
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/159701

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/79162527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/159701


The Gravitational Two-Loop Counterterm is Asymptotically Safe

Holger Gies,1, ∗ Benjamin Knorr,1, † Stefan Lippoldt,1, ‡ and Frank Saueressig2, §

1Theoretisch-Physikalisches Institut, Abbe Center of Photonics,
Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

2Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),
Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Weinberg’s asymptotic safety scenario provides an elegant mechanism to construct a quantum
theory of gravity within the framework of quantum field theory based on a non-Gaußian fixed point
of the renormalization group flow. In this work we report novel evidence for the validity of this
scenario, using functional renormalization group techniques to determine the renormalization group
flow of the Einstein-Hilbert action supplemented by the two-loop counterterm found by Goroff
and Sagnotti. The resulting system of beta functions comprises three scale-dependent coupling
constants and exhibits a non-Gaußian fixed point which constitutes the natural extension of the
one found at the level of the Einstein-Hilbert action. The fixed point exhibits two ultraviolet
attractive and one repulsive direction supporting a low-dimensional UV-critical hypersurface. Our
result vanquishes the longstanding criticism that asymptotic safety will not survive once a “proper
perturbative counterterm” is included in the projection space.

INTRODUCTION

General relativity, based on the Einstein-Hilbert ac-
tion, provides a highly successful classical description of
gravitational phenomena from sub-millimeter to cosmic
scales. A central puzzle for the construction of a consis-
tent quantum theory of gravity is its perturbative non-
renormalizability. This is manifested by the fact, that
an expansion in terms of Newton’s constant about flat
spacetime gives rise to a divergence at two-loop order.
This spoils meaningful predictions for S-matrix elements,
unless a Goroff-Sagnotti counter-term of the form [1–3]

ΓGS =
1

ε

209

2880

1

(16π2)2

∫
d4x
√
g Cµν

κλCκλ
ρσCρσ

µν (1)

with the Weyl-tensor Cµνρσ, is added to the bare action
in order to cancel the divergence (in dimensional regu-
larization). In combination with power-counting argu-
ments, this is taken as a signal that an infinite number
of counterterms is needed for rendering the full perturba-
tive expansion meaningful. Since renormalization theory
relates each counterterm to a free parameter to be fixed
from experimental data, the appearance of the Goroff-
Sagnotti term suggests that the perturbative quantiza-
tion of the Einstein-Hilbert action requires fixing in-
finitely many parameters. This observation is often in-
terpreted as evidence that conventional quantization of
gravity is doomed to fail.

The presence of the counterterm (1) triggered the in-
vestigation of a variety of alternative routes towards
quantizing gravity, e.g., by modifying the quantization
rules, changing the fundamental degrees of freedom, or
abandoning local quantum field theory altogether as a
fundamental framework for quantum gravity [4–6]. Ulti-
mately, any consistent quantum gravity theory allowing
for a classical limit containing Einstein’s theory of grav-
ity, as well as its semi-classical extension as a low-energy

effective theory for quantized gravitons, has to clarify
the fate of the divergencies related to the Goroff-Sagnotti
term.

This requirement is more than a technical necessity,
as renormalizability – beyond being a strategy of han-
dling divergencies – is a statement about the separability
of low-energy observables from physics at highest energy
scales. For instance, quantum gravity scenarios that start
from discretized building blocks of spacetime and a fun-
damental length scale may render all divergencies finite.
Still, S-matrix elements would generically receive large
contributions from potentially large higher-order opera-
tors, requiring to fix a substantial, if not infinite, set of
physical parameters.

At first sight, a natural solution appears to be that the
divergencies cancel, e.g., because of a new symmetry at
a more fundamental level. While certainly possible, the
problem of separation of low-energy physics from highest
energy scales may come in again through the backdoor,
as this symmetry has to be broken (or restored) at low
energy potentially requiring a fine-tuned separation of
scales and a large number of parameters.

An indiscriminate association of (1) with quantum
field theory approaches to quantum gravity ignores the
fact that the Wilsonian viewpoint of renormalization al-
ready offers a solution to this puzzle: higher-dimensional
operators decouple from the low-energy physics propor-
tional to an inverse power of a high scale Λ, provided
such operators do not acquire large anomalous dimen-
sions. For instance, the C3 operator in (1) would be
expected to decouple ∼ 1/Λ2 if the anomalous dimen-
sion was small. If so, the 1/ε-pole may merely indicate a
subleading log-correction as sensed by dimensional regu-
larization. This may sound like a circular argument, as
such conclusions can only be drawn in perturbation the-
ory after the theory has been renormalized. Nevertheless,
the Wilsonian viewpoint is known to hold also in systems
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with a similar breakdown of perturbative quantization,
where a well-controllable ultraviolet limit is facilitated
by the existence of an interacting renormalization group
(RG) fixed point [7–9].

In the present letter, we provide novel evidence that
the Goroff-Sagnotti term is indeed an irrelevant opera-
tor from the Wilsonian viewpoint. Our results demon-
strate that the challenge posed by the perturbative two-
loop analysis is solved by a renormalization flow that de-
couples the high-scale physics from (semi-)classical Ein-
steinian low-energy gravity in much the same way as in
conventional quantum field theories. For this, we deter-
mine the decoupling of the Goroff-Sagnotti term towards
the IR quantitatively.

The new ingredient compared to the perturbative anal-
ysis is the investigation of the RG flow beyond the per-
turbative Gaußian fixed point (GFP). In fact, our results
confirm the existence of an interacting non-Gaußian fixed
point (NGFP) that controls the high-energy limit of grav-
ity, as required for the asymptotic safety scenario [8–14].
By now, the existence of a suitable NGFP has been es-
tablished within many approximations [15–35]. In par-
ticular, it has been shown in the case of gravity coupled
to scalar matter that the asymptotic safety mechanism
remains intact once the one-loop counterterm is included
[22, 23]. Paralleling this observation, we establish that
the Goroff-Sagnotti term supplements only a subdomi-
nant quantitative correction to the high-energy behavior
of pure gravity: the C3 operator approaches an interact-
ing fixed point in the UV and becomes irrelevant towards
the IR at an even enhanced rate compared to canonical
scaling.

This demonstrates that the asymptotic safety scenario
for quantum gravity can solve this long-standing puzzle
in a constructive and quantifiable manner, disclosing the
two-loop divergence of (1) as a mere perturbative arti-
fact.

FUNCTIONAL RENORMALIZATION

A powerful tool to investigate renormalizability based
on interacting RG fixed points is provided by the func-
tional RG. In the incarnation based on the effective av-
erage action Γk [36], the functional RG equation

k∂kΓk = 1
2Str

[(
Γ
(2)
k +Rk

)−1
k∂kRk

]
(2)

realizes Wilson’s idea of renormalization by integrating
out quantum fluctuations shell-by-shell in momentum
space. The use of the two-point correlator Γ

(2)
k leads to

a formally exact equation. Owed to the regulator Rk the
change of Γk is driven by quantum fluctuations with mo-
menta close to k. A key advantage of the functional RG
is that it permits approximations which do not rely on

a small expansion parameter. Moreover, the flow equa-
tion allows investigating RG flows without the need of
specifying a fundamental action a priori. This makes the
setup predestined for searching for fixed points of the
renormalization flow beyond the realm of perturbation
theory.

We focus on the case where the gravitational de-
grees of freedom are carried by the spacetime metric
gµν . The flow equation (2) can then be constructed
via the background-field method splitting the full met-
ric in a background metric ḡµν and fluctuations hµν ,
gµν = ḡµν + hµν [10]. In this way the effective average
action can be computed in a covariant way.

PROJECTION OF THE FLOW EQUATION

We study the gravitational renormalization flow pro-
jected on the Einstein-Hilbert action supplemented by
the two-loop counterterm (1). Our ansatz for the grav-
itational part of the effective average action, closely fol-
lowing [3], reads

Γk = ΓEH
k + ΓGS

k . (3)

Here

ΓEH
k =

1

16πGk

∫
d4x
√
g (−R+ 2Λk) (4)

is the Einstein-Hilbert action including a scale-dependent
Newton’s constant and cosmological constant, and

ΓGS
k = σ̄k

∫
d4x
√
g Cαβ

µνCµν
ρσCρσ

αβ (5)

is the two-loop counterterm found by Goroff and Sagnotti
with a scale-dependent coupling σ̄k. The gravitational
part of the effective average action is supplemented by
a standard gauge-fixing procedure and we adhere to the
harmonic gauge used in [10]. The perturbative result
(1) suggests that σ̄k diverges at least as ln k for k → ∞
even in the flat-space on-shell limit Λk → 0 and after the
Newton coupling has been renormalized.

The RG flow of the couplings is found by substituting
the ansatz (3) into Eq. (2) and computing the coefficients
multiplying the curvature terms appearing in Eqs. (4)
and (5). The evaluation of the trace utilizes the tech-
nology of the universal RG machine [37] together with
off-diagonal heat-kernel methods [38–42].

Two crucial features make this formidable computa-
tion feasible: firstly, we use the Ricci scalar, Ricci ten-
sor, and Weyl tensor to construct a basis for the inter-
action monomials containing a fixed number of covariant
derivatives. The second functional derivative of (5) re-
sults in a sum of terms containing at least one power of
the Weyl tensor. Since C is trace-free by construction, all
its contractions with the metric vanish. This entails that
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there is no feedback of the Goroff-Sagnotti term on the
renormalization flow of Newton’s constant and the cos-
mological constant. We conclude already at this point
that the asymptotic safety properties observed in the
Einstein-Hilbert sector are stable upon the inclusion of
the Goroff-Sagnotti term. Secondly, the contribution of
the Goroff-Sagnotti term to the two-point correlator is of
the form σ̄k (C + higher powers of the curvature). This
structure implies that the β function encoding the flow
of σ̄k is a cubic in σ̄k with coefficients depending on New-
ton’s constant and the cosmological constant. As a cubic
has at least one zero, also the Goroff-Sagnotti coupling
must have a fixed point and hence the associated dimen-
sionless coupling does not necessarily diverge for k →∞.
The remaining crucial question is whether the C3 term
is a relevant (as suggested by perturbation theory) or an
irrelevant operator. In case of irrelevance, the Goroff-
Sagnotti term does neither require the fixing of an addi-
tional physical parameter nor induces a proliferation of
counterterms.

In order to determine the coefficients of this cubic it
suffices to isolate the term ∼ C3 from the trace of Eq. (2).
As the curvature terms are orthogonal, any term contain-
ing a Ricci scalar or Ricci tensor will not contribute to
C3 and it is sufficient to keep track of powers of the Weyl
tensor and its covariant derivatives. Formally, this can
be achieved with a background metric ḡµν of a Ricci-flat
K3-surface. Terms contributing to the basis monomial
Eq. (5) appear in three different tensor structures which
are related by

Cαµ
β
νC

µ
ρ
ν
σC

ρ
α
σ
β =

1

2
Cµν

ρσCρσ
αβCαβ

µν ,

CµνρσD
2Cµνρσ ' − 3Cµν

ρσCρσ
αβCαβ

µν ,
(6)

where ' denotes that the identity holds up to terms con-
taining the Ricci scalar and Ricci tensor. The vertices
entering the computation have been constructed with the
Mathematica package xAct [43–48]. Employing the sim-
plifications of a K3-background, the Goroff-Sagnotti ver-
tex contains 900 terms whereas the Einstein-Hilbert ver-
tex has only one term. The computation was done with
xAct within one month of CPU time on a core with 2.8
GHz. Most of the CPU time is used for the two vertex
diagram due to the enormous number of terms generated
by the product rule for covariant derivatives. This makes
the present computation quite formidable and comple-
mentary to the recent progress in vertex expansions of
quantum gravity on flat spacetime [29] of similar com-
plexity.

β FUNCTIONS

The RG flow resulting from the ansatz (3) is con-
veniently written in terms of dimensionless couplings

gi ≡ {λ , g , σ},

λ ≡ Λk k
−2 , g ≡ Gk k2 , σ ≡ σ̄kk2 , (7)

and expressed in terms of the β functions

k∂k gi ≡ βgi(λ, g, σ) . (8)

The β functions for the dimensionless Newton’s constant
and cosmological constant have been known since the be-
ginning of the asymptotic safety program [10]. In four
spacetime dimensions and for the Litim regulator [49]
they read

βg = (2 + ηN ) g ,

βλ = (ηN − 2) λ+ g
2π

(
5

1−2λ − 4− 5
6ηN

1
1−2λ

)
.

(9)

Here ηN denotes the anomalous dimension of Newton’s
constant,

ηN =
g B1

1− gB2
, (10)

with

B1 =
1

3π

(
5

1−2λ −
9

(1−2λ)2 − 5
)
,

B2 =− 1

6π

(
5
2

1
(1−2λ) −

3
(1−2λ)2

)
.

(11)

The ansatz (3) complements this system by a β function
for σ,

βσ = c0 + (2 + c1)σ + c2 σ
2 + c3 σ

3 , (12)

where the coefficients ci(g, λ) are given by

c0 = 1
64π2(1−2λ)

(
2−ηN

2(1−2λ) + 6−ηN
(1−2λ)3 −

5ηN
378

)
,

c1 = 3g
16π(1−2λ)2

(
5(6− ηN ) + 23(8−ηN )

8(1−2λ) −
7(10−ηN )
10(1−2λ)2

)
,

c2 = g2

2(1−2λ)3

(
233(12−ηN )

10 − 9(14−ηN )
7(1−2λ)

)
,

c3 = 6πg3(18−ηN )
(1−2λ)4 . (13)

We emphasize that the highest-order coefficient c3 is posi-
tive for any admissible λ, positive Newton coupling g > 0,
and ηN < 18. We have verified that c3 is gauge indepen-
dent, and that its positivity is independent of the metric
parametrization [50–56]. The β function Eq. (12) is com-
puted for the first time and constitutes the main result
of this work.

FIXED POINTS AND RG FLOW

The Wilsonian viewpoint links renormalizability to
fixed points gi,∗ of the underlying RG flow where
βgi |gj,∗ = 0. Linearizing the β functions at a fixed point,
local properties of the flow are encoded in the stability
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coefficients θ defined as minus the eigenvalues of the sta-
bility matrix Bij ≡ ∂gjβgi |g∗ . Relevant directions, cor-
responding to free parameters of the theory to be fixed
by experiment, are associated with stability coefficients
with a positive real part.

Already the first calculations [10, 57, 58] revealed that
the system (9) exhibits a GFP and an NGFP

GFPEH : λ∗ = 0, g∗ = 0
NGFPEH : λ∗ = 0.193, g∗ = 0.707 .

(14)

The GFP corresponds to a free theory and is a saddle-
point: trajectories with a positive Newton coupling do
not end at the GFP at high energies, reflecting the per-
turbative non-renormalizability of the Einstein-Hilbert
action in the Wilsonian framework. The NGFP exhibits
a complex pair of stability coefficients

θ1,2 = 1.475± 3.043 i . (15)

Thus the NGFP is UV attractive for both Newton’s con-
stant and the cosmological constant making it suitable
for asymptotic safety.

The β function (12) clarifies the fate of the fixed point
structure (14) once the counterterm (5) is taken into ac-
count. Substituting λ∗ = g∗ = 0 into the β function for
σ shows that the GFPEH is mapped to

GFPGS : λ∗ = 0, g∗ = 0, σ∗ = − 7
128π2 . (16)

The stability coefficients of this fixed point coincide with
the classical mass dimension of the coupling constants;
the GFP remains a saddle point.

Focusing on the NGFP, it is illuminating to first study
the Einstein-Hilbert induced approximation of the β
function, where only the terms originating from (4) con-
tribute to the running of σ. Since the contribution of the
counterterm to the β function (12) is captured by the
coefficients c1, c2, and c3 this approximation corresponds
to setting c1 = c2 = c3 = 0. In this limit the flow has a
unique fixed point solution

sGFPGS : λ∗ = 0.193, g∗ = 0.707, σ∗ = −0.049, (17)

with stability coefficient θ3 = −2. This is the analogue
of the Gaußian fixed point for σ shifted by the finite
interactions of g and λ at the NGFP (14). The stability
coefficient indicates that the new direction is irrelevant
in agreement with power-counting arguments.

Taking into account the full non-linear contributions
from the C3 term, the cubic (12) again has exactly one
real root

NGFPGS : λ∗ = 0.193, g∗ = 0.707, σ∗ = −0.305 , (18)

extending the NGFP known from the Einstein-Hilbert
projection. The new stability coefficient θ3 = −79.39
is again negative, so that the new direction exhibits an

Figure 1. Phase diagram in (g, λ, σ) space from two perspec-
tives depicting trajectories emanating from the NGFP. The
thick line marks a trajectory with a long semi-classical regime
near the GFP.

even enhanced irrelevance. In fact, the positivity of c3
ensures that σ always has a fixed point for which C3 is
an irrelevant perturbation.

Fig. 1 shows the phase diagram in the theory space
spanned by (g, λ, σ). The flow is governed by the inter-
play of the GFP (16) and the NGFP (18). The left panel
depicts a (g, λ) perspective illustrating that the inclusion
of the Goroff-Sagnotti term leaves asymptotic safety as
observed with the Einstein-Hilbert ansatz [10, 58] and
the R2-extension [24] fully intact. The thick line exem-
plifies a trajectory which crosses over from the NGFP at
high energies to the GFP at low energies. In the vicinity
of the GFP the trajectory develops a long semi-classical
regime where the couplings scale classically. The right
panel presents a (g, σ) perspective; following the semi-
classical trajectory towards higher energies, we observe
that the Goroff-Sagnotti coupling is first enhanced but
then also attracted by NGFP in the deep UV. The di-
mensionful Goroff-Sagnotti coupling σ̄k → σ∗/k

2 hence
vanishes asymptotically for k →∞.

While the present ansatz (3) and calculation scheme
give a unique answer (18) for the fixed point, the num-
ber of real roots of the cubic β function (12) depends
sensitively on the fixed point values for g and λ. The
inclusion of higher-order operators thus has the poten-
tial to yield three fixed points. This does, however, not
change our conclusion about the irrelevance of the Goroff-
Sagnotti term, as two of these fixed points have proper-
ties equivalent to those discussed above. As an exam-
ple, let us consider the case where we neglect the cos-
mological constant, setting λ = 0 at all scales. Then,
the NGFP for Newton’s constant has three extensions to
the g, σ-plane. The one corresponding to (18) is located
at g∗ = 12π/23 ' 1.639, σ∗ = −0.226 and has stabil-
ity coefficients θ1 = 23/11 ' 2.09 and θ3 = −77.38.
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A second fixed point with the same g∗ and θ1 corre-
sponds to the shifted Gaußian fixed point for the Goroff-
Sagnotti coupling with σ∗ = −0.0023 and stability co-
efficient θ3 = −6.06. This confirms the existence of the
NGFP also in the zero-cosmological constant case ana-
lyzed by Goroff and Sagnotti.

CONCLUSIONS

We have studied the non-perturbative renormalization
flow of gravity projected onto the Einstein-Hilbert action
supplemented by the two-loop counterterm found by Go-
roff and Sagnotti. All versions of the β functions includ-
ing the Einstein-Hilbert induced approximation, the zero
cosmological-constant limit, and the β functions includ-
ing the full feedback of the counterterm, possess a non-
Gaußian fixed point in agreement with the gravitational
asymptotic safety scenario. This settles a long-standing
question demonstrating that this perturbative counter-
term does not have the power to destroy the non-Gaußian
fixed point seen in the Einstein-Hilbert projection. Also
the existence of trajectories with a (semi-)classical low-
energy regime is left untouched. Together with the recent
construction of fixed functionals [25, 59–71], the verifica-
tion of locality [29], and first steps towards clarifying uni-
tarity [72], this constitutes hard evidence that the asymp-
totic safety program indeed can give rise to a consistent
quantum theory of gravity within the framework of quan-
tum field theory along the lines envisioned by Weinberg
[9].
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