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Abstract A search for squarks and gluinos in final states
containing hadronic jets, missing transverse momentum but
no electrons or muons is presented. The data were recorded
in 2015 by the ATLAS experiment in

√
s = 13 TeV

proton–proton collisions at the Large Hadron Collider. No
excess above the Standard Model background expectation
was observed in 3.2 fb−1 of analyzed data. Results are inter-
preted within simplified models that assume R-parity is con-
served and the neutralino is the lightest supersymmetric par-
ticle. An exclusion limit at the 95 % confidence level on the
mass of the gluino is set at 1.51 TeV for a simplified model
incorporating only a gluino octet and the lightest neutralino,
assuming the lightest neutralino is massless. For a simplified
model involving the strong production of mass-degenerate
first- and second-generation squarks, squark masses below
1.03 TeV are excluded for a massless lightest neutralino.
These limits substantially extend the region of supersym-
metric parameter space excluded by previous measurements
with the ATLAS detector.
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1 Introduction

Supersymmetry (SUSY) [1–6] is a generalization of space-
time symmetries that predicts new bosonic partners for the
fermions and new fermionic partners for the bosons of the
Standard Model (SM). If R-parity is conserved [7], SUSY
particles (called sparticles) are produced in pairs and the
lightest supersymmetric particle (LSP) is stable and repre-
sents a possible dark-matter candidate. The scalar partners
of the left- and right-handed quarks, the squarks q̃L and
q̃R, mix to form two mass eigenstates q̃1 and q̃2 ordered
by increasing mass. Superpartners of the charged and neutral
electroweak and Higgs bosons also mix to produce charginos
(χ̃±) and neutralinos (χ̃0). Squarks and the fermionic part-
ners of the gluons, the gluinos (g̃), could be produced in
strong-interaction processes at the Large Hadron Collider
(LHC) [8] and decay via cascades ending with the stable
LSP, which escapes the detector unseen, producing substan-
tial missing transverse momentum (Emiss

T ).
The production of gluinos and squarks is the primary tar-

get for early supersymmetry searches in proton–proton (pp)
collisions at a centre-of-mass energy of 13 TeV at the LHC
because of the large expected cross-sections predicted for the
production of supersymmetric particles which participate to
the strong interaction. This document presents a search for
these particles in final states containing only hadronic jets
and large missing transverse momentum. Interest in this final
state is motivated by the large number of R-parity-conserving
models [9,10] in which squarks (including anti-squarks) and
gluinos can be produced in pairs (g̃g̃, q̃q̃ , q̃ g̃) and can decay
through q̃ → qχ̃0

1 and g̃ → qq̄χ̃0
1 to the lightest neutralino,

χ̃0
1 , assumed to be the LSP. Additional decay modes can

include the production of charginos via q̃ → qχ̃± (where
q̃ and q are of different flavour) and g̃ → qq̄χ̃±. Sub-
sequent chargino decay to W±χ̃0

1 can lead to still larger
multiplicities of jets. The analysis presented here adopts
the same analysis strategy as the previous ATLAS search
designed for the analysis of the 7 TeV and 8 TeV data col-
lected during Run 1 of the LHC, described in Refs. [11–15].
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The CMS Collaboration has set limits on similar models in
Refs. [16–21].

In this search, events with reconstructed electrons or
muons are rejected to reduce the background from events
with neutrinos (W → eν, μν) and to avoid any overlap with
a complementary ATLAS search in final states with one lep-
ton, jets and missing transverse momentum [22]. The selec-
tion criteria are optimized in the (mg̃,mχ̃0

1
) and (mq̃ ,mχ̃0

1
)

planes, (wheremg̃ ,mq̃ andmχ̃0
1

are the gluino, squark and the
LSP masses, respectively) for simplified models [23–25] in
which all other supersymmetric particles are assigned masses
beyond the reach of the LHC. Although interpreted in terms
of SUSY models, the results of this analysis could also con-
strain any model of new physics that predicts the production
of jets in association with missing transverse momentum.

2 The ATLAS detector and data samples

The ATLAS detector [26] is a multi-purpose detector with
a forward-backward symmetric cylindrical geometry and
nearly 4π coverage in solid angle.1 The inner tracking detec-
tor (ID) consists of pixel and silicon microstrip detectors
covering the pseudorapidity region |η| < 2.5, surrounded by
a transition radiation tracker which improves electron iden-
tification over the region |η| < 2.0. The innermost pixel
layer, the insertable B-layer [27], was added between Run 1
and Run 2 of the LHC, at a radius of 33 mm around a
new, narrower and thinner, beam pipe. The ID is surrounded
by a thin superconducting solenoid providing an axial 2 T
magnetic field and by a fine-granularity lead/liquid-argon
(LAr) electromagnetic calorimeter covering |η| < 3.2. A
steel/scintillator-tile calorimeter provides hadronic coverage
in the central pseudorapidity range (|η| < 1.7). The end-
cap and forward regions (1.5 < |η| < 4.9) of the hadronic
calorimeter are made of LAr active layers with either copper
or tungsten as the absorber material. The muon spectrom-
eter with an air-core toroid magnet system surrounds the
calorimeters. Three layers of high-precision tracking cham-
bers provide coverage in the range |η| < 2.7, while dedicated
chambers allow triggering in the region |η| < 2.4.

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector. The positive x-
axis is defined by the direction from the interaction point to the centre
of the LHC ring, with the positive y-axis pointing upwards, while the
beam direction defines the z-axis. Cylindrical coordinates (r, φ) are
used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidity η is defined in terms of the polar angle θ

by η = − ln tan(θ/2) and the rapidity is defined as y = (1/2) ln[(E +
pz)/(E− pz)] where E is the energy and pz the longitudinal momentum
of the object of interest. The transverse momentum pT, the transverse
energy ET and the missing transverse momentum Emiss

T are defined in
the x–y plane unless stated otherwise.

The ATLAS trigger system [28] consists of two levels; the
first level is a hardware-based system, while the second is a
software-based system called the High-Level Trigger. The
events used in this search were selected using a trigger logic
that accepts events with a missing transverse momentum
above 70 GeV, calculated using a sum over calorimeter cells.
The trigger is 100 % efficient for the event selections consid-
ered in this analysis. Auxiliary data samples used to estimate
the yields of background events were selected using triggers
requiring at least one isolated electron (pT > 24 GeV), muon
(pT > 20 GeV) or photon (pT > 120 GeV). To increase the
efficiency at high momenta, additional single-electron and
single-muon triggers that do not require any isolation were
included with thresholds of pT = 60 GeV and pT = 50 GeV,
respectively.

The dataset used in this analysis was collected in 2015 with
the LHC colliding proton beams at a centre-of-mass energy of
13 TeV, with 25 ns bunch spacing. The peak delivered instan-
taneous luminosity was L = 5.2 × 1033 cm−2 s−1 and the
mean number of additional pp interactions per bunch cross-
ing in the dataset was 〈μ〉 = 14. Application of beam, detector
and data-quality criteria resulted in a total integrated luminos-
ity of 3.2 fb−1. The uncertainty in the integrated luminosity is
±5 %. It is derived, following a methodology similar to that
detailed in Ref. [29], from a preliminary calibration of the
luminosity scale using a pair of x–y beam-separation scans
performed in August 2015.

3 Monte Carlo simulated samples

Simulated Monte Carlo (MC) data samples are used to opti-
mize the selections, estimate backgrounds and assess the sen-
sitivity to specific SUSY signal models.

SUSY signals are described in this paper by simplified
models. They are defined by an effective Lagrangian describ-
ing the interactions of a small number of new particles, typi-
cally assuming one production process and one decay chan-
nel with a 100 % branching fraction. Signal samples used to
describe squark- and gluino-pair production, followed by the
direct2 decays of squarks (q̃ → qχ̃0

1 ) and direct (g̃ → qq̄χ̃0
1 )

or one-step3 (g̃ → qq̄ ′W χ̃0
1 ) decays of gluinos as shown

in Fig. 1, are generated with up to two extra partons in
the matrix element using MG5_aMC@NLO event gener-
ator [30] interfaced to Pythia 8.186 [31]. The CKKW-L
merging scheme [32] is applied with a scale parameter that
is set to a quarter of the mass of the gluino for g̃g̃ production
or of the squark for q̃q̃ production. The A14 [33] set of tuned

2 Direct decays are those where the considered SUSY particles decay
directly into SM particles and the LSP.
3 One-step decays refer to the cases where the decays occur via one
intermediate on-shell SUSY particle.
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(a) (b) (c)

Fig. 1 The decay topologies of a squark-pair production and b, c gluino-pair production, in the simplified models with direct decays of squarks
and direct or one-step decays of gluinos

Table 1 The Standard Model background Monte Carlo simulation samples used in this paper. The generators, the order in αs of cross-section
calculations used for yield normalization, PDF sets, parton showers and tunes used for the underlying event are shown

Physics process Generator Cross-section
normalization

PDF set Parton shower Tune

W (→ 
ν) + jets Sherpa 2.1.1 NNLO CT10 Sherpa Sherpa default

Z/γ ∗(→ 

̄) + jets Sherpa 2.1.1 NNLO CT10 Sherpa Sherpa default

γ + jets Sherpa 2.1.1 LO CT10 Sherpa Sherpa default

t t̄ Powheg-Box v2 NNLO+NNLL CT10 Pythia 6.428 Perugia2012

Single top (Wt-channel) Powheg-Box v2 NNLO+NNLL CT10 Pythia 6.428 Perugia2012

Single top (s-channel) Powheg-Box v2 NLO CT10 Pythia 6.428 Perugia2012

Single top (t-channel) Powheg-Box v1 NLO CT10f4 Pythia 6.428 Perugia2012

t t̄ + W/Z/WW MG5_aMC@NLO NLO NNPDF2.3LO Pythia 8.186 A14

WW , WZ , Z Z Sherpa 2.1.1 NLO CT10 Sherpa Sherpa default

Multi-jet Pythia 8.186 LO NNPDF2.3LO Pythia 8.186 A14

parameters (tune) is used for underlying event together with
the NNPDF2.3LO [34] parton distribution function (PDF)
set. The EvtGen v1.2.0 program [35] is used to describe
the properties of the b- and c- hadron decays in the signal
samples and the background samples except those produced
with Sherpa [36]. The signal cross-sections are calculated
at next-to-leading order (NLO) in the strong coupling con-
stant, adding the resummation of soft gluon emission at next-
to-leading-logarithmic accuracy (NLO+NLL) [37–41]. The
nominal cross-section is taken from an envelope of cross-
section predictions using different PDF sets and factorization
and renormalization scales, as described in Ref. [42], consid-
ering only light-flavour quarks (u, d, s, c). Cross-sections are
evaluated assuming masses of 450 TeV for the light-flavour
squarks in case of gluino- or gluinos in case of squark-pair
production. The free parameters are mχ̃0

1
and mq̃ (mg̃) for

gluino-pair (squark-pair) production models.
A summary of the SM background processes together with

the MC generators, cross-section calculation orders in αs,
PDFs, parton shower and tunes used is given in Table 1.

The production of γ , W or Z bosons in association with
jets [43] is simulated using the Sherpa 2.1.1 generator. For
W or Z bosons, the matrix elements are calculated for up to

two partons at NLO and up to two additional partons at lead-
ing order (LO) using the Comix [44] and OpenLoops [45]
matrix-element generators, and merged with the Sherpa par-
ton shower [46] using the ME+PS@NLO prescription [47].
Events containing a photon in association with jets are gener-
ated requiring a photon transverse momentum above 35 GeV.
For these events, matrix elements are calculated at LO with
up to three or four partons depending on the pT of the pho-
ton, and merged with the Sherpa parton shower using the
ME+PS@LO prescription [48]. In both cases (W/Z+jets or
γ +jets production), the CT10 PDF set [49] is used in conjunc-
tion with dedicated parton shower-tuning developed by the
authors of Sherpa. The W/Z + jets events are normalized
to their NNLO cross-sections [50]. For the γ +jets process
the LO cross-section, taken directly from the Sherpa MC
generator, is multiplied by a correction factor as described in
Sect. 7.

For the generation of t t̄ and single-top processes in the
Wt and s-channel [51] the Powheg- Box v2 [52] gen-
erator is used with the CT10 PDF set. The electroweak
(EW) t-channel single-top events are generated using the
Powheg- Box v1 generator. This generator uses the four-
flavour scheme for the NLO matrix-element calculations
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together with the fixed four-flavour PDF set CT10f4 [49]. For
this process, the decay of the top quark is simulated using
MadSpin tool [53] preserving all spin correlations, while
for all processes the parton shower, fragmentation, and the
underlying event are generated using Pythia 6.428 [54] with
the CTEQ6L1 [55] PDF set and the corresponding Peru-
gia 2012 tune (P2012) [56]. The top quark mass is set to
172.5 GeV. The hdamp parameter, which controls the pT

of the first additional emission beyond the Born configu-
ration, is set to the mass of the top quark. The main effect
of this is to regulate the high-pT emission against which the
ttbar system recoils [51]. The t t̄ events are normalized to
the NNLO+NNLL [57,58]. The s- and t-channel single-top
events are normalized to the NLO cross-sections [59,60],
and the Wt-channel single-top events are normalized to the
NNLO+NNLL [61,62].

For the generation of t t̄ + EW processes (t t̄ + W/

Z/WW ) [63], the MG5_aMC@NLO [30] generator at
LO interfaced to the Pythia 8.186 parton-shower model
is used, with up to two (t t̄ + W ), one (t t̄ + Z ) or no
(t t̄+WW ) extra partons included in the matrix element. The
ATLAS underlying-event tune A14 is used together with the
NNPDF2.3LO PDF set. The events are normalized to their
respective NLO cross-sections [64,65].

Diboson processes (WW , WZ , Z Z ) [66] are simulated
using the Sherpa 2.1.1 generator. For processes with four
charged leptons (4
), three charged leptons and a neutrino
(3
+1ν) or two charged leptons and two neutrinos (2
+2ν),
the matrix elements contain all diagrams with four elec-
troweak vertices, and are calculated for up to one (4
, 2
+2ν)
or no partons (3
+1ν) at NLO and up to three partons at LO
using the Comix and OpenLoops matrix-element genera-
tors, and merged with the Sherpa parton shower using the
ME+PS@NLO prescription. For processes in which one of
the bosons decays hadronically and the other leptonically,
matrix elements are calculated for up to one (Z Z ) or no
(WW , WZ ) additional partons at NLO and for up to three
additional partons at LO using the Comix and OpenLoops
matrix-element generators, and merged with the Sherpa
parton shower using the ME+PS@NLO prescription. In all
cases, the CT10 PDF set is used in conjunction with a
dedicated parton-shower tuning developed by the authors
of Sherpa. The generator cross-sections are used in this
case.

The multi-jet background is generated with Pythia 8.186
using the A14 underlying-event tune and the NNPDF2.3LO
parton distribution functions.

For all Standard Model background samples the response
of the detector to particles is modelled with a full ATLAS
detector simulation [67] based on Geant4 [68]. Signal sam-
ples are prepared using a fast simulation based on a parame-
terization of the performance of the ATLAS electromagnetic
and hadronic calorimeters [69] and on Geant4 elsewhere.

All simulated events are overlaid with multiple pp colli-
sions simulated with the soft QCD processes of Pythia8.186
using the A2 tune [33] and the MSTW2008LO parton dis-
tribution functions [70]. The simulations are not reweighted
to match the distribution of the mean number of interactions
observed in data. It was checked that the effect of such pile-up
reweighting is completely negligible.

4 Object reconstruction and identification

The reconstructed primary vertex of the event is required to
be consistent with the luminous region and to have at least
two associated tracks with pT > 400 MeV. When more than
one such vertex is found, the vertex with the largest

∑
p2

T of
the associated tracks is chosen.

Jet candidates are reconstructed using the anti-kt jet clus-
tering algorithm [71,72] with jet radius parameter of 0.4 and
starting from clusters of calorimeter cells [73]. The jets are
corrected for energy from pile-up using the method suggested
in Ref. [74]: a contribution equal to the product of the jet area
and the median energy density of the event is subtracted from
the jet energy [75]. Further corrections, referred to as the jet
energy scale corrections, are derived from MC simulation
and data and used to calibrate on average the energies of
jets to the scale of their constituent particles [76]. Only jet
candidates with pT > 20 GeV and |η| < 2.8 after all correc-
tions are retained. An algorithm based on boosted decision
trees, ‘MV2c20’ [77], is used to identify jets containing a
b-hadron (b-jets), with an operating point corresponding to
an efficiency of 77 % in simulated t t̄ events, along with a
rejection factor of 140 for gluon and light-quark jets and
of 4.5 for charm jets [77,78]. Candidate b-tagged jets are
required to have pT > 50 GeV and |η| < 2.5. Events with
jets originating from detector noise and non-collision back-
ground are rejected if the jets fail to satisfy the ‘LooseBad’
quality criteria, or if at least one of the two leading jets with
pT > 100 GeV fails to satisfy the ‘TightBad’ quality criteria,
both described in Ref. [79]. These selections affect less than
1 % of the events used in the search.

Two different classes of reconstructed lepton candidates
(electrons or muons) are used in this analysis. When select-
ing samples used for the search, events containing a ‘base-
line’ electron or muon are rejected. The selections applied to
identify baseline leptons are designed to maximize the effi-
ciency with which W+jets and top quark background events
are rejected. When selecting ‘control region’ samples for the
purpose of estimating residual W+jets and top quark back-
grounds, additional requirements are applied to leptons to
ensure greater purity of the these backgrounds. These lep-
tons are referred to as ‘high-purity’ leptons below and form
a subset of the baseline leptons.
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Baseline muon candidates are formed by combining infor-
mation from the muon spectrometer and inner tracking detec-
tors as described in Ref. [80] and are required to have
pT > 10 GeV and |η| < 2.7. High-purity muon candi-
dates must additionally have |η| < 2.4, the significance of
the transverse impact parameter with respect to the primary
vertex, |dPV

0 |/σ(dPV
0 ) < 3, the longitudinal impact parameter

with respect to the primary vertex |zPV
0 sin(θ)| < 0.5 mm, and

to satisfy ‘GradientLoose’ isolation requirements described
in Ref. [80] which rely on the use of tracking-based and
calorimeter-based variables and implement a set of η- and
pT-dependent criteria. The leading muon is also required to
have pT > 25 GeV.

Baseline electron candidates are reconstructed from an
isolated electromagnetic calorimeter energy deposit matched
to an ID track and are required to have pT > 10 GeV,
|η| < 2.47, and to satisfy ‘Loose’ likelihood-based iden-
tification criteria described in Ref. [81]. High-purity elec-
tron candidates additionally must satisfy ‘Tight’ selection
criteria described in Ref. [81], and the leading electron
must have pT > 25 GeV. They are also required to have
|dPV

0 |/σ(dPV
0 ) < 5, |zPV

0 sin(θ)| < 0.5 mm, and to satisfy
similar isolation requirements as those applied to high-purity
muons.

After the selections described above, ambiguities between
candidate jets with |η| < 2.8 and leptons are resolved as fol-
lows: first, any such jet candidate lying within a distance
R ≡ √

(y)2 + (φ)2 = 0.2 of a baseline electron is dis-
carded; then any baseline lepton candidate remaining within
a distance R = 0.4 of any surviving jet candidate is dis-
carded, except in the case where the lepton is a muon (which
can radiate a photon and be misidentified as a jet) and the
number of tracks associated with the jet is less than three.

Additional ambiguities between electrons and muons in a
jet, originating from the decays of hadrons, are resolved to
avoid double counting and/or remove non-isolated leptons:
the electron is discarded if a baseline electron and a base-
line muon share the same ID track. If two baseline electrons
are within R = 0.05, the electron with the lowest pT is
discarded.

The measurement of the missing transverse momentum
vector Emiss

T (and its magnitude Emiss
T ) is based on the cali-

brated transverse momenta of all electron, muon, photon and
jet candidates and all tracks originating from the primary
vertex and not associated with such objects [82].

Reconstructed photons, although not used in the main
signal-event selection, are selected in the region used to
constrain the Z+jets background, as explained in Sect. 7.
Photon candidates are required to satisfy pT > 130 GeV
and |η| < 2.37, to satisfy photon shower shape and elec-
tron rejection criteria [83], and to be isolated. Ambiguities
between candidate jets and photons (when used in the event
selection) are resolved by discarding any jet candidates lying

within R = 0.4 of a photon candidate. Additional selections
to remove ambiguities between electrons or muons and pho-
tons are applied such that the photon is discarded if it is within
R = 0.4 of an electron or muon.

Corrections derived from data control samples are applied
to account for differences between data and simulation for
the lepton trigger and reconstruction efficiencies, the lep-
ton momentum/energy scale and resolution, and for the effi-
ciency and mis-tag rate of the b-tagging algorithm.

5 Analysis strategy and fit description

To search for a possible signal, selections are defined to
enhance the signal relative to the SM background. These
signal region (SR) selections are optimized to maximize the
expected significance for each model considered using MC
simulation for the signal and the SM backgrounds. To esti-
mate the SM backgrounds in a consistent and robust fashion,
corresponding control regions (CRs) are defined for each of
the signal regions. They are chosen to be non-overlapping
with the SR selections in order to provide independent data
samples enriched in particular background sources, and are
used to normalize the background MC simulation. The CR
selections are optimized to have negligible SUSY signal
contamination for the models near the previously excluded
boundary [14], while minimizing the systematic uncertain-
ties arising from the extrapolation of the CR event yields to
estimate backgrounds in the SR. Cross-checks of the back-
ground estimates are performed with data in several valida-
tion regions (VRs) selected with requirements such that these
regions do not overlap with the CR and SR selections, again
with a low expected signal contamination.

To extract the final results, three different classes of likeli-
hood fit are employed: background-only, model-independent
and model-dependent fits [84]. A background-only fit is used
to estimate the background yields in each SR. The fit is per-
formed using as constraints only the observed event yields
from the CRs associated with the SR, but not the SR itself. It
is assumed that signal events from physics beyond the Stan-
dard Model (BSM) do not contribute to these yields. The
scale factors (μW+jets, μZ+jets, μTop, μMulti-jet) are fitted in
each CR attached to a SR. The expected background in the SR
is based on the yields predicted by simulation, corrected by
the scale factors derived from the fit. The systematic uncer-
tainties and the MC statistical uncertainties in the expected
values are included in the fit as nuisance parameters which
are constrained by Gaussian distributions with widths corre-
sponding to the sizes of the uncertainties considered and by
Poisson distributions, respectively. The background-only fit
is also used to estimate the background event yields in the
VRs.
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If no excess is observed, a model-independent fit is used to
set upper limits on the number of BSM signal events in each
SR. This fit proceeds in the same way as the background-
only fit, except that the number of events observed in the SR
is added as an input to the fit, and the BSM signal strength,
constrained to be non-negative, is added as a free parameter.
The observed and expected upper limits at 95 % confidence
level (CL) on the number of events from BSM phenomena for
each signal region (S95

obs and S95
exp) are derived using the CLs

prescription [85], neglecting any possible signal contamina-
tion in the control regions. These limits, when normalized by
the integrated luminosity of the data sample, may be inter-
preted as upper limits on the visible cross-section of BSM
physics (〈εσ 〉95

obs), where the visible cross-section is defined
as the product of production cross-section, acceptance and
efficiency. The model-independent fit is also used to compute
the one-sided p-value (p0) of the background-only hypothe-
sis, which quantifies the statistical significance of an excess.

Finally, model-dependent fits are used to set exclusion
limits on the signal cross-sections for specific SUSY models.
Such a fit proceeds in the same way as the model-independent
fit, except that both the yield in the signal region and the signal
contamination in the CRs are taken into account. Correlations
between signal and background systematic uncertainties are
taken into account where appropriate. Signal-yield system-
atic uncertainties due to detector effects and the theoretical
uncertainties in the signal acceptance are included in the fit.

6 Event selection and signal regions definitions

Due to the high mass scale expected for the SUSY mod-
els considered in this study, the ‘effective mass’, meff , is a
powerful discriminant between the signal and most SM back-
grounds. When selecting events with at least Nj jets,meff(Nj)

is defined to be the scalar sum of the transverse momenta
of the leading Nj jets and Emiss

T . Requirements placed on
meff and Emiss

T form the basis of this search by strongly sup-
pressing the multi-jet background where jet energy mismea-
surement generates missing transverse momentum. The final
signal selection uses requirements on bothmeff(incl.), which
sums over all jets with pT > 50 GeV and Emiss

T , which is
required to be larger than 200 GeV.

Following the object reconstruction described in Sect. 4,
events are discarded if a baseline electron or muon with
pT > 10 GeV remains, or if they contain a jet failing to sat-
isfy quality selection criteria designed to suppress detector
noise and non-collision backgrounds (described in Sect. 4).
Events are also rejected if no jets with pT > 50 GeV are
found. Reconstructed photons and hadronically decaying τ -
leptons are not used in SR selections.

In order to maximize the sensitivity in the (mg̃,mq̃) plane,
a variety of signal regions are defined. Squarks typically gen-

Table 2 Selection criteria and targeted signal model used to define
each of the signal regions in the analysis. Each SR is labelled with
the inclusive jet multiplicity considered (‘2j’, ‘4j’ etc.) together with
the degree of background rejection. The latter is denoted by labels ‘l’
(‘loose’), ‘m’ (‘medium’) and ‘t’ (‘tight’). The Emiss

T /meff (Nj) cut in
any Nj-jet channel uses a value ofmeff constructed from only the leading
Nj jets (meff (Nj)). However, the finalmeff (incl.) selection, which is used
to define the signal regions, includes all jets with pT > 50 GeV

erate at least one jet in their decays, for instance through
q̃ → qχ̃0

1 , while gluinos typically generate at least two jets,
for instance through g̃ → qq̄χ̃0

1 . Processes contributing to
q̃q̃ and g̃g̃ final states therefore lead to events containing at
least two or four jets, respectively. Decays of heavy SUSY
and SM particles produced in longer q̃ and g̃ decay cascades
(e.g. χ̃±

1 → qq ′χ̃0
1 ) tend to further increase the jet multiplic-

ity in the final state.
Seven inclusive SRs characterized by increasing mini-

mum jet multiplicity from two to six, are defined in Table 2.
Some of them require the same jet-multiplicity, but are dis-
tinguished by increasing background rejection, ranging from
‘loose’ (labelled ‘l’) to ‘tight’ (labelled ‘t’).

In each region, different thresholds are applied on jet
momenta and on φ(jet, Emiss

T )min, which is defined to be
the smallest azimuthal separation between Emiss

T and the
momenta of any of the reconstructed jets with pT > 50 GeV.
Requirements on φ(jet, Emiss

T )min and Emiss
T /meff(Nj)

are designed to reduce the background from
multi-jet processes. For the SRs which are optimized for
squark-pair (gluino-pair) production followed by the direct
decay of squarks (gluinos), the selection requires
φ(jet, Emiss

T )min > 0.8 (φ(jet, Emiss
T )min > 0.4) using

up to three leading jets present in the event. For the SRs
requiring at least four jets in the final state, an additional
requirement φ(jet, Emiss

T )min > 0.2 is placed on all jets.
Signal region 2jm makes use of the presence of jets due to
initial-state radiation by requiring a higher pT threshold for
the most energetic jet in the event, and is optimized to tar-
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Table 3 Control regions used in the analysis. Also listed are the main
targeted background in the SR in each case, the process used to model
the background, and the main CR requirement(s) used to select this

process. The transverse momenta of high-purity leptons (photons) used
to select CR events must exceed 25 (130) GeV. The jet pT thresholds
and meff (incl.) selections match those used in the corresponding SRs

CR SR background CR process CR selection

CRγ Z(→ νν̄)+jets γ +jets Isolated photon

CRQ Multi-jet Multi-jet SR with reversed requirements on (i) φ(jet, Emiss
T )min

and (ii) Emiss
T /meff (Nj) or Emiss

T /
√
HT

CRW W (→ 
ν)+jets W (→ 
ν)+jets 30 GeV< mT(
, Emiss
T ) < 100 GeV, b-veto

CRT t t̄(+EW) and single top t t̄ → bb̄qq ′
ν 30 GeV< mT(
, Emiss
T ) < 100 GeV, b-tag

get models with small mass differences between the SUSY
particles (compressed scenarios).

In the 2-jet SRs the requirement on Emiss
T /meff(Nj) is

replaced by a requirement on Emiss
T /

√
HT (where HT is

defined as the scalar sum of the transverse momenta of all
jets), which was found to lead to enhanced sensitivity to mod-
els characterized by q̃q̃ production. In the other regions, addi-
tional suppression of background processes is based on the
aplanarity variable, which is defined as A = 3/2λ3, where
λ3 is the smallest eigenvalue of the normalized momentum
tensor of the jets [86].

7 Background estimation and validation

Standard Model background processes contribute to the event
counts in the signal regions. The dominant sources are:
Z+jets, W+jets, top quark pairs, single top quarks, dibosons
and multi-jet production. Diboson production is estimated
with MC simulated data normalized to NLO cross-section
predictions, as described in Sect. 3. Most of the W+jets
background is composed of W → τν events in which the
τ -lepton decays to hadrons, with additional contributions
from W → eν, μν events in which no baseline electron
or muon is reconstructed. The largest part of the Z+jets
background comes from the irreducible component in which
Z → νν̄ decays generate large Emiss

T . Top quark pair
production followed by semileptonic decays, in particular
t t̄ → bb̄τνqq ′ (with the τ -lepton decaying to hadrons), as
well as single-top-quark events, can also generate large Emiss

T
and satisfy the jet and lepton-veto requirements. The multi-jet
background in the signal regions is due to missing transverse
momentum from misreconstruction of jet energies in the
calorimeters, as well as neutrino production in semileptonic
decays of heavy-flavour hadrons. After applying the require-
ments based on φ(jet, Emiss

T )min and Emiss
T /meff(Nj) listed

in Table 2 the remaining multi-jet background is negligible.
In order to estimate the backgrounds in a consistent and

robust fashion, four control regions are defined for each of
the seven signal regions, giving 28 CRs in total. The CR
selections are optimized to maintain adequate statistical pre-

cision while minimizing the systematic uncertainties arising
from the extrapolation of the CR event yield to estimate the
background in the SR. This latter requirement is addressed
through the use of CR jet pT thresholds and meff (incl.) selec-
tions which match those used in the SR. The CR definitions
are listed in Table 3.

The CRγ region is used to estimate the contribution of
Z(→ νν̄)+jets background events to each SR by selecting
a sample of γ +jets events with pT(γ ) > 130 GeV and then
treating the reconstructed photon as contributing to Emiss

T .
For pT(γ ) significantly larger than mZ the kinematic proper-
ties of such events strongly resemble those of Z+jets events
[13]. In order to reduce the theoretical uncertainties asso-
ciated with the Z/γ ∗+jets background expectations in SRs
arising from the use of LO γ +jets cross-sections, a correction
factor is applied to the CRγ events. This correction factor,
κ = 1.5 ± 0.1, is determined by comparing CRγ observa-
tions with those in a highly populated auxiliary control region
defined by selecting events with two electrons or muons for
which the invariant mass lies within 25 GeV of the mass of
the Z boson, satisfying 200 GeV < |Emiss

T + pT(

̄)| <

300 GeV, together with at least two jets.
The CRW and CRT regions aim to select samples rich

in W (→ 
ν)+jets and semileptonic t t̄ background events
respectively. Consequently, they differ in their number of
b-jets (zero or greater or equal to one respectively) but apply
the same selection requirements on the transverse mass mT

formed by the Emiss
T and a high-purity lepton with pT >

25 GeV. These samples are used to estimate respectively
the W+jets and combined t t̄ and single-top background pop-
ulations, treating the lepton as a jet with the same momen-
tum to model background events in which a hadronically
decaying τ -lepton is produced or events in which no base-
line electron or muon is reconstructed because it is outside the
detector acceptance or below the required pT threshold. The
CRW and CRT selections omit the SR selection requirements
on φ(jet, Emiss

T )min or Emiss
T /meff(Nj) (Emiss

T /
√
HT where

appropriate) in order to increase the number of CR data events
without significantly increasing the theoretical uncertainties
associated with the background estimation procedure.
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Fig. 2 Observed meff (incl.) distributions in control regions a CRγ , b
CRW and c CRT after selecting events with Emiss

T > 200 GeV and at
least four energetic jets with the corresponding transverse momenta
as indicated in Table 2 for SR 4jt. No selection requirements on
φ(jet, Emiss

T )min or Emiss
T /meff (Nj) are applied in these distributions.

The arrows indicate the values at which the requirements on meff (incl.)

are applied. The histograms denote the pre-fit MC background expecta-
tions, normalized to cross-section times integrated luminosity. The last
bin includes the overflow. In the lower panels the hatched (red error
bands) denote the combined experimental, MC statistical and theoreti-
cal modelling uncertainties

The CRQ region uses reversed selection requirements on
φ(jet, Emiss

T )min and on Emiss
T /meff(Nj) (or Emiss

T /
√
HT

where appropriate) to produce samples enriched in multi-jet
background events.

As an example, the meff(incl.) distributions in control
regions associated with SR 4jt are shown in Fig. 2. In all

CRs, the data are consistent with the pre-fit MC background
prediction within uncertainties, although the overall normal-
ization is lower by approximately one standard deviation.

The background estimation procedure is validated by
comparing the numbers of events observed in the VRs to the
corresponding SM background expectations obtained from
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Fig. 3 Differences between the numbers of observed events in data and
the SM background predictions for each VR, expressed as a fraction of
the total uncertainty which combines the uncertainty on the background
expectations, and the expected statistical uncertainty of the test obtained
from the number of expected events

the background-only fits. Several VR samples are selected
with requirements distinct from those used in the CRs, which
maintain a low probability of signal contamination.

The CRγ estimates of the Z(→ νν̄)+jets background are
validated using the samples of Z(→ 

̄)+jets events selected
by requiring high-purity lepton pairs of opposite sign and
identical flavour for which the dilepton invariant mass lies
within 25 GeV of the mass of the Z boson (VRZ). In VRZ,
the leptons are treated as contributing to Emiss

T .
The CRW and CRT estimates of the W+jets and top quark

background are validated with the same CRW and CRT selec-
tions, but reinstating the requirement on φ(jet, Emiss

T )min

and Emiss
T /meff(Nj) (or Emiss

T /
√
HT as appropriate), and

treating the lepton either as a jet (VRW, VRT) or as con-
tributing to Emiss

T (VRWν, VRTν).
The CRQ estimates of the multi-jet background are val-

idated with VRs for which the CRQ selection is applied,
but with the SR Emiss

T /meff(Nj) (Emiss
T /

√
HT) requirement

reinstated (VRQa), or with a requirement of an intermediate
value of φ(jet, Emiss

T )min applied (VRQb).
The results of the validation procedure are shown in

Fig. 3. The entries in the matrix are the differences between
the numbers of observed and expected events expressed
as fractions of the one-standard deviation (1σ) uncertain-
ties on the latter. Most VR observations lie within 1σ of
the background expectations, with the largest discrepancy
out of 49 VRs being −1.5σ the CRQb associated with the
SR 4jt.

8 Systematic uncertainties

Systematic uncertainties in background estimates arise from
the use of extrapolation factors which relate observations in
the control regions to background expectations in the signal
regions, and from the MC modelling of minor backgrounds.

The overall background uncertainties, detailed in Table 4,
range from 8 % in SR 2jl to 29 % in SR 6jt. In SR 2jl the loose
selection minimizes theoretical uncertainties and the impact
of statistical fluctuations in the CRs, while the opposite is
true in SR 6jt.

For the backgrounds estimated with MC simulation-
derived extrapolation factors, the primary common sources
of systematic uncertainty are the jet energy scale (JES) cali-

Table 4 Breakdown of the dominant systematic uncertainties in the
background estimates. The individual uncertainties can be correlated,
and do not necessarily add in quadrature to the total background uncer-
tainty. μ uncertainties are the result of the control region statistical

uncertainties and the systematic uncertainties entering a specific control
region. In brackets, uncertainties are given relative to the expected total
background yield, also presented in the Table. Empty cells (indicated
by a ‘–’) correspond to uncertainties lower than 1 per mil

Channel 2jl 2jm 2jt 4jt 5j 6jm 6jt

Total bkg 283 191 23 4.6 13.2 6.9 4.2

Total bkg unc. ±24 [8 %] ±21 [11 %] ±4 [17 %] ±1.1 [24 %] ±2.2 [17 %] ±1.5 [22 %] ±1.2 [29 %]

MC statistics – ±2.3 [1 %] ±0.5 [2 %] ±0.31 [7 %] ±0.5 [4 %] ±0.4 [6 %] ±0.32 [8 %]

μZ+jets ±7 [2 %] ±6 [3 %] ±2.5 [11 %] ±0.7 [15 %] ±1.0 [8 %] ±0.8 [12 %] ±0.7 [17 %]

μW+jets ±10 [4 %] ±8 [4 %] ±1.2 [5 %] ±0.5 [11 %] ±1.1 [8 %] ±0.7 [10 %] ±0.5 [12 %]

μ Top ±1.8 [1 %] ±2.0 [1 %] ±0.23 [1 %] ±0.26 [6 %] ±0.4 [3 %] ±0.24 [3 %] ±0.22 [5 %]

μMulti-jet ±0.05 [0 %] ±0.09 [0 %] ±0.1 [0 %] – – – –

CRγ corr. factor ±11 [4 %] ±7 [4 %] ±1.0 [4 %] ±0.17 [4 %] ±0.4 [3 %] ±0.21 [3 %] ±0.15 [4 %]

Theory Z ±8 [3 %] ±4 [2 %] ±2.4 [10 %] ±0.6 [13 %] ±0.6 [5 %] ±0.5 [7 %] ±0.6 [14 %]

Theory W ±2.9 [1 %] ±2.5 [1 %] ±0.5 [2 %] ±0.29 [6 %] ±0.7 [5 %] ±0.5 [7 %] ±0.4 [10 %]

Theory top ±2.1 [1 %] ±2.1 [1 %] ±0.28 [1 %] ±0.12 [3 %] ±0.8 [6 %] ±0.4 [6 %] ±0.13 [3 %]

Theory diboson ±15 [5 %] ±15 [8 %] ±1.0 [4 %] – ±1.0 [8 %] – –

Jet/Emiss
T ±0.7 [0 %] ±0.6 [0 %] ±0.09 [0 %] ±0.1 [2 %] ±0.4 [3 %] ±0.21 [3 %] ±0.19 [5 %]
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Fig. 4 Comparison of the observed and expected event yields as a func-
tion of signal region. The background expectations are those obtained
from the background-only fits, presented in Table 5

bration, jet energy resolution (JER), theoretical uncertainties,
and limited event yields in the MC samples and data CRs.
Correlations between uncertainties (for instance between JES
or JER uncertainties in CRs and SRs) are taken into account
where appropriate.

The JES uncertainty was measured using the techniques
described in Refs. [76,87,88]. The JER uncertainty is esti-
mated using the methods discussed in Refs. [76,89]. An
additional uncertainty in the modelling of energy not associ-
ated with reconstructed objects, used in the calculation of
Emiss

T and measured with unassociated charged tracks, is
also included. The combined JES, JER and Emiss

T (Jet/Emiss
T )

uncertainty ranges from <1 % of the expected background
in 2-jet SRs to 5 % in SR 6jt.

Uncertainties arising from theoretical modelling of back-
ground processes are evaluated by comparing samples pro-
duced with different MC generators. The W/Z+jets events
generated with Sherpa are compared to events generated
with MG5_aMC@NLO at leading order and interfaced to
the Pythia 8.186 parton shower model. Uncertainties in the
modelling of top quark pair production are estimated by com-
paring Powheg- Box to aMc@Nlo [90], and by account-
ing for different generator and radiation tunes. Uncertainties
associated with PDF modelling of top quark pair production
are found to be negligible. Uncertainties in diboson produc-
tion due to PDF, renormalization, factorization and resumma-
tion scale uncertainties (estimated by increasing and decreas-
ing the scales used in the MC generators by a factor of two)

Table 5 Numbers of events observed in the signal regions used in the
analysis compared with background expectations obtained from the
fits described in the text. No signal contribution is considered in the
CRs for the fit. Empty cells (indicated by a ‘–’) correspond to esti-
mates lower than 0.01. The p-values (p0) give the probabilities of the
observations being consistent with the estimated backgrounds. For an
observed number of events lower than expected, the p value is truncated

at 0.5. Between parentheses, p-values are also given as the number of
equivalent Gaussian standard deviations (Z). Also shown are 95 % CL
upper limits on the visible cross-section (〈εσ 〉95

obs), the visible number
of signal events (S95

obs ) and the number of signal events (S95
exp) given

the expected number of background events (and ±1σ excursions of the
expectation)

Signal Region 2jl 2jm 2jt 4jt 5j 6jm 6jt

MC expected events

Diboson 31 31 3.5 0.6 2.1 0.9 0.4

Z/γ ∗+jets 167 104 13 2.0 5.4 2.8 1.4

W+jets 80 46 5.0 1.1 3.4 1.7 1.0

t t̄(+EW) + single top 18 17 1.3 0.9 2.7 1.6 1.0

Multi-jet 0.7 0.8 0.04 – – – –

Total MC 296 199 23 4.6 14 7.0 3.8

Fitted background events

Diboson 31 ± 15 31 ± 16 3.5 ± 1.8 0.6 ± 0.3 2.1 ± 1.1 0.9 ± 0.5 0.43 ± 0.27

Z/γ ∗+jets 170 ± 16 114 ± 11 16 ± 4 2.5 ± 0.9 6.0 ± 1.3 3.2 ± 1.0 2.2 ± 1.0

W+jets 68 ± 10 35 ± 9 3.5 ± 1.3 0.9 ± 0.6 3.5 ± 1.3 1.9 ± 0.9 1.2 ± 0.7

t t̄(+EW) + single top 14 ± 3 10 ± 3 0.7 ± 0.4 0.6 ± 0.3 1.7 ± 0.9 0.9 ± 0.5 0.32 ± 0.26

Multi-jet 0.49 ± 0.05 0.6 ± 0.4 0.02 ± 0.10 – – – –

Total bkg 283 ± 24 191 ± 21 23 ± 4 4.6 ± 1.1 13.2 ± 2.2 6.9 ± 1.5 4.2 ± 1.2

Observed 263 191 26 7 7 4 3

〈εσ 〉95
obs [fb] 16 15 5.2 2.7 1.7 1.7 1.6

S95
obs 44 48 17 8.7 5.4 5.4 5.0

S95
exp 54+21

−14 48+16
−10 14.0+5.4

−3.9 6.3+2.9
−1.7 8.7+4.2

−1.9 6.6+3.2
−1.5 5.7+2.8

−1.5

p0 (Z) 0.50 (0.00) 0.50 (0.00) 0.40 (0.26) 0.17 (0.94) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)
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Fig. 5 Observed meff (incl.) distributions for the a 2jl, b 2jm, c 2jt
signal regions. The histograms denote the MC background expecta-
tions prior to the fits described in the text, normalized to cross-section
times integrated luminosity. The last bin includes the overflow. In the
lower panels the hatched (red error bands) denote the combined exper-

imental, MC statistical and theoretical modelling uncertainties. The
arrows indicate the values at which the requirements on meff (incl.) are
applied. Expected distributions for benchmark model points, normal-
ized to NLO+NLL cross-section (Sect. 3) times integrated luminosity,
are also shown for comparison (masses in GeV)

are accounted for by applying a uniform 50 % uncertainty in
all SRs, and are the dominant source of uncertainty in SRs
2jl and 2jm. Uncertainties associated with the modelling of
Z+jets production are largest in the SRs with tight selection
cuts (up to 14 %). The statistical uncertainty arising from the
use of MC samples is largest (8 %) in SR 6jt. The uncertain-
ties arising from the data-driven correction procedure applied
to events selected in the CRγ region, described in Sect. 7,

are included in Table 4 under ‘CRγ corr. factor’ and reach a
value of 4 % in most of the SRs. The impact of lepton recon-
struction uncertainties, and of the uncertainties related to the
b-tag/b-veto efficiency, on the overall background uncer-
tainty are found to be negligible for all SRs. The total back-
ground uncertainties for all SRs, broken down into the main
contributing sources, are summarized in Table 4.
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Fig. 6 Observed meff (incl.) distributions for the a 4jt, b 5j, c 6jm
and d 6jt signal regions. The histograms denote the MC background
expectations prior to the fits described in the text, normalized to cross-
section times integrated luminosity. The last bin includes the overflow.
In the lower panels the hatched (red error bands) denote the combined

experimental, MC statistical and theoretical modelling uncertainties.
The arrows indicate the values at which the requirements on meff (incl.)
are applied. Expected distributions for benchmark model points, nor-
malized to NLO+NLL cross-section (Sect. 3) times integrated luminos-
ity, are also shown for comparison (masses in GeV)

9 Results, interpretation and limits

The number of events observed in the data and the number of
SM events expected to enter each of the signal regions, deter-
mined using the background-only fit, are shown in Table 5
and Fig. 4. The pre-fit background expectations are also
shown in Table 5 for comparison. The normalisation factors

extracted simultaneously through the fit range for the differ-
ent signal regions between 0.7 and 1.2 for W+jets, 0.4 and
0.8 for t t̄(+EW) + single top, and 1.0 and 1.6 for Z/γ ∗+jets
backgrounds.

Distributions ofmeff(incl.) obtained before the final selec-
tions on this quantity (but after applying all other selections),
for data and the different MC samples normalized with the
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theoretical cross-sections, i.e. before applying the normal-
ization from the CR fit, are shown in Figs. 5 and 6. Exam-
ples of typical expected SUSY signals are shown for illus-
tration. These signals correspond to the processes to which
each SR is primarily sensitive – q̃q̃ production for the lower
jet-multiplicity SRs and g̃g̃ production for the higher jet-
multiplicity SRs. In these figures, data and background dis-
tributions largely agree within uncertainties. The differences
seen in the lower regions of meff(incl.) distribution (1.2 –
2.0 TeV) in Fig. 6 do not affect the background expecta-
tions in the signal regions since the backgrounds are normal-
ized using control regions (Table 3) with the samemeff(incl.)
selections. The fit to the CRs for each SR compensates for the
differences related to the overall normalization of the back-
ground seen in Figs. 5 and 6, leading to the good agreements
between data and post-fit expectations in the SRs observed
in Table 5 and Fig. 4.

In the absence of a statistically significant excess, limits
are set on contributions to the SRs from BSM physics. Upper
limits at 95 % CL on the number of BSM signal events in
each SR and the corresponding visible BSM cross-section are
derived from the model-independent fits described in Sect. 5
using the CLs prescription. Limits are evaluated using MC
pseudo-experiments. The results are presented in Table 5.

The model-dependent fits in all the SRs are then used to set
limits on specific classes of SUSY models, using the result
from the SR with the best expected sensitivity at each point in
each model parameter space. ‘Observed limits’ are calculated
from the observed SR event yields for the nominal signal
cross-section. ‘Expected limits’ are calculated by setting the
nominal event yield in each SR to the corresponding mean
expected background.

In Fig. 7, limits are shown for two classes of simpli-
fied models in which only direct production of light-flavour
squark or gluino pairs are considered. In these simplified
model scenarios, the upper limit of the excluded light-flavour
squark mass region is 1.03 TeV assuming massless χ̃0

1 , as
obtained from the signal region 2jt. The corresponding limit
on the gluino mass is 1.51 TeV if the χ̃0

1 is massless, as
obtained from the signal region 4jt. The best sensitivity in
the region of parameter space where the mass difference
between the squark (gluino) and the lightest neutralino is
small is obtained from the signal region 2jm.

In Fig. 8, limits are shown for pair-produced gluinos
each decaying via an intermediate χ̃±

1 to two quarks, a
W boson and a χ̃0

1 . Results are presented for simplified
models in which the mass of the chargino χ̃±

1 is fixed to
m(χ̃±

1 ) = (m(g̃)+m(χ̃0
1 ))/2. For a χ̃0

1 mass of ∼ 200 GeV,
the lower limit on the gluino mass, obtained from the signal
region 4jt, extends up to 1.5 TeV in this model. In the region
of parameter space where the mass difference between the
gluino and the lightest neutralino is small, the best sensi-
tivity is obtained from the signal region 2jm. Results are
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Fig. 7 Exclusion limits for direct production of a light-flavour squark
pairs with decoupled gluinos and b gluino pairs with decoupled squarks.
Gluinos (light-flavour squarks) are required to decay to two quarks
(one quark) and a neutralino LSP. Exclusion limits are obtained by
using the signal region with the best expected sensitivity at each point.
The blue dashed lines show the expected limits at 95 % CL, with the
light (yellow) bands indicating the 1σ excursions due to experimen-
tal and background-only theoretical uncertainties. Observed limits are
indicated by medium dark (maroon) curves where the solid contour rep-
resents the nominal limit, and the dotted lines are obtained by varying
the signal cross-section by the renormalization and factorization scale
and PDF uncertainties. Results are compared with the observed limits
obtained by the previous ATLAS search [15]. The black stars indicate
the benchmark models used in Figs. 5 and 6

compared with the observed limits obtained from the statis-
tical combination of the search with no lepton and the search
with one isolated lepton, high-pT jets and missing transverse
momentum performed at ATLAS [15] using the 8 TeV data.
Statistical combinations of these two searches, designed to
be statistically independent in their signal and control region
definitions, are performed in order to increase the exclusion
reach in models in which at least two analyses obtain com-
parable sensitivities, and still provide the strongest exclusion
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Fig. 8 Exclusion limits for pair-produced gluinos each decaying via
an intermediate χ̃±

1 to two quarks, a W boson and a χ̃0
1 for models

with a fixed m(χ̃±
1 ) = (m(g̃) + m(χ̃0

1 ))/2 and varying values of m(g̃)
and m(χ̃0

1 ). Exclusion limits are obtained by using the signal region
with the best expected sensitivity at each point. The blue dashed lines
show the expected limits at 95 % CL, with the light (yellow) bands
indicating the 1σ excursions due to experimental and background-only
theoretical uncertainties. Observed limits are indicated by medium dark
(maroon) curves where the solid contour represents the nominal limit,
and the dotted lines are obtained by varying the signal cross-section
by the renormalization and factorization scale and PDF uncertainties.
Results are compared with the observed limits obtained from the statis-
tical combination of the search with no lepton and the search with one
isolated lepton, high-pT jets and missing transverse momentum per-
formed at ATLAS [15]. The black stars indicate the benchmark models
used in Fig. 6

limits in the region of parameter space in which the mass of
gluino is between 700 and 1100 GeV and the χ̃0

1 mass is
above ∼500 GeV.

10 Conclusion

This paper reports a search for squarks and gluinos in
final states containing high-pT jets, large missing transverse
momentum but no electrons or muons, based on a 3.2 fb−1

dataset of
√
s = 13TeV proton–proton collisions recorded

by the ATLAS experiment at the LHC in 2015. Good agree-
ment is seen between the numbers of events observed in the
data and the numbers of events expected from SM processes.

Results are interpreted in terms of simplified models with
only light-flavour squarks, or gluinos, together with a neu-
tralino LSP, with the masses of all the other SUSY particles
set beyond the reach of the LHC. For a massless lightest
neutralino, gluino masses below 1.51 TeV are excluded at the
95 % confidence level in a simplified model with only gluinos
and the lightest neutralino. For a simplified model involv-
ing the strong production of squarks of the first and second
generations, with decays to a massless lightest neutralino,
squark masses below 1.03 TeV are excluded, assuming mass-
degenerate squarks. In simplified models with pair-produced

gluinos, each decaying via an intermediate χ̃±
1 to two quarks,

a W boson and a χ̃0
1 , gluino masses below 1.5 TeV are

excluded for χ̃0
1 masses of ∼ 200 GeV. These results substan-

tially extend the region of supersymmetric parameter space
excluded by previous LHC searches.
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