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Abstract

In this paper, we study small noise asymptotics of Markov-modulated diffusion processes

in the regime that the modulating Markov chain is rapidly switching. We prove the

joint sample-path large deviations principle for the Markov-modulated diffusion process

and the occupation measure of the Markov chain (which evidently also yields the large

deviations principle for each of them separately by applying the contraction principle).

The structure of the proof is such that we first prove exponential tightness, and then

establish a local large deviations principle (where the latter part is split into proving the

corresponding upper bound and lower bound).
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1 Introduction

The setting studied in this paper is the following. We consider a complete probability space

(Ω,F ,P) with a filtration {Ft}t∈R+
, where R+ := [0,+∞). F0 contains all the P-null sets

of F , and {Ft}t∈R+
is right continuous. Let Xt be a finite-state time-homogeneous Markov

chain with transition intensity matrix Q and state space S := {1, · · · , d} for some d ∈ N. The

Markov-modulated diffusion process is defined as the unique solution to

Mt =M0 +

∫ t

0
b(Xs,Ms)ds+

∫ t

0
σ(Xs,Ms)dBs,

where Bt is a standard Brownian motion. We assume that there exist i, x such that σ(i, x) 6= 0

throughout this paper. The concept of Markov modulation is also known as ‘regime switch-

ing’; the Markov chain Xt is often referred to as the ‘background process’, or the ‘modulating

Markov chain’.

The objective of this paper is to study the above stochastic differential equation under a

particular parameter scaling. For a strictly positive (but typically small) ǫ, we scale Q to

Q/ǫ =: Qǫ, and denote by Xǫ
t the Markov chain with this transition intensity matrix Qǫ. If
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the expected number of jumps per unit time is y for Xt, then the time-scaling entails that it

is y/ǫ for Xǫ
t . One could therefore say that the Markov chain has been sped up by a factor

ǫ−1, and, as a consequence, Xǫ
t switches rapidly among its states when ǫ is small. A classical

topic in large deviations theory, initiated by Freidlin and Wentzell [9], concerns small-noise

large deviations. In this paper, we investigate how rapid-switching behavior of Xǫ
t affects the

small-noise asymptotics of Xǫ
t -modulated diffusion processes on the interval [0, T ] (for any

fixed strictly positive T ).

Let us make the scaling regime considered more concrete now. Importantly, it concerns

a scaling of the function σ(· , · ) to
√
ǫσ(· , · ) in the Markov-modulated diffusion, but at the

same time we speed up the Markovian background process in the way we described above.

The resulting process M ǫ
t is defined as the unique strong solution to

M ǫ
t =M ǫ

0 +

∫ t

0
b(Xǫ

s,M
ǫ
s)ds+

√
ǫ

∫ t

0
σ(Xǫ

s,M
ǫ
s)dBs, (1)

where we recall that Xǫ
t has transition intensity matrix Qǫ. Focusing on the regime that ǫ → 0,

we call in the sequel M ǫ
t the Markov-modulated diffusion process with rapid switching. For

simplicity, we will assume throughout this paper that M ǫ
0 ≡ 0, whereas Xǫ

0 starts at an

arbitrary x ∈ S, for all ǫ. When we write e.g. E[M ǫ
t ], this is to be understood as the

expectation of M ǫ
t with the above initial conditions.

Since M ǫ
t evolves in the random environment of Xǫ

t , we need to design a coupling to

separate the effects of the vanishing of the diffusion term and the fast varying of the Markov

chain, but at the same time to keep track of both of them. Since the scaling Q to Q/ǫ is

equivalent to speeding up time by a factor ǫ−1, one could informally say that Xǫ
t relates to

a faster time scale than M ǫ
t , and therefore essentially exhibits stationary behavior ‘around’

this specific t. Then it is custom to consider the occupation measure of Xǫ
t , which is defined

on Ω× [0, T ]× S as

νǫ(ω; t, i) =

∫ t

0
1{Xǫ

s(ω)=i}ds. (2)

As its name suggests, νǫ(·;T, i) measures the time Xǫ
t spends in state i during the time

interval [0, T ]. Moreover, we can use the derivative of νǫ(t) to gauge the infinitesimal change

of the occupation measure of Xǫ
t , at any t ∈ [0, T ]. We thus construct a coupling (M ǫ, νǫ),

which is the main object studied in this paper.

A celebrated result in Donsker and Varadhan [6] concerns the large deviations principle

(LDP) for ν1(ω; t, ·)/t as t→ ∞ (i.e., the LDP of the fraction of time spent in the individual

states of the background process). The setting of the present paper, however, involves the

sample-path LDP for νǫ on [0, T ] as ǫ→ 0. More precisely, we define the image space MT of

νǫ restricted on [0, T ] as the space of functions ν on [0, T ]×S satisfying ν(t, i) =
∫ t
0 Kν(s, i)ds,

where
∑d

i=1Kν(s, i) = 1, Kν(s, i) > 0 for every i ∈ S, s ∈ [0, T ], and Kν(s, i) being Borel

measurable with respect to s; Kν is referred to as the kernel of ν. The metric on MT is

defined as

dT (µ, ν) = sup
06t6T,i∈S

∣

∣

∣

∣

∫ t

0
Kµ(s, i)ds −

∫ t

0
Kν(s, i)ds

∣

∣

∣

∣

.

We can also view MT as a subset of C[0,T ](R
d) which is the space of Rd-valued continuous

functions on [0, T ]. In addition, the metric dT on MT is equivalent to the uniform metric on

C[0,T ](R
d).
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We also define CT as the image space of M ǫ, which is the space of functions f ∈ C[0,T ](R)

and f(0) = 0 equipped with the uniform metric ρT (f, g) := sup06t6T |f(t)−g(t)|. The product
metric ρT × dT on CT ×MT is defined by

(ρT × dT )((ϕ, ν), (ϕ
′ , ν ′)) := ρT (ϕ,ϕ

′) + dT (ν, ν
′), ∀(ϕ, ν), (ϕ′, ν ′) ∈ CT ×MT .

We denote by B(CT×MT ) the Borel σ-algebra generated by the topology induced by ρT×dT .
The main result of this paper is the joint sample-path LDP for (M ǫ, νǫ) on CT ×MT . The

associated (joint) large deviations rate function is obtained in quite an explicit form. It is

actually the sum of two expressions that we introduce later in this paper, viz. (6), i.e., the rate

function IT (ϕ, ν) corresponding toM ǫ, and (5), i.e., the rate function ĨT (ν) corresponding to

νǫ. Informed readers will recognize that these rate functions are variants of those for diffusion

processes, as given in e.g. Freidlin and Wentzell [9], and for occupation measures of Markov

processes, as given in e.g. Donsker and Varadhan [6] (where we remark again that the result

in [6] relates to ν1(ω; t, ·)/t for t large, whereas our statement concerns the sample paths of

νǫ).

One method of proving the LDP for a family of probability measures on a metric space,

as was introduced in the seminal papers of Liptser and Pukhalskii [19] and Liptser [18], is to

first prove exponential tightness, and then the local LDP (precise definitions of these notions

will be given in the next section). Our work by and large follows this approach. Importantly,

the model considered in Liptser [18] is similar to ours, in that it also studies the stochastic

differential equation (1), but in the setup of Liptser [18] the process Xǫ
t is another diffusion

process (rather than a finite-state Markov chain). It means that we can roughly follow the

structure of the proof presented in [18] (we also rely on the method of stochastic exponentials,

for instance), but there are crucial differences at many places. For instance, as we point out

below, there are several novelties that have the potential of being used in other settings, too.

One of the methodological novelties is the following. We explore a nice connection between

regularity properties of the rate function ĨT (ν) in the LDP for (M ǫ, νǫ) and a dense subset

of the image space MT of νǫ. On this dense subset, the optimizer of the integrand of ĨT (ν)

is infinitely differentiable. This eliminates many difficulties in the computation and leads us

to first prove the local LDP on a dense subset of CT ×MT . We then extend the local LDP

to CT ×MT by continuity properties of the rate functions IT (ϕ, ν) and ĨT (ν).

Let U denote the space of functions on [0, T ]×S being continuously differentiable on [0, T ]

and infs∈[0,T ],i∈S u(s, i) > 0. In our analysis in Section 6, we identify the following stochastic

exponential which is directly related to the Markov chain Xǫ
t and its rate function ĨT (ν) (as

given in (5)):

u(t,Xǫ
t )

u(0,Xǫ
0)

exp

(

−
∫ t

0

∂
∂su(s,X

ǫ
s) + (Qǫ u)(s,Xǫ

s)

u(s,Xǫ
s)

ds

)

, u ∈ U,

which plays a key role when proving the local LDP. Here we follow the notational convention

that (Qǫu)(s, i) =
∑d

j=1Q
ǫ
ij u(s, j), for i ∈ S.

As mentioned above, the main result of our paper is the joint sample-path LDP for

(M ǫ, νǫ). The LDPs for each component M ǫ and νǫ are then derived as corollaries from our

main result in the standard way, i.e., by an application of the contraction principle. The

small noise LDP for the Markov-modulated diffusion processes (which is M ǫ alone) is also
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studied in a newly published paper by He and Yin [12] in a setting of multi-dimensional

processes and time-depending transition intensity matrices. In our corresponding result,

which is Corollary 3.2, the rate function for M ǫ is decomposed into two parts that allow an

appealing interpretation: the first part corresponds to the rare behavior of the background

process Xǫ, where the second part corresponds to the rare behavior of M ǫ (conditional on

the rare behavior of Xǫ). The rate function in He and Yin [12] is less explicit, in that

it is expressed in terms of an H-functional in which the aforementioned two parts cannot

be distinguished. The sample-path LDP for occupation measures of rapid switching Markov

chain (which is νǫ alone) is obtained in Theorem 5.1 in He et al. [13]. The rate function, which

is also expressed in terms of an H-functional, coincides with the rate function in our LDP

for νǫ (Corollary 3.3) when the transition intensity matrix is time-homogeneous. However,

focusing on obtaining the LDP for the Markov-modulated diffusion process together with the

background process, our aim and approach in this paper are entirely different from theirs.

The large-deviations analysis for stochastic processes with Markov-modulation is a cur-

rently active research field. Besides the previously mentioned papers of He et al. [13] and

He and Yin [12], we list a few more. Guillin [10] proved the averaging principle (moderate

deviations) of Equation (1) where Xǫ
t is an exponentially ergodic Markov process and b, σ

are bounded functions. He and Yin [11] studied the moderate-deviations behavior of M ǫ
t in

Equation (1), where σ ≡ 0 and Xǫ
t is a non-homogeneous Markov chain with two time-scales.

Lasry and Lions [17] and Fournié et al. [8] considered large deviations for the hitting times

of Markov-modulated diffusion processes with rapid switching.

Interestingly, the present paper relates to our previous work [14]. For ease ignoring the

initial position, we there considered the Markov-modulated diffusion M̌ ǫ
t described by

M̌ ǫ
t =

∫ t

0
b(Xǫ

s, M̌
ǫ
s)ds+

∫ t

0
σ(Xǫ

s, M̌
ǫ
s )dBs.

In the regime ǫ → 0 the solutions of the stochastic differential equation converge weakly to

a (non-modulated) diffusion M̌t satisfying, with π denoting the stationary distribution of Xǫ
t

(and hence also of Xt),

M̌t =

∫ t

0

d
∑

i=1

b(i, M̌s)π(i)ds+

∫ t

0

(

d
∑

i=1

σ2(i, M̌s)π(i)

)1/2

dBs.

This result shows that, when the background chain switches rapidly, it is hard to distinguish

from observed data a Markov-modulated diffusion process from an ‘ordinary’ diffusion. The

work in the present paper, in contrast, indicates that no such property carries over to the

large deviations. The impact of a fast switching background chain does appear in the small

noise asymptotics, as shown in the LDPs in this paper.

We now describe the organization of our paper. The structure of the paper is as follows.

In Section 2, we introduce some preliminary results, definitions, and notation. In Section 3,

we state the paper’s main result and explain the steps of its proof. In Section 4, exponential

tightness of (M ǫ, νǫ) is verified. We identify a dense subset of CT × MT in Section 5, and

explore regularity properties of the rate function on it. The upper bound and lower bound of

the local LDP for (M ǫ, νǫ) are proved in Sections 6 and 7, respectively. We present a number

of technical lemmas in the appendix.
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2 Preliminaries

In this section we first provide the definitions of the LDP, exponential tightness and the local

LDP, and state a set of related theorems that are relevant in the context of the paper. Let

X throughout denote a Polish space with Borel σ-algebra B(X) and a metric ρ.

Definition 2.1 (Varadhan [26]) A family of probability measures Pǫ on (X,B(X)) is said to

obey the LDP with a rate function I(·) if there exists a function I(·) : X → [0,∞] satisfying:

(1) There exists x ∈ X such that I(x) < ∞; I is lower semicontinuous; for every c < ∞ the

set {x : I(x) 6 c} is a compact set in X.

(2) For every closed set F ⊂ X, lim supǫ→0 ǫ logP
ǫ(F ) 6 − infx∈F I(x).

(3) For every open set O ⊂ X, lim infǫ→0 ǫ log P
ǫ(O) > − infx∈O I(x).

Definition 2.2 (Den Hollander [5], Puhalskii [24]) A family of probability measures P
ǫ on

(X,B(X)) is said to be exponentially tight, if for every L < ∞, there exists a compact set

KL ⊂ X such that

lim sup
ǫ→0

ǫ logPǫ(X \KL) 6 −L.

Definition 2.3 (Puhalskii [24], Liptser and Puhalskii [18]) A family of probability measures

P
ǫ on (X,B(X)) is said to obey the local LDP with a rate function I(·) if for every x ∈ X

lim sup
δ→0

lim sup
ǫ→0

ǫ log Pǫ({y ∈ X : ρ(x, y) 6 δ}) 6 −I(x), (3)

lim inf
δ→0

lim inf
ǫ→0

ǫ log Pǫ({y ∈ X : ρ(x, y) 6 δ}) > −I(x). (4)

Since X is a Polish space, Definition 2.1.(1) implies exponential tightness. Also, Definition

2.1.(2)–(3) guarantee that Pǫ satisfies the local LDP. Actually, the converse is also valid and

is the key to prove our main result.

Theorem 2.4 (Puhalskii [24], Liptser and Puhalskii [18]) If a family of probability measures

P
ǫ on (X,B(X)) is exponentially tight and obeys the local LDP with a rate function I, then

it obeys the LDP with the rate function I.

The following lemma, which corresponds to Lemma 1.4 in Borovkov and Mogulskĭı [2],

shows that a local LDP on a dense subset of X is enough for the validation of the local LDP

on X, provided the rate function possesses a regularity property.

Lemma 2.5 (i) If (3) is fulfilled for all x̃ ∈ X̃, where X̃ is dense in X and function I(x) is

lower semi-continuous, then it holds for all x ∈ X.

(ii) If for every x ∈ X with I(x) < ∞ there exists a sequence x̃n ∈ X̃ converging to x and

I(x̃n) → I(x), then the fullfillment of (4) for x̃ ∈ X̃ implies the same for all x ∈ X.

Next we impose some assumptions on the stochastic differential equation (1), as was

defined in the introduction. It is noted that (A.1) (‘Lipschitz continuity’) implies (A.2)

(‘linear growth’); we chose to include (A.2) as well, however, for ease reference in later

sections.
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(A.1) Lipschitz continuity: there is a positive constant K such that

|b(i, x) − b(i, y)| + |σ(i, x) − σ(i, y)| 6 K|x− y|, ∀i ∈ S, x, y ∈ R.

(A.2) Linear growth: there exists a positive constant K (which might be different from the

K used in (A.1)) such that

|b(i, x)| + |σ(i, x)| 6 K(1 + |x|), ∀i ∈ S, x ∈ R.

(A.3) Independence: the Markov chain Xǫ
t is independent of the Brownian motion Bt for all

ǫ.

(A.4) Irreducibility: the off-diagonal entries of the transition intensity matrix Q are strictly

positive. Hence, the Markov chain Xǫ
t is irreducible for all ǫ and has an invariant

probability measure π = (π(1), · · · , π(d)).

Finally, we introduce some extra notation and function spaces. For an arbitrary stochastic

process or a function Yt, we denote the running maximum process by Y ∗
t := sups6t |Ys|. For a

semimartingale Yt such that Y0 = 0, its stochastic exponential is defined as a semimartingale

E (Y )t which is the unique strong solution to

E (Y )t = 1 +

∫ t

0
E (Y )s−dYs.

We denote HT the Cameron-Martin space of functions ϕ ∈ CT such that ϕ(t) =
∫ t
0 ϕ

′(s)ds
and ϕ′ is square-integrable on [0, T ]. We call ϕ′ the derivative of ϕ.

3 Main results

We first introduce the definitions of the rate functions involved in the main result. The rate

function corresponding to νǫ is defined as

ĨT (ν) :=

∫ T

0
sup
u∈U

[

−
d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

ds, ν ∈ MT , (5)

where we recall the notation (Qu)(i) =
∑d

j=1Qiju(j), for i ∈ S, and U denotes the set

of d-dimensional component-wise strictly positive vectors. We now define the rate function

corresponding to M ǫ. For any (ϕ, ν) ∈ CT ×MT , we define

IT (ϕ, ν) :=







1

2

∫ T

0

[ϕ′
t − b̂(ν, ϕt)]

2

σ̂2(ν, ϕt)
dt if ϕ ∈ HT ,

∞ otherwise.

(6)

where

b̂(ν, x) :=
d
∑

i=1

b(i, x)Kν(t, i), σ̂(ν, x) :=

(

d
∑

i=1

σ2(i, x)Kν(t, i)

)1/2

.

In the above formulae, we follow the conventions that 0/0 = 0 and n/0 = ∞, for all n >

0. When we fix a time T , (M ǫ, νǫ) is understood as a joint process restricted on [0, T ].
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Let P ◦ (M ǫ, νǫ)−1 denote P((M ǫ, νǫ) ∈ ·), which is a family of probability measures on

(CT ×MT ,B(CT ×MT )). Also, P◦(M ǫ)−1 and P◦(νǫ)−1 are families of probability measures

on (CT ,B(CT )) and (MT ,B(MT )) respectively. The following theorem is our main result

which states the joint sample-path LDP of (M ǫ, νǫ) on [0, T ], as ǫ→ 0..

Theorem 3.1 For every T > 0, the family P◦(M ǫ, νǫ)−1 obeys the LDP in (CT×MT , ρT×dT )
with the rate function

LT (ϕ, ν) = IT (ϕ, ν) + ĨT (ν).

Proof The proof relies on applying Theorem 2.4. We first need to prove the exponential

tightness of P ◦ (M ǫ, νǫ)−1 on (CT ×MT ,B(CT ×MT )), i.e., for every L <∞, there exists a

compact set KL ⊂ CT ×MT such that

lim sup
ǫ→0

ǫ logP ((M ǫ, νǫ) ∈ CT ×MT \KL) 6 −L.

It is obvious that P ◦ (M ǫ, νǫ)−1 is exponentially tight if so are P ◦ (M ǫ)−1 and P ◦ (νǫ)−1. As

we mentioned earlier, MT is a subset of C[0,T ](R
d). For any ν ∈ MT , its derivative Kν(s, i)

is bounded by 1. Then all ν ∈ MT have the same Lipschitz constant, and hence MT is

equicontinuous. It is easily seen that MT is bounded and closed. Then the Arzelà-Ascoli

theorem implies that MT is compact. The exponential tightness of P◦(νǫ)−1 is satisfied since

we can take KL = MT . Exponential tightness of P ◦ (M ǫ)−1 is verified in Proposition 4.3

below.

Secondly, we proceed to prove that P ◦ (M ǫ, νǫ)−1 obeys the local LDP with the rate

function LT (ϕ, ν). That is, for every (ϕ, ν) ∈ CT ×MT , we need to obtain the upper bound

lim sup
δ→0

lim sup
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) 6 −LT (ϕ, ν),

and the lower bound

lim inf
δ→0

lim inf
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) > −LT (ϕ, ν).

The core of the proof is proving the local LDP on a dense subset of CT × MT . The upper

bound is validated in Proposition 6.4. The lower bound is first proved in Proposition 7.3

given the condition inf i,x σ
2(i, x) > 0. Then the condition is lifted in Proposition 7.5 by a

perturbation argument. �

The LDP for P◦(M ǫ)−1 only (rather than for P◦(M ǫ, νǫ)−1) is then derived from Theorem

3.1 by the contraction principle in Dembo and Zeitouni [4]. We follow the convention that

inf(∅) = ∞.

Corollary 3.2 The family P◦(M ǫ)−1 obeys the LDP with the rate function infν∈MT
LT (ϕ, ν).

At an intuitive level, ĨT (ν) can be interpreted as the ‘cost’ of forcing νǫ to behave like ν

on [0, T ]. The other term IT (ϕ, ν), can be seen as the ‘cost’ of the sample paths of M ǫ being

close to ϕ conditional on νǫ behaving like ν on [0, T ]. Then infν∈M LT (ϕ, ν) indicates the

minimal ‘cost’ of the sample paths of M ǫ being close to ϕ on [0, T ].

Suppose F is a closed or an open subset of CT . We can also interpret Corollary 3.2 as the

concentration of the probability P◦(M ǫ)−1(F ), which is the set of sample paths ofM ǫ, on the
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‘most likely path’ arg infϕ∈F (infν∈MT
[IT (ϕ, ν)+ ĨT (ν)]). So there are two sources contributing

to the large deviations behavior of M ǫ: IT (ϕ, ν) represents the contribution resulting from

the small noise, and ĨT (ν) represents the one from the rapid switching of the modulating

Markov chain.

Again by the contraction principle, P ◦ (νǫ)−1 obeys the LDP in (MT , dT ) with the rate

function infϕ∈CT
IT (ϕ, ν) + ĨT (ν). Since there exists a ϕ ∈ HT such that ϕ′

t = b̂(ν, ϕt) for all

t ∈ [0, T ] and all ν ∈ MT , it immediately follows that infϕ∈CT
IT (ϕ, ν) = 0. Hence, we have

the following corollary.

Corollary 3.3 The family P◦(νǫ)−1 obeys the LDP in (MT , dT ) with the rate function ĨT (ν).

4 Exponential tightness

We show the exponential tightness of P ◦ (M ǫ)−1 by Aldous-Pukhalskii-type sufficient condi-

tions, as dealt with in e.g. Aldous [1], Liptser and Pukhalskii [19]. The following criterion for

exponential tightness in CT , as well as an auxiliary lemma, are adapted from Theorem 3.1

and Lemma 3.1 in Liptser and Pukhaskii [19] (which consider càdlàg processes with jumps) to

our setting of continuous processes. Let ΓT (Ft) denote the family of stopping times adapted

to Ft taking values in [0, T ].

Theorem 4.1 Let Y ǫ
t : (Ω, {Ft}t6T ,P) → CT . If

(i)

lim
K ′→∞

lim sup
ǫ→0

ǫ logP
(

Y ǫ∗
T > K ′) = −∞,

(ii)

lim
δ→0

lim sup
ǫ→0

ǫ log sup
τ∈ΓT (Ft)

P

(

sup
t6δ

|Y ǫ
τ+t − Y ǫ

τ | > η

)

= −∞, ∀η > 0,

then P ◦ (Y ǫ)−1 is exponentially tight.

Lemma 4.2 Let Y = (Yt)t>0 be a continuous semimartingale with Y0 = 0. Let D denote

the part corresponding to a predictable process of locally bounded variation, and V the part

corresponding to the quadratic variation of the local martingale. Assume that for T > 0 there

exists a convex function H(λ), λ ∈ R with H(0) = 0 and such that for all λ ∈ R and t 6 T

λDt + λ2Vt/2 6 tH(λξ), a.s.,

where ξ is a nonnegative random variable defined on the same probability space as Y . Then,

for all c > 0 and η > 0,

P(Y ∗
T > η) 6 P(ξ > c) + exp

{

− sup
λ∈R

[λη − TH(λc)]

}

.

We are now ready to prove the exponential tightness claim. The technique borrows ele-

ments from Liptser [18].

Proposition 4.3 For every T > 0, the family P◦(M ǫ)−1 is exponentially tight on (CT ,B(CT )).
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Proof Firstly, we verify the condition (i) of Theorem 4.1 for the processM ǫ∗
T . For any T > 0,

evidently,

M ǫ∗
T 6

∫ T

0
|b(Xǫ

s,M
ǫ
s )|ds+ sup

t6T

∣

∣

∣

∣

√
ǫ

∫ t

0
σ(Xǫ

s ,M
ǫ
s)dBs

∣

∣

∣

∣

, a.s..

We denote Cǫ
t :=

√
ǫ
∫ t
0 σ(X

ǫ
s ,M

ǫ
s)dBs. By (A.2),

M ǫ∗
T 6 K

∫ T

0
(1 +M ǫ∗

s )ds+ Cǫ∗
T = KT + Cǫ∗

T +K

∫ T

0
M ǫ∗

s ds, a.s..

Since KT + Cǫ∗
T is nonnegative and non-decreasing in T , Gronwall’s inequality implies

M ǫ∗
T 6 eKT [KT + Cǫ∗

T ] , a.s.. (7)

Now define jK ′ := K ′ exp(−KT )−KT . Then (7) entails that for sufficiently large K ′ such
that jK ′ > 0,

P(M ǫ∗
T > K ′) 6 P(Cǫ∗

T > jK ′) 6 j
−1/ǫ
K ′ E

[

(Cǫ∗
T )1/ǫ

]

,

using Chebyshev’s inequality. We thus conclude

ǫ logP(M ǫ∗
T > K ′) 6 − log jK ′ + ǫ logE

[

(Cǫ∗
T )1/ǫ

]

. (8)

We assume that 1/ǫ > 2 in the rest of the proof (justified by the fact that we consider the

limit ǫ → 0). Since Cǫ
t is a local martingale, the process |Cǫ

t |1/ǫ has a unique Doob-Meyer

decomposition; let Čǫ
t denote the unique predictable increasing process in this decomposition.

Applying a local martingale maximal inequality (see e.g. Liptser and Shiryaev [20, Thm.

1.9.2]) to Cǫ
t , we have for the running maximum process that

E

[

(Cǫ∗
T )1/ǫ

]

6

(

1

1− ǫ

)1/ǫ

E
[

Čǫ
T

]

. (9)

In order to obtain an explicit expression for Čǫ
t , we apply Itô’s formula to |Cǫ

t |1/ǫ. This

means that, for any t ∈ [0, T ],

|Cǫ
t |1/ǫ =

1√
ǫ

∫ t

0
|Cǫ

s|1/ǫ−1sign(Cǫ
s)σ(X

ǫ
s ,M

ǫ
s)dBs +

1− ǫ

2ǫ

∫ t

0
|Cǫ

s|1/ǫ−2σ2(Xǫ
s,M

ǫ
s)ds.

We notice that the first part is a local martingale and the second part is a predictable

increasing process. As a consequence,

Čǫ
T =

1− ǫ

2ǫ

∫ T

0
|Cǫ

s|1/ǫ−2σ2(Xǫ
s,M

ǫ
s)ds. (10)

Invoking (A.2) again, we have that σ2(Xǫ
s,M

ǫ
s) 6 K2(1+M ǫ∗

s )2. Since (7) remains valid when

replacing T by s, for any s 6 T , we find

|Cǫ
s|1/ǫ−2σ2(Xǫ

s,M
ǫ
s ) 6 (Cǫ∗

s )1/ǫ−2K2
[

1 + eKs(Ks+ Cǫ∗
s )
]2

6 (Cǫ∗
s )1/ǫ−2K2

[

1 + eKT (KT +Cǫ∗
s )
]2

6 (Cǫ∗
s )1/ǫ−2K2[2(1 + eKTKT )2 + 2e2KT (Cǫ∗

s )2].
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Let LT,K = 2K2 max
{

(1 + eKTKT )2, e2KT
}

. Then

|Cǫ
s|1/ǫ−2σ2(Xǫ

s,M
ǫ
s) 6 (Cǫ∗

s )1/ǫ−2LT,K

[

1 + (Cǫ∗
s )2

]

6 L′
T,K

[

1 + (Cǫ∗
s )1/ǫ

]

,

where L ≡ L′
T,K is a positive constant not depending on K ′ (nor ǫ). We plug (10) and the

above estimate into (9), so as to obtain

E[(Cǫ∗
T )1/ǫ] 6

(

1

1− ǫ

)1/ǫ

E

[

1− ǫ

2ǫ

∫ T

0
|Cǫ

s|1/ǫ−2σ2(Xǫ
s,M

ǫ
s)ds

]

6

(

1

1− ǫ

)1/ǫ−1 L

2ǫ

(

T +

∫ T

0
E

[

(Cǫ∗
s )1/ǫ

]

ds

)

6

(

1

1− ǫ

)1/ǫ−1 LT

2ǫ
exp

[

(

1

1− ǫ

)1/ǫ−1 LT

2ǫ

]

,

the last inequality following from Gronwall’s inequality. Now observe that (1 − ǫ)1−1/ǫ is

decreasing on ǫ ∈ [0, 12), with limiting value e as ǫ → 0. As a result, we have the following

upper bound on the exponential decay rate of E[(Cǫ∗
T )1/ǫ]:

lim sup
ǫ→0

ǫ logE
[

(Cǫ∗
T )1/ǫ

]

6 lim sup
ǫ→0

[

ǫ log

(

1

1− ǫ

)1/ǫ−1

+ ǫ log
LT

2ǫ
+

(

1

1− ǫ

)1/ǫ−1 LT

2

]

6
eLT

2
<∞.

Hence, by (8), for all T > 0, condition (i) of Thm. 4.1 follows for the process M ǫ∗
T :

lim
K ′→∞

lim sup
ǫ→0

ǫ log P
(

M ǫ∗
T > K ′) = −∞. (11)

Secondly, we verify condition (ii) of Theorem 4.1. To this end, note that for arbitrary

T > 0, δ 6 1, and stopping time τ ∈ ΓT (Ft),

P

(

sup
t6δ

|M ǫ
τ+t −M ǫ

τ | > η

)

6 P

(

sup
t6δ

(M ǫ
τ+t −M ǫ

τ ) > η

)

+ P

(

sup
t6δ

(M ǫ
τ −M ǫ

τ+t) > η

)

. (12)

We can see that M ǫ
τ+t−M ǫ

τ is a semimartingale with respect to the filtration {Fτ+t}t>0. For

any τ ∈ ΓT (Ft), we denote

Dǫ
t :=

∫ τ+t

τ
b(Xǫ

s,M
ǫ
s)ds, V ǫ

t := ǫ

∫ τ+t

τ
σ2(Xǫ

s,M
ǫ
s)ds.

By (A.2), we have, for all λ ∈ R, t 6 δ 6 1 and τ 6 T ,

λDǫ
t +

λ2

2
V ǫ
t 6 |λ|K(1 +M ǫ∗

T+1)t+
λ2ǫ

2
K2(1 +M ǫ∗

T+1)
2t, a.s..

We define

H(λ) := |λ|+ λ2ǫ

2
, ξ := K(1 +M ǫ∗

T+1).

Then M ǫ
τ+t −M ǫ

τ satisfies the conditions of Lemma 4.2 and, for all c > 0, η > 0,

P

(

sup
t6δ

(M ǫ
τ+t −M ǫ

τ ) > η

)

6 P(ξ > c) + exp

{

− sup
λ∈R

[λη − δH(λc)]

}

.
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Since P(ξ > c) = P(M ǫ∗
T+1 > c/K − 1), it follows that

P

(

sup
t6δ

(M ǫ
τ+t −M ǫ

τ ) > η

)

6 2max

(

P

(

M ǫ∗
T+1 >

c

K
− 1
)

, exp

{

− sup
λ∈R

[λη − δH(λc)]

})

.

The supremum of λη − δH(λc) can be explicitly evaluated:

sup
λ∈R

[λη− δH(λc)] = sup
λ∈R

[

λη − δ|λ|c − δ
λ2c2ǫ

2

]

=
1

ǫ
sup
λ>0

[

(ηǫ− δcǫ)λ − δc2ǫ2

2
λ2
]

=
(η − δc)2

2ǫδc2
.

As a consequence, for all positive c,

lim
δ→0

lim sup
ǫ→0

ǫ log exp

{

− sup
λ∈R

[λη − δH(λc)]

}

= lim
δ→0

−(η − δc)2

2δc2
= −∞.

It is concluded that for any τ ∈ ΓT (Ft) and c > 0,

lim
δ→0

lim sup
ǫ→0

ǫ logP

(

sup
t6δ

(M ǫ
τ+t −M ǫ

τ ) > η

)

6 lim sup
ǫ→0

ǫ logP
(

M ǫ∗
T+1 >

c

K
− 1
)

.

By (11), we know

lim
c→∞

lim sup
ǫ→0

ǫ log P
(

M ǫ∗
T+1 >

c

K
− 1
)

= −∞.

It implies

lim
δ→0

lim sup
ǫ→0

ǫ log sup
τ∈ΓT (Ft)

P

(

sup
t6δ

(M ǫ
τ+t −M ǫ

τ ) > η

)

6 inf
c>0

lim sup
ǫ→0

ǫ log P
(

M ǫ∗
T+1 >

c

K
− 1
)

= −∞.

Moreover, the claim

lim
δ→0

lim sup
ǫ→0

ǫ log sup
τ∈ΓT (Ft)

P

(

sup
t6δ

(M ǫ
τ −M ǫ

τ+t) > η

)

= −∞

is proved in the same way. Thus the desired claim follows from (12). �

5 Auxiliary results

We first identify a dense subset of CT × MT which substantially simplifies the proof of the

local LDP in the next two sections. Let M+
T be the subset of MT such that Kν(s, i) > 0,∀s ∈

[0, T ], i ∈ S, and let M++
T be the subset of M+

T such that Kν(·, i) ∈ C
∞
[0,T ],∀i ∈ S.

Lemma 5.1 M
++
T is dense in MT .

Proof We prove the claim in two steps. Firstly, we show that M
++
T is dense in M

+
T . We

begin by introducing the standard mollifier J(x) on R, i.e.,

J(x) :=







k exp

(

1

|x|2 − 1

)

if |x| < 1,

0 if |x| > 1,
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where k > 0 is selected so that
∫

R
J(x)dx = 1. For each η > 0, we define Jη(x) := η−1J(x/η).

For any ν in M
+
T , we extend the domain of Kν(·, i) to (−1, T + 1), as follows:

Kν(s, i) :=











Kν(s, i) if s ∈ [0, T ],

Kν(0, i) if s ∈ (−1, 0),

Kν(1, i) if s ∈ (T, T + 1).

Since Kν(·, i) is integrable on (−1, T + 1) for each i ∈ S, we can define its mollification as

Kη
ν (s, i) =

∫ η

−η
Jη(y)Kν(s− y, i)dy, for s ∈ (−1 + η, T + 1− η), η < 1.

By Theorem C.6 in Evans [7], Kη
ν (·, i) is smooth on (−1+η, T +1−η) and Kη

ν (·, i) → Kν(·, i)
almost everywhere as η → 0.

Next we proceed to show that νη with the kernel Kη
ν (s, i) is an element of M++

T . It is clear

that Kη
ν (·, i) ∈ C

∞
[0,T ] when restricted to [0, T ], and in addition we have Kη

ν (s, i) > 0, for all

s ∈ [0, T ] and i ∈ S. As a consequence, we only need to prove that
∑d

i=1K
η
ν (s, i) = 1, for

all s ∈ [0, T ]. For any s ∈ [0, T ] and y ∈ [−η, η], it holds that
∑d

i=1Kν(s − y, i) = 1 since

s− y ∈ (−1, T + 1). We thus have that

d
∑

i=1

Kη
ν (s, i) =

∫ η

−η
Jη(y)

d
∑

i=1

Kν(s− y, i)dy =

∫ η

−η
Jη(y)dy = 1.

For any t 6 T, i ∈ S, due to the fact that Kη
ν (·, i) → Kν(·, i) on (0, t) almost everywhere

as η → 0 and Kη
ν (s, i) 6 1, it holds that

∫ t

0
Kη

ν (s, i)ds→
∫ t

0
Kν(s, i)ds, as η → 0,

appealing to the dominated convergence theorem. Since
∫ t
0 K

η
ν (s, i)ds is increasing in t,

∫ t
0 Kν(s, i)ds is continuous in t and d is finite, we obtain the following uniform convergence:

dT (ν
η, ν) = sup

t∈[0,T ],i∈S

∣

∣

∣

∣

∫ t

0
Kη

ν (s, i)ds−
∫ t

0
Kν(s, i)ds

∣

∣

∣

∣

→ 0, as η → 0,

using Result 1.1.21 in Jacod [15].

Secondly, we prove that M+
T is dense in MT . Noticing that Kν(s, i) can be 0 for some i, s,

we define (for any ν ∈ M) an νη ∈ M
+
T through

Kη
ν (s, i) :=

Kν(s, i) + η

1 + ηd
,

η > 0, for all i, s. As is directly verified, dT (ν
η, ν) 6 T (η + ηd)/(1 + ηd). Then the desired

result holds. Consequently, M++
T is dense in MT by the triangle inequality. �

We then present a regularity property of the rate function ĨT (ν) on M
++
T .

Lemma 5.2 Fix s ∈ [0, T ] and ν ∈ M
++
T . Then there is an optimizer u∗(s, ·) of

inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

such that u∗(·, i) ∈ C
∞
[0,T ], for all i ∈ S, and u∗ ∈ U.
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Proof As obviously

d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i) =

d
∑

i=1

QiiKν(s, i) +

d
∑

i=1

∑d
j 6=iQiju(j)

u(i)
Kν(s, i),

the optimization problem essentially reduces to

inf
u∈U

[

d
∑

i=1

∑d
j 6=iQiju(j)

u(i)
Kν(s, i)

]

.

We let rji := u(j)/u(i), for i 6= j. Since rji = 1/rij , the optimization problem can be written

as a minimization over d(d− 1)/2 variables:

inf
rji>0

d
∑

i=1

i−1
∑

j=1

[

QijrjiKν(s, i) +Qjir
−1
ji Kν(s, j).

]

Observe that for any i, j, k the equality rijrjk = rik needs to hold, which corresponds to

ψ(d) := (d − 1)(d − 2)/2 constraints. We then perform the change of variables xji :=

log rji, and denote by X = (x21, · · · , xd(d−1))
T the d(d − 1)/2 variables. Letting Kν(s) =

(Kν(s, 1), · · · ,Kν(s, d))
T, we transform the above optimization problem into

inf
X

f(Kν(s),X), where f(Kν(s),X) :=

d
∑

i=1

i−1
∑

j=1

[

Qije
xjiKν(s, i) +Qjie

−xjiKν(s, j)
]

,

with (d− 1)(d − 2)/2 additional constraints to be imposed.

The gradient vector of f with respect to X is

DXf =

(

∂f

∂x21
, · · · , ∂f

∂xd(d−1)

)

,

and the corresponding Hessian matrix D
2
X
f is the diagonal matrix which has entries of the

form Qije
xjiKν(s, i)+Qjie

−xjiKν(s, j) on its diagonal. The idea is now to split the vector X

into X0 = (x21, · · · , xd1)T and X1 (where the latter vector corresponds with the remaining

ψ(d) variables). Due to the constraints, we have X1 = LX0 where L is a matrix of dimension

ψ(d)× (d− 1). The next step is to include the constraints into the optimization equation f .

It yields the following new optimization problem, on which no additional constraints need to

ne imposed anymore:

inf
X0

f̂(Kν(s),X0), where f̂(Kν(s),X0) = f(Kν(s), (X0,LX0)).

Observe that f is a globally strictly convex function of X on a convex domain, and conse-

quently f̂ is a strictly convex function of X0. Hence, there is a unique minimizer X
∗
0(s) =

(x∗21(s), · · · , x∗d1(s))T for any s ∈ [0, T ]. Since we have that both Kν(s, i) > 0 and Qij > 0 for

i 6= j, any entry of X∗
0(s) cannot be −∞ or ∞. We thus conclude that X∗

0(s) ∈ R
d−1.

Let I be the (d− 1)-dimensional identity matrix. Then we define

f̃(Kν(s),X0) := DX0
f̂(Kν(s),X0) = DXf(Kν(s), (X0,LX0))

(

I

L

)

,
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which is a smooth function on R
d × R

d−1 such that f̃(Kν(s),X
∗
0(s)) = 0. The gradient

matrix of f̃ with respect to X0 evaluated in X
∗
0(s) is

G := D2
X0
f̃(Kν(s),X

∗
0(s)) = (I L

T)D2
X
f(Kν(s), (X

∗
0(s),LX

∗
0(s)))

(

I

L

)

.

Let |G| denote the determinant of G. Since H is a positive-definite diagonal matrix and L

is of full rank, we conclude that |G| 6= 0, for all s ∈ (0, T ).

Hence, the implicit function theorem (cf. Theorem C.8 in Evans [7]) implies that X
∗
0(s)

is a smooth function of Kν(s): since Kν(·, i) ∈ C
∞
[0,T ] for all i ∈ S, we conclude that X∗

0(s) ∈
C
∞
[0,T ](R

d−1). It also follows that the corresponding minimizer in terms of the variables rij,

say (r∗21(s), · · · , r∗d1(s)), is in C
∞
[0,T ]((0,∞)d−1). Recalling that rji = u(j)/u(i), we set

(u∗(s, 1), u∗(s, 2), · · · , u∗(s, d)) ≡ (1, r∗21(s), · · · , r∗d1(s))

on [0, T ]. Then (u∗(s, 1), · · · , u∗(s, d)) is an optimizer corresponding to

inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

,

and u∗(·, i) ∈ C
∞
[0,T ] for all i ∈ S. It is easily seen that u∗(s, i) > 0. Then infs∈[0,T ],i∈S u

∗(s, i) >
0 by continuity of u∗ on [0, T ]. Hence, u∗ ∈ U. �

The following continuity property of the rate functions will be used in proving the upper

and lower bounds.

Lemma 5.3 Let νη, ν ∈ MT with kernels Kη
ν and Kν such that Kη

ν (·, i) → Kν(·, i) a.e. as

η → 0 on [0, T ] for each i ∈ S. Then

(i) ĨT (ν
η) → ĨT (ν) as η → 0;

(ii) IT (ϕ, ν
η) → IT (ϕ, ν) as η → 0, ∀ϕ ∈ HT , if infi,x σ

2(i, x) > 0.

Proof (i) Let ρ be a d-dimensional vector such that
∑d

i=1 ρ(i) = 1 and ρ(i) > 0. By Lemma

4.22 in den Hollander [5],

− inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
ρ(i)

]

is continuous in ρ and positive. Moreover, for all ρ, realizing that the Qii are negative,

− inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
ρ(i)

]

6 −
d
∑

i=1

Qii

as a consequence of

− inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
ρ(i)

]

= −
d
∑

i=1

Qiiρ(i) − inf
u∈U

[

d
∑

i=1

∑d
j 6=iQiju(j)

u(i)
ρ(i)

]

.

Hence,

sup
u∈U

[

−
d
∑

i=1

(Qu)(i)

u(i)
Kη

ν (s, i)

]

→ sup
u∈U

[

−
d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

,
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as η → 0, almost everywhere on [0, T ]. Also,

− inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
Kη

ν (s, i)

]

6 −
d
∑

i=1

Qii

for all s. Then the desired result follows directly by applying the dominated convergence

theorem.

(ii) When infi,x σ
2(i, x) > 0, it is easily seen by continuity that

ϕ′
t − b̂(νη, ϕt)]

2

σ̂2(νη, ϕt)
→ [ϕ′

t − b̂(ν, ϕt)]
2

σ̂2(ν, ϕt)

a.e. as η → 0. Let σ2 denote inf i,x σ
2(i, x). For every ν ∈ MT , we have

[ϕ′
t − b̂(ν, ϕt)]

2

σ̂2(ν, ϕt)
6

|ϕ′
t|2 + (

∑d
i=1 |b(i, ϕt)|)2 + 2|ϕ′

t|(
∑d

i=1 |b(i, ϕt)|)
σ2

.

Since ϕ is absolutely continuous and b(i, x) is Lipschitz continuous in x,
∑d

i=1 |b(i, ϕt)| < b <

∞ on [0, T ]. Hence, [ϕ′
t− b̂(ν, ϕt)]

2/σ̂2(ν, ϕt) 6 (|ϕ′
t|+b)2/σ2. Since ϕ′ is square-integrable on

[0, T ], IT (ϕ, ν
η) → IT (ϕ, ν) as η → 0 by again applying the dominated convergence theorem.

�

6 Upper bound for the local LDP

This section considers the upper bound in the local LDP, whereas the next section concen-

trates on the corresponding lower bound. Recall that our aim is to establish

lim sup
δ→0

lim sup
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) 6 −LT (ϕ, ν),

with LT (ϕ, ν) as defined in Section 2. Our approach, which has a simlar structure as the one

used in Liptser in [18], finds an exponential (in ǫ, that is) upper bound on the probability

P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) relying on the method of stochastic exponentials. As it turns

out, this bound should contain the rate function LT (ϕ, ν), as desired.

We start by introducing some additional notation. Let ST denote the space of all step

functions on [0, T ] of the form, for k ∈ N and real numbers λ0, · · · , λk,

λ(t) = λ01{t=0}(t) +
k
∑

i=0

λi1(ti,ti+1](t), 0 = t0 < · · · < tk+1 = T.

For any ϕ ∈ CT , we introduce the following notation

∫ T

0
λ(s)dϕs :=

k
∑

i=0

λi[ϕT∧ti+1
− ϕT∧ti ].

In the sequel we frequently use the process

N ǫ
t :=

1√
ǫ

∫ t

0
λ(s)σ(Xǫ

s ,M
ǫ
s)dBs, λ ∈ ST ,
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which has the stochastic exponential

E (N ǫ)t = exp

(

N ǫ
t −

1

2
〈N ǫ〉t

)

, where 〈N ǫ〉t =
1

ǫ

∫ t

0
λ2(s)σ2(Xǫ

s ,M
ǫ
s)ds.

Next we introduce a stochastic exponential associated with the occupation measure νǫ.

For any u(·, ·) ∈ U,

N̂ ǫ
t = u(t,Xǫ

t )− u(0,Xǫ
0)−

∫ t

0

∂

∂s
u(s,Xǫ

s)ds−
∫ t

0
(Qǫu)(s,Xǫ

s)ds

is a local martingale on [0, T ] due to Itô’s formula. We define

Ñ ǫ
t :=

∫ t

0

1

u(s−,Xǫ
s−)

dN̂ ǫ
s .

Then

E (Ñ ǫ)t =
u(t,Xǫ

t )

u(0,Xǫ
0)

exp

(

−
∫ t

0

∂
∂su(s,X

ǫ
s) + (Qǫu)(s,Xǫ

s)

u(s,Xǫ
s)

ds

)

(13)

is the stochastic exponential of Ñ ǫ
t . Indeed,

dE (Ñ ǫ)t =
u(t,Xǫ

t )

u(0,Xǫ
0)

exp

(

−
∫ t

0

∂
∂su(s,X

ǫ
s) + (Qǫu)(s,Xǫ

s)

u(s,Xǫ
s)

ds

)

×
(

−
∂
∂tu(t,X

ǫ
t ) + (Qǫu)(t,Xǫ

t )

u(t,Xǫ
t )

dt

)

+ exp

(

−
∫ t

0

∂
∂su(s,X

ǫ
s) + (Qǫu)(s,Xǫ

s)

u(s,Xǫ
s)

ds

)

du(t,Xǫ
t )

u(0,Xǫ
0)

=
E (Ñ ǫ)t−
u(t−,Xǫ

t−)

[

du(t,Xǫ
t )−

∂

∂t
u(t,Xǫ

t )dt− (Qǫu)(t,Xt)dt

]

=
E (Ñ ǫ)t−
u(t−,Xǫ

t−)
dN̂ ǫ

t .

Since inft∈[0,T ],i∈S u(t, i) > 0, Ñ ǫ
t is a local martingale and its stochastic exponential E (Ñ ǫ)t

is also a local martingale by Theorem 1.4.61 in Jacod and Shiryaev [16]. Then E (Ñ ǫ)t is a

martingale since it is bounded. We will use this martingale property when applying a change

of measure in the next section. The martingale E (Ñ ǫ)t is an extension of the exponential

martingale studied by Palmowski and Rolski in [22].

Lemma 6.1 E (Ñ ǫ)tE (N ǫ)t is a local martingale, and E[E (Ñ ǫ)tE (N ǫ)t] 6 1.

Proof By Protter [23, Thm. 2.38],

E (Ñ ǫ)tE (N ǫ)t = E (Ñ ǫ +N ǫ + [Ñ ǫ, N ǫ])t,

where [Ñ ǫ, N ǫ] denotes the quadratic covariation process. Since Ñ ǫ
t is a pure jump local

martingale and N ǫ
t is a continuous local martingale, [Ñ ǫ, N ǫ] = 0. Then E (Ñ ǫ)tE (N ǫ)t is the

stochastic exponential of the local martingale Ñ ǫ
t + N ǫ

t and a local martingale too. Since a

positive local martingale is a supermartingale, E[E (Ñ ǫ)tE (N ǫ)t] 6 E[E (Ñ ǫ)0E (N ǫ)0] = 1. �
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The above lemma evidently implies that

E

[

1{ρT (Mǫ,T ,ϕ)+dT (νǫ,ν)6δ}E (Ñ ǫ)TE (N ǫ)T

]

6 1.

In order to find an exponential upper bound on P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ), we derive

non-random exponential lower bounds on E (Ñ ǫ)T and E (N ǫ)T in case that both M ǫ is close

to ϕ and νǫ close to ν (i.e., on the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}). The next two lemmas

present the results; Lemma 6.2 focuses on E (N ǫ)T , whereas Lemma 6.3 covers E (Ñ ǫ)T .

Lemma 6.2 For every (ϕ, ν) ∈ CT × MT and every λ ∈ ST , δ > 0, there exists a positive

constant Kλ,ϕ,T not depending on ǫ or δ such that

E (N ǫ)T > exp

{

1

ǫ

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

− δ

ǫ
Kλ,ϕ,T

}

on the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}.

Proof It is first realized that, by (1), N ǫ
t can be rearranged as

N ǫ
t =

1

ǫ

[
∫ t

0
λ(s)dM ǫ

s −
∫ t

0
λ(s)b(Xǫ

s,M
ǫ
s )ds

]

.

Then a straightforward computation yields that

N ǫ
T − 1

2
〈N ǫ〉T =

1

ǫ

[
∫ T

0
λ(s)dM ǫ

s −
∫ T

0
λ(s)b(Xǫ

s ,M
ǫ
s)ds−

∫ T

0

λ2(s)

2
σ2(Xǫ

s ,M
ǫ
s)ds

]

=
1

ǫ

[
∫ T

0
λ(s)dM ǫ

s −
∫ T

0
λ(s)dϕs

]

− 1

ǫ

[
∫ T

0
λ(s)b(Xǫ

s,M
ǫ
s )ds−

∫ T

0
λ(s)b̂(ν, ϕs)ds

]

−1

ǫ

[
∫ T

0

λ2(s)

2
σ2(Xǫ

s,M
ǫ
s )ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

+
1

ǫ

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

.

As a consequence, we evidently have

N ǫ
T − 1

2
〈N ǫ〉T >

1

ǫ

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

−1

ǫ

∣

∣

∣

∣

∫ T

0
λ(s)dM ǫ

s −
∫ T

0
λ(s)dϕs

∣

∣

∣

∣

− 1

ǫ

∣

∣

∣

∣

∫ T

0
λ(s)b(Xǫ

s ,M
ǫ
s)ds−

∫ T

0
λ(s)b̂(ν, ϕs)ds

∣

∣

∣

∣

−1

ǫ

∣

∣

∣

∣

∫ T

0

λ2(s)

2
σ2(Xǫ

s,M
ǫ
s )ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

∣

∣

∣

∣

a.s..

Hence, by repeated use of the triangle inequality, we find that N ǫ
T − 1

2 〈N ǫ〉T > ǫ−1Gǫ
T a.s.,

where Gǫ
T is given by

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

−
∣

∣

∣

∣

∫ T

0
λ(s)dM ǫ

s −
∫ T

0
λ(s)dϕs

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ T

0
λ(s)b(Xǫ

s ,M
ǫ
s)− λ(s)b(Xǫ

s , ϕs)ds

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ T

0
λ(s)b(Xǫ

s, ϕs)− λ(s)b̂(ν, ϕs)ds

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ T

0

λ2(s)

2
σ2(Xǫ

s,M
ǫ
s)−

λ2(s)

2
σ2(Xǫ

s , ϕs)ds

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ T

0

λ2(s)

2
σ2(Xǫ

s, ϕs)−
λ2(s)

2
σ̂2(ν, ϕs)ds

∣

∣

∣

∣

.
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In the rest of the proof, all objects are considered on the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ};

we analyze all absolute values in the previous display separately. Let us start with considering

the first absolute value; we thus find that

∣

∣

∣

∣

∫ T

0
λ(s)dM ǫ

s −
∫ T

0
λ(s)dϕs

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k
∑

j=1

λj

(

M ǫ
T∧tj+1

− ϕT∧tj+1
− (M ǫ

T∧tj − ϕT∧tj )
)

∣

∣

∣

∣

∣

∣

6 2λ∗T δ.

Now consider the second absolute value. The Lipschitz condition (A.1) implies that

∣

∣

∣

∣

∫ T

0
λ(s)b(Xǫ

s ,M
ǫ
s)− λ(s)b(Xǫ

s , ϕs)ds

∣

∣

∣

∣

6

∫ T

0
|λ(s)|K|M ǫ

s − ϕs|ds 6 λ∗T δKT.

For the fourth one, (A.1) also entails that

∣

∣

∣

∣

∫ T

0

λ2(s)

2

[

σ2(Xǫ
s,M

ǫ
s)− σ2(Xǫ

s , ϕs)
]

ds

∣

∣

∣

∣

6
λ2∗T
2

∫ T

0
Kδ|σ(Xǫ

s ,M
ǫ
s) + σ(Xǫ

s, ϕs)|ds

Since ϕ is continuous on [0, T ], there exists a positive constant r such that ϕ∗
T 6 r − δ. It

yields that M ǫ∗
T 6 r on the set {ρT (M ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ}. By the linear growth condition

(A.2) and the above reasoning

|σ(Xǫ
s,M

ǫ
s ) + σ(Xǫ

s , ϕs)| 6 K(1 + |M ǫ
s |) +K(1 + |ϕs|) 6 2K(1 + r).

We conclude that
∣

∣

∣

∣

∫ T

0

λ2(s)

2

[

σ2(Xǫ
s,M

ǫ
s )− σ2(Xǫ

s, ϕs)
]

ds

∣

∣

∣

∣

6 λ2∗T δK
2(1 + r)T.

Then, concerning the third absolute value,

∣

∣

∣

∣

∫ T

0
λ(s)b(Xǫ

s , ϕs)− λ(s)b̂(ν, ϕs)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k
∑

j=0

∫ tj+1

tj

λj [b(X
ǫ
s , ϕs)− b̂(ν, ϕs)]ds

∣

∣

∣

∣

∣

∣

6

k
∑

j=0

∣

∣

∣

∣

∣

∫ tj+1

tj

λj

d
∑

i=1

b(i, ϕs)[1{Xǫ
s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

=
k
∑

j=0

∣

∣

∣

∣

∣

∫ tj+1

tj

d
∑

i=1

fj(i, s)[1{Xǫ
s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

6

k
∑

j=0

d
∑

i=1

∣

∣

∣

∣

∣

∫ tj+1

tj

fj(i, s)[1{Xǫ
s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

where fj(i, s) := λjb(i, ϕs). Since b(i, ·) is Lipschitz continuous and ϕs is absolutely continu-

ous, fj(i, s) is of bounded variation. Then, by Lemma A.1,

sup
i∈S

∣

∣

∣

∣

∣

∫ tj+1

tj

fj(i, s)[1{Xǫ
s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

6 Cjδ,

where Cj is a constant. We thus conclude that

∣

∣

∣

∣

∫ T

0
λ(s)b(Xǫ

s , ϕs)− λ(s)b̂(ν, ϕs)ds

∣

∣

∣

∣

6

k
∑

j=0

Cjδd 6 Cδ.
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A similar procedure yields for the last absolute value

∣

∣

∣

∣

∫ T

0

λ2(s)

2
σ2(Xǫ

s , ϕs)−
λ2(s)

2
σ̂2(ν, ϕs)ds

∣

∣

∣

∣

6 C ′δ.

Upon collecting these inequalities, we find

E (N ǫ)T > exp

{

1

ǫ

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

− δ

ǫ
Kλ,ϕ,T

}

,

where we denote

Kλ,ϕ,T := 2λ∗T + λ∗TKT + λ2∗T K
2(1 + r)T + C +C ′,

which is a positive constant not depending on δ or ǫ. �

Lemma 6.3 For every ν ∈ MT , every u ∈ U and every γ, δ > 0, there exist positive constants

Cu, C
′
u, Ku and KQ,u not depending on ǫ or δ such that

E (Ñ ǫ)T > Ku exp

(

−Cuδd − γd− C ′
uTd−

1

ǫ
KQ,uδd−

1

ǫ

∫ T

0

d
∑

i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

on the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}.

Proof First observe that

E (Ñ ǫ)T =
u(T,Xǫ

T )

u(0,Xǫ
0)

exp

(

−
∫ T

0

d
∑

i=1

∂
∂su(s, i) + (Qǫu)(s, i)

u(s, i)
1{Xǫ

s=i}ds

)

=
u(T,Xǫ

T )

u(0,Xǫ
0)

exp

(

−
d
∑

i=1

∫ T

0

∂
∂su(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

−
d
∑

i=1

∫ T

0

∂
∂su(s, i)

u(s, i)
Kν(s, i)ds

)

×

exp

(

−1

ǫ

d
∑

i=1

∫ T

0

Qu(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds −
1

ǫ

d
∑

i=1

∫ T

0

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

By the definition of u and Xǫ
0 = x, we have that Ku := mini,x u(T, i)/u(0, x) is a positive

constant. Hence E (Ñ ǫ)T majorizes

Ku exp

(

−
d
∑

i=1

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

−
d
∑

i=1

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
Kν(s, i)ds

∣

∣

∣

∣

∣

)

×

exp

(

−1

ǫ

d
∑

i=1

∣

∣

∣

∣

∫ T

0

Qu(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

− 1

ǫ

d
∑

i=1

∫ T

0

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

On the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}, Lemma A.1 implies that, for any γ > 0, i ∈ S,

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

6 Cuδ + γ,
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∣

∣

∣

∣

∫ T

0

Qu(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

6 KQ,uδ, ∀i ∈ S.

Since ∂
∂su(s, i)/u(s, i) is continuous on [0, T ],

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
Kν(s, i)ds

∣

∣

∣

∣

∣

6 C ′
uT.

Hence,

E (Ñ ǫ)T > Ku exp

(

−Cuδd− γd− C ′
uTd−

1

ǫ
KQ,uδd−

1

ǫ

∫ T

0

d
∑

i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

.

We have thus proven our claim. �

Now we are ready to prove the upper bound in the local LDP.

Proposition 6.4 For every (ϕ, ν) ∈ CT ×MT ,

lim sup
δ→0

lim sup
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) 6 −LT (ϕ, ν).

Proof Due to Lemma 5.1, CT ×M
++
T is dense in CT ×MT . We first prove that the upper

bound holds on CT ×M
++
T . For every ν ∈ M

++
T , it is an immediate implication of Lemma

5.2 that there is an optimizer u∗(·, ·) of

inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

such that u∗ ∈ U. We denote

E
u∗

t =
u∗(t,Xǫ

t )

u∗(0,Xǫ
0)

exp

(

−
∫ t

0

∂
∂su

∗(s,Xǫ
s) + (Qǫu∗)(s,Xǫ

s)

u∗(s,Xǫ
s)

ds

)

.

Lemma 6.1 implies that

E

[

1{ρT (Mǫ,ϕ)+dT (νǫ,ν)6δ}E
u∗

T E (N ǫ)T

]

6 1 (14)

for every λ ∈ ST . By virtue of Lemmas 6.2 and 6.3, we have a non-random lower bound for

E u∗

T E (N ǫ)T on the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}. Hence, (14) implies that, for all λ ∈ ST ,

P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ)

6
1

Ku∗

exp

(

Cu∗δd + C ′
u∗Td+

1

ǫ
KQ,u∗δd +

1

ǫ

∫ T

0

d
∑

i=1

Qu∗(s, i)
u∗(s, i)

Kν(s, i)ds

)

×

exp

{

−1

ǫ

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

+
δ

ǫ
Kλ,ϕ,T

}

.

We observe that

∫ T

0

d
∑

i=1

Qu∗(s, i)
u∗(s, i)

Kν(s, i)ds = −
∫ T

0
sup
u∈U

[

−
d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]

ds = −ĨT (ν).
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It directly entails that, again for all λ ∈ ST ,

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ)

6 −
[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

+Kλ,ϕ,T δ

−ǫ logKu∗ + ǫ
(

Cu∗δd + C ′
u∗Td

)

+KQ,u∗δd− ĨT (ν). (15)

It is easily seen that all the terms with δ or ǫ vanish as δ → 0, ǫ → 0. As a consequence

we conclude, by minimizing the right hand-side over λ, that the decay rate

lim sup
δ→0

lim sup
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ)

is majorized by

− sup
λ∈ST

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

− ĨT (ν).

Since b(i, x) and σ(i, x) satisfy the linear growth condition (A.2), b̂(ν, x) and σ̂(ν, x) are of

linear growth as well. Then Liptser and Pukhalskii [19, Lemma 6.1] implies that

sup
λ∈ST

[
∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds

]

=







∫ T

0
sup
λ∈R

[

λϕ′
s − λb̂(ν, ϕs)−

λ2

2
σ̂2(ν, ϕs)

]

ds if ϕ ∈ HT ,

∞ otherwise.

For s ∈ [0, T ] such that σ̂2(ν, ϕs) 6= 0 and ϕ ∈ HT , it is well-known (cf. Fredlin and

Wentzell [9], Liptser [18]) that

sup
λ∈R

[

λϕ′
s − λb̂(ν, ϕs)−

λ2

2
σ̂2(ν, ϕs)

]

=
[ϕ′

s − b̂(ν, ϕs)]
2

2σ̂2(ν, ϕs)
.

For s ∈ [0, T ] such that σ̂2(ν, ϕs) = 0 and ϕ ∈ HT ,

sup
λ∈R

[

λϕ′
s − λb̂(ν, ϕs)−

λ2

2
σ̂2(ν, ϕs)

]

=

{

0 if ϕ′
s = b̂(ν, ϕs),

∞ otherwise.

Hence, with the conventions 0/0 = 0 and n/0 = ∞ (for all n > 0) being in force,
∫ T

0
sup
λ∈R

[

λϕ′
s − λb̂(ν, ϕs)−

λ2

2
σ̂2(ν, ϕs)

]

ds =
1

2

∫ T

0

[ϕ′
t − b̂(ν, ϕt)]

2

σ̂2(ν, ϕt)
dt

if ϕ ∈ HT .

Hence the lower bound for the dense subset CT ×M
++
T is established. In consideration of

Lemma 2.5, the upper bound is proved for CT ×MT if we can show IT (ϕ, ν) and ĨT (ν) are

lower semi-continuous on ν. We denote

Fλ(ϕ, ν) =

∫ T

0
λ(s)dϕs −

∫ T

0
λ(s)b̂(ν, ϕs)ds−

∫ T

0

λ2(s)

2
σ̂2(ν, ϕs)ds.

By the above computation, we know for every (ϕ, ν) ∈ CT ×MT , IT (ϕ, ν) = supλ∈ST Fλ(ϕ, ν).

For every λ ∈ ST , Fλ(ν, ϕ) is continuous on ν due to Lemma A.1. Then IT (ϕ, ν) is lower

semi-continuous on ν since it is the pointwise supremum of continuous functions. By Lemma

5.3, ĨT (ν) also satisfies the requirement. The claim is established. �
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7 Lower bound for the local LDP

This section studies the lower bound of the local LDP. To this end, it is realized that only

finite rate functions need to be investigated. The rate function ĨT (ν) is finite for every

ν ∈ MT since 0 6 ĨT (ν) 6 −T∑d
i=1Qii. We further observe that the rate function IT (ϕ, ν)

is finite for every (ϕ, ν) ∈ HT × MT if inf i,x σ
2(i, x) > 0. Hence we consider the case of

inf i,x σ
2(i, x) > 0 first. Let (ϕ, ν) ∈ HT ×MT . We define

N̄ ǫ
t :=

1√
ǫ

∫ t

0

ϕ′
s − b̂(ϕs, ν)

σ̂(ϕs, ν)
dBs. (16)

Then its stochastic exponential is

E (N̄ ǫ)t = exp

(

N̄ ǫ
t −

1

2
〈N̄ ǫ〉t

)

, where 〈N̄ ǫ〉t =
1

ǫ

∫ t

0

[

ϕ′
s − b̂(ϕs, ν)

σ̂(ϕs, ν)

]2

ds.

For simplicity, we denote

hs :=
ϕ′
s − b̂(ϕs, ν)

σ̂(ϕs, ν)

throughout this section. Recall from (13) that, for a given u(·, ·) ∈ U,

E (Ñ ǫ)t =
u(t,Xǫ

t )

u(0,Xǫ
0)

exp

(

−
∫ t

0

∂
∂su(s,X

ǫ
s) + (Qǫu)(s,Xǫ

s)

u(s,Xǫ
s)

ds

)

.

In order to perform a change of measure in Proposition 7.3, we show that {E (Ñ ǫ)tE (N̄ ǫ)t}t∈[0,T ]

is a true martingale. It is noted that in the first results of this section, we impose the condition

inf i,x σ
2(i, x) > 0, which will be lifted later on.

Lemma 7.1 For every (ϕ, ν) ∈ HT ×MT and u(·, ·) ∈ U, {E (Ñ ǫ)tE (N̄ ǫ)t}t∈[0,T ] is a mar-

tingale if infi,x σ
2(i, x) > 0.

Proof We have shown in last section that E (Ñ ǫ)t is a martingale. Since ϕ ∈ HT and recalling

that we assumed infi,x σ
2(i, x) > 0, it follows that 〈N̄ ǫ〉T = 1

ǫ

∫ T
0 h2sds < ∞. Then Novikov’s

condition implies that E (N̄ ǫ)t is also a martingale. Since Xǫ
t is independent of the Brownian

motion Bt, E (Ñ ǫ)t is also independent of E (N̄ ǫ)t. So,

E[E (Ñ ǫ)TE (N̄ ǫ)T ] = E[E (Ñ ǫ)T ]E[E (N̄ ǫ)T ] = E[E (Ñ ǫ)0]E[E (N̄ ǫ)0] = E[E (Ñ ǫ)0E (N̄ ǫ)0].

By the same reasoning as in the proof of Lemma 6.1, we know that E (Ñ ǫ)tE (N̄ ǫ)t is a

supermartingale. Hence, it is a martingale by Liptser and Shiryaev [21, Lemma 6.4]. �

Lemma 7.2 For every ν ∈ MT , every u ∈ U and every γ, δ > 0, there exist positive constants

Cu, C
′
u, K

′
u and KQ,u not depending on ǫ or δ such that

[E (Ñ ǫ)T ]
−1 > K ′

u exp

(

−Cuδd− γd− C ′
uTd−

1

ǫ
KQ,uδd +

1

ǫ

∫ T

0

d
∑

i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

on the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}.
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Proof According to the computation in Lemma 6.3, we have [E (Ñ ǫ)T ]
−1 is equal to

u(0,Xǫ
0)

u(T,Xǫ
T )

exp

(

d
∑

i=1

∫ T

0

∂
∂su(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds +

d
∑

i=1

∫ T

0

∂
∂su(s, i)

u(s, i)
Kν(s, i)ds

)

×

exp

(

1

ǫ

d
∑

i=1

∫ T

0

Qu(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds+
1

ǫ

d
∑

i=1

∫ T

0

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

Defining K ′
u := mini,j u(0, j)/u(T, i), we have that [E (Ñ ǫ)T ]

−1 is not less than

K ′
u exp

(

−
d
∑

i=1

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

−
d
∑

i=1

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
Kν(s, i)ds

∣

∣

∣

∣

∣

)

×

exp

(

−1

ǫ

d
∑

i=1

∣

∣

∣

∣

∫ T

0

Qu(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

+
1

ǫ

d
∑

i=1

∫ T

0

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

On the set {ρT (M ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ}, Lemma A.1 implies

∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

6 Cuδ + γ, ∀i ∈ S,∀γ > 0,

∣

∣

∣

∣

∫ T

0

Qu(s, i)

u(s, i)
[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

6 KQ,uδ, ∀i ∈ S.

Also,
∣

∣

∣

∣

∣

∫ T

0

∂
∂su(s, i)

u(s, i)
Kν(s, i)ds

∣

∣

∣

∣

∣

6 C ′
uT.

Hence,

[E (Ñ ǫ)T ]
−1

> K ′
u exp

(

−Cuδd − γd− C ′
uTd−

1

ǫ
KQ,uδd +

1

ǫ

∫ T

0

d
∑

i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds

)

.

We have thus derived the desired lower bound. �

We proceed to prove the lower bound of the local LDP under the condition inf i,x σ
2(i, x) >

0.

Proposition 7.3 For every (ϕ, ν) ∈ HT ×MT , if inf i,x σ
2(i, x) > 0,

lim inf
δ→0

lim inf
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) > −LT (ϕ, ν).

Proof For any ν ∈ MT , there is a sequence νη ∈ M
++
T such that νη → ν by Lemma 5.1.

Actually, the convergence happens in the way that Kη
ν (·, i) → Kν(·, i) a.e.. Then by Lemma

5.3, the rate function LT (ϕ, ν) satisfies the continuity property required in Lemma 2.5. Hence

we only need to prove the lower bound on the dense subset HT ×M
++
T . Recall that for every

ν ∈ M
++
T , Lemma 5.2 implies that there is an optimizer u∗(·, ·) of

inf
u∈U

[

d
∑

i=1

(Qu)(i)

u(i)
Kν(s, i)

]
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such that u∗ ∈ U and

E
u∗

t =
u∗(t,Xǫ

t )

u∗(0,Xǫ
0)

exp

(

−
∫ t

0

∂
∂su

∗(s,Xǫ
s) + (Qǫu∗)(s,Xǫ

s)

u∗(s,Xǫ
s)

ds

)

.

By Lemma 7.1, we know E[E u∗

T E (N̄ ǫ)T ] = 1. On (Ω,FT ), we define a new probability measure

Pu∗ through dPu∗ = E u∗

T E (N̄ ǫ)TdP. Since E u∗

T E (N̄ ǫ)T is strictly positive, Pu∗ is equivalent

to P and dP =
[

E u∗

T E (N̄ ǫ)T
]−1

dPu∗. So that we can translate the probability of our interest

under the original measure P into the mean of a certain random quantity under the alternative

measure Pu∗ :

P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) =

∫

{ρT (Mǫ,ϕ)+dT (νǫ,ν)6δ}

[

E
u∗

T E (N̄ ǫ)T

]−1
dPu∗. (17)

By Girsanov’s theorem, B̃t := Bt − 1√
ǫ

∫ t
0 hsds is a Pu∗-Brownian motion on (Ω, (Ft)t6T ).

We substitute the above equation in (16), and obtain

N̄ ǫ
T − 1

2
〈N̄ ǫ〉T =

1√
ǫ

∫ T

0
hsdB̃s +

1

2ǫ

∫ T

0
h2sds.

It thus follows that [E u∗

T E (N̄ ǫ)T ]
−1 is equal to

u∗(0,Xǫ
0)

u∗(t,Xǫ
t )

exp

(

∫ t

0

∂
∂su

∗(s,Xǫ
s) + (Qǫu∗)(s,Xǫ

s)

u∗(s,Xǫ
s)

ds− 1√
ǫ

∫ T

0
hsdB̃s −

1

2ǫ

∫ T

0
h2sds

)

.

Now let L be a positive constant. We define Θǫ :=
{

ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ,
∣

∣

∣

∫ T
0 hsdB̃s

∣

∣

∣
6 L

}

.

Then (17) implies

P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) >

∫

Θǫ

[

E
u∗

T E (N̄ ǫ)T

]−1
dPu∗.

By Lemma 7.2, we obtain the following non-random lower bound of [E u∗

T E (N̄ ǫ)T ]
−1, valid

on the set Θǫ:

K ′
u∗ exp

(

−Cu∗δd −C ′
u∗Td− 1

ǫ
KQ,u∗δd − ĨT (ν)

ǫ
− IT (ϕ, ν)

ǫ
− L√

ǫ

)

.

As a consequence, we have the following lower bound of the probability P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ):

K ′
u∗ exp

(

−Cu∗δd− C ′
u∗Td− 1

ǫ
KQ,u∗δd− ĨT (ν)

ǫ
− IT (ϕ, ν)

ǫ
− L√

ǫ

)

× Pu∗(Θǫ).

This, in turn, leads to the following lower bound on the corresponding exponential decay

rate:

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) > ǫ logK ′
u∗ − ǫ(Cu∗δd+ C ′

u∗Td)−KQ,u∗δd

−ĨT (ν)− IT (ϕ, ν)−
√
ǫL+ ǫ log Pu∗(Θǫ). (18)

Then a sufficient condition for desired result to hold is limǫ→0 Pu∗(Θǫ) > 0. It is evident

that

Pu∗(Θǫ) > 1− Pu∗

(∣

∣

∣

∣

∫ T

0
hsdB̃s

∣

∣

∣

∣

> L

)

− Pu∗(dT (ν
ǫ, ν) > δ) − Pu∗(ρT (M

ǫ, ϕ) > δ). (19)
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We proceed by consecutively proving that the three probabilities in the right-hand side of (19)

vanishes as ǫ→ 0. We start by analyzing the first probability. By Chebyshev’s inequality,

P̃u∗

(∣

∣

∣

∣

∫ T

0
hsdB̃s

∣

∣

∣

∣

> L

)

6

Ẽu∗

∣

∣

∣

∫ T
0 hsdB̃s

∣

∣

∣

2

L2
=

∫ T
0 h2sds

L2
.

Since
∫ T
0 h2sds <∞, we can make this upper bound arbitrarily small by picking L sufficiently

large.

Next we consider the second probability in the right-hand sider of (19). We notice that

the part

exp

(

1√
ǫ

∫ T

0
hsdB̃s +

1

2ǫ

∫ T

0
h2sds

)

in the change of measure procedure is not related to the Markov chain . Then by Proposition

11.2.3 in Bielecki and Rutkowski [3], a Markov chain Xt with transition intensity matrix Q

under P becomes a Markov chain under Pu∗ with transition intensity matrix Q(u∗)(t) where

Q(u∗)(t)ij = Qij
u∗(t, j)
u∗(t, i)

for i 6= j; Q(u∗)(t)ii = −
∑

j 6=i

Qij
u∗(t, j)
u∗(t, i)

.

Hence, Q(u∗)(t)/ǫ is the transition intensity matrix of Xǫ
t under Pu∗. By Lemma A.2, for

every t ∈ [0, T ], Kν(t) = (Kν(t, 1), . . . ,Kν(t, d)) is the unique solution of

µ(t)Q(u∗)(t) = 0,
d
∑

i=1

µ(t, i) = 1, µ(t, i) > 0.

Also, all entries of the matrix Q(u∗)(t) are smooth on [0, T ] by Lemma 5.2. Then by Corollary

5.8 in Yin and Zhang [27],

Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
1{Xǫ

s=i}ds−
∫ t

0
Kν(i, s)ds

∣

∣

∣

∣

> ǫ1/4

)

6 K exp

{

− CT

ǫ1/4(T + 1)3/2

}

,

where CT is a strictly positive constant. For any δ > 0, the following (obvious) inequality

holds for every ǫ such that ǫ ∈ (0, δ4)

Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
1{Xǫ

s=i}ds−
∫ t

0
Kν(i, s)ds

∣

∣

∣

∣

> δ

)

6 Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
1{Xǫ

s=i}ds−
∫ t

0
Kν(i, s)ds

∣

∣

∣

∣

> ǫ1/4

)

.

Hence we have

Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
1{Xǫ

s=i}ds−
∫ t

0
Kν(i, s)ds

∣

∣

∣

∣

> δ

)

→ 0 as ǫ → 0.

That is, Pu∗(dT (ν
ǫ, ν) > δ) → 0, as ǫ→ 0.

Now we proceed by showing the third probability in the right-hand side of (19) vanishes

as ǫ→ 0. We substitute B̃t for Bt in (1), yielding

M ǫ
t =

∫ t

0
b(Xǫ

s,M
ǫ
s) + hsσ(X

ǫ
s ,M

ǫ
s)ds+

√
ǫ

∫ t

0
σ(Xǫ

s ,M
ǫ
s)dB̃s.
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By setting M̃ ǫ
t :=M ǫ

t − ϕt, we obtain

M̃ ǫ
t =

√
ǫ

∫ t

0
σ(Xǫ

s ,M
ǫ
s)dB̃s +

∫ t

0
[b(Xǫ

s ,M
ǫ
s)− b(Xǫ

s, ϕs)]ds+

∫ t

0
[b(Xǫ

s , ϕs)− b̂(ν, ϕs)]ds

+

∫ t

0
hs[σ(X

ǫ
s ,M

ǫ
s )− σ(Xǫ

s , ϕs)]ds+

∫ t

0
hs[σ(X

ǫ
s , ϕs)− σ̂(ν, ϕs)]ds.

Using the Lipschitz continuity featuring in (A1), we find that both

sup
t6T

∣

∣

∣

∣

∫ t

0
[b(Xǫ

s,M
ǫ
s )− b(Xǫ

s , ϕs)]ds

∣

∣

∣

∣

6

∫ T

0
KM̃ ǫ∗

s ds,

and

sup
t6T

∣

∣

∣

∣

∫ t

0
hs[σ(X

ǫ
s ,M

ǫ
s)− σ(Xǫ

s , ϕs)]ds

∣

∣

∣

∣

6

∫ T

0
|hs|KM̃ ǫ∗

s ds.

Recalling that we denote throughout this paper running maximum processes by adding an

asterisk (‘∗’), it is now immediate that

M̃ ǫ∗
T 6 I1∗T + I2∗T + I3∗T +

∫ T

0
K(1 + |hs|)M̃ ǫ∗

s ds,

where

I1t :=
√
ǫ

∫ t

0
σ(Xǫ

s,M
ǫ
s )dB̃s, I2t :=

∫ t

0
[b(Xǫ

s, ϕs)− b̂(ν, ϕs)]ds,

I3t :=

∫ t

0
hs[σ(X

ǫ
s , ϕs)− σ̂(ν, ϕs)]ds.

Then Gronwall’s inequality implies

M̃ ǫ∗
T 6 [I1∗T + I2∗T + I3∗T ] exp

(
∫ T

0
K(1 + |hs|)ds

)

. (20)

The next step is to study the impact of I1∗T , I2∗T , and I3∗T separately. For any δ > 0, it is

an immediate consequence of Chebyshev’s inequality that Pu∗(I1∗T > δ) 6 δ−3
Ẽu∗ [(I1∗T )3]. We

notice the close similarity between I1t and Cǫ
t in the proof of Proposition 4.3. The quantity

Eu∗ [(I1∗T )3] can be dealt with using essentially the same procedure that was used to bound

E[(Cǫ∗
T )1/ǫ]: we derive an inequality similar to (9), i.e.,

Eu∗[(I1∗T )3] 6
27

8
Eu∗

[

3ǫ

∫ T

0
|I1s |σ2(Xǫ

s,M
ǫ
s )ds

]

.

We thus obtain

Eu∗[(I1∗T )3] 6
81ǫkT

8
exp

(

81ǫkT

8

)

,

where k is a positive constant. As a consequence, limǫ→0 Pu∗(I1∗T > δ) = 0.

The claim limǫ→0 Pu∗(I2∗T > δ) = 0 can be established as follows. As a first stap we observe

that since

sup
t6T

∣

∣

∣

∣

∫ t

0
[b(Xǫ

s , ϕs)− b̂(ν, ϕs)]ds

∣

∣

∣

∣

= sup
t6T

∣

∣

∣

∣

∣

d
∑

i=1

∫ t

0
b(i, ϕs)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

∣

6 d sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
b(i, ϕs)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

,
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the following upper bound applies:

Pu∗(I2∗T > δ) = Pu∗

(

sup
t6T

∣

∣

∣

∣

∫ t

0
[b(Xǫ

s, ϕs)− b̂(ν, ϕs)]ds

∣

∣

∣

∣

> δ

)

6 Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
b(i, ϕs)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

> δ/d

)

Since b(i, x) is Lipschitz continuous in x and ϕt is absolutely continuous, b(i, ϕt) is bounded

on [0, T ]. Then by Corollary 5.8 in Yin and Zhang [27] again, Pu∗(I2∗T > δ) → 0, as ǫ → 0.

Similar to the above computation, we can obtain that

Pu∗(I3∗T > δ) 6 Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
hsσ(i, ϕs)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

> δ/d

)

.

We know that hsσ(i, ϕs) is square-integrable for every i ∈ S. Then by the method of mollifi-

cation in Theorem C.6 in Evans [7], there exists a sequence of smooth functions hη(i, s) such

that hη(i, s) → hsσ(i, ϕs) as η → 0 in L2[0, T ]. By the Cauchy-Schwarz inequality,

∣

∣

∣

∣

∫ t

0
[hsσ(i, ϕs)− hη(i, s)][1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

6
√
2t

(
∫ t

0
[hsσ(i, ϕs)− hη(i, s)]2ds

)1/2

.

Then,

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
hsσ(i, ϕs)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

6 sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
hη(i, s)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

+ sup
i∈S

√
2T

(
∫ T

0
[hsσ(i, ϕs)− hη(i, s)]2ds

)1/2

.

We let H(η) := supi∈S
√
2T
(

∫ T
0 [hsσ(i, ϕs)− hη(i, s)]2ds

)1/2
. It is clear that H(η) → 0 as

η → 0. Hence,

Pu∗(I3∗T > δ) 6 Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
hη(i, s)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

+H(η) > δ/d

)

.

For any δ > 0, we can choose all η > 0 small enough such that H(η) < δ/2d. It yields

Pu∗(I3∗T > δ) 6 Pu∗

(

sup
t6T,i∈S

∣

∣

∣

∣

∫ t

0
hη(i, s)[1{Xǫ

s=i} −Kν(s, i)]ds

∣

∣

∣

∣

> δ/2d

)

.

Since hη(i, s) is bounded on [0, T ], the probability in the right-hand of above inequality

vanishes as ǫ → 0 for any small enough η by Corollary 5.8 in Yin and Zhang [27]. Hence we

conclude that limǫ→0 Pu∗(I3∗T > δ) = 0.

We have thus shown that Pu∗(Θǫ) remains bounded away from 0 as ǫ→ 0. Upon combining

all the above, the proof of the lemma is now complete. �

So far we have focused on the case inf i,x σ
2(i, x) > 0; to complete the analysis, we next

consider the situation that this condition is lifted, in which case σ̂(ϕs, ν) can be singular.
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Our proof uses arguments used in the method presented by Liptser [18, Lemma A.6]. Given

γ > 0, we study the stochastic differential equation

M ǫ,γ
t =

∫ t

0
b(Xǫ

s ,M
ǫ,γ
s )ds+

√
ǫ

∫ t

0
σ(Xǫ

s ,M
ǫ,γ
s )dBs +

√
ǫγWt, (21)

where M ǫ,γ
0 ≡ 0 and Wt is another standard P-Brownian motion, independent of Bt and X

ǫ
t .

We provide an auxiliary lemma which is to be used when proving the lower bound; informally,

it states that M ǫ,γ and M ǫ are ‘superexponentially close’.

Lemma 7.4 For every T > 0 and η > 0,

lim
γ→0

lim sup
ǫ→0

ǫ log P (ρT (M
ǫ,γ ,M ǫ) > η) = −∞. (22)

Proof We define Aǫ,γ
t :=M ǫ,γ

t −M ǫ
t , and

αǫ
t :=

b(Xǫ
t ,M

ǫ,γ
t )− b(Xǫ

t ,M
ǫ
t )

M ǫ,γ
t −M ǫ

t

, βǫt :=
σ(Xǫ

t ,M
ǫ,γ
t )− σ(Xǫ

t ,M
ǫ
t )

M ǫ,γ
t −M ǫ

t

.

By (A.1), i.e., the Lipschitz condition, we conclude

|αǫ
t | 6 K, |βǫt | 6 K, ∀t ∈ [0, T ]. (23)

As an immediate consequence of (1) and (21), we have

dAǫ,γ
t = αǫ

tA
ǫ,γ
t dt+

√
ǫβǫtA

ǫ,γ
t dBt +

√
ǫγdWt.

We define

Eǫ
t := exp

(
∫ t

0

[

αǫ
s −

ǫ

2
(βǫs)

2
]

ds+
√
ǫ

∫ t

0
βǫsdBs

)

.

We apply Itô’s formula to (Eǫ
t )

−1, so as to obtain

d(Eǫ
t )

−1 = (Eǫ
t )

−1
(

ǫ(βǫt )
2dt− αǫ

tdt−
√
ǫβǫtdBt

)

.

Since Wt is independent of Bt, we have

d〈Aǫ,γ
t , (Eǫ

t )
−1〉 = 〈−√

ǫβǫt (E
ǫ
t )

−1dBt,
√
ǫβǫtA

ǫ,γ
t dBt +

√
ǫγdWt〉 = −ǫ(βǫt )2(Eǫ

t )
−1Aǫ,γ

t dt.

By applying the integration-by-parts formula,

dAǫ,γ
t (Eǫ

t )
−1 = Aǫ,γ

t d(Eǫ
t )

−1 + (Eǫ
t )

−1dAǫ,γ
t + d〈Aǫ,γ

t , (Eǫ
t )

−1〉 = √
ǫγ(Eǫ

t )
−1dWt,

and hence

Aǫ,γ
t =

√
ǫ γEǫ

t

∫ t

0
(Eǫ

s)
−1dWs.

We define the set ΓN := {1/N 6 inft6T E
ǫ
t 6 supt6T E

ǫ
t 6 N}, for N ∈ N. Observe that

it holds that ρT (M
ǫ,γ ,M ǫ) = (Aǫ,γ)∗T , and therefore

P(ρT (M
ǫ,γ ,M ǫ) > η) 6 P((Aǫ,γ)∗T > η,ΓN ) + P(Ω \ ΓN )

6 2max {P((Aǫ,γ)∗T > η,ΓN ),P(Ω \ ΓN )} .
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We now consider each of the probabilities P((Aǫ,γ)∗T > η,ΓN ) and P(Ω \ ΓN ) separately. On

the set ΓN ,

(Aǫ,γ)∗T 6
√
ǫγEǫ∗

T sup
t6T

∣

∣

∣

∣

∫ t

0
(Eǫ

s)
−1dWs

∣

∣

∣

∣

6
√
ǫγN sup

t6T

∣

∣

∣

∣

∫ t

0
(Eǫ

s)
−1dWs

∣

∣

∣

∣

.

Since αǫ
t and β

ǫ
t are bounded as ǫ → 0, it follows that

∫ t
0 [α

ǫ
s − ǫ

2(β
ǫ
s)

2]ds is bounded as well,

and therefore we omit it for brevity when analyzing Eǫ
t . Based on the above, the stated holds

if we can prove that (A) for all N ∈ N, covering the contribution of P((Aǫ,γ)∗T > η,ΓN ),

lim
γ→0

lim sup
ǫ→0

ǫ log P

(√
ǫγN sup

t6T

∣

∣

∣

∣

∫ t

0
(Eǫ

s)
−1dWs

∣

∣

∣

∣

> η,ΓN

)

= −∞, (24)

and (B), covering the contribution of P(Ω \ ΓN ),

lim
N→∞

lim sup
ǫ→0

ǫ log P

(√
ǫ sup
t6T

∣

∣

∣

∣

∫ t

0
βǫsdBs

∣

∣

∣

∣

> logN

)

= −∞. (25)

Let us first consider contribution (A). To this end, define

τ := T ∧ inf

{

t 6 T :

∣

∣

∣

∣

∫ t

0
(Eǫ

s)
−1dWs

∣

∣

∣

∣

>
η√
ǫγN

}

.

Then (24) is equivalent to, for all N ∈ N,

lim
γ→0

lim sup
ǫ→0

ǫ logP

(√
ǫγN

∫ τ

0
(Eǫ

s)
−1dWs > η (or 6 −η),ΓN

)

= −∞. (26)

For N ∈ N and η > 0, we define the process Ẽǫ
t and its stochastic exponential E (Ẽǫ)t:

Ẽǫ
t :=

η√
ǫγN3T

∫ t

0
(Eǫ

s)
−1dWs, E (Ẽǫ)t = exp

(

Ẽǫ
t −

1

2
〈Ẽǫ〉t

)

.

Since E (Ẽǫ)t is a supermartingale, we have

E

[

1{√ǫγN
∫ τ

0
(Eǫ

s)
−1dWs > η,ΓN}E (Ẽǫ)τ

]

6 1

On the set {√ǫγN
∫ τ
0 (E

ǫ
s)

−1dWs > η,ΓN}, we have

E (Ẽǫ)τ > exp

(

η√
ǫγN3T

η√
ǫγN

− 1

2

(

η√
ǫγN3T

)2

N2T

)

= exp

(

η2

2ǫγ2N4T

)

,

and consequently

exp

(

η2

2ǫγ2N4T

)

P

(√
ǫγN

∫ τ

0
(Eǫ

s)
−1dWs > η,ΓN

)

6 1.

We conclude that the part corresponding to “> η” in (26) is valid, but it is immediately

verified that the part corresponding to “6 −η” in (26) can be addressed in the same way.

We now turn to contribution (B). The validity of (25) can be proved in a similar way by

defining the stopping time

τ ′ := inf

{

t 6 T :

∣

∣

∣

∣

∫ t

0
βǫsdBs

∣

∣

∣

∣

>
logN√

ǫ

}
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and the process β̃ǫt and its stochastic exponential E (β̃ǫ)t:

β̃ǫt :=
logN√
ǫK2T

∫ t

0
βǫsdBs, E (β̃ǫ)t = exp

(

β̃ǫt −
1

2
〈β̃ǫ〉t

)

,

where K is the constant in (23). �

The following result establishes the lower bound of the local LDP.

Proposition 7.5 For every (ϕ, ν) ∈ CT ×M,

lim inf
δ→0

lim inf
ǫ→0

ǫ log P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ) > −LT (ϕ, ν).

Proof As mentioned in the beginning of this section, only the case (ϕ, ν) ∈ HT ×MT such

that
∫ T

0

[ϕ′
t − b̂(ν, ϕt)]

2

σ̂2(ν, ϕt)
dt <∞

needs to be considered. If inf i,x σ
2(i, x) > 0, then the result is valid due to Proposition 7.3.

If inf i,x σ
2(i, x) = 0, then we consider M ǫ,γ

t as defined in (21). The idea is that we decompose

the probability P
(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6 δ
2

)

into the sum of

P

(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6
δ

2
, ρT (M

ǫ, ϕ) + dT (ν
ǫ, ν) 6 δ

)

(27)

and

P

(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6
δ

2
, ρT (M

ǫ, ϕ) + dT (ν
ǫ, ν) > δ

)

. (28)

Obviously, (27) is majorized by P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ). Using the triangle inequal-

ity, we find that ρT (M
ǫ, ϕ) 6 ρT (M

ǫ,M ǫ,γ) + ρT (M
ǫ,γ , ϕ). So that (28) is majorized by

P
(

ρT (M
ǫ,M ǫ,γ) > δ

2

)

. Hence, P
(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6 δ
2

)

is not greater than

2max

[

P(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ),P

(

ρT (M
ǫ,M ǫ,γ) >

δ

2

)]

.

By Lemma 7.4,

lim
γ→0

lim sup
ǫ→0

ǫ logP

(

ρT (M
ǫ,γ ,M ǫ) >

δ

2

)

= −∞,

and, as a result,

lim inf
δ→0

lim
γ→0

lim inf
ǫ→0

ǫ log P

(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6
δ

2

)

6 lim inf
δ→0

lim inf
ǫ→0

ǫ logP(ρT (M
ǫ, ϕ) + dT (ν

ǫ, ν) 6 δ).

Next we compute the term on the left-hand side of the above inequality. Since M ǫ,γ meets

the conditions in Lemma 7.3, (M ǫ,γ , νǫ) satisfies the inequality (18). Then for every γ > 0,

we obtain

lim inf
ǫ→0

ǫ log P

(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6
δ

2

)

> −KQ,u∗

δ

2
d− ĨT (ν)−

1

2

∫ T

0

[ϕ′
s − b̂(ϕs, ν)]

2

σ̂2(ϕs, ν) + γ2
ds.
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By the monotone convergence theorem (recall the convention 0/0 = 0),

1

2

∫ T

0

[ϕ′
s − b̂(ϕs, ν)]

2

σ̂2(ϕs, ν) + γ2
ds→ 1

2

∫ T

0

[ϕ′
s − b̂(ϕs, ν)]

2

σ̂2(ϕs, ν)
ds = IT (ϕ, ν), as γ → 0

which implies that

lim inf
δ→0

lim
γ→0

lim inf
ǫ→0

ǫ log P

(

ρT (M
ǫ,γ , ϕ) + dT (ν

ǫ, ν) 6
δ

2

)

> −ĨT (ν)− IT (ϕ, ν).

We have proven the claim. �

A Appendix

Lemma A.1 Let f(t, i) be a continuous function on [0, T ] for every i ∈ S. Let µ, ν ∈ M such

that dT (µ, ν) 6 δ. For any γ > 0 and [t1, t2] ⊂ [0, T ], there exists a constant C > 0 such that

sup
i∈S

∣

∣

∣

∣

∫ t2

t1

f(s, i)[Kµ(s, i)−Kν(s, i)]ds

∣

∣

∣

∣

6 Cδ + γ. (29)

Proof We first look at functions f(t, i) that are of bounded variation. By integration by

parts, we have

∫ t2

t1

f(s, i)[Kµ(s, i)−Kν(s, i)]ds = [µ(s, i) − ν(s, i)]f(s, i)|t2t1 −
∫ t2

t1

[µ(s, i)− ν(s, i)]df(s, i).

Then
∣

∣

∣

∣

∫ t2

t1

f(s, i)[Kµ(s, i)−Kν(s, i)]ds

∣

∣

∣

∣

6 |µ(t2, i)− ν(t2, i)||f(t2, i)|+ |µ(t1, i)− ν(t1, i)||f(t1, i)|

+

∫ t2

t1

|µ(s, i)− ν(s, i)||df(s, i)|

6 C1δ + C2δ + TVf [t1, t2]δ,

where TVf [t1, t2] denotes the total variation of f on [t1, t2] and C1, C2 are two positive con-

stants. Since S has finite elements, we can find a constant C such that the claim holds. If

f(t, i) is only continuous, it can be uniformly approximated by a continuously differentiable

function (see [25]), that is, for any γ > 0, there exists a continuously differentiable function

fγ(t, i) such that

sup
t∈[t1,t2],i∈S

|f(t, i)− fγ(t, i)| < γ/2 (t2 − t1).

Then

sup
i∈S

∣

∣

∣

∣

∫ t2

t1

f(s, i)[Kµ(s, i)−Kν(s, i)]ds

∣

∣

∣

∣

6 sup
i∈S

∣

∣

∣

∣

∫ t2

t1

[f(s, i)− fγ(s, i)] [Kµ(s, i)−Kν(s, i)]ds

∣

∣

∣

∣

+ sup
i∈S

∣

∣

∣

∣

∫ t2

t1

fγ(s, i)[Kµ(s, i)−Kν(s, i)]ds

∣

∣

∣

∣

6 γ + Cδ.

This finishes our proof. �
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For any u ∈ U, let Q(u)(t) be the transition matrix resulting from the measure change

induced by the stochastic exponential E (Ñ ǫ). It is known, see Proposition 11.2.3 in Bielecki

and Rutkowski [3], that

Q(u)(t)ij = Qij
u(t, j)

u(t, i)
if i 6= j; Q(u)(t)ii = −

∑

j 6=i

Qij
u(t, j)

u(t, i)
.

For a fixed t, we suppress this t, so as to make the notation more compact. In matrix notation,

(where we throughout write diag(u) to denote the diagonal matrix with entries uiδij) we have

Q(u) = diag(u)−1Qdiag(u)− diag(u)−1diag(Qu). (30)

Lemma A.2 Let ν be a d-dimensional vector such that
∑d

i=1 ν(i) = 1 and ν(i) > 0. Let

u∗ ∈ U be an optimizer of

inf
u∈U

∑

i

(Qu)i
ui

νi = inf
u∈U

νTdiag(u)−1Qu.

Then ν is the unique invariant vector of the transition matrix Q(u∗).

Proof To find a minimizing u∗ = u(ν) (where it observed that minimizers are not necessarily

unique) for the above problem, we first note that all u∗i > 0. Hence the minimizer solves the

system of first order conditions. Differentiation with respect to uk yields (ek denoting the

k-th basis vector)

−νTdiag(u)−1eke
T
k diag(u)

−1Qu+ νTdiag(u)−1Qek = 0.

In vector notation these equations can be conveniently summarized as

νTdiag(u)−1
(

−diag(u)−1diag(Qu) +Q
)

= 0. (31)

From (30) we deduce by commutation of diagonal matrices the relation

Q(u) = diag(u)−1(Q− diag(u)−1diag(Qu))diag(u),

and hence

diag(u)Q(u)diag(u)−1 = Q− diag(u)−1diag(Qu).

We can therefore rewrite (31) as

νTQ(u)diag(u)−1 = 0.

It follows that νTQ(u∗) = 0. Since ν(i) > 0, ν is the unique invariant vector of Q(u∗). �
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