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Magnetotransport in single layer graphene in a large parallel magnetic field
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Graphene on hexagonal boron-nitride (h-BN) is an atomically flat conducting system that is
ideally suited for probing the effect of Zeeman splitting on electron transport. We demonstrate by
magneto-transport measurements that a parallel magnetic field up to 30 Tesla does not affect the
transport properties of graphene on h-BN even at charge neutrality where such an effect is expected
to be maximal. The only magnetoresistance detected at low carrier concentrations is shown to be
associated with a small perpendicular component of the field which cannot be fully eliminated in
the experiment. Despite the high mobility of charge carries at low temperatures, we argue that
the effects of Zeeman splitting are fully masked by electrostatic potential fluctuations at charge
neutrality.

PACS numbers: 72.80.Vp, 73.50.Jt

I. INTRODUCTION

A magnetic field applied in the plane of an ideally flat
two-dimensional (2D) conductor couples to the spin de-
gree of freedom of charge carriers rather than to their
orbital motion. In such a setup, the orbital effects
such as Hall and Nernst are suppressed and the spin-
polarization effects become the leading phenomena. This
idea has been intensely exploited in semiconductor het-
erostructures to study the effects of electron-electron in-
teractions and disorder on spin polarisation and spin-
resolved density of states in two-dimensional electron
gases (2DEGs).1,2

For some 2DEGs, the characteristic width of the con-
finement potential is, however, comparable to the mag-
netic length ℓB =

√

~/eB even for fields of the order of a
few Tesla. For larger fields the energy bands and, conse-
quently, the effective mass and the g-factor of electrons
become sensitive to the value of the in-plane magnetic
field B‖

3,4 and the interplay between spin and orbital ef-

fects influences the transport properties of the system.5,6

In contrast to semiconductor-based 2DEGs, a complete
decoupling of the orbital and spin effects can be achieved
in graphene. Since graphene is only one atom thick, the
orbital motion of the electrons is not affected by B‖ up

to the fields of the order of 103T. In actual devices, how-
ever, graphene adapts to the conformation of the under-
lying substrate.7 Common substrates such as SiO2 induce
corrugations (ripples) to graphene plane that convert a
nominal in-plane field into a randomly oriented one, de-
pending on the curvature of the surface. Experimental
works on SiO2 supported graphene showed that the ex-
ternal B‖ couples to the orbital motion of carriers via the
high corrugations leading to a magnetoresistance which
depends on the topography of the device8,9.

Nevertheless, an atomically flat conducting system
can be achieved by placing graphene on hexagonal

boron-nitride (h-BN) which significantly increases its
mobility.10,11 Graphene sandwiched between two atomi-
cally flat h-BN surfaces gives rise to an ultimately sharp
potential well with a characteristic width of one atom12,
representing an ideal playground to probe the effects of
an in-plane magnetic field on the electron transport of a
truly 2D system.
An in-plane magnetic field modifies the density of

states only due to the Zeeman splitting EZ = gµBB,
where g = 2 is the electron g-factor and µB is the Bohr
magneton, leading to a value EZ ≈ 3.5meV forB = 30T.
In addition, the splitting of spin sub-bands changes the
density of states in graphene at charge neutrality from
zero ta a non-zero value leading to a non-zero quasipar-
ticle density nQ. Therefore, a strong in-plane magnetic
field is expected to affect magneto-transport properties
of graphene only in the limit of low charge carrier density,
n < nQ, and low temperature, T < EZ .

13

In this work, we investigate the resistivity of high-
quality h-BN supported graphene in the presence of a
large in plane magnetic field. We do not observe any
change of resistivity induced by B‖ neither at charge neu-
trality nor for large doping at 1.4K and for B‖ as large as
30T. Despite the high mobility of charge carriers in the
sample µ ≈ 50000 cm2V−1s−1, the electrostatic potential
fluctuations around the charge neutrality point (CNP)
are sufficiently strong to average out possible effects of
Zeeman splitting.

II. EXPERIMENTAL DETAILS

Our sample is a Hall-bar shaped graphene device with
an aspect ratio L/W = 2 (the distance between contacts
L ≈ 3µm and the width W ≈ 1.5µm). The graphene
flake, sandwiched between two thin layers of h-BN, is
connected to Ti/Au contacts. The system is placed on
top of a doped Si/SiO2 wafer, which acts as a back gate.

http://arxiv.org/abs/1602.01681v3
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FIG. 1. Panel (a): Resistivity ρxx versus gate voltage VG for
B = 0 (grey line) and B = 30T (black solid line). Inset:
Resistivity ρxx versus VG in the vicinity of the CNP.
Panel (b): Magnetoresistance as a function of B in the best
parallel-field configuration, θ = 89.91◦ ±0.01◦. Different lines
are for different concentrations of charge carriers: correspond-
ing gate voltages are indicated with the dashed lines in panel
(a). Inset: Configuration of magnetic field orientation with
respect to the graphene plane (shown in grey) and definition
of tilt angle θ. θ = 90◦ corresponds to a purely in-plane field.

Low temperature (T = 1.4K) transport measurements
were performed using a low frequency lock-in technique
with a 10 nA excitation. The longitudinal ρxx and Hall
ρxy resistivities were measured as a function of the back
gate voltage VG and the external magnetic field B that
varies up to 30T.
The charge neutrality point is associated with the max-

imum of ρxx at VG = −10.5V (see Fig. 1a)and its shift
with magnetic field is negligible, allowing measuring the
resistance of the CNP with a relative accuracy of bet-
ter than 0.3% by sweeping the field at a constant gate
voltage VG = −10.5V. The charge carrier concentra-
tion n is assumed to be proportional to the gate volt-

age n = −α (VG − VCNP), where the proportionality co-
efficient is set by α = 4.7 × 1014m−2V−1. The value
of α is obtained experimentally from the dependence of
Shubnikov-de-Haas oscillations on VG for a given perpen-
dicular component of the field B⊥.
A linear fit of the conductivity at large n, σxx = eµ|n|,

gives rise to an estimate of the hole mobility in the sys-
tem µ ≈ 50000cm2V−1s−1. In what follows we focus
mostly on the hole-doped region VG < VCNP since the
hole mobility in the sample appears to be higher than
the electron one. The high quality of our sample is tes-
tified by the observation of the fully developed integer
quantum Hall effect at B⊥ = 2.5T and the observation
of the lifting of the spin degeneracy of the Landau levels
at B⊥ = 10T.14

The sample is mounted on a rotating stage with a sin-
gle axis rotator that allows in situ rotation at low tem-
perature. We define θ as the angle between the direction
of external magnetic field and the normal to the graphene
plane as shown in the inset of Fig. 1b. For θ = 90◦ the
field is entirely in plane, B⊥ = B cos θ = 0.
The angle θ is estimated from the measurement of Hall

resistivity by using the expression ρxy = B cos θ(en)−1

which holds for sufficiently large n in the single-
component classical Hall regime. With our experimental
setup we achieve θ = 90◦ within less than 0.1◦, which
corresponds to B‖ ≈ B and B⊥ . 50mT at the maximal
applied field B = 30T.

III. MAGNETOTRANSPORT IN A PARALLEL

MAGNETIC FIELD

Fig. 1a shows the resistivity ρxx as a function of the
gate voltage VG for θ = 89.91◦. This was the closest
experimentally achievable angle to the parallel field con-
figuration in our tilted-field setup. Note that this relative
misalignment of less than 10−3 , corresponds to lateral
displacement of the sample, mounted on a ≈ 1 m long
probe, of less than 1 mm. The grey curve represents the
signal in the absence of the field while the black curve
corresponds to the external field B = 30T. Away from
the CNP the two traces are indistinguishable. A small
increase in resistivity is observed in the region around
the CNP (see inset of Fig.1(a)) at maximum field.
To better illustrate the response of ρxx to B, we plot

in Fig. 1b the magnetoresistance (defined as ρxx(B) −
ρxx(0)) as a function of the magnetic field in the best
parallel-field configuration for specific gate voltage values
indicated by the dashed lines in Fig. 1a, corresponding
to the CNP n = 0 (black line), n = 7× 1010 cm−2 (green
line), n = 2.1 × 1011 cm−2 (orange line) and n = 9.2 ×
1011 cm−2 (blue line).
At high n (blue and orange curves) the resistivity is

not sensitive to B ≈ B‖ while a dependence ρxx(B) is
seen in a vicinity of the CNP (green and black lines).
One can clearly see that the observed magnetoresis-

tance is maximized at the CNP. It reaches a maximal neg-
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ative value for B ≈ 15T and it increases for larger fields.
Eventually it changes sign at B ≈ 25T. A similar non-
monotonic behaviour can also be seen for n = 7 × 1010

cm−2 (green line), though ρxx reaches its zero field value
atB ≈ 30T. The angles were calibrated by measuring the
Hall voltage at a large negative gate voltage VG = −30 V
corresponding to a hole concentration n = 1×1012 cm−2,
see Fig. 2b.
However, this seemingly non-trivial magnetoresistance

is induced entirely by the remaining perpendicular com-
ponent of the field B⊥, which cannot be ignored in the
vicinity of the CNP.
In order to prove that the observed changes of ρxx are

indeed related to B⊥, we measure the magnetoresistance
for slightly different tilt angles around θ = 90◦.
In Fig. 2a we then plot the ρxx data for three dif-

ferent angles: θ = 83.39◦, θ = 88.1◦ and θ = 89.91◦.
The curves fall on top of each other when plotted with
respect to B⊥ = B cos θ. These experimental results sug-
gest that the magnetoresistance observed in the vicinity
of the CNP for θ ≈ 90◦ is entirely due to the perpendicu-
lar component of the field and that B‖ does not produce
any sizeable effect in the resistivity of our device. We
have also checked that no contribution of ρxy is superim-
posed onto ρxx by measuring it for both field orientations
and by symmetrizing the ρxx-data, see inset in Fig. 2a.
Within experimental accuracy we find that ρxx is even in
magnetic field, i.e. we can safely neglect any odd contri-
butions from ρxy onto it.

IV. DISCUSSION

The observed dependence ρxx(B⊥) at the CNP has al-
ready been addressed in numerous references and can be
explained as follows: The initial decrease in resistance is
compatible with the suppression of weak localization15

due to external magnetic field. This phenomenon can be
expected at such a low temperature and small B⊥.

16. For
larger values of B⊥ the positive magnetoresistance can
be associated to classical effects such as two-liquid trans-
port (see e. g. Refs. 17, 18 and references therein) and a
semiclassical linear magnetoresistance arising from con-
centration fluctuations.19,20. When moving away form
the CNP all these effects rapidly decrease which is in-
deed observed experimentally in a strong suppression of
the observed magnetoresistance, see Fig. 1(b).
Let us now discuss the experimental results from the

point of view of a simple Drude theory which does not
take into account localisation phenomena.21 Assuming
equal mobilities of electron- and hole-like quasiparticles,
one obtains the resistivity tensor

ρxx =
nQ

eµ

1 + µ2B2
⊥

n2
Q + n2µ2B2

⊥

, ρxy =
n

nQ

µB⊥ρxx, (1)

which depends on two densities: the charge carrier den-
sity n = nh

++nh
−−ne

+−ne
− and the quasiparticle density
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FIG. 2. Panel (a): Magnetoresistance at the CNP as a func-
tion of B⊥ at 1.4K for three different angles θ. The inset
illustrates the symmetry of ρxx measured at θ = 89.91◦ with
the black curve the original data between -10 T an 20 T and
the orange line the symmetrized curve between -10 T and
10 T.
Panel (b): Hall resistivity of the sample at a large hole con-
centration (n = 1×1012 cm−2) measured as a function of total
magnetic field for the same angles . The solid lines represent
the expected behavior ρxy = −B · cos θ/(ne) at the angles
used.

nQ = ne
+ + ne

− + nh
+ + nh

−. Here, the electron and hole

densities, ne
σ and nh

σ correspondingly, are defined for dif-
ferent spin species σ = ± as

ne,h
σ =

∫ ∞

0

ν(ε) fe,h
σ (ε) dε, (2)

where fe
σ(ε) = [1 + exp [(ε− σEZ/2− µc)/T ]]

−1
is the

electron Fermi distribution function, fh
σ (ε) = 1−fe

σ(−ε),
µc is the chemical potential, and ν(ε) = ν(−ε) is density
of states per spin which is taken to be symmetric with
respect to the Dirac point. For ideally clean graphene in
zero field ν(ε) = |ε|/π~2v2.
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FIG. 3. Longitudinal conductivity σxx = 1/ρxx as a function
of charge carrier density n for T = 1.4K and B = 0 for hole
doping. The red dashed line is a fit to the expected linear be-
havior for n ≫ n∗

Q, i.e. log σxx = log n+ const. The intercept
of the linear fit with the value of the residual conductivity
(horizontal gray dashed line) indicates the residual quasipar-
ticle density n∗

Q due to electrostatic potential fluctuations.

At large doping (n = ±nQ), one finds ρxx = 1/eµ|n|,
which lacks an explicit dependence on B⊥. At the CNP
(n = 0), one finds ρxx = (eµnQ)

−1(1 + µ2B2
⊥) which

manifestly increases with B⊥. The quadratic dependence
on B⊥ in the homogeneous Drude model is transformed
into a linear one (which is clearly seen in Fig. 2) due to
the boundary effects or large-scale electrostatic potentials
variations.18,22 The detailed analysis of this phenomenon
is, however, beyond the scope of the present work.

The transport properties at the CNP are governed by
the quasi-particle density nQ. In an actual device, when
the gate voltage is swept across the charge neutrality re-
gion, the quasiparticle density saturates around a non-
zero value n∗

Q which is the minimum quasiparticle density
that can be achieved experimentally. An estimate of n∗

Q

can be obtained from the measurement of the conductiv-
ity σxx of the device in zero magnetic field23. In Fig.3
we show σxx as a function of the charge carried density
n at 0T and 1.4K. Around the CNP the conductivity
saturates at the value σxx = 3.2 × 10−4 S, which is indi-
cated by the horizontal dashed line. The intersection of
this dashed lines with the linear fit to log(σxx) provides
us with an estimate for the minimal quasiparticle density
n∗
Q = 4.5× 1010 cm−2 at the CNP.

We find this value to be much larger than what is ex-
pected in the case of thermally excited quasiparticles in
clean graphene. If we consider the density of state ν(ε),
from Eq. (2) at finite temperature and zero magnetic field
we obtain nQ(n= 0) = πT 2/3~2v2. For T = 1.4K this
amounts to nQ(n = 0) = 3.5 × 106 cm−2. This value is
four orders of magnitude smaller than n∗

Q, meaning that

the realistic density of states ν(ε) at the CNP is much
larger than the one for ideal graphene and that the origin
of the large quasiparticle density is intrinsic of the device.
The most obvious reason for a finite non-zero value of the

density of states in the vicinity of the Dirac point is the
electrostatic potential variation induced e. g. by charged
(or Coulomb) impurities.24

The Zeeman effect provides a competing mechanism
which induces a non-zero density of states at the CNP.
For ideal graphene at zero temperature one finds from
Eq. (2) that nQ(n=0) = E2

Z/4π~
2v2. For a field of 30T

this estimate gives the figure nQ(n=0) = 2.2× 108 cm−2

which is, however, still two orders of magnitude smaller
than n∗

Q. Despite the low temperature and the large
B‖ employed in the experiment such that T ≪ EZ , the
Zeeman splitting is most likely masked by the potential
fluctuations around the CNP and therefore cannot be
detected in our experiment.

Finally, we can also compare the energy broadening at
the CNP responsible for the smearing out of the effects
of Zeeman splitting in a parallel magnetic field with the
Landau level broadening of the same sample in a per-
pendicular magnetic field estimated to be Γ = 14 K.14

This is comparable to the expected spin splitting at 30 T.
However, one should realize that the experiments to de-
termine Landau level broadening are performed far away
from the CNP where screening effects can significantly
reduce potential fluctuations. Therefore our method of
determining n∗

Q at the CNP is more reliable. Indeed,
using the ideal DOS of graphene and the residual car-
rier concentration one can estimate an energy smearing
at the CNP which is more an order of magnitude larger
than the one extracted from Landau level broadening.

Owing to the development in the device fabrication
technique, it is nowadays possible to achieve the quasi-
particle density in graphene to be as low as 108 cm−2.25

Wemay, therefore, expect that new experiments will soon
be able to address the spin physics of graphene in a par-
allel magnetic field.

V. SUMMARY

In conclusion, we have measured the resistivity of
graphene on h-BN in a parallel magnetic field. At high
charge carrier concentrations we do not observe any de-
pendence of ρxx on the external magnetic field and we
demonstrated that all the changes observed at low n and
at the CNP can be ascribed to B⊥. This indicates that
the large parallel magnetic field up to 30T and, conse-
quently, Zeeman splitting up to 3.5meV do not have any
effect on the transport properties despite the rather high
mobility µ ≈ 50000cm2V−1s−1 in the sample. This ob-
servation is compatible with the leading role of Coulomb
impurities in graphene that induce sizeable smooth vari-
ations of electrostatic potential at charge neutrality with-
out reducing the mobility of charge carriers.26 We con-
clude that the presence of smooth electrostatic potential
variation in the sample fully mask the effects of Zeeman
splitting in our samples.
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