
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/159695

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/79162521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/159695

Eur. Phys. J. C (2016) 76:359
DOI 10.1140/epjc/s10052-016-4231-5

Special Article - Tools for Experiment and Theory

Competing Sudakov veto algorithms

Ronald Kleissa, Rob Verheyenb

Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science, Mailbox 79, Radboud University Nijmegen, P.O. Box 9010,
6500 GL Nijmegen, The Netherlands

Received: 31 May 2016 / Accepted: 23 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present a formalism to analyze the distribu-
tion produced by a Monte Carlo algorithm. We perform these
analyses on several versions of the Sudakov veto algorithm,
adding a cutoff, a second variable and competition between
emission channels. The formal analysis allows us to prove
that multiple, seemingly different competition algorithms,
including those that are currently implemented in most par-
ton showers, lead to the same result. Finally, we test their
performance in a semi-realistic setting and show that there
are significantly faster alternatives to the commonly used
algorithms.

1 Introduction

Parton showers form an integral part of the event genera-
tors that are commonly used to compare data from collider
experiments with theory [1–3]. The Sudakov veto algorithm
is used in the procedure of generating the subsequent emis-
sions that make up the shower. It facilitates the resumma-
tion of logarithmic contributions to all orders in the coupling
constant in a Monte Carlo framework, thereby producing
realistic final states. A positive ordering variable (scale) t is
typically evolved down from an initial scale u, generating
ordered branchings of partons. The scale of the next branch-
ing is selected according to a probability distribution of the
form

E(t; u) = p(t)�(t, u), (1)

where

�(t, u) ≡ exp

(
−

∫ u

t
p (τ) dτ

)
. (2)

a e-mail: R.Kleiss@science.ru.nl
b e-mail: rverheyen@science.ru.nl

The function p(t) is the branching kernel. The function
�(t, u) is known as the Sudakov form factor. It represents the
probability of no emission occurring between two scales. In
a Monte Carlo setting, scales must be sampled from Eq. (1).
To do that, the inverse of the Sudakov form factor must be
computed. Unfortunately, p(t) is typically not simple enough
for this inverse to be analytically calculable. Therefore, the
Sudakov veto algorithm is used. In this paper, we will present
a thorough analysis of this algorithm. In a practical setting,
Eq. (1) has to be extended in several ways, one of which is
the competition between branching channels. We will ana-
lyze the veto algorithm for these extensions, and we will in
particular provide multiple algorithms to handle competition.
Among these algorithms are those used currently by event
generators, and some alternatives which, although seemingly
different, will be shown to be equivalent. By implementing
them in an antenna parton shower much like [4–6], we test
their performance and show that the alternative algorithms
are much faster.

This paper is organized as follows. In Sect. 2, we will
first set up a formalism to analyze Monte Carlo algorithms in
general. This formalism is then used to show the validity of
the Sudakov veto algorithm in Sect. 3. Next, in Sect. 4, the
algorithm is extended to include a cutoff scale, a second vari-
able and competition between branching channels. We will
then prove the equivalence of several different algorithms for
competition. In Sect. 5, the performance of these algorithms
is tested by implementing them in an actual parton shower.

2 The unitary algorithm formalism

A useful approach to the analysis of algorithms can be formu-
lated in terms of integration results. This can be denoted the
formalism of unitary algorithms. The idea is that these inte-
gration results can be translated, at the one hand, into positive
statements and, on the other hand, into readily implementable
pseudocode. Let g(x) be a probability density. Then, the for-
mula

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4231-5&domain=pdf
mailto:R.Kleiss@science.ru.nl
mailto:rverheyen@science.ru.nl

 359 Page 2 of 11 Eur. Phys. J. C (2016) 76:359

1 =
∫

g(x) dx (3)

on the one hand reads ‘we have an algorithm to generate
random numbers according to the distribution g(x)′, and, on
the other hand, the pseudocode statement

x ← g (4)

which says that the number x be obtained from the algo-
rithm delivering the distribution g. As a simple example, the
statement

1 =
∫ 1

0
dx (5)

implies that we have available an algorithm that delivers
random numbers x , uniformly distributed with the density
θ(0 < x < 1), where we have defined the logical step func-
tion

θ(S) =
{

1 if the statement S is true,
0 if the statement S is false.

(6)

And indeed, this just says ‘we generate a random num-
ber uniformly distributed between 0 and 1’, using the pseu-
dorandom number generator of choice.1 In fact, to shorten
notation later on, we will denote any random number gener-
ated according to Eq. (5) by ρ. A second ingredient of the
formalism is the assignment operation

1 =
∫

dy δ(y − h(x)), (7)

which is equivalent to the pseudocode statement

y ← h(x). (8)

We shall of course use the standard result

δ(y − h(x)) =
∑
j

1

|h′(x)| δ(x − x j), (9)

where the sum runs over the roots x j ofh(x) = y (all assumed
to be single). It is to be noted here that the integral over y runs
over all real values, but if the range of h is restricted to h0 ≤
h(x) ≤ h1, then we automatically have the corresponding
bounds on y.

As a simple example, let us imagine the inverse of the
primitive function P(t) of p(t) from Eq. (1) is available.

1 A possible source of conflict is that the formalism uses the real-
number model of computation, while of course the actual code uses
finite-wordsize numbers. On the other hand, any algorithm that is sen-
sitive to the difference between the two models of computation is tainted
and should be shunned.

The pseudocode to generate values of t according to Eq. (1)
is:

t ← P−1(log(ρ) + P (u)), (10)

where ρ here and in the following comes from an (idealized)
source of iid2 random numbers uniform in (0, 1]. We analyze
Eq. (10):

1 =
∫ 1

0
dρ

∫
dt δ(t − P−1(log(ρ) + P(u)))

=
∫ 1

0
dρ

∫
dt δ(P(t) − log(ρ) − P(u))p(t)

=
∫ 1

0
dρ

∫
dt δ(ρ − eP(t)−P(u))eP(t)−P(u) p(t)

=
∫ u

0
dt p(t)e− ∫ u

t p(t). (11)

So that ‘we have an algorithm to generate t according to
Eq. (1)′, where the algorithm is of course given by Eq. (10).

A variant of the formalism is encountered in the rejection
algorithm, which is already very close to the Sudakov veto
algorithm. Let g(x) be a probability density that we can gen-
erate, f (x) a non-negative function, and c a number such
that c g(x) ≥ f (x) over the support of f (x). The rejection
algorithm then reads.

Algorithm 1 The rejection algorithm
loop

x ← g
if c ρ ≤ f (x)/g(x) then
return x

end if
end loop

Let K (x) be the resulting density. We can then write

K (x) =
∫

dy g(y)
∫ 1

0
dρ

[
θ

(
ρ ≤ f (y)

c g(y)

)
δ(x − y)

+ θ

(
ρ >

f (y)

c g(y)

)
K (x)

]

=
∫

dy g(y)

[
f (y)

c g(y)
δ(x − y) +

(
1 − f (y)

c g(y)

)
K (x)

]

=
∫

dy

[
f (y)

c
δ(x − y) + g(y) K (x) − f (y)

c
K (x)

]

= 1

c
f (x) + K (x) − 1

c

∫
dy f (y) K (x), (12)

2 Independent, identically distributed.

123

Eur. Phys. J. C (2016) 76:359 Page 3 of 11 359

from which we see that K (x) is the normalized probability
density proportional to f (x):

K (x) = f (x)∫
dy f (y)

. (13)

Note how the loop is embodied by the reappearance of
K (x) on the right-hand side in the first line of Eq. (12). With
these few basic ingredients the result of any algorithm (pro-
vided it terminates with unit probability) can be reduced to
the elimination of Dirac delta functions, and we shall employ
these ideas in what follows.

3 Analyzing the Sudakov veto algorithm

We now present the Sudakov veto algorithm and analyze it
using the techniques of the previous section. We first establish
that Eq. (1) is normalized if P(t), the primitive function of
p(t), goes to −∞ as t → 0:

∫ u

0
E (t; u) dt = 1 − exp (P (0) − P (u)) . (14)

The Sudakov veto algorithm relies on the existence of
an overestimate function q(t) ≥ p(t) which does have an
invertible Sudakov factor. The algorithm is given below in
pseudocode.

Algorithm 2 The Sudakov veto algorithm
t ← u
loop
t ← Q−1 (log (ρ1) + Q (t))
if ρ2 < p(t)/q(t) then
return t

end if
end loop

It was shown in the previous section that the first step in
the loop generates values of t distributed according to Eq.
(1) where the kernel is q(t) instead of p(t), and the scale u is
set to the previous value of t . Thus, the value of t is evolved
downward at every step of the loop, which is the crucial dif-
ference with algorithm Eq. (12). There, subsequent values
for t would be generated in the same way every time. The if-
statement represents the veto step. A scale is accepted with
probability p(t)/q(t), at which point the algorithm termi-
nates. We now convert the algorithm to unitary language as
we did before in Eq. (12) for the rejection algorithm.

E(t; u) =
∫ u

0
dτ q (τ) eQ(τ)−Q(u)

×
∫ 1

0
dρ

[
θ

(
ρ <

p(τ)

q(τ)

)
δ (τ − t)

+ θ

(
ρ >

p(τ)

q(τ)

)
E(t; τ)

]
. (15)

After generating a trial scale τ , the random number ρ and
the step functions guide the algorithm to either accept the
generated scale, or to start over using τ as the new starting
point. Next, the integral over ρ is worked out.

eQ(u)E(t; u) =
∫ u

0
dτ eQ(τ)[p(τ)δ(t − τ)

+ (q(τ) − p(τ))E(t; τ)]. (16)

Taking the derivative with respect to u, we find the fol-
lowing differential equation:

∂

∂u
E(t; u) = p(u)δ(t − u) − p(u)E(t; u). (17)

It is solved by

E(t; u) = p(t) exp

(
−

∫ u

t
dx p(x)

)
θ (0 < t < u)) , (18)

which is Eq. (1). It is, however, not the most general solution
to Eq. (17). We will consider this issue more carefully in the
next section.

4 Extending the algorithm

Next, we consider the Sudakov veto algorithm in a more prac-
tical setting. The algorithm needs to be extended in several
ways to be applicable in a real parton shower. They are:

• An infrared cutoff μ has to be introduced. This cutoff is
required in QCD to avoid the nonperturbative regime. In
event generators, the parton shower is evolved to this cut-
off scale, after which the results are fed to a hadronization
model. The consequence is that the Sudakov factor will
not equal zero at the lower boundary of the scale integral.
Therefore Eq. (1) is no longer normalized to one and is
thus not a probability distribution.

• The scale variable t is not enough to parameterize the
entire branching phase space. An additional variable z
has to be introduced.3 In traditional parton showers, this
parameter is the energy fraction carried by a newly cre-
ated parton. However, in the more modern dipole or
antenna showers, it is just a variable that parameterizes

3 Actually, a third parameter is required. This is usually taken to be the
azimuthal angle φ. We will assume φ-independent branching kernels,
such that the φ integral is trivial.

123

 359 Page 4 of 11 Eur. Phys. J. C (2016) 76:359

the factorized phase space. The boundaries of the branch-
ing phase space translate to scale-dependent boundaries
on z.

• The algorithm has to account for emissions from multiple
channels. These channels can originate from either the
presence of multiple partons or dipoles, or from multiple
branching modes.

We now include these issues separately before incorporating
them into a single algorithm.

4.1 Introducing a cutoff

In a realistic parton shower, the values of the scale t are not
allowed to reach zero. In the case of QCD, a cutoff value μ

is set at a value of about 1 GeV, below which a perturbative
approach is no longer valid. Equation (1) now no longer rep-
resents a probability distribution. This same problem would
occur if the primitive of the branching kernel P(t) would not
diverge for vanishing t , as is for instance the case for kernels
of massive particles. The following algorithm, due to [7],
allows for the introduction of a cutoff and deals with non-
diverging P(t) simultaneously. The algorithm below first
shows how to generate trial values for t .

Algorithm 3 Generate trial scales in the presence of a cutoff
μ

if ρ < ρc = eQ(μ)−Q(t0) then
t ← μ

else
t ← Q−1(log(ρ) + Q(t0))

end if
return t

We analyze this algorithm to find what probability distri-
bution it represents.

Ē(t;μ, u) =
∫ 1

0
dρ

[
θ (ρ ≤ ρc) δ (t − μ)

+ θ (ρ > ρc) δ
(
t − Q−1 (log(ρ) + Q(t0))

)]

= eQ(μ)−Q(t0)δ (t − μ)

+ q(t)eQ(t)−Q(t0)θ(μ < t < t0). (19)

where in the last step we used the fact that q(t) is a posi-
tive function, and therefore Q(t) is monotonically increas-
ing. Compared with Eq. (11), Eq. (19) has an additional term
that compensates the contribution of the lower bound on the
original probability distribution. The veto algorithm should
reproduce this distribution for the branching kernel p(t).

Algorithm 4 The Sudakov veto algorithm in the presence of
a cutoff μ
t ← u
loop
t ← Algorithm 3
if t = μ then
return μ

else if ρ2 < p(t)/q(t) then
return t

end if
end loop

Writing it down in unitary language:

E(t; u) =
∫

dτ(eQ(μ)−Q(u)δ(τ − μ)

+ q(τ)eQ(τ)−Q(u)θ(μ < τ < u))

×
{
θ (τ = μ) δ (t − μ) + θ (τ 	= μ)

×
∫ 1

0
dρ

[
θ

(
ρ <

p(τ)

q(τ)

)
δ (t − τ)

+ θ

(
ρ >

p(τ)

q(τ)

)
E(t; τ)

]}
. (20)

Going through the same steps as before, we find

eQ(u)E(t; u) = eQ(μ)δ (t − μ)

+
∫ u

μ

dτ eQ(τ)[p(τ)δ(t − τ)

+ (q(τ) − p(τ))E(t; τ)]. (21)

After taking the derivative with respect to u, the first term
drops out and the μ-dependence disappears from the second.
Therefore, Eq. (17) is recovered. However, Eq. (18) is not
the only solution to this differential equation. A more general
solution is:

E(t; u) = eP(σ)−P(u)δ (t − σ)+p(t)eP(t)−P(u)θ(σ<t < u)

(22)

for some scale σ < u. To fix sigma, we require that E(t; u)

reduces to a delta function distribution when u → μ, which
leads to σ = μ.

4.2 Introducing a second variable

The targeted distribution is now:

E(t, z; u) = p(t, z)�(u, t) (23)

where

123

Eur. Phys. J. C (2016) 76:359 Page 5 of 11 359

�(u, t) = exp

(
−

∫ u

t
dτ

∫ z+(τ)

z−(τ)

dζ p(τ, ζ)

)
(24)

which is normalized as

∫ u

0
dt

∫ z+(t)

z−(t)
dz E(t, z; u) = 1. (25)

We now need to produce pairs (t, z) distributed according to
E(t, z; u). A difficulty lies in the dependence of the range of
z on the scale. In order to generate a value for t , the ζ integral
in the Sudakov factor is required, which depends on t . On the
other hand, z cannot be generated first, since its boundaries
depend on t .

To deal with this problem, an additional veto condition
is introduced. We introduce a constant overestimate of the
z-range as z− ≤ z−(t) and z+ ≥ z+(t). Additionally we
require the overestimate function to be factorized asq(t, z) =
r(t)s(z) where still q(t, z) ≥ p(t, z). Then, we define

q(t) ≡ r(t)
∫ z+

z−
dz s(z) = r(t) (S(z+) − S(z−)) . (26)

The algorithm is given below.

Algorithm 5 The Sudakov veto algorithm for two variables
t ← u
loop
t ← Q−1 (log (ρ1) + Q (t))
z ← S−1 (ρ2 (S(z+) − S(z−)) + S(z−))

if ρ3 < p(t, z)/q(t, z) and z−(t) < z < z+(t) then
return t

end if
end loop

We first analyze the step of this algorithm that generates
z.

1 =
∫ 1

0
dρ2

∫
dz δ

(
z − S−1 [

ρ2 (S(z+) − S(z−)) + S(z−)
])

=
∫ 1

0
dρ2

∫
dz δ (S(z) − ρ2 (S(z+) − S(z−)) + S(z−)) s(z)

=
∫ z+

z−
dz

s(z)

S(z+) − S(z−)
. (27)

Thus, z is distributed according to s(z). Introducing the
notation

θτ (ζ) ≡ θ(z−(τ) < ζ < z+(τ)), (28)

we now analyze Algorithm 5.

E (t, z; u) =
∫ u

0
q(τ)eQ(τ)−Q(u)

∫ z+

z−
dζ

s(ζ)

S(z+) − S(z−)

×
∫ 1

0
dρ

{ (
1 − θτ (ζ)

)
E (t, z; τ)

+ θτ (ζ)θ

(
ρ >

p(τ, ζ)

q(τ, ζ)

)
E (t, z; τ)

+ θτ (ζ)θ

(
ρ <

p(τ, ζ)

q(τ, ζ)

)
δ (τ − t) δ (ζ − z)

}
.

(29)

Evaluating the integrals and taking the derivative with
respect to u leads to:

∂

∂u
E (t, z; u) = p(u, z)δ(u − t)θz

−
∫ z+(t)

z−(t)
dζ p(u, ζ)E (t, z; u) , (30)

which is solved by Eq. (23).

4.3 Competing channels

Let us assume there are n branching channels, each char-
acterized by a branching kernel pi (t). The density E(t; u)

now contains a Sudakov factor representing the no-branching
probability for all channels, which is just the product of the
individual Sudakov factors. The probability of branching at
some scale is the sum of the kernels. Introducing the notation

f̃ (t) ≡
n∑

i=1

fi (t) (31)

for any set of n functions, this leads to the probability distri-
bution

E(t; u) = p̃(t)�(t, u) (32)

where

�(t, u) = exp

(
−

∫ u

t
p̃ (τ) dτ

)
. (33)

This distribution can be produced by generating multiple
scales and selecting the highest. This can be shown using the
following result:

1 =
∫ u

0
dt

[
n∏

i=1

∫ u

0
dτi fi (τi) exp(Fi (τi) − Fi (u))

]

×
n∑
j=1

θ(max(τ j)) δ
(
t − τ j

)

=
∫ u

0
dt

n∑
i=1

⎡
⎣∏

j 	=i

∫ τi

0
dτ j f (τ j) exp(Fj (τ j) − Fj (u))

⎤
⎦

123

 359 Page 6 of 11 Eur. Phys. J. C (2016) 76:359

×
∫ u

0
dτi fi (τi) exp(Fi (τi) − Fi (u)) δ (t − τi)

=
∫ u

0
dt

n∑
i=1

fi (t) exp(Fi (t) − Fi (u))

×
⎡
⎣∏

j 	=i

exp(Fj (t) − Fj (u))

⎤
⎦

=
∫ u

0
dt f̃ (t) exp(F̃(t) − F̃(u)), (34)

where we used the notation

θ(max(τ j)) ≡
∏
k 	= j

θ
(
τ j > τk

)
, (35)

which is a step function selecting the highest of all τ . The
functions fi can be either pi or qi . In the first case, the veto
algorithm for a single channel can be used to produce the
densities that appear in the first line of Eq. (34). In the sec-
ond case, the highest of the trial scales is selected and sub-
sequently the veto step is applied using the kernel of the
selected channel. Both procedures result in Eq. (32).

Next, we present a very different algorithm that also pro-
duces this density.

Algorithm 6 A different competition Sudakov veto algo-
rithm
t ← u
loop
t ← Q̃−1

(
log (ρ1) + Q̃ (t)

)
Select i between 1 and n with probability qi (t)/q̃(t)
if ρ2 < pi (t)/qi (t) then
return t

end if
end loop

We analyze this algorithm to show that it also produces
Eq. (32):

E(t; u) =
∫ u

0
dτ q̃(τ)eQ̃(τ)−Q̃(u)

×
∫ 1

0
dρ1

n∑
i=1

θ

(∑i−1
j=0 q j (τ)

q̃(τ)

< ρ1 <

∑i
j=0 q j (τ)

q̃(τ)

)

×
∫ 1

0
dρ2

[
θ

(
ρ2 <

pi (τ)

qi (τ)

)
δ (t − τ)

+ θ

(
ρ2 >

pi (τ)

qi (τ)

)
E(t; τ)

]
, (36)

where q0(t) ≡ 0. We go through the usual steps, noting
that after doing the ρ1 integral, the new sum over step func-
tions yields terms qi (τ)/q̃(τ) representing the probabilities
to select the corresponding channels. The differential equa-
tion becomes:

∂

∂u
E(t; u) = p̃(u)δ(t − u) − p̃(u)E(t; u), (37)

which is solved by Eq. (32).
Algorithm 6 requires the generation of trial scales using

q̃(t) as overestimated branching kernel. In practice, this is
often not much harder than generating trial scales for indi-
vidual channels, since the kernels qi (t) can usually be chosen
to have the same t-dependence. In such a case, the channel
selection step in Algorithm 6 does not even require the eval-
uation of the kernels at the trial scale anymore. We note that
Algorithm 6 can still be used in more complicated situa-
tions by using the procedure outlined in Eq. (34) to split q̃(t)
up into groups of similar channels. In the next chapter, we
incorporate the extensions discussed here into a full, prac-
tical veto algorithm. Since it was found there are multiple
ways to handle competition, these algorithms are tested for
their computing times.

5 Testing the algorithms

We now combine all the pieces discussed in the previous
section into a single algorithm. Here, we give a description
of the full algorithms that all handle competition differently.
A concrete statement of the algorithms can be found in the
appendix. Additionally, the expression of every algorithm in
unitary language is included. These equation can all be shown
to be satisfied by:

E(t, z; u) = δ(t − μ)δ(z − z0)

× exp

(
−

n∑
i=1

∫ u

μ

dτ

∫ zi+(τ)

zi−(τ)

dζ pi (τ, ζ)

)

+
n∑

i=1

f (t, z)θ ti (z)θ(μ < t < u)

× exp

(
−

n∑
i=1

∫ u

t
dτ

∫ zi+(τ)

zi−(τ)

dζ pi (τ, ζ)

)
.

(38)

• Veto-Max: This algorithm handles competition using Eq.
(34), where fi (t, z) = pi (t, z). That is, the veto algo-
rithm is applied to every channel individually, then the
highest of the generated scales is selected. This is the
most common way of handling competition. It is usually
cited in the literature as the competition algorithm [7,8],
and is used in most parton showers.

123

Eur. Phys. J. C (2016) 76:359 Page 7 of 11 359

• Max-Veto: This algorithm also uses Eq. (34), but with
fi (t, z) = qi (t, z). That is, trial pairs (t, z). The highest
of these scales is selected, to which the veto step is applied
using the branching kernel of the selected channel. This
algorithm is used in the Vincia parton shower [4,5].

• Generate-Select: This is the new algorithm described in
Sect. 4.3. It generates trial scales τ using the sum of the
overestimate functions q̃(t, z). The overestimate func-
tions are required to have the same z-dependence. That
way, a corresponding ζ can be generated using bound-
aries that are overestimates for all channels. Next, a chan-
nel i is selected with probability qi (τ)/q̃(τ). Then, the
veto step is applied to this channel.

• Select-Generate: Under certain circumstances, a slight
variation of the Generate-Select algorithm is possible.
If we require all overestimate functions qi (t, z) to have
the same scale dependence, this dependence drops out of
the selection probabilities. In that case, a channel can be
selected before a scale is generated. As a consequence,
the overestimate functions can have different dependence
on z, and universal overestimates are no longer required.

We test these algorithms by implementing them in a rela-
tively simple antenna shower very close to what is described
in [4,5]. This shower handles QCD radiation using an antenna
scheme to include collinear and soft enhancements. It fea-
tures exact 2 → 3 kinematics for massive particles, but does
not include any matching scheme and concerns only final
state radiation. It is very basic compared with the parton
showers of [1–3] or recent versions of the Vincia shower [6],
including only the absolute necessities for a functional parton
shower.

The running coupling is taken into account by an overes-
timate

α̂s(t) = a ln−1(bt) (39)

where a and b are chosen such that, at the starting scale
and the cutoff scale, α̂s(t) matches the real one-loop run-
ning αs(t), which includes the proper flavor thresholds. This
overestimate is corrected by using α̂s(t) for the overestimate
kernels and αs(t) for the branching kernels.

The possible branchings for a QCD shower can be divided
into two categories: emissions, where a quark or gluon sends
out a new gluon, and splittings, where a gluon splits into a
quark–antiquark pair. We use p⊥-ordering for both for easy
application of the Generate-Select and Select-Generate algo-
rithms. The following overestimate kernels were used:

qemit(t, z) = 2a CA

4π

√
λ(1,

m2
1

s12
,
m2

2
s12

)

1

z(1 − z)

1

t ln(bt)
, (40)

qsplit(t, z) = 2a nFTR

4π

√
λ(1,

m2
1

s12
,
m2

2
s12

)

1

z(1 − z)

1

t ln(bt)
, (41)

where λ is the Källén function, m1 and m2 are the masses of
the particles in the antenna and s12 is its invariant mass. Note
that a factor nF is included in the overestimate of the splitting
kernel. It is there because Vincia uses a mix of the Max-Veto
and the Generate-Select algorithms. If a gluon splitting is
selected through the Max-Veto algorithm, a quark flavor is
chosen at random as is done by the Generate-Select algo-
rithm. We use the antennae functions given in given in [5]
for the splitting kernels. The code can be found in [9].

We compare the performance of the algorithms described
above on this shower. In the Veto-Max algorithm we have
implemented the following shortcut. While running the
single-channel veto algorithm on all available channels, the
algorithm keeps track of the highest scale generated thus far.
Then, if a scale lower than this highest scale is ever reached,
the veto algorithm on the current channel can immediately
be aborted. This trick is not available for the Max-Veto algo-
rithm, because it performs the veto step after selecting the
highest trial scale between all channels.

For the Select-Generate algorithm, the bottleneck is the
channel selection step. It is complicated by the fact that
the Källén function and the z integral in the overestimates
are different for every antenna. We use stochastic roulette-
wheel selection [10] for the selection step, which achieves
O(1) complexity.4 The Generate-Select algorithm assigns
the same boundaries for the z integral for all channels, but
retains differences in the Källén function. We move this dif-
ference to the veto step by using the lowest Källén function of
all antennae for all channels, increasing the overestimation of
the branching kernels. Then, for nF = 6 and the standard val-
ues CA = 3 and TR = 1/2, all overestimate functions are the
same, and the channel selection step is trivial. In this sense,
the difference between the Generate-Select and the Select-
Generate algorithms is a trade-off between easier selection
of a channel and lower veto rates.

A remark is in order here. In the splitting g → q q̄ the
original colour structure is separated into two pieces which
can be evolved independently. Since our interest here is in the
speed of the various algorithms rather than the development
of a fully realistic parton shower, we have not implemented
this effect.

We produce 8 million events per algorithm. The initial
scale is (7 TeV)2 and the cutoff scale is (1 GeV)2. These set-
tings produce events with parton multiplicities of O(100),
which are typical at the LHC. To check the equivalence of the
veto algorithms, we compute the average amounts of quarks

4 Coincidentally, this is also a veto algorithm and is easily provable
using unitary language.

123

 359 Page 8 of 11 Eur. Phys. J. C (2016) 76:359

Table 1 The average
multiplicities produced by the
shower with starting at (7 TeV)2

for all veto algorithms

Quark multiplicity Gluon multiplicity

Generate-Select 11.7329 ± 0.001908 64.7354 ± 0.008516

Select-Generate 11.7297 ± 0.001908 64.7359 ± 0.008514

Veto-Max 11.7294 ± 0.001907 64.7372 ± 0.008515

Max-Veto 11.7326 ± 0.001909 64.7336 ± 0.008513

Fig. 1 The average CPU times
required by the shower to
produce events as a function of
the available branching channels
at termination

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350 400

Av
er
ag
e
C
PU

tim
e
(s
)

Channels

Generate-Select
Select-Generate

Veto-Max
Max-Veto

and gluons generated per event. These numbers are very sen-
sitive to small differences in distribution. Table 1 shows these
averages for every algorithm.

Figure 1 shows the average amount of CPU time the
shower requires to produce events, plotted as a function of the
amount of available branching channels as the shower termi-
nates. This measure gives us a good idea of the performance
of the algorithms in a practical context. The shape of the
curves of the Veto-Max and the Max-Veto algorithms should
not be heavily influenced by the specifics of the shower, since
factors like branching kernel evaluation times and veto proba-
bilities should be similar for different implementations. How-
ever, the relative performance of the Generate-Select and
the Select-Generate algorithms does depend on the specific
implementation. In this case, the algorithms perform simi-
larly, but this may not be the case for other branching ker-
nels. Either way, the Generate-Select and the Select-Generate
algorithms perform much better than the Veto-Max and the
Max-Veto algorithms.

6 Conclusion

The Sudakov veto algorithm forms an integral part of all mod-
ern parton shower programs. We describe a formalism that

can be used to analyze the distributions that are produced by
different versions of this algorithm. Using this method, we
discuss various ways of handling competition. While seem-
ingly different, our formal analysis shows that they produce
the same distributions. The algorithms were tested using a
simple antenna shower, which showed that the new algo-
rithms are faster than the traditional algorithms used in most
parton shower programs currently, which may be of consider-
able importance for higher energy events or for the inclusion
of more types of radiation.

Acknowledgments This work was supported by The Netherlands
Foundation for Fundamental Research of Matter (FOM) programme
entitled “Higgs as Probe and Portal”.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Descriptions of the algorithms

Here we give the algorithms described in the text. They are
given in pseudocode and in unitary language.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2016) 76:359 Page 9 of 11 359

Algorithm 7 The Veto-Max full Sudakov veto algorithm
Input
1: Branching kernels pi (t, z) with overestimates qi (t, z) = ri (t)si (z)
2: Boundaries zi+(t) and zi−(t) with overestimates zi+ and zi−
3: Integrated overestimate kernels qi (t) = ri (t) (Si (zi+) − Si (zi−))

and their primitives Qi (t).

Algorithm
tmax ← 0
for all 1 ≤ i ≤ n do
ti ← u
loop
if ρ1 < eQi (μ)−Qi (u) then
ti ← μ

zi ← z0
break

else
ti ← Q−1

i (log (ρ1) + Qi (ti))
if ti < tmax then
break

end if
zi ← S−1

i (ρ2 (Si (zi+) − Si (zi−)) + Si (zi−))

if ρ3 < pi (ti , zi)/qi (ti , zi) and zi−(t) < zi < zi+(t) then
if ti > tmax then
tmax ← ti

end if
break

end if
end if

end loop
end for
j ← index(max(ti))
return t j , z j , j

E(t, z; u) =
n∏

i=1

[∫
dti

∫
dz j

∫ u

0
dτi

× (qi (τi) exp (Qi (τi) − Qi (u)) θ(μ < τi < u)

+ exp(Qi (μ) − Qi (u))δ(τi − μ))

×
∫ zi+

zi−
dζi

si (ζi)

Si (zi+) − Si (zi−)

×
{
θ(τi = μ)δ(ti − μ)δ(ζi − z0)

+ θ(τi 	= μ)

[
(1 − θ

τi
i (ζi))Ei (ti , zi , τi)

+ θ
τi
i (ζi)

∫ 1

0
dρ

×
{
θ

(
ρ <

pi (τi , ζi)

qi (τi , ζi)

)
δ(ti − τi)δ(zi − ζi)

+ θ

(
ρ >

pi (τi , ζi)

qi (τi , ζi)

)
Ei (ti , zi , τi)

}]}]

×
n∑
j=1

θ(max(t j))δ(t − t j)δ(z − z j) (A.1)

Algorithm 8 The Max-Veto full Sudakov veto algorithm
Input
1: Branching kernels pi (t, z) with overestimates qi (t, z) = ri (t)si (z)
2: Boundaries zi+(t) and zi−(t) with overestimates zi+ and zi−
3: Integrated overestimate kernels qi (t) = ri (t) (Si (zi+) − Si (zi−))

and their primitives Qi (t).

Algorithm
t ← u
loop
for all 1 ≤ i ≤ n do
if ρ1 < eQi (μ)−Qi (u) then
ti ← μ

else
ti ← Q−1

i (log (ρ1) + Qi (t))

zi ← S−1
i (ρ2 (Si (zi+) − Si (zi−)) + Si (zi−))

end if
end for
if t j = μ then
return t j , z0, j

end if
j ← index(max(ti))
if ρ3 < p j (t j , z j)/q j (t j , z j) and z j−(t) < z j < z j+(t) then
return t j , z j , j

end if
end loop

E(t, z; u) =
n∏

i=1

[∫ u

0
dτi

(
(qi (τi) exp(Qi (τi) − Qi (u))

×θ(μ < τi < u) + exp(Qi (μ)

−Qi (u))δ(τi − μ)
)

×
∫ zi+

zi−
dζi

si (ζi)

Si (zi+) − Si (zi−)

]

×
n∑
j=1

θ(max(τ j))

{
θ(τ j =μ)δ(t−μ)δ(ζi−z0)

+θ(τ j 	= μ)

[
(1 − θ

τ j
j (ζ j))E(t, z, τ j)

+θ
τ j
j (ζ j)

∫ 1

0
dρ

+
{
θ

(
ρ <

p j (τ j , ζ j)

q j (τ j , ζ j)

)
δ(t − τ j)δ(z − ζ j)

+θ

(
ρ <

p j (τ j , ζ j)

q j (τ j , ζ j)

)
E(t, z, τ j)

}]}
(A.2)

123

 359 Page 10 of 11 Eur. Phys. J. C (2016) 76:359

Algorithm 9 The Generate-Select Sudakov veto algorithm
Input
1: Branching kernels pi (t, z) with overestimates qi (t, z) = ri (t)s(z)
2: Boundaries zi+(t) and zi−(t) with overestimates z+ and z−
3: Integrated overestimate kernels qi (t) = ri (t) (S(z+) − S(z−)) and

the primitive of their sum Q̃(t).

Algorithm
t ← u
loop
if ρ1 < eQ̃(μ)−Q̃(u) then
return μ, z0

else
t ← Q̃−1

(
log (ρ1) + Q̃ (t)

)
z ← S−1 (ρ2 (S(z+) − S(z−)) + S(z−))

Select j between 1 and n with probability q j (t)/q̃(t)
if ρ3 < p j (t, z)/q j (t, z) and z j−(t) < z < z j+(t ′) then
return t , z, j

end if
end if

end loop

E(t, z; u) =
∫ u

0
dτ

(
q̃(τ) exp(Q̃(τ)

− Q̃(u))θ(μ < τ < u)

+ exp(Q̃(μ) − Q̃(u))δ(τ − μ)

)

×
∫ z+

z−
dζ

s(ζ)

S(z−) − S(z+)

×
∫ 1

0
dρ

n∑
j=1

θ

(∑ j−1
i=1 qi (τ)

q̃(τ)

< ρ <

∑ j
i=1 qi (τ)

q̃(τ)

)

×
[
θ(τ = μ)δ(t − μ)δ(z − z0)

+ θ(τ 	= μ)

{
(1 − θτ

j (ζ))E(t, z, τ)

+ θτ
j (ζ)

∫ 1

0
dρ

×
[
θ

(
ρ <

p j (τ, ζ)

q j (τ, ζ)

)
δ(t − τ)δ(z − ζ)

+ θ

(
ρ <

p j (τ, ζ)

q j (τ, ζ)

)
E(t, z, τ)

]}]
(A.3)

Algorithm 10 The Select-Generate Sudakov veto algorithm
Input
1: Branching kernels pi (t, z) with overestimates qi (t, z) = ri (t)si (z)
2: Boundaries zi+(t) and zi−(t) with overestimates zi+ and zi−
3: Integrated overestimate kernels qi (t) = ri (t) (Si (zi+) − S(zi−)),

all with the same t-dependence, and the primitive of their sum Q̃(t).

Algorithm
t ← u
loop
if ρ1 < eQ̃(μ)−Q̃(u) then
return μ, z0

else
Select j between 1 and n with probability q j (t)/q̃(t)
t ← Q̃−1

(
log (ρ1) + Q̃ (t)

)
z ← S−1

j

(
ρ2

(
S j (z j+) − S j (z j−)

) + S j (z j−)
)

if ρ3 < p j (t, z)/q j (t, z) and z j−(t) < z < z j+(t ′) then
return t , z, j

end if
end if

end loop

E(t, z; u) =
∫ 1

0
dρ

∑
j

θ

(∑ j−1
i=0 qi (u)

q̃(u)

< ρ <

∑ j
i=0 qi (u)

q̃(u)

)

×
∫ u

0
dτ

(
q̃(τ) exp(Q̃(τ)

− Q̃(u))θ(μ < τ < u)

+ exp(Q̃(μ) − Q̃(u))δ(τ − μ)

)

×
∫ z j+

z j−
dζ

s j (ζ)

S j (z j−) − S j (z j+)

×
[
θ(τ = μ)δ(t − μ)δ(z − z0)

+ θ(τ 	= μ)

{
(1 − θτ

j (ζ))E(t, z, τ)

+ θτ
j (ζ)

∫ 1

0
dρ

×
[
θ

(
ρ <

p j (τ, ζ)

q j (τ, ζ)

)
δ(t − τ)δ(z − ζ)

+ θ

(
ρ <

p j (τ, ζ)

q j (τ, ζ)

)
E(t, z, τ)

]}]
(A.4)

123

Eur. Phys. J. C (2016) 76:359 Page 11 of 11 359

References

1. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006). doi:10.
1088/1126-6708/2006/05/026

2. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F.
Siegert, J. Winter, JHEP 02, 007 (2009). doi:10.1088/1126-6708/
2009/02/007

3. M. Bahr et al., Eur. Phys. J. C 58, 639 (2008). doi:10.1140/epjc/
s10052-008-0798-9

4. W.T. Giele, D.A. Kosower, P.Z. Skands, Phys. Rev. D 84, 054003
(2011). doi:10.1103/PhysRevD.84.054003

5. A. Gehrmann-De Ridder, M. Ritzmann, P.Z. Skands, Phys. Rev. D
85, 014013 (2012). doi:10.1103/PhysRevD.85.014013

6. W.T. Giele, L. Hartgring, D.A. Kosower, E. Laenen, A.J. Larkoski,
J.J. Lopez-Villarejo, M. Ritzmann, P. Skands, PoS DIS2013, 165
(2013)

7. S. Platzer, M. Sjodahl, Eur. Phys. J. Plus 127, 26 (2012). doi:10.
1140/epjp/i2012-12026-x

8. L. Lonnblad, Eur. Phys. J. C 73(3), 2350 (2013). doi:10.1140/epjc/
s10052-013-2350-9

9. R. Verheyen. https://github.com/rbvh/4vetoShower
10. A. Lipowski, D. Lipowska, Phys. A Stat. Mech. Appl. 391(6), 2193

(2012). doi:10.1016/j.physa.2011.12.004

123

http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://dx.doi.org/10.1103/PhysRevD.84.054003
http://dx.doi.org/10.1103/PhysRevD.85.014013
http://dx.doi.org/10.1140/epjp/i2012-12026-x
http://dx.doi.org/10.1140/epjp/i2012-12026-x
http://dx.doi.org/10.1140/epjc/s10052-013-2350-9
http://dx.doi.org/10.1140/epjc/s10052-013-2350-9
https://github.com/rbvh/4vetoShower
http://dx.doi.org/10.1016/j.physa.2011.12.004

	Competing Sudakov veto algorithms
	Abstract
	1 Introduction
	2 The unitary algorithm formalism
	3 Analyzing the Sudakov veto algorithm
	4 Extending the algorithm
	4.1 Introducing a cutoff
	4.2 Introducing a second variable
	4.3 Competing channels

	5 Testing the algorithms
	6 Conclusion
	Acknowledgments
	Appendix A: Descriptions of the algorithms
	References

