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Abstract—Implementation attacks and more specifically Power
Analysis (PA) (the dominant type of side channel attack) and
fault injection (FA) attacks constitute a pragmatic hazard for
scalar multiplication, the main operation behind Elliptic Curve
Cryptography. There exists a wide variety of countermeasures
attempting to thwart such attacks that, however, few of them ex-
plore the potential of alternative number systems like the Residue
Number System (RNS). In this paper, we explore the potential
of RNS as an PA-FA countermeasure and propose an PA-FA
resistant scalar multiplication algorithm and provide an extensive
security analysis against the most effective PA-FA techniques. We
argue through a security analysis that combining traditional PA-
FA countermeasures with lightweight RNS countermeasures can
provide strong PA-FA resistance.

I. INTRODUCTION

Scalar multiplication (SM), the main mathematical opera-

tion behind Elliptic Curve Cryptography (ECC) is the target

of a broad range of possible PAs and FAs on ECC [11]

[15] of both horizontal and vertical nature [7]. RNS is an

arithmetic representation that is advantageous when it comes to

parallel arithmetic calculations and has considerable potentials

as an PA/FA countermeasure [2] [4] [19] [16]. However, RNS

has small adoption from the research community due to the

complexity of its arithmetic and the high number of employed

hardware resources to implement it. In RNS, a GF(p) number

is represented by a given moduli base (RNS base) consisting

of several base elements. Randomizing such base elements

once per SM or in every GF(p) multiplication during SM

can provide disassociation of secret information to physical

leakage. Unfortunately, RNS in an ECC implementation leads

to considerable computational complexity and hardware re-

sources [16].

In this paper, we introduce a SM algorithm that uses RNS

as an add-on PA-FA countermeasure that in comparison to

previous RNS proposals does not use redundant RNS modulo

as a FA countermeasure and adopts a well balanced use of the

”base permutation technique” (also known as leak resistant

arithmetic [2]) as an efficient PA countermeasure. The level

of security that these approaches can offer, when specific

PA and FA attacks are applied to an ECC implementation,

is evaluated and a roadmap of RNS based countermeasures

is described. Extending the work of [16] we argue through

a security analysis that a combination of traditional PA/FA

countermeasures [10] [15] [12] and RNS based structures can

provide strong side-channel resistance.
The rest of this paper is structured as follows. In section

II, RNS is introduced and its PA and FA resistance in ECC

systems is discussed. In section III, new RNS based PA-FA

algorithms are proposed. In section IV, a security analysis of

our proposal is made and section V concludes the paper.

II. RNS FOR EC POINT OPERATIONS

A number x can be represented in RNS as a set of n

moduli xi (x
RNS→ X : (x1, x2, ...xn)) of a given RNS

basis B : (m1,m2, ...mn) as long as 0 ≤ x < M where

M =
∏n

i=1 mi is the RNS dynamic range and all mi are

pair-wise relatively prime. Each xi can be derived from x by

calculating xi = 〈x〉mi
= x mod mi. Assuming that we have

two numbers a and d represented in RNS as A : (a1, a2, ...an)
and D : (d1, d2, ...dn), we can contain all arithmetic opera-

tions in RNS as A � D = (〈a1 � d1〉m1
, ... 〈an � dn〉mn

)
where � : (+,−,×)

Binary reconstruction from its RNS representation can be

done using the Chinese Remainder Theorem (CRT) x =〈∑n
i=1

〈
xi ·M−1

i

〉
mi
·Mi

〉
M

where Mi = M
mi

and M−1
i

is the multiplicative inverse of Mi. The required M modulo

reduction, due to the high bit length of M , is not efficiently

realized and is usually performed by introducing a correction

factor w as shown in x =
∑n

i=1

〈
xi ·M−1

i

〉
mi
·Mi − w ·M

To avoid the above process, x’s Mixed Radix System (MRS)

representation X̃ : (u1, u2, ...un) can be used for RNS to

binary conversion [3] [5].
For ECC approved ECs defined over GF(p) (ECs on

GF (2k) are not discussed in this paper), all GF(p) operations

(addition, subtraction, multiplication) are modular operations

(modulo p). Performing RNS GF (p) addition or subtraction

can be easily realized by expressing p in RNS format i.e.

P : (p1, p2, p3, ...pn) and calculating for each moduli i〈〈ai ± di〉mi

〉
p1i



However, RNS GF(p) multiplication is a computationally

difficult operation. It is usually realized through the RNS

Montgomery multiplication algorithm that involves base exten-

sion operations [3] (increasing its complexity). Assuming that

we introduce two RNS bases Bn = (m1,m2, . . . ,mn) and

B́n = (mn+1,mn+2, . . . ,m2n) such that gcd(mi,mj) = 1
for all i ∈ {1, n} and j ∈ {n+ 1, 2n}, we express a GF(p)

number x in base Bn or B́n as XB and XB́ respectively, while

in both RNS bases as XB∪B́ . We also define MB =
∏n

i=1 mi

and M−1
B as the multiplicative inverse of MB in base Bn, as

well as MB́ =
∏2n

i=n+1 mi and M−1

B́
as the multiplicative in-

verse of MB́ in base B́n. The RNS Montgomery multiplication

(RNSMM) as an outcome calculates SB = A ·B ·M−1
B modp

and SB́ = A ·B ·M−1

B́
modp. Base extension from one base

to the other in RNSMM is needed, since M−1
B does not exist

in base Bn and therefore computations must be migrated to

the B́n base to come up with SB .

In the first step of RNSMM Base extension operation, the

base Bn RNS number is converted into a base Bn MRS

number. In the second step, the base Bn MRS number is

converted into a base B́n RNS number. A similar two step

procedure is followed for base extension from B́n to Bn

respectively to provide a correct RNSMM outcome.

Each RNS number A must be in the Montgomery for-

mat (AB · MB modPB or AB́ · MB́ modPB́). So, ini-

tially an RNSMM must be performed between A and

MB∪B́ modPB∪B́ using the bases Bn and B́n in reverse or-

der (i.e. RNSMM(A,MB∪B́ modPB∪B́ , P, B́n, Bn)). Mont-

gomery domain normalization can be removed through an

RNSMM of the Montgomery formatted RNS number A with

1. To increase computation efficiency, most studies on optimal

base moduli [5] agree that moduli of the form 2k ± ci,
2k−2ti±1 or 2k, 2k−1, 2k−1−1 2k+1−1 (Mersenne numbers)

for various i values provide high performance results.

A. Using RNS for PA and FA resistance

Bajard et al. in [2] proposes, originally for modular expo-

nentiation, a random permutation of the base Bn and B́n mod-

uli for PA resistance thus creating
(
2n
n
)

random permutations

of Bn and B́n. We denote each such RNS Base γ permutation

as Bn,γ and ´Bn,γ . The periodic change of a base permu-

tation during the modular exponentiation (and consecutively

SM) computation flow can introduce enough randomness to

thwart PAs. This leak resistant arithmetic (LRA) technique

can be applied to modular exponentiation designs (used for

RSA) either by choosing a new base permutation once at the

beginning of each modular exponentiation or by changing a

permutation in each RNSMM operation of the exponentiation

process. The base transition of an RNS number A represented

in a base permutation γ to a new permutation γ́ can be done

by performing two consecutive RNSMMs. Initially A1 =
RNSMM(A,MB∪B́ mod PB∪B́ , P, B́n,γ́ , Bn,γ́)

1 is per-

1Note that A has the form A1 · M−1
Bn,γ

mod P since it is an output of

some previous RNSMM

formed and it is followed by RNSMM(A1, 1, P, ´Bn,γ , Bn,γ)
(Random Base Permutation operation, RBP)

Some attempts to introduce LRA in SM have been made

in [19], however, they are applicable only to the CRT type of

base extension using the Cox-Rower method when pseudo-

Mersenne numbers are used for base moduli. In SM, a

permutation transition can be done only once (per SM), in

every round of the SM process or before an GF (p) RNSMM

operation of each point operation of every round. Taking into

account that the transition from one permutation to another

costs 2 RNSMM, the third approach is not affordable in terms

of speed. The first approach, providing a single randomization

per SM may be vulnerable to horizontal PA attacks (depending

on the employed implementation methodology) so the second

approach is the best option promising balance between perfor-

mance and PA resistance strength.

To achieve RNS based fault detection during RNSMM

[4], in the existing two RNS bases moduli Bn and B́n,

a redundant moduli mr is added, thus executing RNSMM

using redundant bases Bn ∪mr and B́n ∪mr. The redundant

RNSMM algorithm results SB∪mr and SB́∪mr
include moduli

related to base element mr If no fault is injected during an

RNSMM then the 2 moduli must be the same. This approach

is capable of detecting a single fault during a RNSMM and

bares an additional performance cost (compared to the original

RNSMM) in the RNS Base extension operations. The tech-

nique is applied in [19] only to Cox-Rower RNSMM designs

(using CRT base extension method) and later is generalized

for base extension approach in [4].

III. FA AND PA RESISTANT SCALAR MULTIPLICATION

Given the description of RNS PA and FA countermeasures,

we propose the inclusion of LRA as an add-on countermeasure

in an PA resistant SM algorithm in order to provide horizontal

(eg. simple PAs) apart from vertical attacks resistance. In the

proposed algorithm (Algorithm 1), LRA is combined with the

base point blinding technique (additive randomization of the

EC base point V ) in the Montgomery Power Ladder (MPL)

algorithm (MPL is considered secure against most vertical and

horizontal attacks) expanding the work of [17] and [16].

In Algorithm 1, we introduce LRA RNS base randomization

once in each SM round (steps 4c and 4d) and in that way

manage to include a different randomization element in every

round. The input point V is initially blinded by adding to it a

random element R, thus preventing sophisticated, comparative

simple PAs [12]. MPL is a highly regular SM algorithm (it

always performs 2 point operations per round regardless of

the scalar bit ei) and also provides an intrinsic fault detection

mechanism based on the mathematical coherence of R0 and

R1. As observed in [20] and by Giraud in [18], the R0 and

R1 points in an MPL round always satisfy the equation R0 =
V + R1. Injecting a fault during computation in an R1 or

R0 variable will ruin this coherence and by introducing an

MPL coherence detection mechanism in the end of the MPL

algorithm, this fault will always be detected. This technique

is adopted in step 6 of Algorithm 1 where R0 + V 	= R1 if



a fault is injected. Note that the correct result is unblinded

only after the fault detection mechanism, in order to provide

protection against possible bypassing (by injecting a second

fault) of the fault detection countermeasure.

Algorithm 1. LRA PA-FA Blinded MPL algorithm
Input: EC base point V , random point R ∈ EC(GF (p)), e =
(et−1, et−2, ...e0)
1. Choose random initial base permutation γt. Transform V, R to RNS format
using γt permutation
2. R0 = R, R1 = R+ V , R2 = −R

3. CMF (R0, R1, R2, ´Bn,γt , Bn,γt )
4. For i = t− 1 to 0

(a) R2 = 2R2,
(b) choose a random base permutation γi
(c) RBP (R0, Bn,γi+1 , B́n,γi+1 , Bn,γi , B́n,γi )

(d) RBP (R1, Bn,γi+1 , B́n,γi+1 , Bn,γi , B́n,γi )
(e) if ei = 1

R0 = R0 +R1 and R1 = 2R1

else
R1 = R0 +R1 and R0 = 2R0

end if

5. RBP (V,Bn,γt , B́n,γt , Bn,γ0 , B́n,γ0 )
6. If (i and e are not modified and R0 + V = R1)

then
(a) RBP (R0, Bn,γ0 , B́n,γ0 , Bn,γt , B́n,γt )
(b) return R0 +R2

else return error

Conversion to Montgomery Format (CMF) operation is used

for transforming all EC point coordinates into the Montgomery

format, so that RNSMM can be performed correctly. This

conversion will require 9 RNSMMs (all points are in projective

coordinate representation). The RBP function performs base

transformation from base permutation γ to permutation γ́ and

requires 6 RNSMMs. The RBP function is executed in each

MPL round once for point R0 and once for R1.

IV. SECURITY ANALYSIS

A. Power Analysis Attack Resistance

The approach of constant number and type of point op-

erations per round (being a vital part of MPL) proposed

in Algorithm 1 provides SPA protection. It can be further

enhanced through the use of elliptic curves with unified

formulas for addition and doubling like Edwards curves [8] or

the recent results from Renes et al. [23] proposing complete

addition formulas for every prime order short GF(p) based

Weierstrass curve (char(GF(p))	= 2, 3).

Regarding horizontal attacks that are focused on a single

collected trace decomposition in sample time blocks and anal-

ysis per block, Feix et al. presented in [13] a powerful attack

against blinded SM algorithms. This attack cannot be applied

in our implementation, because it requires collisions from

vertical attacks, when a dummy point addition is performed.

There are no dummy operations in our algorithm. For their

horizontal scenario, they find leakage between doubling and

adding operations in two consecutive rounds; in our case the

random base point is involved in each round. The horizontal

attack of Bauer et al. [7] is based on splitting an element of

GF(p) in words and finding correlation between them. Since

those elements are represented in their RNS form, we expect

the corresponding correlations to reveal no useful information.

MPL is not resistant against refined PA (RPA) or zero-value

point attacks (ZVP) even if applying randomization of the

projective coordinate by multiplying with a random number,

and applying EC or field random isomorphisms [10]. How-

ever, in Algorithm 1, base point randomization is performed

additively (Base point blinding), so the above mentioned

attacks become unsuccessful. Using only RBP without base

point blinding would not sufficiently protect against ZVP

attacks. For comparative SPA attacks, MPL (and consecutively

Algorithm 1) is resistant to Doubling attack (DA) [14], but not

against relative DA (RDA) [24] or 2-Torsion Attack (2-TorA)

[25]. Base Point blinding, if applied statically (e.g. the same

random number is added in each round, BRIP method [21]),

cannot thwart RDA and 2-TorA [1]. However, in Algorithm 1,

the base point randomization is extended in every algorithmic

round. A different randomization number (a multiple of R)

is added an i round’s ki · V or (ki + 1) · V thus effectively

preventing RDA and 2-TorA.

In MPL like algorithms, an attacker can recover ei by

observing in which register (R0 or R1) the point addition

outcome is saved. This is not possible in Algorithm 1, since

in each round a non dummy value storage operation is done

in parallel to all registers thus masking a specific register

storage power trace (it can’t be discriminated from the rest).

Furthermore, since we are using RNS arithmetic, R0, R1 and

R2 consist of n different values each (one for each modulo).

Each value is stored in a different register that adds to the

complexity of discriminating the n storage operations of R1

from the n storage operations of R0.

Regarding DPA attacks, countermeasures are based on ran-

domization during the SM process [11] [10] as adopted in

Algorithm 1 (base point blinding, Coron second countermea-

sure). As long as point operations in SM rounds remain fully

balanced (same point operations number per round, same point

operations execution order per round for all rounds) and the

random point R is not a weak mask (i.e. a randomization

that can lead to unmasking (un-blinding) the point P in an

intermediate SM round), then base point blinding remains a

strong DPA countermeasure [11]. The above remark is true

for Algorithm 1 constituting our proposal DPA resistant. This

property is further ensured by the use of LRA and can be

enhanced by uniform group law based EC arithmetic. The

template attack of [22] is not successful in our scenario,

because it uses an offline DPA phase; since we use base point

blinding and RBP in each SM round, DPA cannot be applied.

For the same reason Online Templete Attacks [6] should be

also not possible, since point blinding makes the traces of mV
and (m+1)V look random (where m and m+1 are specific

values for scalar e).

B. Fault Analysis Attack Resistance

Algorithm 1 fault protection mechanism is focused on FAs

during SM, not aiming at weak curve attacks. This mechanism

consists of infective computation and fault detection, base



point blinding (randomization), LRA and RNS fault diffusion.

Infective computation is an inherited characteristic of the

Algorithm’s 1 adopted MPL and its main goal is to propagate

an injected fault through the SM process so that it will

be always detected by the fault detection mechanism. Fault

detection takes advantage of the MPL mathematical coherency

of R1−R0 = P for every SM round and evaluates this equality

at the end of calculations before removing randomization and

releasing the result. The fact that all operations are performed

in RNS, enhances SM fault diffusion. Due to the iterative

use of base extension functions in RNSMM (as part of each

point operation coordinate calculations) even a single fault

(eg. a single bit flip on R0 or R1) will cause a change

in the whole RNS number (in all this number’s moduli).

The fault will propagate uncontrollably through Algorithm’s 1

execution thus considerably affecting all the computations and

will eventually be detected in the Algorithm’s 1 step 6 fault

detection mechanism thus avoiding the need for an additional,

redundant, RNS moduli to detect the fault during a single

RNSMM [2], [4].

C-safe error and sign change fault attacks do not apply

to the proposed approach since Algorithm 1 has no dummy

operations and does not use scalar Non-adjacent form (NAF).

The proposed approach is also protected against M-safe er-

ror attacks (usually successful against MPL) since the RNS

computations are performed in parallel and all bits stored in

RNS registers are computed concurrently. Thus, an M-safe

error attack will always alter the R0 or R1 outcome and

will be detected. Differential FAs like the Biehl-Meyer-Muller

attack [9] are not successful in the proposed scheme due to

the adopted fault detection mechanism which is also effective

against multiple fault injection during algorithmic execution.

V. CONCLUSION

This paper introduced a new MPL algorithm based on the

combination of RNS and LRA arithmetic. Our proposal for

a random base permutation instead of exchanging between

two fixed base extensions provides PA-FA resistance against a

wide range of such attacks. An PA-FA security analysis against

the most potent attacks proves our claim that the combination

of traditional PA-FA countermeasures with RNS arithmetic

inclusion can provide strong resistance against PA-FA attacks.
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