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ABSTRACT
Summary. In this article we describe fluff, a software package that allows for simple
exploration, clustering and visualization of high-throughput sequencing data mapped
to a reference genome. The package contains three command-line tools to generate
publication-quality figures in an uncomplicated manner using sensible defaults.
Genome-wide data can be aggregated, clustered and visualized in a heatmap, according
to different clustering methods. This includes a predefined setting to identify dynamic
clusters between different conditions or developmental stages. Alternatively, clustered
data can be visualized in a bandplot. Finally, fluff includes a tool to generate genomic
profiles. As command-line tools, the fluff programs can easily be integrated into
standard analysis pipelines. The installation is straightforward and documentation is
available at http://fluff.readthedocs.org.
Availability. fluff is implemented in Python and runs on Linux. The source code is
freely available for download at https://github.com/simonvh/fluff.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords ChIP-seq, Clustering, Next-generation sequencing, High-throughput sequencing,
Visualization, Python

INTRODUCTION
The advances in sequencing technology and the reduction of costs have led to a rapid
increase of High-Throughput Sequencing (HTS) data. Applications include chromatin
immunoprecipitation followed by high-throughput deep sequencing (ChIP-seq; Robertson
et al., 2007) to determine the genomic location of DNA-associated proteins, chromatin
accessibility assays (Buenrostro et al., 2013;Hesselberth et al., 2009) and bisulfite sequencing
to assay DNA methylation (Lister et al., 2009). The integration of these diverse data allow
identification of the epigenomic state, for instance in different tissues (Martens &
Stunnenberg, 2013; Roadmap Epigenomics Consortium et al., 2015) or during development
(Hontelez et al., 2015). However, the scale and complexity of these datasets call for the use
of computational methods that facilitate data exploration and visualization.

Various options exist to explore and visualize HTS data mapped to a reference genome,
for instance in aggregated form such as heatmaps and average profiles. These include general
purpose modules for specific programming languages (Huber et al., 2015), dedicated HTS
modules (Dale, Matzat & Lei, 2014; Statham et al., 2010;Akalin et al., 2015), command-line
tools (Shen et al., 2014; Giannopoulou & Elemento, 2011), web tools (Ramírez et al., 2014),
stand-alone applications (Ramírez et al., 2014; Ye et al., 2011) and tools that depend on

How to cite this article Georgiou and Van Heeringen (2016), fluff: exploratory analysis and visualization of high-throughput sequencing
data. PeerJ 4:e2209; DOI 10.7717/peerj.2209

https://peerj.com
mailto:s.vanheeringen@science.ru.nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2209
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://fluff.readthedocs.org
https://github.com/simonvh/fluff
http://dx.doi.org/10.7717/peerj.2209


other software for visualization (Heinz et al., 2010). Here, we present fluff, a Python package
for visual, reference-based HTS data exploration. It includes command-line applications
to both cluster and visualize aggregated signals in genomic regions, as well as to create
genome browser-like profiles. The scripts can be included in analysis pipelines and
accept commonly used file formats. The fluff applications are pitched at the beginner to
intermediate user. They have sensible defaults, yet allow for customizable creation of
high-quality, publication-ready figures.

METHODS
General
Detailed documentation, including tutorials, is available at http://fluff.readthedocs.org.
Fluff is implemented in Python, and uses several previously published modules (Brewer,
2016; Anders, Pyl & Huber, 2015; Dale, Pedersen & Quinlan, 2011; Quinlan & Hall, 2010;
Li et al., 2009; De Hoon et al., 2004, see Supplemental Information). All fluff tools support
indexed BAM, bigWig or (tabix-indexed) BED, WIG or bedGraph files as input. A large
selection of major image formats are supported as output. The fluff tools were developed
to explore ChIP-seq data, however, they will work with any type of data where (spliced)
reads can be mapped to a genomic reference. For instance DNA methylation profiles from
bisulfite-sequencing or RNA-seq data (Fig. S1) can also be visualized.

Normalization
Normalization of sequencing data is critical for downstream analysis and various methods
have been proposed (see for instance Angelini et al., 2015 and Bailey et al., 2013 for an
overview of ChIP-seq normalization methods). For visualization, the most important
factor is the sequencing read depth. Therefore fluff has the option to normalize to the total
number of mapped reads. Alternatively, averaged signal files such as bigWig tracks that are
processed or normalized by a different method can be used as input.

Program descriptions
Heatmaps
Visualization of HTS data as heatmaps, where rows represent different genomic regions,
can highlight important aspects of the data, like differential enrichment or positional
patterns for specific groups of features. In addition, it allows for comparison between
multiple regions within the same or between different experiments. The fluff heatmap
tool visualizes HTS data on basis of a list of genomic coordinates. The data can optionally
be clustered using either k-means or hierarchical clustering. For clustering, the read counts
in the bins are normalized to the 75 percentile. The distance can be calculated using either
the Euclidean distance or Pearson correlation similarity.

If the regions in the input file are not strand-specific, different clustersmight represent the
same strand-specific profile in two different orientations. Clusters that aremirrored relative
to the center can optionally be merged. Here, the similarity is based on the chi-squared
p-value of the mean profile per cluster.

One important use case for clustering is the ability to identify dynamic patterns, for
instance during different time points or conditions. For this purpose, clustering on the
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binned signal is not ideal. Therefore, fluff heatmap provides the option to cluster genomic
regions based on a single value derived from the number of reads in the feature centers
(+/−1 kb). In combination with the Pearson correlation metric, this allows for efficient
retrieval of dynamic clusters. The difference is illustrated in Fig. 2.

Bandplots
In heatmaps, more subtle patterns can be difficult to detect, as the dynamic range of
signal intensities is not well-reflected in the color scale. Therefore, as an alternative to
a heatmap, fluff bandplot plots the average profiles in small multiples (Shoresh & Wong,
2012). Here, the spatial encoding of the signal allows for more accurate comparison of
values (Gehlenborg, Nils & Bang, 2012). The median enrichment is visualized as a black line
with the 50th and 90th percentile as a dark and light colour respectively.

Profiles
Genome browsers are unrivaled for data exploration and visualization in a genomic
context. However, it can be useful to create profiles of HTS data in genomic intervals using
a consistent command-line tool, that can optionally be automated. The fluff profile tool
can plot summarized profiles from one or more profiles, together with (gene) annotation
from a BED12-formatted file.

Analysis
In short, FASTQ files were download from NCBI GEO (Edgar, Domrachev & Lash, 2002)
and mapped to the human genome (hg19) using bwa (Li & Durbin, 2009). Duplicate reads
were marked using bamUtil (http://genome.sph.umich.edu/wiki/BamUtil). All BAM files
from replicate experiments were merged. Peaks were called using MACS2 (Zhang et al.,
2008) with default settings. See the Supplemental Information for specific details and
accession numbers.

RESULTS
Demonstrating fluff: dynamic enhancers during macrophage
differentiation
To illustrate the functionality of fluff we visualized previously published ChIP-seq
data (Saeed et al., 2014). Here, the epigenomes of human monocytes and in vitro-
differentiated naïve, tolerized, and trained macrophages were analyzed, with the aim to
understand the epigenetic basis of innate immunity. Circulating monocytes (Mo) were
differentiated into three macrophages states: to macrophages (Mf), to long-term tolerant
cells (LPS-Mf) by exposition to lipopolysaccharide and to trained immune cells (BG-Mf) by
priming with β-glucan. We used fluff heatmap to cluster and visualize the signal of histone
3 lysine 27 acetylation (H3K27ac), which is located at active enhancers and promoters (Fig.
1A). The input consisted of a BED file with 7,611 differentially regulated enhancers (Table
S1) and four BAM files, for each of the monocytes and three types of macrophages. Using
k-means clustering (k= 5) with the Pearson correlation metric, the heatmap recapitulates
the H3K27ac dynamics as described (Saeed et al., 2014).
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Figure 1 An example of the fluff output. All panels were generated by the fluff command-line tools and
were not post-processed or edited. (A) Heatmap showing the results of k-means clustering (k = 5, met-
ric= Pearson) of dynamic H3K27ac regions in monocytes (Mo), naïve macrophages (Mf), tolerized (LPS-
Mf) and trained cells (BG-Mf) (Saeed et al., 2014). ChIP-seq read counts are visualized in 100-bp bins
in 24-kb regions. (B) Bandplot showing the average profile (median: black, 50%: dark color, 90%: light
color) of the clusters as identified in Fig. 1A. (C) The H3K27ac ChIP-seq profiles at the CNRIP1 gene lo-
cus, which shows a gain of H3K27ac in Mf, LPS-Mf and BG-Mf relative to Mo.

While heatmaps are often used for visualization of signals over genomic features, either
clustered or ordered by signal intensity, it can be difficult to distinguish relative levels of
individual clusters. Figure 1B shows an alternative visualization of average enrichment
profiles in small multiples. The same clusters as in Fig. 1A are plotted using fluff bandplot.
Shown are the median (black line), along with the 50th (darker color) and 90th percentile
(lighter color) of the data. This allows for more detailed comparisons.

Finally, we illustrate fluff profile, which can visualize one or more genomic regions
(Fig. 1C). This figure highlights the CNRIP1 gene from cluster 2, which shows a consistent
increase of H3K27ac from Mo to Mf, LPS-Mf and BG-Mf. The signal profiles are directly
generated from the BAM files.

Identification and visualization of dynamic patterns
Most applications that cluster HTS data for heatmap visualization use a binning approach,
followed by clustering using the Euclidean distance. The implicit effect is that the bins
are clustered on basis of the spatial patterns relative to the region of interest. Often, this

Georgiou and Van Heeringen (2016), PeerJ, DOI 10.7717/peerj.2209 4/10

https://peerj.com
http://dx.doi.org/10.7717/peerj.2209


Figure 2 Example of the output of fluff heatmap using standard clustering compared to using the dy-
namics option. Shown are the H3K27ac ChIP-seq read counts in 100 bp bins in 20 kb around the DNaseI
peak summit in human H1 ES cell-derived cells. (A) Heatmap showing the results of k-means clustering
of all bins (k = 7, metric= Euclidean) (B) Heatmap showing the results of k-means clustering in 2 kb re-
gions centered at the peak summit (k= 7, metric= Pearson).

is the desired result, for instance when clustering the ChIP-seq enrichment patterns of
different histone modifications at the transcription start sites of genes. However, for other
analyses this clustering approach does not suffice. An example could be the ChIP-seq
profiles of specific histone modifications correlated to the activity of a regulatory element,
such as H3K4me3 at promoters or H3K27ac at enhancers. In this case, a relevant objective
is to identify the clusters associated with differential activation dynamics. As illustration,
we visualized the H3K27ac enrichment profile at DNaseI hypersensitive sites in human
embryonic stem (ES) cells differentiated into different lineages (Xie et al., 2013). Here, H1
ES cells were differentiated into mesendoderm, neural progenitor cells, trophoblast-like
cells, and mesenchymal stem cells. We first clustered the H3K27ac profiles at regulatory
elements on chromosome 1 using the standard approach, based on comparing all the bins
using the Euclidean distance metric (Fig. 2A).

Here, we identify two clusters with high enrichment (cluster 3 and cluster 5), a cluster
with relatively low, narrow enrichment (cluster 1), and two clusters with broad enhancer
domains (cluster 4 and 6). However, only two strong dynamic clusters are identified, cluster
2, which shows enhancers specifically activated in mesenchymal stem cells and cluster 7
which shows enhancers specifically activated in trophoblast-like stem cells. Figure 2B
shows an alternative clustering approach implemented in fluff heatmap. Here the regions
were clustered on basis of the Pearson correlation of read counts in the center of the region
(extended to 2 kb). This shows a completely different picture and we now can identify
enhancers specific to H1 ES cells (cluster 5), mesenchymal (cluster 4), mesendoderm
(cluster 7), neuronal progenitor (cluster 3) and trophoblast cells (cluster 6). These lineage-
specific enhancer dynamics were not visible in the clustering in Fig. 2A.
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CONCLUSION
The analysis of multi-dimensional genomic data requires methods for data exploration and
visualization. We provide fluff, a Python package that contains several command-line tools
to generate figures for use in high-throughput sequencing analysis workflows.We aim to fill
the gap between powerful, flexible libraries that require programming skills on the one hand,
and intuitive, graphical programs with limited customization possibilities on the other
hand. These tools were developed based on a need for straightforward analysis and visualiza-
tion of ChIP-seq data and have been successfully applied in a variety of projects (Menafra
et al., 2014; Van den Boom et al., 2016; Kouwenhoven et al., 2015). In conclusion, fluff
helps to interpret genome-wide experiments by efficient visualization of sequencing data.
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