheese-

man et al., 1988) based on the full range of asinh-transformed CHiCAGO scores in each cell type. The algorithm was trained on a

sample of 30,000 interactions, and then used in the ‘‘predict’’ mode to classify the complete dataset. The relative error parameter

was set to 0.1. This resulted in 34 clusters, with cluster sizes ranging from 108,066 interactions to 12 interactions and a mean

cluster size of 21,436 interactions. Clustering of the cell types based on their interaction profiles was performed using a hierarchi-

cal algorithm with average linkage, based on Euclidian distances. Principal component analysis was performed using the prcomp

function in R.

Definition of Specificity Scores
Consider a set of cell types I. Let xi denote themeasured value of a quantitative property (such as CHiCAGO interaction score or gene

expression level) for cell type i∈ I. Then, the specificity score sc for a given cell type c∈ I is a weighted mean of the differences xc – xi
for i s c,

sc =
1P

isc

dc;i

X

isc

dc;iðxc � xiÞ

where the weights dc,i are distances between cell type c and cell types i, calculated using the complete dataset (e.g., CHiCAGO

interaction scores for all interactions or expression values for all genes; distances calculated using Euclidean distance

metric). The distance weights are introduced to account for imbalances in the distances between cell types. For example,

among the cell types considered here are three types of macrophages that are likely to have very similar profiles of the

measured property compared with other analyzed cell types (and so the distances between macrophage samples will also

be smaller than between macrophages and other cell types). The distance weights focus the calculation of sc on cell types

that are relatively more distant from cell type c. In this example therefore, they will result in the calculation of sc for each

type of macrophage placing relatively little weight on the other types of macrophages. Without this weighting, specificity scores

for macrophages would be smaller on average simply because macrophages are over-represented among the cell types

considered.

Calculation of Cluster Specificity Scores
For a given Autoclass cluster (Figure 2B), a specificity score sc was calculated for each cell type c using the equation above, with xi
defined as the mean asinh-transformed CHiCAGO score for cell type i (mean calculated across all interactions in the given cluster).

The distance weights weights dc,i were calculated based on the full set of CHiCAGO interaction scores. These cluster specificity

scores are shown in Figure 2C.

ATAC-Seq Data Analysis
Processed count data were downloaded from GEO (accession GSE74912). Samples were normalized using DESeq2 (Love et al.,

2014) and the mean normalized counts across replicates were computed for each sample. Regions attracting top 10% mean

normalized counts for each cell type were considered for PIR enrichment analysis. Enrichment at PIRs was computed using the

peakEnrichment4Features function in the CHiCAGO package (Cairns et al., 2016) with respect to randomized PIRs generated so

as to preserve the distribution of PIR distances to promoters.
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Histone Modification ChIP and the Definition of Chromatin States
Processed histone modification ChIP-seq datasets were downloaded from the BLUEPRINT project (the January 2015 GRCh37-

based release, ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data/homo_sapiens/GRCh37/). Histone modification enrichment at

PIRs was computed using the peakEnrichment4Features function in the CHiCAGO package (Cairns et al., 2016) with respect to

randomized PIRs generated so as to preserve the distribution of PIR distances to promoters. To form genome segmentations,

ChromHMM (Ernst and Kellis, 2012) was applied to all BLUEPRINT samples with full reference epigenome histonemodification align-

ment files, using default settings and defining 25 epigenetic states. This dataset was used as the basis for the Ensembl Regulatory

Build process (Zerbino et al., 2015), defining regulatory features based on the histone profiles (transcription start site, proximal

enhancer, distal enhancer), and also assigning activity statuses based on sample-specific experiments (active, poised, repressed,

inactive) (Zerbino et al., 2016). Baits and PIRs were then overlapped with Ensembl Regulatory Build regulatory features.

Dynamics of Enhancer-Promoter Interactions
Hierarchical clustering was conducted on the presence or absence of high-confidence interactions (CHiCAGO score > = 5) and distal

enhancer activity defined as presented above, using binary distance and complete linkage. Enrichment was calculated as observed

over expected, where observed is the number of active distal enhancers overlapping PIRs, and expected is the expected number

under the null model of no association between enhancer activity and the presence of an interaction.

For the analyses in Figures 3Eand3F, one representativeBLUEPRINT samplewas selected for eachcell type toavoiddouble count-

ing interactions. A bait fragment was labeled ‘‘active’’ if it overlapped at least one promoter regulatory element in the chromHMM-

defined active state, and a PIR was labeled as ‘‘active’’ if it overlapped at least one distal enhancer in the chromHMM-defined active

state. Promoters and PIRs in all other states, including poised, repressed and inactive were considered as ‘‘non-active.’’ Removing

enhancers in the chromHMM-defined inactive state from the analysis in Figure 3F and considering only poised and repressed en-

hancers as non-active led to the same conclusions (overdispersion-adjusted p value = 0.0016; data not shown).

Sets were formed of overlapping promoter features and baits, and overlapping distal enhancers and PIRs. 2x2 contingency tables

were generated by summarizing these sets: either the full set (Figure 3E) or the subset where at least one cell type has a high-con-

fidence interaction between an active promoter and an active distal enhancer (Figure 3F). The p values for the null hypotheses of

independence between interaction state and regulatory state were calculated by the c2 test. Overdispersion was expected in the

underlying null distribution due to correlated observations arising from the shared baits of multiple interactions. Block bootstrapping

was therefore performed to estimate overdispersion by resampling baited fragments with replacement, and the observed c2-statistic

was scaled by a factor of sqrt(2) divided by the square root of the variance of the 1000 bootstrap-resampled c2-statistics.

Relationship between Active Enhancers and Gene Expression
BLUEPRINT gene expression data were obtained from EGA (https://www.ebi.ac.uk/ega, EGA: EGAS00001000327) and processed

as previously described (Chen et al., 2014), with quantification performed using MMSEQ (Turro et al., 2011). The data were then

filtered so that the Regulatory Build promoter feature was within 500 bp upstream and 50 bp downstream of an annotated transcrip-

tion start site for the gene. Only geneswith active promoters in all BLUEPRINT samples were used in this analysis, to remove the large

effect of promoter status on gene expression. A linear model was fitted by robust regression using iterated reweighted least-squares,

where the gene expression was modeled by either the number of interacting active enhancers (Figure 4A), or the number of any

interacting PIRs and the fraction of interacting active enhancers (Figure S4A).

Calculation and Clustering of Gene Specificity Scores (Interactions with Active Enhancers)
We quantified the cell type-specificity of each gene’s interactions with active enhancers through calculation of gene specificity

scores. This analysis was restricted to the eight cell types for which BLUEPRINT expression and histone modification data were

available. The original set of high-confidence interactions was filtered to (i) only contain baits that mapped exclusively to a unique

protein-coding gene promoter and (ii) only contain interactions for which at least one of the eight cell types has both a CHiCAGO

score R 5 and an active enhancer. For this analysis, PIRs were considered as ‘‘active enhancers’’ if they contained proximal/distal

enhancer or transcription start site features (based on the Ensembl Regulatory Build) that were found to be in the active state based

on ChromHMM segmentations of the histone modification data in the corresponding cell type. This resulted in a set of 139,835 in-

teractions and 7,004 unique baits. To focus the analysis on active enhancers, for each interaction CHiCAGO scores were set to zero

for cell types where the enhancer had an inactive status. Finally, to avoid large CHiCAGO scores dominating the specificity analysis,

scores were asinh-transformed and values larger than a threshold of 4.3 (equivalent to a score z36.8) were set to 4.3. We refer to

these scores as ‘‘processed CHiCAGO scores.’’

For each enhancer-promoter interaction, specificity scores sc for each cell type c were calculated as described above (see ‘‘Defi-

nition of specificity scores’’ and equation therein), with xi defined as the processed CHiCAGO score for cell type i. The distance

weights weights dc,i were calculated based on the full set of CHiCAGO interaction scores (asinh-transformed with upper threshold

of 4.3). Now consider a single gene (protein-coding gene promoter) g. Let ng denote the number of enhancer interactions this gene

has among the set of 139,835 interactions. The gene then has ng specificity scores sc for cell type c, one for each interaction. These ng
scores are averaged to obtain the interaction-based gene specificity score for cell type c, sgc. The heatmap in Figure 4B shows these

scores for eight cell types and 7,004 genes.
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Clustering of genes based on these specificity scores was performed in R using k-means with Euclidean distance metric and

10,000 random starts each with a maximum of 10,000 iterations. The analysis was repeated with the number of clusters varying be-

tween 2 and 30. We selected 12 clusters (shown in Figure 4B) by inspecting the scree plot of within-cluster sum of squares versus

number of clusters. The cell types were also clustered according to their interaction-based gene specificity scores across genes.

Hierarchical clustering was applied with Euclidean distance and complete linkage (see dendrogram in Figure 4B).

Calculation of Gene Specificity Scores (Expression)
For each of the 7,004 genes, expression-based specificity scores sc were calculated for each cell type c based on BLUEPRINT

expression data, processed as previously described (Chen et al., 2014). The scores for each gene were calculated as described

above (see ‘‘Definition of specificity scores’’ and equation therein) with xi defined as the asinh-transformed gene expression value

for cell type i. The distance weights dc,i were calculated based on the full expression dataset.

Calculation of Gene Cluster Enrichment Scores
Scores were calculated to quantify enrichment of each of the 12 gene clusters in Figure 4B (capturing cell type-specificity of inter-

actions with active enhancers) for the 100 genes expressed with highest specificity in each analyzed cell type.

LetGc denote the set of 100 genes with highest expression-based gene specificity score for cell type c (Figures 4D and S4C show

interaction-based gene specificity scores for genes in Gc where c is nCD4 and monocytes respectively). Let pc,k denote the propor-

tion of genes inGc that are in cluster k and qk denote the proportion of all 7,004 analyzed genes that are in cluster k. Then, the cluster k

enrichment score for genes inGc is given by ec,k = pc,k - qk. Note that qk is the expected value of pc,kwhenGc is replaced by a random

selection of 100 genes.

Enrichment scores are shown in Figure 4E. Overall, gene clusters characterized by interactions that are predominantly specific to

cell type c were the most enriched for the 100 genes in Gc.

eQTL Analysis
To evaluate the number of lead eQTLs in monocytes and B cells (Fairfax et al., 2012) that physically contact their target gene pro-

moters, we performed association tests using LIMIX (Lippert et al., 2014) within 2Mb windows around the gene bodies. For each

gene expression probe, at most one lead eQTL SNP was considered at FDR < 10%. We then counted cases, whereby the lead

eQTL or at least one SNP in LD with it (r2 > = 0.8, based on the 1000 Genomes EUR cohort (Auton et al., 2015)) overlapped a PIR

for the eQTL-associated gene. The same strategy was taken to evaluate the number of PIRs detected in at least one of the 17

cell types overlapping cis-eQTLs (FDR < 10%) for the PIR target genes reported in the whole-blood meta-analysis study (Westra

et al., 2013).

To compute the enrichment of eQTLs at PIRs in the monocyte and B cell data (Fairfax et al., 2012), we used LIMIX to perform as-

sociation tests between each SNP overlapping each PIR and the expression of the respective PIR-connected gene probe. The same

analysis was performed at random regions (‘‘randomised PIRs’’) generated in a manner maintaining the distribution of distances and

spatial interdependencies of the observed PIRs and accounting for the strand directionality of the genes. Specifically, the bait posi-

tion of all PIRs of a given gene was shifted to the bait position of another randomly selected gene. This procedure was performed for

all genes over 1000 permutations. If the randomly selected gene was on the opposite strand compared to the gene of origin, the set

of interactions wasmirrored around the bait position. Enrichment was assessed by comparing a) proportions of SNPs that are eQTLs

for the PIR-connected target gene (Figures 5A and 5B) and b) proportions of PIR-connected genes with at least one significant

association (Figures S5A and S5B) at the observed and randomized PIRs over binned distances between the PIRs and the target

gene TSS. The p values were adjusted for all tests across variants and genes in each distance bin.

For the examples of SNPs in PIRs, associations of PIRs (plus extra 500bp on either side of them) with the connected gene expres-

sion were tested for each gene, and the p values were corrected globally for all tests across all variants and genes. Significant

associations were reported at FDR < 10%.

To assess the enrichment of whole-blood cis-eQTLs at the PIRs of their target genes (Figure S5C), we randomized PIRs in the same

way as for the monocyte and B cell analysis presented above, and compared the overlap of observed versus randomized PIRs with

the lead eQTL SNPs for the PIR-connected genes or SNPs in LD with them.

GWAS Summary Statistics
Blood trait summary data (Gieger et al., 2011; van der Harst et al., 2012) were kindly provided by N. Soranzo and the HaemGen con-

sortium; autoimmune disease summary data were retrieved from ImmunoBase (http://www.immunobase.org) (Anderson et al., 2011;

Barrett et al., 2009; Bentham et al., 2015; Cordell et al., 2015; Dubois et al., 2010; Franke et al., 2010; Sawcer et al., 2011; Stahl et al.,

2010); the remaining GWAS summary data were retrieved from various internet resources (Estrada et al., 2012; Ehret et al., 2011;

Locke et al., 2015; Manning et al., 2012; Morris et al., 2012; Teslovich et al., 2010; Wood et al., 2014). Where necessary we used

liftOver or in-house scripts to convert to GRCh37 coordinates. In order to remove SNPs with spuriously strong association statistics,

we removed SNPs with p < 5 3 10�8 for which there were no SNPs in LD (r2 > 0.6 using 1000 genomes EUR cohort as a reference

genotype panel (Auton et al., 2015)) or within 50 Kb with p < 10�5.
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Poor man’s Imputation (PMI)
We developed a pipeline that approximates the p value for missing SNP summary statistics for a given study using a suitable refer-

ence genotype set. First we split the genome into regions based on a recombination frequency of 0.1cM using HapMap recombina-

tion rate data (Frazer et al., 2007). For each region we retrieve from the reference genotype set (1000 genomes EUR cohort (Auton

et al., 2015)) all SNPs that haveMAF > 1% and use these to compute pairwise LD.We pair each SNP from our summary statistics set,

where p values are present, with SNPs from the reference set where p values are unavailable using maximum pairwise r2 (r2Max). If

r2Max > 0.6, we then impute the missing p value as that at the paired SNP. SNPs with missing data without a pair above this r2Max

threshold are discarded as are SNPs that are included in the study but don’t map to the reference genotype set. We masked

the MHC region (GRCh37:6:25-35Mb) from all downstream analysis due to its extended LD and known strong and complex

association with autoimmune diseases.

GWAS Tissue Set Enrichment Analysis of PCHi-C
Wedeveloped amethod, blockshifter, based on ideas implemented in GOSHIFTER (Trynka et al., 2015) to examine the enrichment of

GWAS signals at PIRs in order to overcome linkage disequilibrium (LD) and interaction fragment correlation. Blockshifter implements

a competitive test of enrichment between a test set of PIRs compared to a control set. First the coordinates of the PIR in the union of

test and control sets are retrieved, and PIRs with no GWAS signal overlap, or that are found in both test or control set are discarded.

For the remaining PIRs we store the number and sum of overlapping GWAS posterior probabilities and these are used to compute d,

the difference in the means between the test and control sets. Due to spatial correlation between GWAS signals and between PIRs

the variance of d is inflated, we therefore compute it empirically using permutation. Runs of one or more PIRs (separated by at most

one HindIII fragment) are combined into ‘blocks’, that are labeled unmixed (either test or control PIRs) or mixed (block contains both

test and control PIRs). Unmixed blocks are permuted in a standard fashion by reassigning either test or control labels randomly, tak-

ing into account the number of blocks in the observed sets. Mixed blocks are permuted by conceptually circularising each block and

rotating the labels (Figure S6A). We then randomly sample from each these precomputed block permutations n times so that the pro-

portion of underlying PIR labels is the same as the observed set, and use this to compute the set of dnull. We use dnull to compute an

empirical Z-score:

Z =
d� dnullffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðdnullÞ

p

Integration of GWAS Summary Statistics with Tissue Specific PCHi-C and Functional Information
In order to prioritize genes, traits and tissues for further study we developed the COGS algorithm to compute tissue specific gene

scores for each GWAS trait, taking into account linkage disequilibrium, interactions and functional SNP annotation. For each

GWAS trait, and for each SNP in a given recombination block, we used Wakefield’s synthesis (Wakefield, 2009) to compute approx-

imate Bayes factors and thus the posterior probability for that SNP being causal for that trait assuming at most one causal variant in

the recombination block (Maller et al., 2012). For each gene annotation, for which we have at least one high-confidence interaction

(CHiCAGO score > = 5), and recombination block we compute a block gene score that is composed of the contributions of three

components: (1) coding SNPs in the annotated gene as computed by VEP (McLaren et al., 2010), (2) promoter SNPs, which we define

as SNPs that overlap a region encompassing the bait and flanking HindIII fragments and not any coding SNPs, (3) SNPs that overlap

PIRs for a tissue or set of tissues that do not overlap coding SNPs. Thus for a given target gene, recombination block and trait we can

derive a block ‘‘genescore’’ that is the sumof the posterior probabilities (as computed by PMI) of SNPs overlapping each component.

We assume statistical independence between blocks, so that we can combine block genescores to get an overall ‘‘genescore’’:

genescore= 1�
Y

ð1� genescore:blockÞ:

TAD-Based Prioritization
To compare COGS with ‘‘brute-force’’ TAD-based prioritization, we computed TAD-level scores for eight autoimmune traits across

eight cell types. Briefly, for each TAD in each cell type, we subdivided and summed posterior probabilities for each trait (excluding the

MHC region) by overlap with 0.1cM recombination blocks to obtain block TAD scores, removing coding SNPs, and computed an

overall TAD score such that:

TAD:score= 1�
Y

ð1� TADscore blockÞ:

A TAD score was assigned to each genemapping within the respective TAD in each tissue, and themaximum score across all eight

cell types was selected.

Prioritized Gene Enrichment in IBD Differentially Expressed Genes
Normalized microarray expression data for sorted CD4+ T cells, CD8+ T cells, B cells, Monocytes and Neutrophils in 49 patients with

Crohn’s disease (CD), 42 with ulcerative colitis (UC) and 43 healthy controls (Peters et al., 2016) was downloaded from ArrayExpress
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(accession E-MTAB-3554). We then used limma (Ritchie et al., 2015) to perform a two-degree-of-freedom test for differential expres-

sion across any of the three patient groups, combining individual gene differential expression across cell types by selecting the most

significant cell type. Fisher’s test was used to compute enrichment across all protein coding genes that had both expression

and COGS scores for UC (Anderson et al., 2011) and CD (Franke et al., 2010). For comparison with TAD-based prioritized genes

in Figure S6C, COGS prioritization was rerun using only eight cell types for which Hi-C data (and therefore TAD information) was

available, with both MHC and coding variation masked.

Reactome Pathway Analysis
For each trait we selected all protein coding genes having an overall gene score above 0.5. We converted Ensembl gene identifiers

to Entrez identifiers with bioMaRt (Durinck et al., 2009) and then used ReactomePA (Yu and He, 2016) to compute enrichment of

genes in Reactome pathways using an FDR cutoff of 0.05. We generated a bubble plot of significant results for each trait using

ClusterProfiler (Yu et al., 2012).

Core Autoimmune Network
For each of the eight analyzed autoimmune traits (CD, CEL, RA, UC, PBC, SLE, MS, T1D) we selected top-scoring genes based on

the following criteria: genescore > 0.5, nomore than top 75 genes per condition. The resulting 421 genes were combined into a single

list, and disease associations were assigned to each gene based on the respective genescore > 0.5. This gene list was used as input

to the GeneMania 3.4.0 plugin (Montojo et al., 2010) for Cytoscape 3.3.0 (Cline et al., 2007) to construct a network based on prior

knowledge about these 421 genes (shown in Figure 6E). The following information was used for linking gene pairs: physical interac-

tion (all sources in the plugin), co-localization (the ‘‘Satoh-Yamamoto-2013’’ dataset only), predicted interaction (I2D-based datasets

only), shared pathway annotation. Only the 421 network genes were plotted (‘‘find 0 related genes’’) and query-gene-based weights

were used. The Cytoscape network file is available through Open Science Framework (https://osf.io/u8tzp).

DATA AND SOFTWARE AVAILABILITY

Software
Scripts to compute specificity scores are available at https://github.com/Steven-M-Hill/PCHiC-specificity-score-analysis. Imple-

mentations of the PMI, blockshifter and COGS algorithms, along with supporting documentation, are available at https://github.

com/ollyburren/CHIGP.

Data Resources
The accession number for the raw sequencing reads reported in this paper that were deposited to EGA (https://www.ebi.ac.uk/ega)

is EGAS00001001911. Lists of PHi-C-detected significant interactions, detected interactions between active promoters and active

enhancers, and a comparison of interactions scores between PCHi-C and reciprocal capture Hi-C experiments are available as part

of the Data S1 archive. High-confidence interactions (CHiCAGO score > = 5 in at least one cell type) are available via the CHiCP

browser (Schofield et al., 2016), where they can be visualized alongside GWAS data (https://www.chicp.org) and as custom tracks

for the Ensembl browser (ftp://ftp.ebi.ac.uk/pub/contrib/pchic/CHiCAGO). The regulatory build annotations and segmentations of

the BLUEPRINT datasets are available as a track hub for the Ensembl browser (ftp://ftp.ebi.ac.uk/pub/contrib/pchic/hub.txt). Further

processed datasets, including TAD definitions, regulatory region annotations, specificity scores and gene prioritization data, are

available via Open Science Framework (https://osf.io/u8tzp).

e10 Cell 167, 1369–1384.e1–e10, November 17, 2016

https://osf.io/u8tzp
https://github.com/Steven-M-Hill/PCHiC-specificity-score-analysis
https://github.com/ollyburren/CHIGP
https://github.com/ollyburren/CHIGP
https://www.ebi.ac.uk/ega
https://www.chicp.org
ftp://ftp.ebi.ac.uk/pub/contrib/pchic/CHiCAGO
ftp://ftp.ebi.ac.uk/pub/contrib/pchic/hub.txt
https://osf.io/u8tzp


Supplemental Figures

B

 0
 50

 100
 150
 200
 250

G
en

om
ic

 p
os

iti
on

 (M
b)

, c
hr

om
os

om
e 

1

-2 -1 0 1 2
log2 enrichment

chromosome 1

0 20 40 60 80 100 120 140 160 180 200 220 240
genomic position (Mb)

 0
 50

 100
 150
 200
 250

Genomic position (Mb), chromosome 1 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

 250
 200
 150
 100

 50 0

nCD4Mon Mφ0NeuMK Ery nCD8 nB

C

nCD4

Mon

Mφ0

Neu

MK

Ery

nCD8

nB

MK

Ery

Neu

Mon

Mφ0

nCD4

nCD8

nB

D

77680000 77830000 77980000 78130000 78280000

chr11

Randomized TADs
Obser

nCD4Mon Ery

ved

BFSP2-AS1KCTD21; USP35

0
sD

I

2
0

132400000 132600000 132800000 133000000 133200000 133400000

chr3

-2

sD
I

2
0

-2
Bait
PIR
TAD boundary

0.8 0.9 1
Value

0
15

C
ou

nt

nCD4

Mon

Mφ0

Neu

MK

Ery

nCD8

nB

MK

Ery

Neu

Mon

Mφ0

nCD4

nCD8

nBnC
D

4

M
on

M
φ

0

N
eu

M
K

Ery

nC
D

8

nB M
K

Ery

N
eu

M
on

M
φ

0

nC
D

4

nC
D

8

nB

7.
5

A

0

1000

2000

3000

4000

1 0.5 01 0.5 0
Fraction of within-TAD interactions per bait

0

1000

2000

3000

4000

N
um

be
r o

f b
ai

ts

N
um

be
r o

f b
ai

ts

N
um

be
r o

f b
ai

ts

1 0.5 0
0

1000

2000

3000

4000

(legend on next page)



Figure S1. Higher-Order Topological Properties of Eight Blood Cell Types, Related to Figure 1

(A) Top panel: Distributions of the frequencies of promoter interactions (per bait) that cross the cognate TAD boundaries in three representative cell types. Black

bars show the observed frequencies, and gray bars show expected frequencies computed by permuting TAD boundaries 1000 times (see Quantification and

Statistical Analysis). The error bars show ± standard deviations of 1000 permutations. On the x axis, 1 corresponds to a scenario whereby all interactions of a

given bait localize within the same TAD as the bait, and 0 corresponds to a scenario whereby all interactions of a given bait cross TAD boundaries. Bottom panel:

examples of baits with PIRs mapping fully within (left) or fully outside (right) the baits’ TADs. Purple bars show baited regions, black arrows show the direction of

the corresponding genes’ transcription, purple arcs show high-confidence interactions called byCHiCAGO (score >= 5), orange bars show TADboundaries. Plots

above show the directionality index (DI) profiles in the displayed regions, with TAD boundaries defined on the basis of a switch from a negative to a positive DI.

(B) Coverage-and-distance corrected Hi-C matrices of chromosome 1 show the log2-enrichment of interactions between chromatin segments binned at 1Mb

resolution. The eight analyzed cell types (MK,megakaryocytes; Ery, erythroblasts; Neu, neutrophils; Mon,monocytes; M40,macrophagesM0; nCD4, naive CD4+

T cells; nCD8, naive CD8+ T cells; nB, naive B cells) are shown in columns, and the respective biological replicates are in rows.

(C) The first principal component of the 100kb-binned interaction correlation matrix for chromosome 1 shows compartmentalisation (positive values are

associated with A and negative values with B compartment). Each biological replicate of the eight analyzed cell types is shown.

(D) Correlation matrices of the genome-wide concatenated first principal components with dendrograms from hierarchical clustering show the grouping of cell

types according to the compartment signal.
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Figure S2. Validation of Promoter Interactions Using Reciprocal Capture Hi-C, Related to Figure 1

(A) Cumulative density plots showing the distributions of asinh-transformed CHiCAGO interaction scores for promoter-containing reciprocal capture Hi-C

fragment pairs that are detected as high-confidence interactions (HCI) in the PCHi-C analyses in the respective cell types (blue line - HCI; CHiCAGO score > = 5)

(legend continued on next page)



versus those that are not detected as HCI in PCHi-C (gray line). Vertical lines show the high-confidence CHiCAGO score cutoff of 5 on the asinh-transformed scale

(�2.31) for the reciprocal capture Hi-C samples and the q2 cutoffs minimizing the total misclassification error across the PCHi-C and reciprocal capture Hi-C

samples for each cell type (Blangiardo and Richardson, 2007). See Quantification and Statistical Analysis.

(B and C) Comparison of interactions detected with PCHi-C (top) and reciprocal capture (bottom two panels) for two example regions in erythroblasts (Ery, panel

B) and non-activated CD4 cells (naCD4, panel C). The PCHi-C baits capture the TRPC3 and TES promoters, respectively, while reciprocal capture baits were

designed to capture their selected PIRs. Interactions are plotted in the same way as in Figure 1C.
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Figure S3. Additional Properties of Promoter Interactions, Related to Figures 2 and 3

(A) Venn diagram showing the numbers of promoter baits with interactionsmapping to the ‘‘myeloid’’, ‘‘lymphoid’’ and ‘‘invariant’’ sets of clusters. See Figures 2B

and 2C and the main text for details. Includes 141 non-promoter-containing baits that are not considered in further analyses.

(B) Evidence that promoters preferentially have interactions with a similar cell type specificity. A histogram of the observed variance of the specificity scores

across interactions of the same bait (blue) versus the same obtained by permuting cluster labels (expected, gray). The specificity score for a given interaction was

taken to be the maximum of the interaction’s cluster specificity scores across all cell types. See Quantification and Statistical Analysis.

(C) Significance of PIR enrichment for chromatin accessibility regions detected by ATAC-seq in five blood cell types (tB, total B cells; tCD4, total CD4+ T cells;

tCD8, total CD8+ T cells; Ery, erythroblasts; Mon, monocytes) (Corces et al., 2016) in comparison with distance-matched random regions, expressed in terms of

z-scores. Error bars show ± SD across 100 draws of random regions.

(D) A zoomed-out view of promoter interactions and chromatin features in and around the b-globin locus. PCHi-C data from 3 cell types (Ery, erythroblasts; Mon,

monocytes; nCD8, naive CD8+ T cells), showing regulatory element annotations from the Ensembl Regulatory Build, colored by feature, and chromatin activities

based on ChromHMM segmentations of BLUEPRINT histone modification data. (ChromHMM activities included four states: ‘‘active’’, ‘‘poised’’, ‘‘Polycomb-

repressed’’, and ‘‘inactive’’, with only ‘‘active’’ and ‘‘inactive’’ states observed in the region shown). The image is based on a screenshot produced with Ensembl

v83 using GRCh37 assembly and GENCODE v19 gene annotations. The b-globin Locus Control Region (LCR) is highlighted in a blue box.
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Figure S4. Additional Evidence of the Link between Promoter Interactions and Gene Expression, Related to Figure 4

(A) Partial residual plot of log2-gene expression as a function of the number of PIRs interacting with the respective baited region in the cell types, where the

promoter is active in all analyzed cell types. The trendline is from a linear regression using iterated reweighted least-squares (see Quantification and Statistical

Analysis).

(B) Mean gene specificity score (based on interactions with active enhancers) for each of the clusters in Figure 4B is plotted against analogous mean gene

specificity scores based on expression data for monocytes (Mon) and macrophages M0, M1, M2 (M40-2). Error bars indicate ± SD. Plots for nCD4, MK, Ery and

Neu are shown in Figure 4C. See Quantification and Statistical Analysis for details.

(C) A subset of the heatmap in Figure 4B, showing interaction-based gene specificity scores for the top 100monocyte-specifically expressed genes (obtained by

ranking genes according to their monocyte (Mon) expression-based specificity scores), together with cluster IDs.
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Figure S5. Further Details on the Enrichment of eQTLs at Promoter-Interacting Regions, Related to Figure 5

(A and B) The proportion of genes with at least one eQTL SNP per gene expression probe located within PIRs compared with the equivalent proportion of eQTL

SNPs located within matched random regions (‘‘randomised PIRs’’) in monocytes (A) and total B cells (B). See Quantification and Statistical Analysis for details on

the randomization strategy. Asterisks represent the significance of enrichment at observed versus randomized PIRs (permutation test *p < 0.05; **p < 0.01; ***p <

0.001).

(C) Number of lead cis-eQTLs in whole blood (FDR < 10%) physically contacting regulated gene promoters (accounting for linkage disequilibrium). Results

obtained with randomized PIRs are shown as controls. Asterisks represent the significance of enrichment at observed versus randomized PIRs (permutation test

*p < 0.05; **p < 0.01; ***p < 0.001).

(D) An example of an extremely long-range eQTL association between rs3817995 andAURKA expression in total B cells, with the SNP located > 30Mb away from

AURKA transcription start site (TSS). The gray dashed line represents the significance threshold.

(E) An example of two independent eQTL signals detected for NCOA4 in monocytes, with the primary eQTL SNP (rs4948673) located > 5 Mb away from the TSS.

The second, independent eQTL SNP (rs10821610) is located close (< 20kb) to the NCOA4 TSS. The gray dashed line represents the significance threshold.
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Figure S6. Colocalization of GWAS and eQTL Signals at Prioritized Candidate Genes, Related to Figure 6

(A) A schematic of the permutation strategy implemented in blockshifter. GWAS summary statistics are converted to posterior probabilities for a given SNP to be

causal (red dots depict SNPs likely to be causal, blue dots depict other SNPs). Blocks of adjacent PIRs found in either test (purple) or control (cyan) tissue sets,

separated by two or more non-PIR HindIII fragments (gray), are then defined. Labels of HindIII fragments within each block are then rotated (‘block-shifted’) to

generate test sets for estimating the empirical variance of the test statistic under the null while accounting for genomic structure.

(B) Comparison of COGS prioritization scores with those obtained using a ‘‘brute-force’’ algorithm based on shared TADs for eight autoimmune (AI) diseases (see

Quantification and Statistical Analysis for details). Quadrants correspond to genes not exceeding the score cutoff of 0.5 with both methods, and exceeding it with

just one or both methods. Counts of genes in each quadrant are shown.

(C) Odds ratios of differential expression in the immune cells of irritable bowel disease (IBD) patients (FDR < 5%) (Peters et al., 2016) for genes prioritized for

Crohn’s disease (purple) and ulcerative colitis (blue) by the PCHi-C-based COGS or a TAD-based algorithm (score > 0.5).

(D–G). 2 Mb windows around the genes prioritized by the GWAS/PCHi-C based algorithm in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE)

were overlappedwith eQTLs for the same genes in B cells. In five cases high LD (r2 > 0.8) was detected between theGWAS lead SNP and the eQTL lead SNP in the

2Mb regions. Shown are Manhattan plots for two SLE-prioritized genes (SLC15A4, panel D; BLK, panel E) and two RA-prioritized genes (GIN1, panel F;

RASGRP1, panel G), for which high LD (r2 > 0.8) was detected between the GWAS lead SNP and the eQTL lead SNP, providing evidence for colocalization of the

GWAS and eQTL signals in these regions.
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