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Abstract

In this paper we present the basic tools of a fractional function theory in higher dimensions by means

of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer

decomposition, Almansi decomposition, fractional Euler and Gamma operators, monogenic projection, and

basic fractional homogeneous powers will be constructed. Moreover, we establish the fractional Cauchy-

Kovalevskaya extension (FCK-extension) theorem for fractional monogenic functions defined on Rd. Based

on this extension principle, fractional Fueter polynomials, forming a basis of the space of fractional spherical

monogenics, i.e. fractional homogeneous polynomials, are introduced. We studied the connection between

the FCK-extension of functions of the form x Pl and the classical Gegenbauer polynomials. Finally we

present an example of an FCK-extension.
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1 Introduction

In recent decades, interest in fractional calculus increased substantially. This is due to on the one hand, to the

fact that different problems can be considered in the framework of fractional derivatives like, for example, those

in optics and quantum mechanics, and, on the other hand, to the fact that fractional calculus provides us with

a new degree of freedom which can be used for more complete characterization of an object or as an additional

encoding parameter.

The study of the fractional Dirac operator is motivated by its physical and geometrical interpretations.

Physically, this fractional differential operator is related with some aspects of fractional quantum mechanics

such as the derivation of the fractal Schrödinger type wave equation, the resolution of the gauge hierarchy

problem, and the study of supersymmetries. Geometrically, the classical part of this operator may be identified

to the scalar curvature in Riemannian geometry.

There are some disadvantages in the implementation of a fractional approach. For example, complicated

problems arise during the mathematical manipulations, due to the in-existence of a simple Leibnitz rule for the

product. Restricting ourselves to the purposes of this work, the main drawback is that in spite of similarities

in the formulation of some fractional results with their correspondent classical, the proofs are very different in

nature because we cannot apply polar or spherical coordinates when we are dealing with fractional derivatives.

An explicit and complete derivation of fractional operators in polar or spherical coordinates is still an open task,
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despite several attempts in the past (Goldfain [18], Tarasov [31], Roberts [29], Li [24]). The idea to overcome

this problem is to adapt the approach presented for the discrete case [10].

Clifford analysis is a generalization of classical complex analysis in the plane to the case of an arbitrary

dimension d ∈ Z (in the case of negative dimensions, one is dealing with the so-called super Clifford analysis).

At the heart of the theory lies the Dirac operator D on Rd, a conformally invariant first-order differential

operator which plays the same role in classical Clifford analysis as the Cauchy-Riemann operator ∂z does in the

complex analysis. Over the last decades F. Sommen and his collaborators developed a method for establishing

a higher dimension function theory based on the so-called Weyl relations [14, 7, 11]. In more restrictive settings

it is nowadays called the Howe dual pair technique (see [27]). There are two focal points: the construction of

an operator algebra (classically osp(1|2)), and the establishment of a Fischer decomposition.

The traditional Fischer decomposition in harmonic analysis yields an orthogonal decomposition of the space

of homogeneous polynomials of given homogeneity in terms of spaces of harmonic homogeneous polynomials.

In classical continuous Clifford analysis one obtains a refinement yielding an orthogonal decomposition with

respect to the so-called Fischer inner product of homogeneous polynomials in terms of spaces of monogenic

polynomials, i.e., null solutions of the Dirac operator (see [14]). Generalizations of the Fischer decomposition

in other frameworks can be found, for example, in [2, 7, 11, 15, 25, 27, 21].

Another well-known result in Clifford analysis is the Cauchy-Kovalevskaya extension theorem, which we will

denote simply as CK-extension (see [6, 23]). It corresponds to a direct generalization to higher dimension of

the complex plane case, and can be founded in [14]. Other generalizations of the CK-extension can be found

for instance in [5, 9, 10, 12, 13, 26, 32].

The aim of this paper is to present an analogue of the results in [21, 32] for a fractional Dirac operator

defined via fractional Riemann-Liouville derivatives. The author would like to reinforce that this is not a direct

generalization because contrarily to what happens in the classical and Caputo cases, the constant functions are

not null solutions of the Euclidian/fractional Dirac operator.

The structure of the paper reads as follows: in the Preliminaries we recall some basic facts about Clifford

analysis and fractional calculus. In Section 3, we introduce the corresponding Weyl relations for this fractional

setting and we introduce the notion of a fractional homogeneous polynomial. Here, we also present the fractional

correspondence to the Fischer decomposition and its extension to a fractional Almansi decomposition. In the

end of this section we construct the projection of a given fractional homogeneous polynomial into the space

of fractional homogeneous monogenic polynomials. We also calculate the dimension of the space of fractional

homogeneous monogenic polynomials. In Section 4, we establish a FCK-extension theorem for fractional

monogenic functions. Based on this extension principle, we introduce fractional Fueter polynomials which form

a basis of the space of fractional spherical monogenics, i.e., of fractional homogeneous monogenic polynomials.

Moreover, we go into detail about the connection between the FCK-extension of functions of the form x Pl
and the classical Gegenbauer polynomials. We end this paper with an example of a FCK-extension.

2 Preliminaries

It is well known that the treatment of the two-dimensional vector space R2 in terms of complex numbers has

the advantage of providing an additional multiplication operator on R2. On appropriate higher-dimensional

associative analogue of the complex numbers are real Clifford algebras. For details about Clifford algebras and

basic concepts of its associated function theory we refer the interested reader for example to [3, 14, 19].

Let {e1, · · · , ed} be the standard basis of the Euclidian vector space in Rd. The associated Clifford algebra

R0,d is the free algebra generated by Rd modulo x2 = −||x||2 e0, where x ∈ Rd and e0 is the neutral element

with respect to the multiplication operation in the Clifford algebra R0,d. The defining relation induces the

multiplication rule eiej + ejei = −2δi,j , where δi,j denoted the Kronecker symbol. In particular, e2i = −1 for

all i = 1, . . . , d. The standard basis vectors thus operate as imaginary units.

A vector space basis for R0,d is given by the set {eA : A ⊆ {1, . . . , d}} with eA = el1el2 . . . elr , where

1 ≤ l1 < . . . < lr ≤ d, e∅ := e0 := 1. each a ∈ R0,d can be written in the form a =
∑
A aA eA, with aA ∈ R.

The conjugation in the Clifford algebra R0,d is defined by a =
∑
A aA eA, where eA = elr elr−1

. . . el1 , and

ej = −ej for j = 1, . . . , d, e0 = e0 = 1. An important property of the Clifford algebra R0,d is that each non-zero

vector a ∈ Rd1 has a multiplicative inverse given by a
||a||2 . An important subspace of the real Clifford algebra
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R0,d is the so-called space of paravectors Rd1 = R
⊕

Rd, that being the sum of scalars and vectors. An element

a = (a0, a1, . . . , ad) of Rd will be identified by a = a0 + a, with a =
∑d
i=1 eiai.

Now, we introduce the complexified Clifford algebra Cd as the tensor product

C⊗ R0,d =

{
w =

∑
A

wAeA, wA ∈ C, A ⊂M

}
,

where the imaginary unit i of C commutes with the basis elements, i.e., iej = eji for all j = 1, . . . , d. To

avoid ambiguities with the Clifford conjugation, we denote the complex conjugation mapping a complex scalar

wA = aA + ibA, with real components aA and bA, onto wA = aA − ibA by ]. The complex conjugation leaves

the elements ej invariant, i.e., e]j = ej for all j = 1, . . . , d. We also have a pseudonorm on C viz |w| :=
∑
A |wA|

where w =
∑
A wAeA, as usual. Notice also that for a, b ∈ Cd we only have |ab| ≤ 2d|a||b|. The other norm

criteria are fulfilled.

Clifford analysis can be regarded as a higher-dimensional generalization of complex function theory in the

sense of the Riemann approach. An Cd−valued function f over Ω ⊂ Rd1 has representation f =
∑
A eAfA, with

components fA : Ω → C. Properties such as continuity will be understood component-wisely. Next, we recall

the Euclidean Dirac operator D =
∑d
j=1 ej ∂xj

, which factorizes the d-dimensional Euclidean Laplacian, i.e.,

D2 = −∆ = −
∑d
j=1 ∂x

2
j . A Cd-valued function f is called left-monogenic if it satisfies Du = 0 on Ω (resp.

right-monogenic if it satisfies uD = 0 on Ω).

The most widely known definition of the fractional derivative is the so-called Riemann-Liouville definition.

This definition appears as a result of the unification of the notions of integer-order integration and differentiation,

and is expressed as follows:

aD
p
t f(t) =

1

Γ(m+ 1− p)

(
d

dt

)m+1 ∫ t

a

(t− τ)m−p f(τ) dτ, m ≤ p < m+ 1. (1)

The previous definition requires that the function f(t) must be m+ 1 times continuously differentiable, which

corresponds, in some sense, to a narrow class of functions; however, this class of functions is very important

for applications, because the character of the majority of dynamical processes is smooth enough and does

not allow discontinuities. Understanding this fact is important for the proper use of methods of the fractional

calculus in applications, especially because of the fact that the Riemann-Liouville definition provides an excellent

opportunity to weaken the conditions of the function f(t); then integral (1) exists for t > a and can be

differentiated m + 1 times. The weak condition on the function f(t) in (1) is necessary, for example, for

obtaining the solution of the Abel equation. For more details about fractional calculus and applications we refer

[22, 28, 30].

In [16] the fractional derivative (1) was successfully applied in the definition of the fractional equivalent of

the Dirac operator in the context of Clifford analysis. In fact, the fractional Dirac operator corresponds to

Dα =
∑d
j=1 ej D

α
j =

∑d
j=1 ej (Dj + Yj), where Dj is classical derivative with respect to xj and Yj = 1−α

ξj−xj
,

with 0 < α < 1 and ξ = (ξ1, . . . , ξd) the observer time vector. A Cn-valued function f is called fractional

left-monogenic if it satisfies Dαu = 0 on Ω (resp. fractional right-monogenic if it satisfies uDα = 0 on Ω). We

observe that due to the definition of the fractional Dirac operator we have that

Dα

(
d∏
i=1

(ξi − xi)1−α
)

= 0, (2)

i.e.,
∏d
i=1(ξi − xi)1−α is a fractional monogenic function.

Remark 2.1 In (2) the fractional power (ξi − xi)1−α should be understood in the following way

(ξj − xj)1−α =


exp((1− α) ln |ξj − xj |); ξj > xj
0; ξj = xj
exp((1− α) ln |ξj − xj |+ iαπ); ξj < xj

,

with 0 < α < 1, and j = 0, 1, . . . , d.

Hereafter we will consider paravectors of the form xα = x0 + x, where xj = α(ξj − xj).

Remark 2.2 During the paper we will restrict ourselves to the case in which the fractional parameter α belongs

to the interval ]0, 1[. Cases in which α is outside this range can be reduced to the considered one. In fact, for

α ∈ R we have that α = [α] + α̃, with [α] the integer part of α and α̃ ∈]0, 1[.
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3 Weyl relations and Fractional Fischer decomposition

The aim of this section is to provide the basic tools for a function theory for the fractional Dirac operator

defined via fractional Riemann-Liouville derivatives.

3.1 Fractional Weyl relations

Now we introduce the fractional correspondence of the classical Euler and Gamma operators. Moreover, we will

show that the two natural operators Dα and x, considered as odd elements, generate a finite-dimensional Lie

superalgebra in the algebra of endomorphisms generated by the partial fractional Riemann-Liouville derivatives,

the basic vector variables xj (seen as multiplication operators), and the basis of the Clifford algebra ej . Before

we proceed we recall the definition of Lie superalgebra (for more details see about Lie superalgebras and their

connections with Clifford analysis see [4, 20]).

Definition 3.1 A Lie superalgebra g (over R or C) is a Z2−graded vector space, i.e., a direct sum of two vector

spaces g = g0 ⊕ g1 equipped with a graded bracket [[·, ·]], satisfying:

• the Z2−grading: [[ai, aj ]] ∈ gi+j mod 2, with ai ∈ gi and aj ∈ gj;

• the graded antisymmetry: [[ai, aj ]] = (−1)ij [[aj , ai]], with ai ∈ gi and aj ∈ gj;

• the generalized Jacobi identity: (−1)ik [[ai, [[aj , ak]]]]+(−1)ji [[aj , [[ak, ai]]]]+(−1)kj [[ak, [[ai, aj ]]]] = 0,

with ai ∈ gi, aj ∈ gj, ak ∈ gk.

In order to obtain our results, we will use a standard technique in higher dimensions, namely, we study the

commutator and the anti-commutator between x and Dα. We start by proposing the following fractional Weyl

relations:

[ Dα
i ,xi ] = Dα

i xi − xi D
α
i = −α, (3)

with i = 1, . . . , d, 0 < α < 1. This leads to the following relations for x and Dα:

{Dα,x} = Dαx + xDα = −2Eα + αd, (4)

[x, Dα] = xDα −Dαx = −2Γα − αd, (5)

where Eα, Γα are, respectively, the fractional Euler and Gamma operators, and have the following expressions

Eα =

d∑
i=1

xi D
α
j , Γα =

∑
i<j

eiej(xi D
α
j −Dα

j xi). (6)

From (6) we derive, via straightforward calculations, the following relations

Eα + Γα = −xDα, [Eα,Γα] = 0, [x,Eα] = α x,

[Dα,Eα] = −α Dα, {x,x} = −2|x|2, {Dα, Dα} = 2∆2α,

[x, |x|2] = 0, [x,∆2α] = 2α Dα, [Dα, |x|2] = −2α x,

[Dα,∆2α] = 0, [Eα,∆2α] = 2α ∆2α, [Eα, |x|2] = −2α |x|2,

[|x|2,∆2α] = 4α

(
Eα − α d

2

)
,

(7)

where ∆2α = −DαDα. Relations (7) show that we have a finite dimensional Lie superalgebra, in the sense of

Definition 3.1, generated by x and Dα, isomorphic to osp(1|2). In the end of this subsection we give a brief

description (with references) of the osp(1|2) algebra and its realizations. The normalization

Hα =
1

2

(
Eα − α d

2

)
,

(Eα)− =
−α
2
|x|2, (Eα)+ =

α

2
∆2α, (Fα)− =

−iα
2
√

2
x, (Fα)+ =

−iα
2
√

2
Dα,
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leads to the standard commutation relations for osp(1|2) (see [17])

[Hα, (Eα)±] = ±α(Eα)±, [(Eα)+, (Eα)−] = −2α3 Hα, [Hα, (Fα)±] = ±α
2

(Fα)±,

{(Fα)+, (Fα)−} =
α2

2
Hα, [(Eα)±, (Fα)∓] = −α2 (Fα)±, {(Fα)±, (Fα)±} = ±α

2
(Eα)±.

Now we introduce the definition of fractional homogeneity of a polynomial by means of the fractional Euler

operator.

Definition 3.2 A polynomial Pl is called fractional homogeneous of degree l ∈ N0, if and only if EαPl = −αl Pl.

We observe that from the previous definition the basic fractional homogeneous powers are given by
∏d
j=1 x

βj

j ,

with l = |β| = β1 + . . .+ βd. In combination with the third relation in (7)

[x,Eα] = α x,

this definition also implies that:

• the multiplication of a fractional homogeneous polynomial of degree l by x, will result in a fractional

homogeneous polynomial of degree l + 1, and thus may be seen as a raising operator;

• for a fractional homogeneous polynomial Pl of degree l, DαPl is a fractional homogeneous polynomial of

degree l − 1;

• fractional Weyl relations (3) will now enable us to construct fractional homogeneous polynomials, recur-

sively.

The variables xj , xkj are the basic fractional homogeneous polynomials of degree k. In the following result their

fundamental properties are listed

Theorem 3.3 For all k ∈ N and i, j = 1, . . . , d we have

Dα
j xkj = −k xk−1j , Dα

i xkj = 0, i 6= j,

Dα
j xk1j xk2i = −k1 xk1−1j xk2i , i 6= j. (8)

Moreover, for any two multi-index γ = (γ1, . . . , γd) and β = (β1, . . . , βd) with |γ| = |β|, it holds that

Dγ1
1 . . . Dγd

1 (xβ1

1 . . .xβd

d )

d∏
j=1

x1−α
j =

{
(−1)γ! γ!, if γ = β

0, if γ 6= β

where we have put γ! = γ1! . . . γd!.

The proof of this result is immediate and therefore we will omit it from the text. Furthermore, from the previous

theorem we conclude that a closed form for the fractional homogeneous polynomials is given by

(ej xj)
2n+1 = (−1)nej(xj)

2n+1, (ej xj)
2n = (−1)n(xj)

2n, (9)

for n = 1, 2, . . . and j = 1, . . . , d. Moreover, from Theorem 3.3 we have the following equalities

Dα

 d∏
j=1

x1−α
j

 = 0, Eα
 d∏
j=1

x1−α
j

 = 0, Eα
xβ

d∏
j=1

x1−α
j

 = −|β| xβ
d∏
j=1

x1−α
j .

and therefore in the fractional Fischer decomposition that we will present in the next section, we will have that

P0 = span


d∏
j=1

x1−α
j

 , and Pl = span

xβ
d∏
j=1

x1−α
j , |β| = l

 ,

where β = (β1, . . . , βd) with |β| = β1 + . . .+ βd. Furthermore, we have the following remark:

Remark 3.4 We would like to point out the main difference between this approach the correspondent one

presented in previous works (even when considering a fractional Dirac operator defined via fractional Caputo

derivatives): due to the fact that Dαc 6= 0, with c a constant and Dα the fractional Dirac operator defined via

Riemann-Liouville derivatives, we cannot assume that P0 = span{1}.
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3.2 Fractional Fischer decomposition

A fractional Fischer inner product of two fractional homogeneous polynomials P and Q has the form

〈P (x), Q(x)〉 = Sc
[
P (∂x) Q(x)

]
, (10)

where ∂x represents Dα
j , and P (∂x) is a differential operator obtained by replacing in the polynomial P each

variable xj by the corresponding fractional derivative, i.e. Dj +Yj . From (10) we have that for any polynomial

Pl−1 of homogeneity l − 1 and any polynomial Ql of homogeneity l

〈x Pl−1, Ql〉 = 〈Pl−1, DαQl〉 . (11)

This fact allows us to prove the following result:

Theorem 3.5 For each l ∈ N0 we have Πl =Ml+x Πl−1, where Πl denotes the space of fractional homogeneous

polynomials of degree l and Ml denotes the space of fractional monogenic homogeneous polynomials of degree

l. Moreover, the subspaces Mk and x Πl−1 are orthogonal with respect to the Fischer inner product (10).

Proof: Since Πl = x Πl−1 + (x Πl−1)⊥, it is suffices to prove that (x Πl−1)⊥ = Ml−1. To this end,

assume that, for some Pl ∈ Πl we have 〈x Pl−1, Pl〉 = 0, for all Pl−1 ∈ Πl−1. From (11) we then have that

〈Pl−1, DαPl〉 = 0, for all Pl−1 ∈ Πl−1. As DαPl ∈ Πl−1 we obtain that DαPl = 0, or that Pl ∈ Ml. This

means that (x Πl−1)⊥ ⊂Ml−1. Conversely, take Pl ∈Ml. Then we have, for any Pl−1 ∈ Πl−1, that

〈x Pl−1, Pl〉 = 〈Pl−1, DαPl〉 = 〈Pl−1, 0〉 = 0,

from which it follows that Ml−1 ⊂ (x Πl−1)⊥, and therefore Ml−1 = (x Πl−1)⊥.

�

As a result we obtain the fractional Fischer decomposition with respect to the fractional Dirac operator Dα.

Theorem 3.6 Let Pl be a fractional homogeneous polynomial of degree l. Then

Pl = Ml + x Ml−1 + x2 Ml−2 + . . .+ xl M0, (12)

where each Mj denotes the fractional homogeneous monogenic polynomial of degree j. More specifically,

M0 = P0, and Ml = {u ∈ Pl : Dαu = 0} .

The spaces represented in (12) are orthogonal to each other with respect to the Fischer inner product (10).

This a consequence of the construction of the fractional Euler operator Eα, and in particular of (4) and (5).

Moreover, the space P(S) of all Clifford valued polynomials decomposes in a multiplicity free by means of our

fractional Weyl relations, and the decomposition has the form of an infinite triangle

P0(S) P1(S) P2(S) P3(S)

M0 Dα
←−−−−−−−− x M0 Dα

←−−−−−−−− |x|2 M0 Dα
←−−−−−−−− x3 M0 . . .

⊕ ⊕ ⊕
M1 Dα

←−−−−−−−− x M1 Dα
←−−−−−−−− |x|2 M1 . . .

⊕ ⊕
M2 Dα

←−−−−−−−− x M2 . . .

⊕
M3 . . .

While in the classic case all the summands in the same row are isomorphic to Pin(d)−modules, and each row is

an irreducible module for the Howe dual pair Pin(d)× osp(1|2) (see [8] for more details), the same can not be

said in the fractional case yet. The reason is that while the classical Laplacian and the Fischer dual are invariant

under O(d) (Pin(d) is the double cover of O(d)), we can easily show that this is not true in the fractional case.

Nevertheless, we have that all the summands in the same row are modules. The author’s conjecture is that

they can be invariant under a certain “fractional” Pin group which does not coincide with the classical one (this

subject will be studied in forthcoming works).
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The Dirac operator shifts all spaces in the same row to the left, the multiplication by x shifts them to the

right, and both of these actions are isomorphisms of modules. Moreover, any spinor-valued polynomial can

be written (in a unique way) as a sum of monogenic polynomials and a product of powers of x with other

monogenic polynomials.

From Theorem 3.6 we have the following direct extension to the fractional case of the Almansi decomposition:

Theorem 3.7 For any fractional polyharmonic polynomial Pl of degree l ∈ N0 in a starlike domain D in Rd

with respect to 0, i.e., ∆2αPl = 0, there exist uniquely fractional harmonic functions P0, P1, . . . , Pl−1 such that

Pl = P0 + |x|2P1 + . . .+ |x|2(l−1)Pl−1, ∀x ∈ D.

3.3 Explicit formulae

Here we obtain an explicit formula for the projection πM(Pl) of a given fractional homogeneous polynomial Pl
into the space of fractional homogeneous monogenic polynomials. We start with the following auxiliary result:

Theorem 3.8 For any fractional homogeneous polynomial Pl and any positive integer s, we have:

DαxsPl = gs,lx
s−1Pl + (−1)sxsDαPl,

where g2k,l = 2kα and g2k+1,l = 2(αk + αl) + αd.

Proof: The proof follows, by induction and straightforward calculations, from the commutation between Dα

and xs using the relations

Dαx = −2Eα + αd− x Dα, Eαx = x Eα − α x.

�

Let us now compute an explicit form of the projection πM(Pl).

Theorem 3.9 Consider the constants cj,l defined by

c0,l = 1, cj,l =
(−1)j

(
2
[
j
2

])
!!

[ j
2 ]∏
i=0

g2i+1,l−(2i+1)

,

where j = 1, . . . , l and [·] represents the integer part. Then the map πM given by

πM(Pl) := Pl + c1,l x Dα Pl + c2,l x2(Dα)2 Pl + . . .+ cl,l xl(Dα)l Pl

is the projection of the fractional homogeneous polynomial Pl into the space of fractional homogeneous monogenic

polynomials.

Proof: Let us consider the linear combination

r = a0 Pl + a1 x Dα Pl + a2 x2 (Dα)2 Pl + . . .+ ak xl (Dα)l Pl,

with a0 = 1. If there are constants aj , j = 1, . . . , l, such that r ∈ Ml, then r is equal to πM(Pl). Indeed, we

know that Pl =Ml ⊕ xPl−1 and

r = Pl +Ql−1, with Ql−1 =

l∑
i=1

ai xi (Dα)i Pl.

Applying Theorem 3.8, we get

0 = Dα(πM(Pl))

= Dα Pl + a1 D
α x Dα Pl + a2 D

α x2 (Dα)2 Pl + . . .+ al D
α xl(Dα)l Pl

= (1 + a1 g1,l−1) Dα Pl + (−a1 + a2 g2,l−2)x (Dα)2 Pl + (a2 + a3 g3,l−3) x2 (Dα)3 Pl

+ . . .+ ((−1)l−1al−1 + al gl,0) xl−1 (Dα)l Pl.

7



Hence if the relation (−1)j−1aj−1 + aigj,l−j = 0 holds for each j = 1, . . . , l, then the function r is fractional

monogenic. By induction we get

aj =
(−1)j

(
2
[
j
2

])
!!

[ j
2 ]∏
i=0

g2i+1,l−(2i+1)

.

�

Theorem 3.10 Each polynomial Pl can be written in a unique way as

Pl =

l∑
j=0

xj Ml−j(Pl),

where

Ml−j(Pl) = c′j

j∑
n=0

cj,l−n xn (Dα)n(Dα)l−j Pl; j = 0, . . . , l,

and the coefficients c′j are defined by

c′j =
(−1)j

(
2
[
j
2

])
!!

[ j
2 ]∏
i=0

g2i+1,l−(2i+1)

.

Proof: We know that for any Pl, there is a unique decomposition

Pl = xl M0 + xl−1 M1 + . . .+ x Ml−1 +Ml,

where Ml−j ∈Ml−j , with j = 0, . . . , l. To compute a component Ml−j explicitly, we apply (Dα)j to both sides

of the previous equality:

(Dα)jPl = (Dα)j xl M0 + (Dα)j xl−1 M1 + . . .+ (Dα)j xj+1 Ml−j−1 + (Dα)j xj Ml−j .

The summands on the right-hand side belong, in turn, to the spaces

xl−j M0, xl−j−1 M1, . . . x Ml−j−1, Ml−j .

Hence, (Dα)j xj Ml−j is equal to πM((Dα)j Pl). We can now use the expression for the harmonic projection

proved above. So to get our result, it is sufficient to show that

(Dα)j xj Ml−j =
1

cj
Mj .

By Theorem 3.8, we get by induction that c′j = aj , and, therefore, the proof is finished.

�

Under these conditions it is possible to calculate the dimension of the space of fractional homogeneous monogenic

polynomials of degree l. From the Fischer decomposition (12) we get dim(Ml) = dim(Πl) − dim(Πl−1), with

the dimension of the space of fractional homogeneous polynomials of degree l given by dim(Πl) = (k+d−1)!
k! (d−1)! .

This leads to the following theorem:

Theorem 3.11 The space of fractional homogeneous monogenic polynomials of degree l has dimension

dim(Mk) =
(l + d− 1)!− l(l + d− 2)!

l! (d− 1)!
=

(l + d− 2)!

l! (d− 2)!
.
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4 Fractional Cauchy-Kovalevskaya extension

Taking into account the formal similarities with the classical setting, we propose the following form for the

FCK-extension:

F (x1,x2, . . . ,xd) =

∞∑
k=0

(e1x1)k x1−α
1

k!
fk(x2, . . . ,xd),

with f0 = f . From (9) we conclude that the function F takes the correct values and satisfies F |x1=0 = f . For

F to be fractional monogenic it must vanish under the action of the fractional Dirac operator Dα, which can

be rewrite as

Dα = Dα
1 +

d∑
j=2

ej D
α
j = Dα

1 +Dα
∗ .

In order to determine the coefficient functions fk, k = 1, 2, . . . , d such that DαF = 0, we proceed by direct

calculation. From the action of Dα
j over x1 (see Theorem 3.3), and taking into account that Dα

1 only acts on

xk1 and Dα
∗ anticommutes with x1, we obtain

0 = DαF = (Dα
1 +Dα

∗ )

( ∞∑
k=0

(e1 x1)k x1−α
1

k!
fk

)

=

∞∑
k=0

(e1 x1)k x1−α
1

k!
fk+1 +

∞∑
k=0

(−1)k
(e1 x1)k x1−α

1

k!
Dα
∗ fk,

which results in the recurrence relation

fk+1 = (−1)k+1 Dα
∗ fk.

Hence we obtain the following definition for the FCK-extension:

Definition 4.1 The FCK-extension of a function f = f(x2, . . . ,xd) is the fractional monogenic function

FCK[f ](x1,x2, . . . ,xd) =

∞∑
k=0

(e1 x1)k x1−α
1

k!
fk(x2, . . . ,xd), (13)

where f0 = f and fk+1 = (−1)k+1Dα
∗ fk.

Let us observe that the previous definition does not impose any conditions on the original function f . From (9)

follows

(e1 x1)2n+1 x1−α
1 = 0 for n ≤ |x1|,

(e1 x1)2n x1−α
1 = 0, for n ≤ |x1|+ 1,

which imply that for every point (x1, . . . ,xd) ∈ Rd there exists N ∈ N such that all but the first N terms in

the series (13) vanish, and therefore the series reduces to a finite sum in every point of Rd. This fact implies

that the FCK-extension of the function f(x2, . . . ,xd) is well defined on Rd. The uniqueness of the extension is

a corollary of the following result.

Theorem 4.2 Let F be a fractional monogenic function defined on Rd, with F |x1=0 ≡ 0. Then F is the null

function.

Proof: The fractional monogenicity of F explicitly reads as (Dα
1 +Dα

∗ )F = 0. Now take (x1,x2, . . . ,xd) ∈ Rd

with x1 = 0. Since F |x1=0 ≡ 0 the above expression reduces to Dα
i F = 0. Furthermore −∆2αF = DαDαF = 0,

from which we obtain, for (0,x2, . . . ,xd) ∈ Rd with x1 = 0, that F ≡ 0. Repeating this procedure, we find

F ≡ 0 on Rd.

�

Corollary 4.3 (Uniqueness of the FCK-extension) Let F1 and F2 be two fractional monogenic functions

such that F1|x1=0 = f and F2|x1=0 = f . Then F1 and F2 coincide.
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4.1 Fractional Fueter polynomials

The fractional FCK-extension procedure establishes a homomorphism between the space Π
(d−1)
l of fractional

homogeneous polynomials of degree l in d−1 variables and the spaceM(d)
l of spherical fractional monogenics of

degree l in d variables. Theorem 4.2 and Corollary 4.3 imply that this homomorphism is injective. Moreover, a

basis for the space Π
(d−1)
l is given by the fractional homogeneous polynomials xβ2

2 . . .xβd

d , with β2 + . . .+βd = l,

and its dimension is

dim
(

Π
(d−1)
l

)
=

(l − d)!

l! (d− 2)!
,

which corresponds to the dimension of M(d)
l (see Theorem 3.11 with d = d − 1), whence the homomorphism

also is surjective. The FCK-extension procedure thus establishes an isomorphism between Π
(d−1)
l and M(d)

l ,

allowing us to determine a basis for the space M(d)
l .

Definition 4.4 Let β = (β2, . . . , βd) ∈ Nd−1 with β2 + . . .+ βd = l. Then the fractional spherical monogenics

Vβ = FCK

xβ2

2 . . .xβd

d

d∏
j=2

x1−α
j


are called the fractional Fueter polynomials of degree l.

Theorem 4.5 The set {Vβ | β2 + . . .+ βd = l} is a basis for M(d)
l .

Proof: The FCK-extension procedure is an isomorphism between both spaces.

�

Example 4.6 The space M(3)
2 has dimension d = 3. A basis for it is given by the elements

V2,0 = FCK
[
x2
2 x1−α

2

]
= x2

2 x1−α
2 − 2x1x2 x1−α

1 x1−α
2 − x2

1 x1−α
1 ,

V1,1 = FCK
[
x2 x3 x1−α

2 x1−α
3

]
= x2x3 x1−α

2 x1−α
3 − x1x3 x1−α

1 x1−α
3 + x1x2 x1−α

1 x1−α
2 + x2

1 x1−α
1

V0,2 = FCK
[
x2
3 x1−α

3

]
= x2

3 x1−α
3 − 2x1x3 x1−α

1 x1−α
3 − x2

1 x1−α
1 ,

from which it can be checked directly that they are fractional monogenic, of homogeneity degree 2 in (x1,x2,x3),

and are linearly independent.

4.2 Fractional Cauchy-Kovalevskaya extension of xsMl

In the Euclidian setting, functions of the form xsPl(x) are building blocks of homogeneous polynomials in Rd

and whence, in order to characterize spaces of inner spherical monogenics in Rd+1, it suffices to determine

the CK-extension of polynomials of the form xsPl(x) (see [14] for more details), which was formulated in the

following theorem:

Theorem 4.7 (c.f. [14]) Let s ∈ N and Pl ∈ M+(l; d;C). Then the CK-extension of xsPl(x) has the form

Xs
l (x0, x) Pl(x) where

Xs
l (x0, x) = λsl r

s

[
C

d−1
2 +l

s

(x0
r

)
+

2l + d− 1

s+ 2l + d− 1
C

d+1
2 +l

s−1

(x0
r

) x0
r

]
.

In this formula, r2 = x20 − x2 and the polynomials Cλn(x) are the standard Gegenbauer polynomials [1] given by

Cλn(x) =

[n
2 ]∑
j=0

(−1)j (λ)n−j
j! (n− 2j)!

(2x)n−2j , (14)

where the Pochhammer symbol (a)n denotes a(a+ 1) . . . (a+ n− 1). Furthermore, the coefficients λsk are

λ2kl = (−1)k
(
C

d−1
2 +l

2k (0)
)−1

, λ2k+1
l = (−1)k

2k + 2l + d

2l + d− 1

(
C

d+1
2 +l

2k (0)
)−1

10



and explicitly

λ2kl =
k! Γ

(
l + d−1

2

)
Γ
(
k + l + d−1

2

) , λ2k+1
l =

2k + 2l + d

2l + d− 1

k! Γ
(
l + d+1

2

)
Γ
(
k + l + d+1

2

) . (15)

We now consider the fractional version of the previous theorem. We will consider Pl to be a fractional homoge-

neous monogenic function in d variables x1, . . . ,xd and will determine the FCK-extension of xsPl. The result

is a fractional monogenic in d+ 1 variables x0,x1, . . . ,xd such that

FCK[f ] =

∞∑
k=0

1

k!
x1 fk, f0 = f, fk+1 = (−1)k+1Dαfk,

where Dα is the fractional Dirac operator in d variables. The operators Dα and x satisfy Theorem 3.8. Denote

by R the fractional vector variable in d+ 1 dimensions, i.e.,

R = x0 −
d∑
j=1

ejxj = x0 − x,

with R2 = x2
0 + x2.

Remark 4.8 As it was done in the Euclidian case (see Theorem 4.7 from [14]), in this section we will use

the formal notations x0

R and x
R as arguments in the Gegenbauer polynomials by which we mean that we first

of all expand the Gegenbauer polynomials using
(
x0

R

)k
=

xk
0

Rk , and then cancel out all appearances of R in the

denominators, after which no ambiguity is left.

4.2.1 Auxiliar results

In this section we present some necessary results for the proof, in the next section, of the main theorem. Taking

into account Theorem 3.3, we present the following auxiliary lemmas.

Lemma 4.9 Let k ∈ N, and Pl a fractional spherical monogenic of degree l in the variables x1, . . . ,xd. Then

Dα
0 R2k Pl = −2αk x0 R

2k−2 Pl,

Dα R2k Pl = 2αk x R2k−2 Pl,

Eα R2k Pl =
(
−l R2 − αk x2

)
R2k−2 Pl.

Proof: We start by expanding R2k in the following way

R2k =

k∑
s=0

(
k

s

)
x2k−2s
0 x2s.

Taking into account that x and Pl do not depend on x0, we get

Dα
0 R2k Pl = −2αk

k−1∑
s=0

(k − 1)!

s! (k − s− 1)!
x2k−2s−1
0 x2s Pl = −2αk x0 R

2k−2 Pl.

The proof of the second statement uses the relations presented in Theorem 3.8, and the fact that Pl is a fractional

spherical monogenic in the variables x1, . . . ,xd (thus DαPl = 0):

DαR2kPl = 2sα

k∑
s=0

k!

(s− 1)! (k − s)!
x2k−2s
0 x2s−1 Pl

= 2sαk

k∑
s=1

k!

(s− 1)! (k − s)!
x2k−2s
0 x2s−1 Pl

= 2αk x R2k−2Pl.

For the final relation, we use the commutation relation

x Eα − Eα x = α x ⇔ Eα x = x Eα − α x

11



which implies that

Eα x2s = x2sEα − 2sα x2s,

to show that

EαR2k Pl = −l R2k Pl − 2αk

k−1∑
p=0

(
k − 1

p

)
x
2(k−1)−2p
0 x2p+2Pl =

(
−l R2 − 2αk x2

)
R2k−2 Pl.

�

Lemma 4.10 For a parameter λ and k ≥ 1 we have

(Dα
0 +Dα)

[
Cλ2k

(x0

R

)
R2k Pl

]
= −2αλ

[
Cλ+1

2k−1

(x0

R

)
− Cλ+1

2k−2

(x0

R

)]
R2k−1 Pl.

Proof: Taking into account the series expansion (14) for the Gegenbauer polynomials and the relations

presented in Lemma 4.9, after straightforward calculations we have

(Dα
0 +Dα)

[
Cλ2k

(x0

R

)
R2k Pl

]
=

k∑
j=0

(−1)j (λ)2k−j
j! (2k − 2j)!

22k−2j
[
−α (2k − 2j) x2k−2j−1

0 R2j + x2k−2j
0 Dα

0 R2j + (−1)2k−2j x2k−2j
0 Dα R2j

]
Pl

= −2αλ
[
Cλ+1

2k−1

(x0

R

)
− Cλ+1

2k−2

(x0

R

)]
R2k−1 Pl.

�

We remark that in Lemma 4.10, on the right-hand side, there is no ambiguity about whether the R’s should be

left or right since the first thing one has to do is to eliminate the powers of R in the denominator which leaves

only even powers of R (in the denominator) which commute with x0 and x. We continue now presenting more

auxiliary lemmas:

Lemma 4.11 For a parameter λ and k ≥ 1, one has

(Dα
0 +Dα)

[
Cλ2k−1

(x0

R

) x

R
R2k Pl

]
=
[
−2αλ Cλ+1

2k−2

(x0

R

)
x R2k−2 + α(d+ 2l) Cλ2k−1

(x0

R

)
R2k−1 − 2αλ Cλ+1

2k−3

(x0

R

) x

R
R2k−1

]
Pl.

Proof: Taking into account the series expansion (14) for the Gegenbauer polynomials and the relations

presented in Lemma 4.9, after straightforward calculations we have

(Dα
0 +Dα)

[
Cλ2k−1

(x0

R

) x

R
R2k Pl

]
= −α

k−1∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 2)!

22k−2j−1 x2k−2j−2
0 x R2j Pl

−
k−1∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 1)!

(2x0)2k−2j−1
[
x Dα

0 R2j − (2Eα − αd+ xDα) R2j
]
Pl

= −2αλ Cλ+1
2k−2

(x0

R

)
x R2k−2 Pl + α(d+ 2l) Cλ2k−1

(x0

R

)
R2k−1 Pl

− 2αλ

k−2∑
p=0

(−1)p (λ)2k−p−3
p! (2k − 2p− 3)!

(
2x0

R

)2k−2p−3
x

R
R2k−1 Pl

=
[
−2αλ Cλ+1

2k−2

(x0

R

)
x R2k−2 + α(d+ 2l) Cλ2k−1

(x0

R

)
R2k−1 − 2αλ Cλ+1

2k−3

(x0

R

) x

R
R2k−1

]
Pl.

�

We remark that in Lemma 4.11, after elimination of the powers of R in the denominator, there is no ambiguity

in the first and the last terms of the right-hand side. For the second term, however, we must clarify how the

elimination should be made. For example, letting d = 2 we have

Cλ+1
1

(x0

R

) x

R
R3 = 2(λ+ 1)

x0

R

x

R
R3 = 2(λ+ 1) x0 xR,
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which is not the same as

Cλ+1
1

(x0

R

)
R3 x

R
= 2(λ+ 1) x0 R x,

or

R3 Cλ+1
1

(x0

R

) x

R
= 2(λ+ 1) R x0 x.

For the second term in the right-hand side we thus put as a convention that (after elimination of R in the

denominator), the remaining (odd) powers of R are written on the far right of both x0 and x.

In a very similar way as we have done in Lemma 4.11, we can prove the following results:

Lemma 4.12 For a parameter λ and k ≥ 1, one has

(Dα
0 +Dα)

[
Cλ2k+1

(x0

R

) x

R
R2k Pl

]
= −2αλ

[
Cλ+1

2k

(x0

R

)
− Cλ+1

2k−1

(x0

R

) (x0

R
− x

R

)]
R2k Pl.

Lemma 4.13 For a parameter λ and k ≥ 1, one has

(Dα
0 +Dα)

[
Cλ2k

(x0

R

) x

R
R2k+1 Pl

]
=
[
α(d+ 2l) Cλ2k

(x0

R

)
R2k − 2αλ Cλ+1

2k−1

(x0

R

) x

R
R2k − 2αλ Cλ+1

2k−2

(x0

R

) x

R
x R2k−1

]
Pl.

4.2.2 Main result

We present now the main result of this section:

Theorem 4.14 For a fractional spherical monogenic Pl of degree l in the fractional variables x1, . . . ,xd and

for s ∈ N, the fractional FCK-extension of xsPl is the fractional monogenic polynomial in d + 1 variables

x0,x1, . . . ,xd given by

FCK
[
x2k Pl

]
= (−1)k λ2kl R2k

[
C

d+1
2 +k

2k

(x0

R

)
+

2l + d− 1

2l + d− 1 + 2k
C

d−1
2 +k

2k−1

(x0

R

) x

R

]
Pl, (16)

FCK
[
x2k+1 Pl

]
= (−1)k λ2k+1

l R2k+1

[
−C

d−1
2 +k

2k+1

(x0

R

)
+

2l + d− 1

2l + d− 1 + 2k
C

d+1
2 +k

2k

(x0

R

) x

R

]
Pl. (17)

In this formula, r2 = x2
0−x2, Cλn(x) are the standard Gegenbauer polynomials given by (14), and the coefficients

λsk are given by (15).

Before we present the proof we give the following remark concerning notation, which is similar to the one

presented in [10].

Remark 4.15 Please note that in the main theorem terms like Cλk
(
x0

R

)
appear, while in fact x0

R is not well

defined. Since R x0 6= x0 R and R x 6= x R, the notation has to be understood in the following way: because

Cλk (x) contains only powers of x of degree at most k, we first multiply it by Rk, after which there is no ambiguity.

Let us now consider the proof.

Proof: We start with expression (16). The proof has two parts. In the first we show that the restriction of

F := (−1)k λ2kl n R
2k

[
C

d−1
2 +k

2k

(x0

R

)
+

2l + d− 1

2l + d− 1 + 2k
C

d+1
2 +k

2k−1

(x0

R

) x0

R

]
Pl

to the hyperplane x0 = 0 is exactly x2k Pl. In fact, R2j |x0=0 = x2j and

Cλ2k

(x0

R

) ∣∣
x0=0

=

k∑
j=0

(−1)j (λ)2k−j
j! (2k − 2j)!

(
2x0

R

)2k−2j ∣∣
x0=0

=
(−1)k (λ)k

k!
,

Cλ2k−1

(x0

R

) ∣∣
x0=0

=

k−1∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 1)!

(
2x0

R

)2k−2j−1 ∣∣
x0=0

= 0,
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which implies that

F
∣∣
x0=0

=
k! Γ

(
l + d−1

2

)
Γ
(
l + d−1

2 + k
) 1

k!

Γ
(
l + d−1

2 + k
)

Γ
(
l + d−1

2

) x2k Pl

= x2k Pl.

In the second part of the proof we show that F is fractional monogenic in the d + 1 variables x0,x1, . . . ,xd.

By the uniqueness of the FCK-extension, we know that F must be exactly FCK
[
x2k Pl

]
. Since F consists

of two terms, we will first consider Dα
0 + Dα acting on both terms separately via Lemmas 4.10 and 4.11 with

λ = l + d−1
2 . We will then continue by combining the obtained results. We have

(Dα
0 +Dα)F

= (−1)k+1 λ2kl 2αλ
[
Cλ+1

2k−1

(x0

R

)
− Cλ+1

2k−2

(x0

R

)]
R2k−1 Pl

+ (−1)k λ2kl
λ

λ+ k

[
−2α(λ+ 1) Cλ+2

2k−2

(x0

R

)
x R2k−2 + α(2λ− 1) Cλ+1

2k−1

(x0

R

)
R2k−1

−2α(λ+ 1) Cλ+2
2k−3

(x0

R

) x

R
R2k−1

]
Pl

= (−1)k+1 λ2kl 2α λ

[
2k + 1

2λ+ 2k
Cλ+1

2k−1

(x0

R

)
R2k−1 − Cλ+1

2k−1

(x0

R

)
R2k−1

+
λ+ 1

λ+ k
Cλ+2

2k−2

(x0

R

) x

R
R2k−1 +

λ+ 1

λ+ k
Cλ+2

2k−3

(x0

R

) x

R
R2k−1

]
Pl.

Taking into account the series expansion (14) for the Gegenbauer polynomials, the previous expression becomes

(Dα
0 +Dα)F

= (−1)k+1 λ2kl α

λ(2k + 1)

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j
j! (2k − 2j − 1)!

22k−2j−1 x2k−2j−1
0 R2j

−
k−1∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 2)!

22k−2j−1 x2k−2j−2
0 R2j+1

+
1

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j
j! (2k − 2j − 2)!

22k−2j−1 x2k−2j−2
0 x R2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 3)!

22k−2j−2 x2k−2j−3
0 x R2j+1

 Pl. (18)

From the series expansions of R2j and R2j+1

R2j =

j∑
s=0

(
j

s

)
x2j−2s
0 x2s,

R2j+1 =

j∑
s=0

(
j

s

) (
x2j−2s+1
0 x2s + x2j−2s

0 x2s+1
)
,

there are two possible combinations (with respect to the powers of x0 and x): either an odd power of x0

combined with an even power of x or vice-versa. We will look at both possibilities separately and show that

both must be zero. We first consider the terms of (18) containing a combination of an even power of x0 and a

14



odd power of x, which we will denote by “even part” (EP).

EP = (−1)k+1 λ2kl α

− k−1∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 2)!

22k−2j−1 x2k−2j−2
0 x R2j

+

k−1∑
j=0

(−1)j (λ)2k−j
j! (2k − 2j − 2)!

22k−2j−1

λ+ k
x2k−2j−2
0 x R2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 3)!

22k−2j−2 x2k−2j−3
0 x0 x R2j

 Pl

= (−1)k+1 λ2kl α

 1

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 2)!

(k − j − 1) 22k−2j−1 x2k−2j−2
0 x R2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1
j! (2k − 2j − 3)!

22k−2j−2 x2k−2j−2
0 x R2j

 Pl

= 0.

For the “odd part” we proceed in a very similar way. One checks for different values of j for which the coefficients

of R2j will be zero, and hence the total sum will be zero. Regarding (17), we proceed in a similar way and

considering Lemmas 4.12 and 4.13.

�

4.3 Example

To end this paper, we present an example of FCK-extension

Example 4.16 The FCK-extension of x2 Pl is given by FCK[x2 Pl] =
∑∞
k=0

xk
0

k! fk, where the functions fk
are f0 = x2 Pl, f1 = −2α x Pl, f2 = 2α(−2l − αd)Pl, whence explicitly

FCK[x2 Pl] =
[
x2 − 2α x + 2α(−2l − αd)

]
Pl.
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