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ABSTRACT

Context. Gamma Doradus stars (hereafter γDor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner
stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an observational signature of
the stellar evolutions and current internal structure and is heavily influenced by rotation.
Aims. We aim to constrain the near-core rotation rates for a sample of γ Dor stars for which we have detected period spacing patterns.
Methods. We combined the asymptotic period spacing with the traditional approximation of stellar pulsation to fit the observed period
spacing patterns using χ2-optimisation. The method was applied to the observed period spacing patterns of a sample of stars and used
for ensemble modelling.
Results. For the majority of stars with an observed period spacing pattern we successfully determined the rotation rates and the
asymptotic period spacing values, although the uncertainty margins on the latter were typically large. This also resulted directly in the
identification of the modes that correspond to the detected pulsation frequencies, which for most stars were prograde dipole gravity
and gravito-inertial modes. The majority of the observed retrograde modes were found to be Rossby modes. We also discuss the
limitations of the method that are due to the neglect of the centrifugal force and the incomplete treatment of the Coriolis force.
Conclusions. Despite its current limitations, the proposed method was successful to derive the rotation rates and to identify the modes
from the observed period spacing patterns. It forms the first step towards detailed seismic modelling based on observed period spacing
patterns of moderately to rapidly rotating γDor stars.

Key words. asteroseismology – methods: data analysis – stars: fundamental parameters – stars: variables: general –
stars: oscillations

1. Introduction

Gamma Doradus stars are early F- to late A-type stars (with
1.4 M� <∼ M . 2.0 M�) that exhibit non-radial gravity and/or
gravito-inertial mode pulsations (e.g. Kaye et al. 1999). This
places them directly within the transition region between low-
mass stars with a convective envelope and intermediate-mass
stars with a convective core, where the CNO-cycle becomes in-
creasingly important relative to the pp-chain as the dominant hy-
drogen burning mechanism (e.g. Silva Aguirre et al. 2011). The
pulsations in γDor stars are excited by the flux blocking mecha-
nism at the bottom of the convective envelope (Guzik et al. 2000;
Dupret et al. 2005), although the κ mechanism has been linked
to γDor type pulsations as well (Xiong et al. 2016). The oscil-
lations predominantly trace the radiative region near the convec-
tive core boundary. As a result, these pulsators are ideally suited
to characterise the structure of the deep stellar interior.

As shown by Tassoul (1980), high-order (n � l) gravity
modes are asymptotically equidistant in period for non-rotating
? Based on data gathered with the NASA Discovery mission Kepler

and the HERMES spectrograph, which is installed at the Mercator Tele-
scope, operated on the island of La Palma by the Flemish Community
at the Spanish Observatorio del Roque de los Muchachos of the Insti-
tuto de Astrofísica de Canarias, and supported by the Fund for Scien-
tific Research of Flanders (FWO), Belgium, the Research Council of
KU Leuven, Belgium, the Fonds National de la Recherche Scientifique
(F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Ob-
servatoire de Genève, Switzerland, and the Thüringer Landessternwarte
Tautenburg, Germany.

chemically homogeneous stars with a convective core and a
radiative envelope. This study was further expanded upon by
Miglio et al. (2008). The authors found characteristic dips to
be present in the period spacing series when the influence of a
chemical gradient is included in the analysis. The periodicity of
the deviations is related to the location of the chemical gradient,
while the amplitude of the dips was found to be indicative of the
steepness of the gradient. Bouabid et al. (2013) further improved
upon the study by including the effects of diffusive mixing and
rotation, which they introduced using the traditional approxima-
tion. The authors concluded that the mixing processes partially
wash out the chemical gradients inside the star, resulting in a
reduced amplitude for the dips in the spacing pattern. Stellar ro-
tation introduces a shift in the pulsation frequencies, leading to a
slope in the period spacing pattern. Zonal and prograde modes,
as seen by an observer in an inertial frame of reference, were
found to have a downward slope, while the pattern for the retro-
grade high-order modes has an upward slope.

Over the past decade the observational study of pulsating
stars has benefitted tremendously from several space-based pho-
tometric missions, such as MOST (Walker et al. 2003), CoRoT
(Auvergne et al. 2009) and Kepler (Koch et al. 2010). While typ-
ically only a handful of modes could be resolved using ground-
based data, the space missions have provided near-continuous
high S/N observations of thousands of stars on a long time base,
resulting in the accurate determination of dozens to hundreds
of pulsation frequencies for many targets. In particular, this has
proven to be invaluable for γDor stars, as their gravity and/or
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gravito-inertial mode frequencies form a very dense spectrum
in the range of 0.3 to 3 d−1. Period spacing patterns have now
been detected for dozens of γDor stars (e.g. Chapellier et al.
2012; Kurtz et al. 2014; Bedding et al. 2015; Saio et al. 2015;
Keen et al. 2015; Van Reeth et al. 2015; Murphy et al. 2016).

In this study we focus on the period spacing patterns detected
by Van Reeth et al. (2015) in a sample of 68 γDor stars with
spectroscopic characterisation and aim to derive the stellar in-
ternal rotation rates and the asymptotic period spacing value of
the series. This serves as a first step for future detailed analy-
ses of differential rotation, similar to the studies that have previ-
ously been carried out in slow rotators among g-mode pulsators
that have recently been interpreted in terms of angular momen-
tum transport by internal gravity waves (e.g. Triana et al. 2015;
Rogers 2015). In this paper we present a grid of theoretical mod-
els, which we use as a starting point (Sect. 2), and explain our
method to derive the rotation frequency (Sect. 3). The method
is illustrated with applications on synthetic data (Sect. 4.1), a
slowly rotating star with rotational splitting, KIC 9751996, and
a fast rotator with a prograde and a retrograde period spacing se-
ries, KIC 12066947 (Sect. 4.2). We then analyse the sample as a
whole (Sect. 4.3) before moving on to the discussion and plans
for future in-depth modelling of individual targets (Sect. 5).

2. Grid of stellar models and pulsation frequencies

We first computed a rough grid of theoretical stellar models to
gain further insight into the internal structure and properties of
γDor stars. To allow for a complete understanding, the mod-
els were purposely kept relatively simple. We did not include
any rotational effects into the equilibrium models, allowing us
to assume spherical symmetry and compute one-dimensional
models with the one-dimensional MESA stellar evolution code
(v7385; Paxton et al. 2011, 2013, 2015). The convection was
treated using the mixing length theory with αMLT = 1.8 and
the Ledoux criterion with αsc = 0.01. A single diffusive mix-
ing coefficient was defined in the radiative region and fixed
at a value of 1 cm2 s−1. We used the solar metallicity values
given by Asplund et al. (2009) and OPAL type I opacity tables
(Rogers & Nayfonov 2002). The varying parameter values of the
models in the grid are given in Table 1.

For each of the models in our grid we also computed the
asymptotic period spacing

∆Πl =
Π0

√
l(l + 1)

, (1)

with

Π0 = 2π2
(∫ r2

r1

N
dr
r

)−1

, (2)

as derived by Tassoul (1980) for high-order gravity modes. Here
l is the spherical degree of the pulsation mode, r is the distance
from the stellar centre, N is the Brunt-Väisälä frequency, and the
boundaries of the mode trapping region are marked by r1 and r2
(Aerts et al. 2010). While ∆Πl is smaller for higher values of l
(Eq. (1)), ∆Πl also changes as the star evolves. We therefore cal-
culated the probability of observing different spacing values us-
ing the stellar ages in our grid models. As shown in Fig. 1, we
typically expect ∆Πl values of about 3100 s and 1800 s for l = 1
and l = 2, respectively, which in turn implies that Π0 is of the
order of 4400 s. In addition, there are strong linear correlations
for ∆Πl between models with different values of M, Z, X, fov,
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Fig. 1. Distributions of the asymptotic period spacing values ∆Πl for
spherical degree l = 1 and 2 computed for the MESA evolution tracks
with the input parameters provided in Table 1. The ages and evolution
rates of the stellar models were taken into account in computing the
distributions.

Table 1. Parameter values of the computed grid of 1170 MESA evolu-
tionary tracks, consisting of some 900 000 models.

Parameter begin End Step size
Mass M [M�] 1.4 2.0 0.05
Metallicity Z 0.010 0.018 0.004
Exp. core overshooting fov 0.001 0.03 0.0075
Step core overshooting αov 0.01 0.3 0.075
Initial hydrogen abundance Xi 0.69 0.73 0.02

and αov, assuming a fixed hydrogen abundance Xc in the convec-
tive core.

As shown by Bouabid et al. (2013) and as observed by
Van Reeth et al. (2015), gravity-mode period spacing patterns
are heavily influenced by rotation. We therefore introduced the
influence of rotation on the pulsation periods using the tradi-
tional approximation (Eckart 1960; Lee & Saio 1987; Townsend
2005). In this framework the θ-component of the rotation vector
is ignored (Lee & Saio 1997) and it is assumed that the star is
sufficiently slowly rotating, so that the effects of the centrifugal
force can be neglected. While this particular assumption may not
always be applicable, gravity modes and gravito-inertial modes
are mostly sensitive to the stellar properties near the convective
core, where the rotational deformation of the star remains lim-
ited. This is illustrated in Fig. 2, which shows the Brunt-Väisälä
frequency N and the rotational kernel Knl for the lowest- and
highest-order mode of the stellar model discussed in Sect. 4.1.
Both functions correlate with the sensitivity of the pulsations
to the different regions in the star and peak near the convective
core boundary. The rotational kernel Knl specifically indicates
the sensitivity of the pulsations to the local stellar rotation pro-
file. Thus, the rotational frequencies deduced from pulsational
properties throughout this paper correspond with the near-core
interior rotation rates.

Ballot et al. (2012) showed that the traditional approxima-
tion continues to perform adequately if the spin parameter |s| ≤ 2
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Fig. 2. Brunt-Väisälä frequency N (top) and the rotational kernel Knl
(bottom) for the lowest- and highest-order mode of the stellar model
discussed in Sect. 4.1. The inset shows a zoom of Knl. Both functions
correlate with the sensitivity of the gravity-mode pulsations to the dif-
ferent regions inside the star.

(see Ballot et al. 2012, Fig. 2), with

s =
2 frot

fco
, (3)

where frot (= Ω/2π) and fco are the stellar rotation frequency
and the pulsation frequency in the corotating frame, respec-
tively. Thanks to the assumptions made in the traditional ap-
proximation, the computational requirements for the effects of
rotation are dramatically reduced. In this work, we used the tra-
ditional approximation module from the one-dimensional pulsa-
tion code GYRE v4.3 (Townsend & Teitler 2013) and followed
the approach described by Ballot et al. (2012) and Bouabid et al.
(2013). These authors showed that within the traditional approx-
imation, an asymptotic pulsation period series can be rewritten
for a rotating star as

Pnlm,co =
Π0√
λl,m,s

(n + αg), (4)

where Pnlm,co is the pulsation period of radial order n, spherical
degree l, and azimuthal order m in the corotating frame. In this
paper, we adopt the convention that m > 0 corresponds with pro-
grade modes and m < 0 with retrograde modes, respectively. In
this equation, λl,m,s is the eigenvalue of the Laplace tidal equa-
tion depending on l, m, and the spin parameter s, while the phase
term αg depends on the internal stellar properties at the bound-
aries of the pulsation mode cavity and can be taken to be 0.5 for
stars with a convective core and a convective envelope, such as
γDor stars. In the limit of a non-rotating star, where s = 0, this
expression reduces to

Pnl =
Π0

√
l(l + 1)

(n + αg), (5)

in agreement with Eq. (1) and as derived by Tassoul (1980). For
each of the models in our grid, we computed the l = 1 and l = 2
mode frequencies for radial orders ranging from 5 to 120.

3. Method

As we have discussed in the previous section, the influence of
rotation on the pulsation frequencies depends on the values of l

Fig. 3. Illustration of our method to derive the rotation rate frot and
asymptotic spacing ∆Πl from an observed period spacing pattern (black
dots). An equidistant spacing series (grey squares) is defined, rotation-
ally shifted (white squares), and fitted to the observed pattern using χ2-
minimisation, optimising for the variables l, m, ∆Πl , and frot.

and m, while the asymptotic spacing ∆Πl is dependent on the
value of l (Eq. (1)). It is therefore necessary to have a pulsation
mode identification if we wish to constrain the rotation profile of
the observed star properly.

To derive a reliable estimate of the rotation rate of a γDor
star with one or more observed period spacing patterns, we con-
sidered all the possible combinations of l and m values for the
mode identification of the GYRE pulsation frequencies com-
puted for the MESA models in our grid. For each combination
of l and m, we computed the asymptotic spacing value ∆Πl, as
expressed in Eq. (1) and subsequently corrected it in the frame-
work of the traditional approximation according to Eq. (5). This
is illustrated graphically in Fig. 3. Because the application of a
rotational frequency shift does not introduce dips into the period
spacing patterns, we did not need to take them into account at
this point. A uniform period spacing series is sufficient for our
needs.

The pulsation frequencies in this series were then rotation-
ally shifted using the traditional approximation, as described
by Eq. 4 and assuming the star is rigidly rotating. The values
of the pulsation periods in the inertial reference frame are then
obtained by

Pinert =
1

fco + m frot
· (6)

This introduced a slope into the model spacing series, as shown
in Fig. 3. The resulting pattern was subsequently fitted to the ob-
served period spacing series using χ2-minimisation, optimising
for the variables ∆Πl and frot. Finally, we selected the best solu-
tion for all studied l and m values, taking into account the the-
oretical expectations for the asymptotic spacing ∆Πl, as shown
in Fig. 1 and derived from our model grid in Sect. 2. From this
fit, we then obtained estimates for the rotation rate frot and the
asymptotic spacing ∆Πl, as well as a mode identification.

4. Applications

4.1. Synthetic data

To illustrate our method, we first analyse a simulated period
spacing pattern. The simulated data were computed using the
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Table 2. Parameter values of the simulated period spacing pattern.

Parameter Values
Mass M [M�] 1.63
Metallicity Z 0.016
Initial hydrogen abundance Xi 0.71
Mixing length parameter αMLT 1.8
Step core overshooting αov 0.18
Mixing coefficient D [cm2 s−1] 0.8
Teff [K] 7047
log g [dex] 4.34
[M/H] [dex] 0.094
veq [km s−1] 69.38
frot [d−1] 0.674
∆Πl=1 [s] 3186.5
central hydrogen abundance Xc 0.357

Notes. Top: the input parameters of the MESA evolution track. Bot-
tom: the parameters of the model for which the pulsation periods were
computed.

MESA and GYRE codes with the input values provided in
Table 2, further taking (l, m) = (1, 1). For the computation of the
evolution track itself the influence of rotation was not taken into
account. The rotation was only included in the GYRE computa-
tions using the traditional approximation module. The computed
pattern is shown in Fig. 4 and the values of the pulsation periods
are listed in Table A.1.

The results of our analysis are shown in Figs. 4 to 6. In Fig. 4
we fitted the simulated data nicely when we excluded the dips in
the pattern from the analysis and assumed (l, m) = (1, 1). How-
ever, similarly good results were obtained when we treated the
pulsations as (2, 1) modes or (2, 2) modes during our analy-
sis, as illustrated in Fig. 5. In other words, we cannot obtain a
clear mode identification based solely on the obtained χ2-values.
This problem is solved when we recall the expected values of the
asymptotic spacing ∆Πl for different values of l, which we previ-
ously showed in Fig. 1. The values for ∆Πl we found are clearly
far too high for l = 2. We can therefore safely identify the sim-
ulated data as (1, 1) modes, and obtain frot = 0.664 ± 0.013 d−1

and ∆Πl=1 = 3020 ± 190 s.
It is important to exclude any significant dips in the period

spacing structure from this analysis. In our technique, we do not
take the influence of chemical gradients in the stellar interior into
account. As shown by Miglio et al. (2008), these gradients result
in non-uniform deviations from the asymptotic spacing series.
Because we can only observe a small part of a period spacing
pattern, any non-uniform variations in the pattern will change the
measured mean spacing and/or the measured slope of the pattern.
This, in turn, will influence our analysis. By ignoring significant
non-uniform variations in the period spacing structure, we limit
their influence on the analysis, so that we obtain results that are
correct within or on the order of 1σ. For our simulated data set
this is illustrated with the 2-dimensional χ2-distribution shown
in Fig. 6. While we ignored the large dip in the period spacing
structure (as seen in Fig. 4), the remaining non-uniform varia-
tions still affected the analysis. As a result, there is a small offset
between the input values of the data set and the 1σ-confidence
interval for the obtained solution.

4.2. Slow and fast rotator

In our sample we have one slowly rotating star, KIC 9751996, for
which we detected period spacing series with rotational splitting,
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Fig. 4. Top: the input period spacing pattern (black dots and grey trian-
gles) with the best-fitting pattern (white squares) as obtained from the
χ2-minimisation in Fig. 6 assuming (l, m) = (1, 1). The black part of the
input patterns was used to determine frot and ∆Πl, while the grey section
was excluded. Bottom: the residuals of the fit.
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Fig. 5. Best χ2-values for the synthetic data shown in Fig. 2 for each
(l,m) combination, as a function of the asymptotic spacing ∆Πl. The
black and light grey lines correspond to l = 1 and l = 2, respectively,
while the modes with m = 0 are indicated with dashed lines, m = 1 with
full lines, and m = 2 with the dash-dotted line.

delivering immediately the m-values of the modes. To addi-
tionally validate our proposed method, we have applied it to
KIC 9751996. In a first step, we only analysed the prograde pe-
riod spacing pattern to test the reliability of our method. Assum-
ing (l, m) = (1, 1), this led us to find frot = 0.07 ± 0.02 d−1,
which is shown in the top panel of Fig. 7. However, assuming
l = 1,m = 0 for the treated series, we found frot = 0.19±0.03 d−1

for a similar χ2 value. The challenge in this case is that the shift
and slope in the period spacing pattern are almost negligibly
small compared to the non-uniform period spacing variations as
a result of a chemical gradient. This was resolved when we fit the
prograde, zonal, and retrograde dipole modes simultaneously, as
shown in Fig. 8. Not only did this allow us to formally identify
the (l,m, n) values of the modes, it also resulted in a much higher
precision for the rotation rate frot = 0.0696 ± 0.0008 d−1 and the
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Fig. 6. log(χ2
red) for the simulated period spacing series assuming l = 1

as a function of the asymptotic period spacing ∆Πl and the rotation rate
frot. The white dot indicates the input values, while the white cross and
the red boundary indicate the solution and its 1σ-uncertainty margins,
respectively.

Fig. 7. log(χ2
red) for the observed period spacing series of KIC 9751996,

assuming l = 1, as a function of the asymptotic period spacing ∆Πl
and the rotation rate frot. The white crosses indicate the best-fit solu-
tions. Top: the χ2-distribution that we find by only analysing the de-
tected prograde series. Bottom: the χ2-distribution obtained by fitting
the prograde, zonal, and retrograde spacing series simultaneously.

spacing ∆Πl=1 = 3086 ± 6 s (see Fig. 7). Interestingly, we have
another independent indication for this derived rotation rate. In
the series of the prograde and retrograde modes, we have a pul-
sation period that does not seem to follow the pattern at values
of 0.8 days and 0.9 days, respectively. These modes are likely
trapped, which has influenced their pulsation period. When the
periods of these retrograde and prograde modes are converted
into their values in the corotating reference frame using the de-
rived rotation rate, we find that the pulsation periods are almost
equal, which is consistent with the interpretation of trapped pul-
sation modes.

Next we also analysed the period spacing patterns of
KIC 12066947, a fast-rotating star for which both a prograde
and a retrograde period spacing series were detected. While
we were able to fit the pattern of prograde modes to derive a

Fig. 8. Observed period spacing patterns (black dots and grey triangles)
for the retrograde (top), zonal (middle), and prograde (bottom) modes
of KIC 9751996. The black parts of the input patterns were used to de-
termine frot and ∆Πl, while the grey sections were excluded. The white
squares indicate the modes of the optimal model in the grid when all
three series are fitted simultaneously.

rotation rate frot, the observed retrograde series presented us with
a challenge. We found these to correspond with Rossby modes
rather than “classical” gravity or gravito-inertial modes. Rossby
modes can only occur in rotating stars and originate from the
interaction between the stellar rotation and toroidal modes (e.g.
Papaloizou & Pringle 1978; Townsend 2003b). Our identifica-
tion of the retrograde modes as Rossby modes is illustrated in the
top panel of Fig. 9, where we show the observed period spacing
patterns for the detected prograde and retrograde series, as well
as the spacings predicted by the most suitable model in the grid,
by assuming the values for frot and ∆Πl obtained by modelling
the prograde series. To calculate the period series for the Rossby
modes, Π0 was derived from ∆Πl using Eq. (1), and this value
was subsequently filled into Eq. (4). The appropriate eigenvalues
λwere computed using the asymptotic approximation derived by
Townsend (2003b), that is, Eq. (37) in that study. This equation is
valid when λ , m2, as is the case here. The expected values of λ
for Rossby modes are three to four orders of magnitude smaller
than for retrograde gravito-inertial modes, which allowed us to
identify the observed pulsations. However, as Townsend (2003b)
pointed out, the asymptotic approximation does not converge
well to the numerical solution for these modes. The possibil-
ity of computing Rossby modes has not yet been included in
the publicly available version of GYRE. As a consequence, we
were unable to perform a reliable quantitative analysis of the ret-
rograde series at this point and focused on the analysis of the
prograde series to derive frot. However, several qualitative ar-
guments can be made in favour of Rossby modes as a correct
identification. From the upward slope and the small average pe-
riod spacing of the observed pattern, we derive that these modes
are retrograde in the corotating frame with | fco| < frot, which
is completely in line with theoretical expectations. Furthermore,
the observed spin parameter values are higher for the retrograde
than for the prograde modes: the values of the dominant modes
of the two series are 15.8 ± 0.4 and 7.7 ± 0.1, respectively. This
indicates that in the corotating frame the pulsation frequencies
of the retrograde modes are smaller than those of the prograde
modes, which in turn can be explained by the low values of the
eigenvalues λ. Finally, Townsend (2003b) also noted that com-
pared to the retrograde gravito-inertial modes, Rossby modes are
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Fig. 9. Top: observed period spacing patterns (black dots and grey
triangles) for the prograde (left) and retrograde (right) modes of
KIC 12066947. The black part of the pattern was used to determine
frot and ∆Πl, while the grey section was excluded. The white squares
indicate the model fit, assuming these are gravito-inertial modes and
using the frot and ∆Πl values obtained from the analysis of the marked
prograde series. The white diamonds indicate the model computed for
Rossby waves using the same frot and ∆Πl values, assuming m = −1 and
k = −2 in the k-based indexing scheme by Lee & Saio (1997). Bottom:
the residuals of the fit to the prograde period spacing series.

less equatorially confined as the stellar rotation rate increases.
As a result, the latter can be expected to be less influenced by
the geometrical cancellation effects, although the effect is still
present. For KIC 12066947, we find that the dominant prograde
and Rossby modes are confined within equatorial bands with a
width of 77.2◦ and 53.5◦, respectively.

For a fast-rotating star such as KIC 12066947, we also
have to take into acccount rotational deformation. The cen-
trifugal force leads to a lower effective gravity at the equator
than at the pole. This influences the Brunt-Väisälä frequency,
which affects the pulsations. For KIC 12066947, we were able
to roughly estimate the deformation of the star, using Eq. A.6
from Maeder & Meynet (2000). In this analysis we evaluated
the observed spectroscopic parameter values and asymptotic
spacing ∆Πl using the models in our MESA grid and took the
best-matching model (M = 1.5 M�, Z = 0.014, Xi = 0.69,
Xc = 0.452, αov = 0.01) as a guess for the stellar structure.
We found that frot/ frot,crit = 0.78 and Rpole/Req = 0.88. A two-
dimensional treatment of the rotation is clearly needed to quan-
tify the effect of the rotation on the modes, which will allow us
to improve our constraints on frot and ∆Πl.

4.3. Sample study

Subsequently, we also applied our method to the other stars in
our sample. This led to the mode identification and determi-
nation of the rotation rate frot for the period spacing series of
40 stars in our sample. Six additional sample stars only ex-
hibit retrograde modes and fast rotation, and cannot be quanti-
tatively analysed with our current methodology. The difference
of the best χ2-value for different (l, m) combinations is too small
for the remaining stars, therefore no unique solution could be
determined.

Fig. 10. Part of the frequency spectrum of KIC 7365537. The light grey
area shows the location of the pulsation modes that form the detected
period spacing pattern of this star. The dashed line shows the value of
the derived rotation frequency frot, while the dotted line indicates the
solitary high-amplitude mode we found.

For the 40 stars that were successfully analysed, the results
are listed in Table B.1. The vast majority of these stars were
found to exhibit prograde dipole modes. For fourteen targets in
the sample we detected multiple series. In principle, these are
prime targets to look for differential rotation. However, for ten
of them the second detected period spacing pattern corresponds
to Rossby modes, for which we still need to develop a suitable
computational tool to arrive at appropriate numerical values, as
discussed in Sect. 4.2. For the remainder of this study, we assign
the values of frot and ∆Πl that we obtained from the prograde
series to the retrograde series of the same star. Because formal
mode identification of these retrograde pulsations is currently
not possible, they are marked as “R” in Table B.1. For two other
stars we have both a zonal and prograde dipole series, while for
a third we have prograde dipole and quadrupole modes. Finally,
KIC 9751996, the slowly rotating star we discussed in Sect. 4.2
is the only target for which we have a series of rotationally split
multiplets. For each of these last four stars, we were able to use
the multiple detected period spacing patterns to refine the ob-
tained frot and ∆Πl.

There are several stars for which a single high-amplitude
mode was detected that does not belong to a period spacing se-
ries and that differs from the rotation frequency. In Fig. 10 we
show the frequency spectrum of KIC 7365537 as an example.
For these modes the identification in Table B.1 is marked “S”.
Because our method cannot be applied to these single modes,
we again used the values of frot and ∆Πl that were derived from
the prograde series in the same star in the subsequent analy-
sis. The selection of series of modes in some stars versus the
presence of single modes in others also provides much infor-
mation about their respective stellar structure. It has been sug-
gested by Dziembowski & Pamyatnykh (1991) that such single
high-amplitude modes might be caused by mode trapping ef-
fects. However, detailed theoretical modelling of each of these
individual stars is required to confirm this.

Figure 11 illustrates the frequency fdom,corot of the dominant
mode of each detected series in the corotating frame with re-
spect to the computed rotation frequency. An alternative version
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Fig. 11. Dominant pulsation frequency fdom,corot in the corotating frame as a function of the rotation frequency frot for the identified g-mode
pulsations of 40 stars in the sample. The thick vertical lines indicate the full extent of the detected spacing series. The dashed red line shows where
the pulsations pass from the superinertial regime (above the line) into the subinertial regime (below the line).
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Fig. 12. Absolute value of the spin parameter s for the detected period spacing series of the stars in our sample as a function of the rotation
frequency frot. The dashed red line shows where the pulsations pass from the superinertial regime (below the line) into the subinertial regime
(above the line). The symbols are the same as in Fig. 11.

of Fig. 11 in the inertial reference frame is included in Fig. C.1.
For the majority of the stars, we obtain similar values of fdom,corot
between 0.15 and 0.75 d−1. This can be linked to the convec-
tive flux blocking excitation mechanism. Dupret et al. (2005)
and Bouabid et al. (2013) remarked that for the mode excitation
mechanism to be efficient, the thermal timescale τth at the bot-
tom of the convective envelope has to be similar to the pulsation
periods in the corotating frame. From this information and the
content of Fig. 11, we can also derive that the detected retrograde
spacing series and single modes most likely have azimuthal or-
der m = −1 because only |m| = 1 led to similar fdom,corot values
for the series of different stars. While these results are consis-
tent, we note that the observed pulsation periods in the corotat-
ing frame are typically longer than the theoretical values com-
puted by Bouabid et al. (2013). For the retrograde Rossby modes
this can be linked to the correspondingly low eigenvalues λ of
the Laplace tidal equation. However, the same discrepancy is
observed for the prograde modes as well, although to a lesser

degree. This discrepancy may point towards limitations of the
current theory of mode excitation in γDor stars for moderate
to fast rotators or may be caused by the limited applicability of
the traditional approximation for these rotation rates. Further re-
search on this topic is required.

In Fig. 12 we show the spin parameter s, as defined in Eq. (3)
and listed in the last column of Table B.1, as a function of the
measured rotation frequency frot. The spin parameter s is a mea-
sure of the effect of rotation on the pulsation frequency and is
inversely proportional to the pulsation frequency fco in the coro-
tating frame. Once again, the Rossby modes (shown as dark blue
dots) have low values for the eigenvalue λ. In addition, although
both prograde sectoral modes and Rossby modes are less easily
confined in a band around the equator, the effect is still signifi-
cant for these high values of s (Townsend 2003b). This implies
that many of the stars in our sample are seen at moderate to high
inclination angles. We furthermore note that our observed val-
ues of s are on average much higher than the values quoted
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Table 3. Results of the linear regression analysis.

Explanatory variable Dependent variable Intercept (σ) Estimate (σ) p-value R2

frot [d−1] v sin i [km s−1] 0(16) 74(5) <0.0001 0.859
frot [d−1] fdom,inert [d−1] 0.7(0.3) 0.90(0.08) <0.0001 0.780
frot [d−1] 〈P〉 [d] 0.9(0.1) –0.22(0.06) <0.0001 0.630
frot [d−1] 〈∆P〉 [d] 0.017(0.005) –0.009(0.002) <0.0001 0.508
frot [d−1] 〈 d∆P

dP 〉 –0.013(0.006) –0.013(0.001) <0.0001 0.479
Teff [K] R sin i [R�] 573(10) –0.08(0.02) 0.0001 0.357
log g [dex] frot [d−1] –5.8(0.4) 1.7(0.4) 0.0002 0.332

Notes. We list the coefficients of the covariates for the different correlations as well as their p-values (obtained from a t-test) and R2 values.
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Fig. 13. Section of the Fourier spectra of the three slowest rotating stars
in our sample. These are our only stars in the superinertial regime, and
all three are hybrid γDor/δSct pulsators with variabilities of between
5 d−1 and 8 d−1.

in theoretical papers in the literature (e.g. Townsend 2003a;
Ballot et al. 2012).

Figure 13 shows the three slowest rotating stars in our sam-
ple in greater detail, one of which is KIC 9751996, which has
been discussed in Sect. 4.2. These three stars have comparable
properties. They are slow rotators, placing them in the super-
inertial regime, and they are hybrid γDor/δSct pulsators. Each
of them exhibits variability in the frequency range between 5 d−1

and 8 d−1. These striking similarities suggest that there is a link
between the low stellar rotation rates and their hybrid properties,
marking them as interesting targets for follow-up research.

4.3.1. Statistical analysis

Finally, we also searched for correlations between the param-
eter values of our stars, similar to the multivariate statistical
analysis that was carried out by Van Reeth et al. (2015). In this
work, we again used the spectroscopic fundamental parame-
ter values obtained by Van Reeth et al. (2015) in our analysis.
We also included the detected values of the variables frot, ∆Πl,
R sin i = v sin i/ frot and the dominant pulsation frequency fdom
(in the corotating and the inertial reference frame). For consis-
tency, we focused on the parameter values derived from the iden-
tified prograde dipole mode series of 40 stars in the sample. The
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Fig. 14. Correlation between the spectroscopic v sin i values and the val-
ues of the rotation rate frot. The black line indicates the corresponding
linear fit, for which the coefficients are listed in Table 3. The symbols
are the same as in Fig. 11. For all of the stars a series of prograde dipole
modes was detected. If another series was detected as well, the symbol
of the corresponding mode identification was used.

results of our multivariate statistical study are summarised in
Table 3.

Most of the correlations presented previously by
Van Reeth et al. (2015) were indicative of the strong rela-
tion between the observed gravity-mode pulsations and the
stellar rotation. In retrospect, these can now be linked to the
identification of most pulsations as prograde dipole gravity,
gravito-inertial, or retrograde Rossby modes with |m| = 1. In
particular, those previous results are echoed in our current work
by the detected correlations between frot and v sin i, and frot
and fdom,inert. The strong correlation between frot and v sin i
is illustrated in Fig. 14. The previously detected correlations
between v sin i and the mean period spacing 〈∆P〉, the mean
pulsation period 〈P〉 and the mean slope 〈 d∆P

dP 〉 of the observed
series discussed in Van Reeth et al. (2015) are now also re-
flected in similar correlations with frot. We do find a level of
scatter in the relationship between these parameters and the
rotation rate frot, originating from the broad variety of radial
orders of the detected modes, the limited lengths of some of
the observed series, and from non-uniform variations in the
period spacing patterns covered by our sample. Moreover, we
assumed a constant rotation rate throughout the stars to deduce
frot, which is simplistic compared to predictions based on
numerical simulations (Rogers 2015). Allowing for a variety of
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non-uniform interior rotation profiles will likely complicate the
correlations.

Van Reeth et al. (2015) also found a smaller contribution of
Teff to the multivariate correlation with fdom,inert and v sin i. While
this contribution drops when we replace v sin i with frot, there is
a weak correlation between Teff and R sin i. As a star ages, its
temperature Teff drops and its radius increases. A similarly weak
correlation was found between frot and log g, indicating that as
the star evolves and its radius increases, the surface gravity and
the rotation rate both decrease. The correlation between R sin i
and log g was not significant, probably because of the relatively
large uncertainties.

In contrast, we did not find correlations between the asymp-
totic spacing ∆Πl and any of the other parameters. The un-
certainty margins on the value of ∆Πl are likely too large for
a proper correlation to be unravelled. Multivariate correlations
were not detected either.

5. Discussion and conclusions

We have presented a method to derive the near-core interior ro-
tation rate frot from an observed period spacing pattern and to
perform mode identification for the pulsations in the series. In
a first step, we considered all combinations of l and m values
for mode identification. For each pair of l and m, we considered
the asymptotic spacing ∆Πl and computed the corresponding
equidistant model period spacing pattern as described by Tassoul
(1980). Using the traditional approximation, the frequencies of
the model pattern were then shifted for an assumed rotation rate
frot and the chosen l and m. The best-fit values of ∆Πl, frot, l,
and m were then determined by fitting the model pattern to the
observed period spacing series using least-squares optimisation
and taking into account that different values of ∆Πl are expected
for different values of l.

In most cases this method was reasonably successful. For
slow rotators it may be difficult to find the correct value for the
azimuthal order m, although this problem is solved when multi-
ple series with different l and m values are considered. By fitting
these series simultaneously, not only did we obtain the mode
identification, but the values for ∆Πl and frot were also much
more precise than when we did not detect multiplets. When
we considered a moderate to fast rotator, the retrograde modes
were found to be Rossby modes, which arise from the interac-
tion between the stellar rotation and toroidal modes. We used the
asymptotic approximation derived by Townsend (2003b) to com-
pute their eigenvalues λ of the Laplace tidal equation. A com-
plete numerical treatment of these modes is required to exploit
them quantitatively. A complete and detailed analysis of such
stars with multiple gravity-mode period spacings will allow us
to study possible differential rotation in γDor stars, ultimately
leading to proper observational constraints on rotational chemi-
cal mixing and angular momentum transport mechanisms.

From the ensemble modelling of the gravity-mode period
spacings of the stars in our sample, we found that there is a wide
range in the stellar rotation rates. Interestingly, only three out of
forty targets were found to be in the superinertial regime. These
three stars, KIC 8645874, KIC 9751996, and KIC 11754232, are
hybrid γDor/δSct stars that exhibit variability in the frequency
range from 5 d−1 to 8 d−1. This indicates that these low stellar
rotation rates are most likely linked to their hybrid character,
making them prime targets for further asteroseismological anal-
ysis. The other stars were found to be in the subinertial regime.
Their pulsation frequencies in the corotating frame are typically
confined in the narrow range between 0.15 and 0.75 d−1. This

is in agreement with the theoretical expectation that γDor pulsa-
tion frequencies in the corotating frame are approximately on the
thermal timescale τth at the bottom of the convective envelope
(Bouabid et al. 2013). However, this frequency range does not
agree with the predicted values by Bouabid et al. (2013). With
the exception of the three stars in the superinertial regime, we
found that on average the observed modes have longer pulsation
periods in the corotating frame than theory predicts. This is also
reflected in the high spin parameter values we derived for many
of the stars. The high spin parameters detected for the retro-
grade Rossby modes are linked to the low eigenvalues λ of these
modes, as already found on theoretical grounds by Townsend
(2003b).

The global results for the mode identification are consistent
with existing spectroscopic studies. The majority of the modes
were found to be prograde dipole modes. This is in line with
the results obtained by Townsend (2003a) for heat-driven gravity
modes in slowly pulsating B stars. In addition, we found single
high-amplitude modes, as opposed to a series, to be present in
several stars. They are consistent with retrograde Rossby modes
with m = −1. They are most likely heavily influenced by mode
trapping, and as a result contain valuable information about the
internal structure of these stars.

We conducted a linear regression analysis on the combined
spectroscopic and photometric parameter values for the sample.
The strong correlation between v sin i and frot independently con-
firmed the reliability of the obtained rotation rates. We also de-
tected weak correlations between R sin i = v sin i/ frot and Teff

and between log g and frot. As a star with a convective core
evolves on the main sequence, its radius increases, and its tem-
perature and rotation rate decrease.

Despite the limitations of the traditional approximation, the
results we obtained in this work are consistent and offer the first
estimates of the interior rotation frequencies for a large sample
of γDor stars. The high observed spin parameter values indicate
that the pulsations are constrained in a waveguide around the
equator (Townsend 2003a,b). This in turn implies that the vast
majority of the stars should be seen at moderate to high inclina-
tion angles, which is also what we can indirectly derive from the
relation between the observed v sin i and frot in Fig. 14. From the
grid of theoretical models in Sect. 2, we find radii between 1.3 R�
and 3 R�. For many stars in our sample, this results in inclina-
tion angle estimates of or above 50◦. Two of the stars for which
lower inclination angle estimates were found, KIC 4846809 and
KIC 9595743, are also the stars for which we detected zonal
dipole modes. This is consistent with expectations for the ge-
ometrical cancellation effects of the pulsations.

These ensemble analyses now form an ideal starting point
for detailed asteroseismological modelling of individual targets
in the sample. This, in turn, will allow us to place constraints
on the shape and extent of the convective core overshooting and
the diffusive mixing processes in the radiative near-core regions,
and by extension on the evolution of the convective core itself
as it was recently achieved for a hybrid δSct – γDor binary
(Schmid & Aerts 2016) and also for a slowly (Moravveji et al.
2015) and a moderately (Moravveji et al. 2016) rotating gravity-
mode pulsator of ∼3.3 M�.
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Appendix A: Simulated period spacing pattern

Table A.1. Pulsation periods (in days; in the inertial reference frame) of the simulated data in Sect. 4.1, with 1σ uncertainty margins.

Pinert [d] σP Pinert [d] σP

0.73912 0.00004 0.91909 0.00002
0.751414 0.000008 0.92658 0.00006
0.76322 0.00005 0.93385 0.00004
0.774892 0.000007 0.94088 0.00001
0.78640 0.00003 0.94772 0.00001
0.79748 0.00006 0.95442 0.00007
0.80785 0.00001 0.96100 0.00004
0.81753 0.00005 0.96745 0.00006
0.82691 0.00004 0.97373 0.00006
0.83618 0.00004 0.97984 0.00001
0.84513 0.00006 0.98579 0.00006
0.85371 0.00003 0.99161 0.00008
0.86220 0.00006 0.99732 0.00003
0.87080 0.00003 1.00292 0.00008
0.87937 0.00004 1.00839 0.00005
0.88773 0.00008 1.01372 0.00009
0.89582 0.00003 1.01891 0.00004
0.903689 0.000007 1.02400 0.00008
0.91144 0.00001 1.02898 0.00006

Appendix B: Stellar rotation rates and mode identification

Table B.1. Rotation rates frot and asymptotic period spacings ∆Πl computed from the observed period spacing patterns, as well as the mode
identification and the dominant pulsation frequency for each series.

KIC l m fdom,inert frot ∆Πl |s|

[d−1] [µHz] [d−1] [µHz] [s] [d]

2710594 1 1 1.35536+0.00001
−0.00001 15.68706+0.00012

−0.00012 1.02+0.02
−0.02 11.8+0.2

−0.3 3370+330
−310 0.039+0.004

−0.004 6.2+0.5
−0.5

R R 0.79908+0.00002
−0.00002 9.24856+0.00022

−0.00022 1.02+0.02
−0.02 11.8+0.2

−0.3 3370+330
−310 0.039+0.004

−0.004 9.1+0.7
−0.6

3448365 1 1 1.500157+0.000009
−0.000009 17.36293+0.00010

−0.00010 1.08+0.05
−0.07 12.5+0.6

−0.8 3020+1160
−970 0.03+0.01

−0.01 5.2+0.9
−1.2

R R 0.88877+0.00001
−0.00001 10.28675+0.00016

−0.00016 1.08+0.05
−0.07 12.5+0.6

−0.8 3020+1160
−970 0.03+0.01

−0.01 11+4
−3

4846809 1 1 1.81324+0.00001
−0.00001 20.98662+0.00014

−0.00014 1.28+0.01
−0.02 14.8+0.2

−0.2 2930+140
−150 0.034+0.002

−0.002 4.8+0.2
−0.2

1 0 1.00410+0.00002
−0.00002 11.62156+0.00024

−0.00024 1.28+0.01
−0.02 14.8+0.2

−0.2 2930+140
−150 0.034+0.002

−0.002 2.55+0.03
−0.03

5114382 1 1 1.47927+0.00002
−0.00002 17.12115+0.00020

−0.00020 1.15+0.02
−0.02 13.3+0.2

−0.2 3070+300
−290 0.036+0.003

−0.003 7.0+0.5
−0.6

R R 0.95265+0.00002
−0.00002 11.02607+0.00018

−0.00018 1.15+0.02
−0.02 13.3+0.2

−0.2 3070+300
−290 0.036+0.003

−0.003 11.6+1.0
−0.9

5522154 1 1 3.009858+0.000008
−0.000008 34.83632+0.00009

−0.00009 2.154+0.004
−0.004 24.93+0.05

−0.05 3350+40
−30 0.0388+0.0004

−0.0004 5.03+0.03
−0.03

5708550 1 1 1.11550+0.00001
−0.00001 12.91091+0.00014

−0.00014 0.82+0.01
−0.02 9.4+0.2

−0.2 3330+240
−220 0.039+0.003

−0.003 5.5+0.4
−0.4

5788623 1 1 0.77895+0.00001
−0.00001 9.01558+0.00014

−0.00014 0.40+0.04
−0.05 4.6+0.5

−0.5 2800+480
−440 0.032+0.006

−0.005 2.1+0.4
−0.5

6468146 1 1 1.545700+0.000005
−0.000005 17.89004+0.00005

−0.00005 0.97+0.01
−0.01 11.3+0.1

−0.2 3000+110
−110 0.035+0.001

−0.001 3.4+0.1
−0.1

6468987 1 1 1.998989+0.000004
−0.000004 23.13644+0.00005

−0.00005 1.598+0.009
−0.008 18.49+0.10

−0.09 3730+120
−100 0.043+0.001

−0.001 8.0+0.2
−0.2

R R 1.387598+0.000009
−0.000009 16.06016+0.00011

−0.00011 1.598+0.009
−0.008 18.49+0.10

−0.09 3730+120
−100 0.043+0.001

−0.001 15.2+0.5
−0.6

6678174 1 1 1.12777+0.00002
−0.00002 13.05290+0.00020

−0.00020 0.55+0.05
−0.06 6.4+0.6

−0.7 3370+710
−620 0.039+0.008

−0.007 1.9+0.4
−0.4

6935014 1 1 1.20670+0.00001
−0.00001 13.96648+0.00014

−0.00014 0.79+0.02
−0.02 9.1+0.2

−0.3 3180+310
−300 0.037+0.004

−0.003 3.8+0.3
−0.3

6953103 1 1 1.287597+0.000008
−0.000008 14.90274+0.00009

−0.00009 0.74+0.03
−0.04 8.5+0.4

−0.4 3560+490
−440 0.041+0.006

−0.005 2.7+0.3
−0.3

7023122 1 1 1.876108+0.000003
−0.000003 21.71421+0.00003

−0.00003 0.977+0.005
−0.005 11.30+0.06

−0.06 3380+40
−30 0.0391+0.0004

−0.0004 2.17+0.03
−0.03

7365537 1 1 2.925633+0.000004
−0.000004 33.86150+0.00004

−0.00004 2.253+0.003
−0.003 26.07+0.03

−0.03 3340+30
−30 0.0387+0.0003

−0.0003 6.70+0.04
−0.04

Notes. For the latter we also computed the spin parameter s, listed in the final column. The pulsation mode patterns marked with “R” are retrograde
modes, which are most likely Rossby modes. The pulsation modes marked with “S” are single high-amplitude peaks that were present in the
frequency spectra, but clearly separate from the detected period spacing patterns. Neither the retrograde pulsation modes nor the single peaks were
used in the computations. The corresponding rotation rates and asymptotic period spacings were obtained from the prograde series observed for
the same star.
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Table B.1. continued.

KIC l m fdom,inert frot ∆Πl |s|

[d−1] [µHz] [d−1] [µHz] [s] [d]

S S 1.981016+0.000006
−0.000006 22.92843+0.00006

−0.00006 2.253+0.003
−0.003 26.07+0.03

−0.03 3340+30
−30 0.0387+0.0003

−0.0003 16.6+0.2
−0.2

7380501 1 1 0.96329+0.00001
−0.00001 11.14922+0.00012

−0.00012 0.64+0.01
−0.01 7.4+0.2

−0.2 2860+180
−170 0.033+0.002

−0.002 3.9+0.2
−0.3

7434470 1 1 2.542409+0.000006
−0.000006 29.42603+0.00007

−0.00007 1.769+0.005
−0.005 20.47+0.06

−0.06 3020+50
−50 0.0349+0.0006

−0.0005 4.57+0.04
−0.04

S S 1.698729+0.000001
−0.000001 19.66122+0.00002

−0.00002 1.769+0.005
−0.005 20.47+0.06

−0.06 3020+50
−50 0.0349+0.0006

−0.0005 50+3
−4

7583663 1 1 1.47213+0.00001
−0.00001 17.03853+0.00017

−0.00017 1.17+0.02
−0.03 13.6+0.3

−0.3 3120+390
−360 0.036+0.005

−0.004 7.8+0.8
−0.9

R R 1.044741+0.000008
−0.000008 12.09190+0.00009

−0.00009 1.17+0.02
−0.03 13.6+0.3

−0.3 3120+390
−360 0.036+0.005

−0.004 19+3
−3

7746984 1 1 2.00305+0.00002
−0.00002 23.18341+0.00019

−0.00019 1.49+0.02
−0.02 17.2+0.2

−0.2 3130+250
−230 0.036+0.003

−0.003 5.8+0.3
−0.3

S S 1.35180+0.00001
−0.00001 15.64582+0.00014

−0.00014 1.49+0.02
−0.02 17.2+0.2

−0.2 3130+250
−230 0.036+0.003

−0.003 22+3
−2

7939065 1 1 1.728171+0.000007
−0.000007 20.00198+0.00008

−0.00008 1.111+0.006
−0.006 12.86+0.07

−0.07 3000+40
−40 0.0347+0.0005

−0.0005 3.60+0.05
−0.05

8364249 1 1 1.869376+0.000005
−0.000005 21.63629+0.00005

−0.00005 1.519+0.007
−0.008 17.58+0.08

−0.09 3090+110
−110 0.036+0.001

−0.001 8.7+0.2
−0.2

8375138 1 1 2.077771+0.000007
−0.000007 24.04828+0.00008

−0.00008 1.64+0.01
−0.01 19.0+0.1

−0.1 2930+150
−150 0.034+0.002

−0.002 7.5+0.3
−0.3

R R 1.407115+0.000010
−0.000010 16.28606+0.00011

−0.00011 1.64+0.01
−0.01 19.0+0.1

−0.1 2930+150
−150 0.034+0.002

−0.002 14.0+0.7
−0.6

8645874 1 1 1.847014+0.000004
−0.000004 21.37747+0.00005

−0.00005 0.375+0.002
−0.002 4.34+0.02

−0.02 3200+10
−10 0.0371+0.0001

−0.0001 0.510+0.003
−0.003

8836473 1 1 1.88341+0.00001
−0.00001 21.79871+0.00012

−0.00012 1.13+0.01
−0.01 13.0+0.2

−0.2 2900+100
−100 0.034+0.001

−0.001 2.98+0.09
−0.09

S S 0.52525+0.00001
−0.00001 6.07932+0.00015

−0.00015 1.13+0.01
−0.01 13.0+0.2

−0.2 2900+100
−100 0.034+0.001

−0.001 3.75+0.04
−0.04

9210943 1 1 2.190853+0.000004
−0.000004 25.35710+0.00005

−0.00005 1.728+0.007
−0.010 19.99+0.09

−0.11 3340+80
−100 0.0386+0.0010

−0.0012 7.5+0.2
−0.2

R R 1.443566+0.000009
−0.000009 16.70794+0.00011

−0.00011 1.728+0.007
−0.010 19.99+0.09

−0.11 3340+80
−100 0.0386+0.0010

−0.0012 12.2+0.3
−0.3

9480469 1 1 1.994822+0.000010
−0.000010 23.08821+0.00011

−0.00011 1.54+0.03
−0.03 17.8+0.3

−0.3 2990+410
−360 0.035+0.005

−0.004 6.8+0.5
−0.6

R R 1.32598+0.00001
−0.00001 15.34704+0.00012

−0.00012 1.54+0.03
−0.03 17.8+0.3

−0.3 2990+410
−360 0.035+0.005

−0.004 14+2
−2

9595743 1 1 1.43459+0.00002
−0.00002 16.6040+0.0002

−0.0002 0.89+0.01
−0.01 10.3+0.1

−0.1 3050+110
−110 0.035+0.001

−0.001 3.3+0.1
−0.1

1 0 1.16055+0.00002
−0.00002 13.43228+0.00019

−0.00019 0.89+0.01
−0.01 10.3+0.1

−0.1 3050+110
−110 0.035+0.001

−0.001 1.54+0.02
−0.02

9751996 1 1 1.35387+0.00002
−0.00002 15.6698+0.0002

−0.0002 0.0696+0.0008
−0.0008 0.805+0.010

−0.010 3086+6
−6 0.03572+0.00007

−0.00007 0.11+0.03
−0.03

1 0 1.02805+0.00002
−0.00002 11.8987+0.0002

−0.0002 0.0696+0.0008
−0.0008 0.805+0.010

−0.010 3086+6
−6 0.03572+0.00007

−0.00007 0.14+0.03
−0.03

1 −1 1.28331+0.00002
−0.00002 14.8531+0.0002

−0.0002 0.0696+0.0008
−0.0008 0.805+0.010

−0.010 3086+6
−6 0.03572+0.00007

−0.00007 0.11+0.03
−0.03

10256787 1 1 1.077489+0.000008
−0.000008 12.47094+0.00009

−0.00009 0.59+0.04
−0.04 6.9+0.4

−0.5 2730+560
−490 0.032+0.006

−0.006 2.5+0.3
−0.4

10467146 1 1 0.954976+0.000009
−0.000009 11.05297+0.00011

−0.00011 0.62+0.03
−0.04 7.1+0.4

−0.5 2940+600
−540 0.034+0.007

−0.006 3.6+0.6
−0.7

11080103 1 1 1.241393+0.000005
−0.000005 14.36797+0.00006

−0.00006 0.62+0.05
−0.06 7.2+0.6

−0.7 3360+880
−730 0.039+0.010

−0.008 2.0+0.3
−0.4

11099031 1 1 1.61508+0.00001
−0.00001 18.69302+0.00014

−0.00014 1.025+0.009
−0.009 11.87+0.10

−0.10 3560+100
−110 0.041+0.001

−0.001 3.48+0.08
−0.08

S S 0.916646+0.000009
−0.000009 10.60933+0.00010

−0.00010 1.025+0.009
−0.009 11.87+0.10

−0.10 3560+100
−110 0.041+0.001

−0.001 19+1
−1

11294808 1 1 1.16617+0.00001
−0.00001 13.49738+0.00014

−0.00014 0.77+0.02
−0.02 9.0+0.2

−0.3 2770+350
−320 0.032+0.004

−0.004 4.0+0.3
−0.4

2 2 2.2247+0.0007
−0.0007 25.749+0.008

−0.008 0.77+0.02
−0.02 9.0+0.2

−0.3 1600+200
−−190 0.019+0.002

−0.002 2.3+0.2
−0.2

11456474 1 1 1.471468+0.000006
−0.000006 17.03088+0.00007

−0.00007 1.05+0.02
−0.02 12.2+0.2

−0.2 2810+250
−240 0.033+0.003

−0.003 5.0+0.3
−0.3

11721304 1 1 0.92287+0.00002
−0.00002 10.68141+0.00020

−0.00020 0.46+0.03
−0.03 5.3+0.4

−0.4 3080+430
−400 0.036+0.005

−0.005 2.0+0.3
−0.3

11754232 1 1 1.10338+0.00001
−0.00001 12.77065+0.00017

−0.00017 0.159+0.007
−0.007 1.84+0.08

−0.09 3130+20
−20 0.0362+0.0002

−0.0003 0.34+0.02
−0.02

11826272 1 1 0.83370+0.00001
−0.00001 9.64927+0.00013

−0.00013 0.36+0.02
−0.03 4.1+0.3

−0.3 2950+290
−280 0.034+0.003

−0.003 1.5+0.2
−0.2

11907454 1 1 1.77890+0.00001
−0.00001 20.58915+0.00016

−0.00016 1.35+0.02
−0.02 15.6+0.2

−0.3 3050+290
−280 0.035+0.003

−0.003 6.2+0.4
−0.4

R R 1.187153+0.000008
−0.000008 13.74020+0.00009

−0.00009 1.35+0.02
−0.02 15.6+0.2

−0.3 3050+290
−280 0.035+0.003

−0.003 17+2
−2

11917550 1 1 1.287680+0.000008
−0.000008 14.90371+0.00010

−0.00010 0.90+0.02
−0.02 10.4+0.2

−0.2 2900+220
−210 0.034+0.003

−0.002 4.6+0.3
−0.3

11920505 1 1 1.198844+0.000009
−0.000009 13.87550+0.00010

−0.00010 0.75+0.02
−0.02 8.7+0.2

−0.3 2980+260
−250 0.035+0.003

−0.003 3.3+0.2
−0.3

12066947 1 1 2.72379+0.00001
−0.00001 31.52539+0.00015

−0.00015 2.160+0.008
−0.008 25.00+0.09

−0.10 2950+70
−70 0.0342+0.0008

−0.0008 7.7+0.1
−0.1

R R 1.88748+0.00002
−0.00002 21.8459+0.0002

−0.0002 2.160+0.008
−0.008 25.00+0.09

−0.10 2950+70
−70 0.0342+0.0008

−0.0008 15.8+0.4
−0.4
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Appendix C: Sample analysis
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Fig. C.1. Dominant pulsation frequency fdom,inert in the inertial frame as a function of the rotation frequency frot for the identified g-mode pulsations
of 40 stars in the sample. The thick vertical lines indicate the full extent of the detected spacing series. The full black line indicates where finert is
equal to frot.
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