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TOPOLOGICAL HOCHSCHILD HOMOLOGY AND THE CYCLIC

BAR CONSTRUCTION IN SYMMETRIC SPECTRA

IRAKLI PATCHKORIA AND STEFFEN SAGAVE

(Communicated by Michael A. Mandell)

Abstract. The cyclic bar construction in symmetric spectra and Bökstedt’s
original construction are two possible ways to define the topological Hochschild
homology of a symmetric ring spectrum. In this short note we explain how to
correct an error in Shipley’s original comparison of these two approaches.

1. Introduction

When topological Hochschild homology was first introduced by Marcel Bökstedt
in the unpublished manuscript [Bök85], a good point set level model for the smash
product of spectra was not yet known, and THH was defined for functors with smash
products. One can implement Bökstedt’s definition for a symmetric ring spectrum
R by defining THH(R) to be the realization of the simplicial symmetric spectrum

(1.1) [k] �→ THHk(R) = hocolim
(n0,...,nk)∈I×k+1

Ωn0+···+nkLF0(Rn0
∧ . . . ∧Rnk

).

Here I is the category of finite sets and injections, L is a level-fibrant replacement
functor in symmetric spectra, and F0 is the suspension spectrum functor. The
functoriality of Ωn0+···+nkLF0(Rn0

∧. . .∧Rnk
) in the product category I×k+1 comes

from the structure maps of R, and the simplicial structure maps of [k] �→ THHk(R)
arise from the multiplication and unit of R; see Construction 2.2 below.

When viewing a symmetric ring spectrum R as a monoid with respect to the
smash product of symmetric spectra, one can also define its topological Hochschild
homology as the realization of the cyclic bar construction [k] �→ Bcy

k (R) = R∧k+1.
These two approaches are compared by Shipley in [Shi00, Theorem 4.2.8]. The

first step in her argument is to construct a chain of stable equivalences relating
Bcy

• (R) and the simplicial object

(1.2) [k] �→ hocolimn∈I ΩnLF0(R
∧k+1)n .

Next Shipley shows that there are canonical stable equivalences relating the simpli-
cial degree [k] parts of (1.1) and (1.2). However, it is erroneously stated in [Shi00,
Theorem 4.2.8] that these maps form a morphism of simplicial objects. The problem
is the compatibility with the last face map: The permutation of the I-coordinates
that goes into the last face map of the simplicial object (1.1) has no counterpart in
the simplicial structure of (1.2). We make this precise in Example 2.3 below.
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2 IRAKLI PATCHKORIA AND STEFFEN SAGAVE

In Theorem 3.6 below we provide a comparison of these two definitions of THH
that avoids this problem. Our strategy is to use a cofibrant replacement that allows
us to replace homotopy colimits by colimits in the critical part of the argument.

1.1. Conventions. We assume familiarity with symmetric spectra and refer to
[HSS00] and [Sch12] as useful references for this topic. We will often index spheres
and the levels of symmetric spectra by finite sets n = {1, . . . , n} rather than by
natural numbers. This helps to keep track of permutation actions.

2. Two models for THH

Let I denote the category of finite sets m = {1, . . . ,m}, m ≥ 0, and injective
maps. It is symmetric strict monoidal under the ordered concatenation of ordered
sets m�n = m+ n. The empty set 0 is the monoidal unit, and the block permu-
tation τ(m,n) : m�n → n�m provides the symmetry isomorphism for �.

As explained in [DGM13, 2.2.2.1 and 4.2.1.1], applying the cyclic bar construc-
tion in the category of small categories (cat) to I provides a functor

Bcy
• I : Δop → (cat), [k] �→ I×k+1.

The simplicial face and degeneracy maps act by

di(n0, . . . ,nk) =

{
(n0, . . . ,ni �ni+1, . . . ,nk) 0 ≤ i < k

(nk �n0, . . . ,nk−1) i = k
and

si(n0, . . . ,nk) = (n0, . . . ,ni,0,ni+1, . . . ,nk).

Recall from [Tho79, 1.1 Definition] that the Grothendieck construction on a functor
F : C → (cat) is the category whose objects are the pairs (C;X) with C ∈ Ob(C)
and X ∈ Ob(F (C)). A morphism (C;X) → (D;Y ) is a pair (α; f) of morphisms
α : C → D in C and f : F (α)(X) → Y in F (D).

Definition 2.1. Let BcyI be the Grothendieck construction of Bcy
• I : Δop → (cat).

Let SpΣ be the category of symmetric spectra of simplicial sets and let L =

Sing|− | : SpΣ → SpΣ be the level fibrant replacement functor given by forming the
singular complex of the geometric realization in each level. Let S∗ be the category of
pointed simplicial sets, and let F0 : S∗ → SpΣ be the suspension spectrum functor.

The next construction is a reformulation of [Shi00, 4.2] and [DGM13, 4.2.2.3].

Construction 2.2. Let R be an associative symmetric ring spectrum and let M
be an R-bimodule. Let

D(R;M) : BcyI → SpΣ

be the functor which is defined on objects by

([k];n0, . . . ,nk) �→ Map(Sn0 �...�nk , LF0(Mn0
∧Rn1

∧ . . . ∧Rnk
)).

The morphisms in Ik+1 act via the symmetric group actions on the levels of R and
M and the structure maps of the spectra R and M [DGM13, Definition 4.2.2.1].
The morphisms in Δ act as in [DGM13, 4.2.2.3]. For example, the last face map
gives rise to a morphism

(2.1) ([k];n0, . . . ,nk) → ([k − 1];nk �n0, . . . ,nk−1)

in BcyI which acts by using the symmetry isomorphism that moves Rnk
to the

front of the iterated smash product, the multiplication Rnk
∧Mn0

→ Mnk �n0
, and
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THH AND THE CYCLIC BAR CONSTRUCTION 3

the corresponding permutation of the sphere coordinates. The universal property of
the Grothendieck construction and [DGM13, Lemma 4.2.2.2] imply that this does
indeed define a functor on BcyI. (The benefit of indexing D(R;M) by BcyI will
become apparent in the next section.)

Writing Dk(R;M) = D(R;M)([k];−) : I×k+1 → SpΣ, we get a simplicial object
in symmetric spectra

[k] �→ hocolimI×k+1 Dk(R;M) =: THHk(R;M)

where α : [k] → [l] in Δ acts by

hocolimI×l+1 Dl(R;M) → hocolimI×l+1 Dk(R;M) ◦ α∗ → hocolimI×k+1 Dk(R;M).

Here the first map is induced by the functoriality of D(R;M) in BcyI. As discussed
in the introduction, the realization of THH•(R;M) is Bökstedt’s model for THH.

Now let

Bcy
• (R;M) : Δop → SpΣ, [k] �→ M ∧R∧k,

be the cyclic bar construction in (SpΣ,∧, S); see e.g. [DGM13, 4.2.1.1]. Let

ΩI
Sp : Sp

Σ → (SpΣ)I , (ΩI
Sp)(X)(m) = Map(Sm, LF0Xm),

be the functor where isomorphisms m → m in I act by conjugation and inclusions
m− 1 → m act via the structure map of X. Then hocolimI ΩI

Sp : Sp
Σ → SpΣ is

Shipley’s detection functor [Shi00, Definition 3.1.1]. It is shown in the first part of
the proof of [Shi00, Theorem 4.2.8] that there is a zig-zag of degreewise stable equiv-
alences of simplicial objects in symmetric spectra relating hocolimI Ω

I
SpB

cy
• (R;M)

and Bcy
• (R;M). To relate the former object to THH•(R;M), we note that there is

a canonical map

(2.2) Mn0
∧Rn1

∧ . . . ∧Rnk
→ (M ∧R ∧ . . . ∧R)n0 �...�nk

.

(The map arises for example from identifying (X ∧ Y )n for symmetric spectra X
and Y with colimα : n1 �n2→n Xn1

∧ Yn2
∧ Sn\α(n1 �n2), where the colimit is taken

over the comma category −�− ↓ n.) Writing μk+1 : I×k+1 → I for the iterated
concatenation, the map (2.2) induces a morphism of symmetric spectra

(2.3) THHk(R;M) = hocolimI×k+1 Dk(R;M)

→ hocolimI×k+1 μ∗
k+1Ω

I
Sp(M ∧R∧k) → hocolimI Ω

I
Sp(M ∧R∧k).

The problem with the proof of [Shi00, Theorem 4.2.8] is that this map fails to
provide a map of simplicial objects:

Example 2.3. We examine how the comparison maps in simplicial levels 0 and 1
interact with d1. To simplify the exposition, we here ignore the suspension spectrum
functor and the level fibrant replacement. Let f : Sn0 �n1 → Mn0

∧ Rn1
represent

a 0-simplex in hocolimI×2 D1(R;M). First applying the map (2.3) and then the
simplicial structure map d1 of Bcy

• (R;M) to f amounts to forming the composite

(2.4) Sn0 �n1
f−→ Mn0

∧Rn1
→ (M ∧R)n0 �n1

τ−→ (R ∧M)n0 �n1

μ−→ Mn0 �n1
.

Applying first d1 and then the map (2.3) sends f to the composite

(2.5) Sn1 �n0
τ(n1,n0)−−−−−→ Sn0 �n1

f−→ Mn0
∧Rn1

τ−→ Rn1
∧Mn0

μ−→ Mn1 �n0
.
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4 IRAKLI PATCHKORIA AND STEFFEN SAGAVE

However, inspecting the commutative diagram

Sn0 �n1
f
��

τ(n0,n1)
��

Mn0
∧Rn1

��

τ
��

(M ∧R)n0 �n1

τ �� (R ∧M)n0 �n1

τ(n0,n1)
��

μ
�� Mn0 �n1

τ(n0,n1)
��

Sn1 �n0 �� Rn1
∧Mn0

�� (R ∧M)n1 �n0

μ
�� Mn1 �n0

,

we deduce that the two maps (2.4) and (2.5) differ by the conjugation action of the
block permutation τ(n0,n1) : n0 �n1 → n1 �n0. In fact, this is already indicated

by the order of n0 and n1. Hence the points in hocolimI ΩI
Sp(M ∧R∧k) represented

by the two maps (2.4) and (2.5) do not coincide in general. Instead, they are only
connected by the 1-simplex represented by the morphism τ(n0,n1) in I.

This shows that the maps (2.3) fail to be compatible with the simplicial structure
maps and do not induce a morphism on the realization.

3. Diagrams indexed by the cyclic bar construction on I
We now return to the setup of Definition 2.1. Let us for a moment view the

iterated concatenation in I as a functor

μk+1 : I×k+1 → Δop × I, (n0, . . . ,nk) �→ ([k],n0 � . . .�nk).

We claim that each α : [k] → [l] in Δ induces a natural transformation

α : μl+1 ⇒ μk+1 ◦ α∗

such that for β : [l] → [m], the following composition rule is satisfied:

βα = (αβ∗)(β) : μm+1 ⇒ μk+1 ◦ α∗ ◦ β∗ = μk+1 ◦ (βα)∗.
To define α, we set α = (α, id) if α is a degeneracy map or a face map that is not
equal to the last face map, and α = (α, τ(n0 �...�nk−1,nk)) if α is the last face map.
Writing a general α as a composite of face and degeneracy maps, we can define α
by the above composition formula. This is well defined since our definition of α for
the face and degeneracy maps is compatible with the simplicial identities. By the
universal property of the Grothendieck construction [Tho79, 1.3.1 Proposition], we
thus get a functor

(3.1) μtw : BcyI → Δop × I
sending ([k];n0, . . . ,nk) to ([k],n0 � . . .�nk).

Definition 3.1. Let E : Δop → (SpΣ)I be a simplicial object in I-diagrams of

symmetric spectra. Viewing it as a functor E : Δop × I → SpΣ, we let

Etw : BcyI → SpΣ

be the composite E ◦ μtw of E with the functor (3.1).

We note that for E : Δop → (SpΣ)I , there is a canonical map

(3.2) hocolim
I×k+1

Etw([k];−)
∼=−→ hocolim

I×k+1
μ∗
k+1E([k],−) → hocolim

I
E([k],−).

Analogous to Example 2.3, the maps (3.2) do in general fail to be compatible with
the last face map dk and thus do not assemble to a map of simplicial objects.
However, composing with the map from the homotopy colimit to the colimit, this
can be resolved.
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THH AND THE CYCLIC BAR CONSTRUCTION 5

Lemma 3.2. The morphisms (3.2) become compatible with the simplicial structure
maps after composing them with the canonical map hocolimI → colimI .

Proof. Since the map from the homotopy colimit to the colimit is natural with
respect to the change of the index category, it is sufficient to show that α : [k] → [l]
in Δ induces a commutative diagram

colimI×l+1 Etw([l];−) ��

��

colimI E([l],−)

��

colimI×k+1 Etw([k];−) �� colimI E([k],−).

This is easy to verify for the degeneracy maps and all face maps but the last one. Let
δl : [l− 1] → [l] be the last face map in Δ, and let x ∈ Etw([l];n0, . . . ,nl) represent
a simplex in one of the levels of the spectrum colimI×l+1 Etw([l];−). Then the
composite through the upper right hand corner sends x to the simplex represented
by (δl)∗(x) ∈ E([l − 1],n0 � . . .�nl), while the other composite sends it to the
simplex represented by

(τ(n0 �...�nl−1,nl))∗((δ
l)∗(x)) ∈ E([l− 1],nl �n0 � . . .�nl−1).

These represent the same simplex in the colimit. �

We need some preparation to apply the lemma in a useful way.

Definition 3.3. Let R be an associative symmetric ring spectrum and let M be
an R-bimodule. Then the twisted cyclic bar construction is the BcyI-diagram

Bcy(R;M)tw = ΩI
Sp(B

cy
• (R;M))tw : BcyI → SpΣ

where ΩI
Sp and Bcy

• (R;M) are as in the last section.

Recall that a symmetric spectrum X is semistable if it admits a π∗-isomorphism
to a symmetric Ω-spectrum [HSS00, 5.6], and that it is flat if it is S-cofibrant, i.e.,
cofibrant in the S-model structure developed in [Shi04]. We call a symmetric ring
spectrum flat if its underlying symmetric spectrum is flat.

Proposition 3.4. The canonical maps to the smash product (2.2) induce a natural
transformation of BcyI-diagrams D(R;M) → Bcy(R;M)tw. Fixing a simplicial
degree [k], the induced map

THHk(R;M) = hocolimI×k+1 Dk(R;M) → hocolimI×k+1 Bcy(R;M)tw([k];−)

is a stable equivalence if R is flat and R and M are semistable.

Proof. It follows from the definitions that there is an induced map. The argument
given in the proof of [Shi00, Theorem 4.2.8], which is in turn based on [Shi00,
Proposition 4.2.3], shows that the composite of the map in the statement of the
proposition with the map (3.2) for E = ΩI

Sp(B
cy
• (R;M)) is a stable equivalence.

Hence it is enough to show that

hocolimI×k+1 μ∗
k+1(Ω

I
Sp(B

cy
k (R;M))) → hocolimI ΩI

Sp(B
cy
k (R;M))

is a stable equivalence. This follows from Lemma 3.10 and Lemma 3.12 below since
by [Sch08, 4.10 Theorem], our assumptions on R and M imply that Bcy

k (R;M) is
semistable. �
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6 IRAKLI PATCHKORIA AND STEFFEN SAGAVE

To apply Lemma 3.2 to the cyclic bar construction, we employ the projective
model structure on the diagram category (SpΣ)Δ

op×I = ((SpΣ)Δ
op

)I . This is the
model structure where a natural transformation f : X → Y of Δop ×I-diagrams of
symmetric spectra is a weak equivalence or fibration if f([k],m) is a weak equiva-

lence or fibration in the absolute projective stable model structure on SpΣ for all
objects ([k],m) of Δop × I. Let

(3.3) C
∼ �� �� ΩI

Sp(B
cy
• (R;M))

be a cofibrant resolution in this model structure. Inspecting the generating cofibra-
tions of the projective model structure on (SpΣ)Δ

op×I , it follows that for each [k],

the map C([k],−)
∼ �� �� ΩI

Sp(B
cy
k (R;M)) is a cofibrant replacement in (SpΣ)I .

Proposition 3.5. The cofibrant replacement and the natural map from the homo-
topy colimit to the colimit induce a zig-zag of stable equivalences

hocolimI×k+1 Bcy(R;M)tw([k];−)
∼←− hocolimI×k+1 Ctw([k];−)

∼−→ colimI C([k],−)
∼←− hocolimI C([k],−)

∼−→ hocolimI ΩI
Sp(B

cy
k (R;M))

that is compatible with the simplicial structure maps.

We prove the proposition at the end of the section.

Theorem 3.6. Let R be a flat symmetric ring spectrum, let M be an R-bimodule
spectrum, and assume that R and M are semistable. Then there is a zig-zag of de-
greewise stable equivalences of simplicial objects relating Bcy

• (R;M) and
THH•(R;M). It induces a chain of stable equivalences after realization.

Proof. This follows by combining Propositions 3.4 and 3.5 with the chain of degree-
wise stable equivalences relating Bcy

• (R;M) and hocolimI Ω
I
Sp(B

cy
• (R;M)) from the

proof of [Shi00, Theorem 4.2.8]. �

Remark 3.7. One can use the argument outlined in [Shi00, Remark 4.2.10] to get to
a more general statement that avoids the semistability assumption in the previous
theorem.

Remark 3.8. When M = R, both Bcy
• (R;M) and THH•(R;M) are cyclic objects,

i.e., they extend to functors Λop → SpΣ on Connes’ cyclic category Λ. Replacing
Δ in our constructions by Λ leads to a chain of stable equivalences relating these
cyclic objects and therefore to a cyclic version of Theorem 3.6. After realization
of the cyclic objects involved, we thus obtain a chain of stable equivalences of
symmetric spectra with S1-action relating Bcy(R) = |Bcy

• (R;R)| and THH(R) =
|THH•(R;R)|.

In view of the cyclotomic structure on the cyclic bar construction (of an orthogo-
nal ring spectrum) recently established by Angeltveit et al. [ABG+15], one may ask
if this zig-zag of stable equivalences induces a zig-zag of stable equivalences relat-
ing the resulting topological cyclic homology spectra. We don’t have evidence that
this follows directly from the present result. In fact, already the zig-zag of stable
equivalences Bcy(R)  hocolimI Ω

I
Sp(B

cy(R)) from the proof of [Shi00, Theorem

4.2.8] does not appear to be well behaved with the passage to fixed points.
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THH AND THE CYCLIC BAR CONSTRUCTION 7

3.9. Semistability results. An I-space X is a functorX : I → S∗ from I to based
simplicial sets. Let N ⊂ I be the subcategory given by the standard inclusions. A
map of I-spaces X → Y is an N -equivalence if the induced map of based homotopy
colimits hocolimN X → hocolimN Y is a weak equivalence of spaces. An I-space
X is semistable if there is an N -equivalence X → Y with Y homotopy constant,
i.e., every α : m → n induces a weak equivalence α∗ : Y (m) → Y (n). This notion
of semistability is studied in [SS13, 2.5] in the case of unbased I-spaces.

Lemma 3.10. Let X : I → S∗ be a semistable I-space. Then the canonical map

hocolimI×k μ∗
k(X) → hocolimI X

is a weak equivalence.

Proof. Suppose first that X is homotopy constant. Then the canonical maps

X(n1 � . . .�nk) → hocolimI×k μ∗
k(X) and X(n1 � . . .�nk) → hocolimI X

are weak equivalences since the classifying spaces of I and I×k are contractible; see
e.g. [Dug01, Proposition 5.4]. This implies the result for a homotopy constant X.
For a semistable X, it is now sufficient to show that an N -equivalence X → Y
induces weak equivalences

hocolimI X → hocolimI Y and hocolimI×k μ∗
k(X) → hocolimI×k μ∗

k(Y ).

For the first map this follows from [Shi00, Proposition 2.2.9]. The claim about the
second map follows since there is a weak equivalence

hocolim
I×k

μ∗
k(X)

∼−→ hocolim
(n1,...,nk−1)∈I×k−1

hocolim
nk∈I

X((n1 � . . .�nk−1)�nk)

and restriction along (n1 � . . .�nk−1)�− : I → I preserves N -equivalences by a
cofinality argument. �
Remark 3.11. Since the classifying space of the undercategory 1 ↓ μ2 has two path
components, the functor μk is in general not homotopy cofinal, and the last lemma
does not hold without the semistability hypothesis.

Lemma 3.12. Let E be a semistable symmetric spectrum. Then ΩI
Sp(E) is a

semistable I-space in every spectrum degree.

Proof. Let E → F be a π∗-isomorphism to a symmetric Ω-spectrum F . Then
in spectrum level 0, the induced map ΩI

Sp(E) → ΩI
Sp(F ) is an N -equivalence to

a homotopy constant I-space. The I-space in spectrum level k > 0 of ΩI
Sp(E)

is isomorphic to the I-space in spectrum level 0 of the I-symmetric spectrum
ΩI

Sp(S
k ∧ E) associated with the symmetric spectrum Sk ∧ E. Since Sk ∧ E is

semistable if E is [Sch08, 4.6 Example], the level 0 case implies the general case. �
Proof of Proposition 3.5. The compatibility with the simplicial structure maps fol-
lows from Lemma 3.2. It is clear that the first and the last map are stable
equivalences. The third map is a stable equivalence because C([k],−) is cofi-

brant in (SpΣ)I . Using once more that hocolimI C([k],−) → colimI C([k],−)
is a stable equivalence reduces the claim about the second map to showing that
hocolimI×k+1 Ctw([k];−) → hocolimI C([k],−) is a stable equivalence. In view
of Lemma 3.10, it is sufficient to show that C([k],−) is semistable as an I-space
in every spectrum degree. Since the cofibrant replacement (3.3) is an objectwise
level acyclic fibration of symmetric spectra, this follows from Lemma 3.12 since our
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8 IRAKLI PATCHKORIA AND STEFFEN SAGAVE

assumptions on R and M imply that Bcy
k (R;M) is semistable; see [Sch08, 4.10 The-

orem]. �
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