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Abstract

This thesis consists of three papers on search theory. Chapter 2 studies sta-

tionary cutoff-strategy equilibria of a dynamic market model where buyers

sample sellers sequentially from an unknown distribution. Buyers learn about

the distribution from the sampled sellers and a private “trade signal”. The

trade signal reveals whether a randomly chosen seller traded yesterday. The

signal’s precision and the market distribution of options are determined in

equilibrium. Observing a trade (as opposed to no trade) is good news about

the distribution. Buyers who observe a trade use a higher cutoff than buyers

who observe no trade, despite buyers’ learning from sampled sellers that puts

a countervailing pressure on the cutoffs. The trade signal may reduce market

efficiency, while an appropriate exogenous signal increases efficiency.

Chapter 3 extends the standard sequential search model by allowing the

agent who inspects items sequentially (the “searcher”) to differ from the agent

who chooses from the set of inspected items (the “chooser”). I show for a

general joint distribution of the agents’ preferences that the searcher’s optimal

policy is a cutoff rule. The cutoff is weakly decreasing in time, i.e., exhibits

the “discouragement effect”. I characterise the cutoff and discuss some testable

implications of the discouragement effect.

Chapter 4 relaxes the standard sequential search model’s assumption that

the searching agent makes no choice mistakes. In my model, once the agent

stops the search process, she chooses the best inspected item with probability

1−ε and uniformly among the remaining inspected items with probability ε. I

show that her optimal policy is a stochastic cutoff rule and that she may both

experience regret and search longer than an agent who makes no mistakes.
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Chapter 1

Introduction

This thesis consists of three chapters, connected by a common theme: decision-

making of agents who face informational imperfections. In the models of all

three chapters agents on one side of the market (e.g., buyers or job seekers) do

not know exactly which potential partner on the other side of the market (e.g.,

seller or employer) offers which option (e.g., price or remuneration package). A

buyer samples sellers sequentially in order to discover which options the sellers

offer and chooses when to stop searching for further alternatives. Such search

models are a good description of the way people make many economically rele-

vant decisions, including job and house search, finding business opportunities,

and purchases of consumer goods. In particular, the models capture the idea

that it takes time and resources to find an option that the person likes. In the

standard sequential search model (see McCall (1970) for the seminal contri-

bution) the agent who searches knows the distribution of options that sellers

offer, makes his decisions independently of other agents, and never errs.

In the three chapters that comprise this thesis, I relax various assumptions

of the standard search model. This is important for several reasons. First,

making small changes to the assumptions allows us to evaluate the robustness

of the standard model’s results. The importance of the standard model in both
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applied and theoretical work, especially in macroeconomics, labour economics

and industrial organisation, cannot be overstated. Determining robust pre-

dictions of search models thus helps us both to build better models and give

robust policy advice. Second, relaxing the standard assumptions allows us to

analyse novel questions that are relevant in search environments. For exam-

ple, Chapter 2 of this thesis analyses the effect of different types of information

on a market by assuming that people do not know the exact distribution of

offers they face. Imperfect knowledge of the offer distribution is a reasonable

assumption of at least some people’s knowledge of some markets, but is ruled

out in the standard model. Finally, relaxing the standard assumptions allows

us to match the reality better. The standard model makes multiple assump-

tions about the search environment and process, which are often unrealistic.

In Chapter 3 I show that some of the standard model’s results no longer hold

if we assume that multiple agents conduct the search process, which is a real-

istic assumption in many organisational settings. I now explain in more detail

which assumptions I relax in the three chapters of this thesis.

In Chapter 2, Learning from Trades, I analyse the equilibria of a dynamic

market model with pairwise meetings where buyers face an unknown distribu-

tion of options. In many real markets a buyer is unsure about the distribution

of options that he faces, e.g., a house-hunter is unsure about the joint distri-

bution of houses’ attributes and prices. Often, buyers in these markets learn

about the distribution from information that reflects the frequency of trading

in the market, e.g., the house-hunter learns if a house is still advertised.

I characterise and analyse the efficiency of cutoff-strategy equilibria of the

model when buyers learn about the unknown distribution of options from a

“trade signal”. Cutoff strategy means that a buyer stops the search process if

he finds an option that yields him higher utility than a cutoff utility. The trade

signal reveals to a buyer whether a randomly chosen seller traded yesterday.
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The signal’s precision and the market distribution of options are determined

in equilibrium.

In equilibrium, observing a trade (as opposed to no trade) is good news

about the distribution. Buyers who observe a trade use a higher cutoff than

buyers who observe no trade, despite buyers’ learning from options that puts

a countervailing pressure on the cutoffs. In particular, the level of a cutoff

depends on the informativeness of both the trade signal and observing an

option equal to the cutoff. In equilibrium, observing an option just equal to

the cutoff used by buyers who observe no trade is better news than observing

an option equal to the cutoff used by buyers who observe a trade.

I show that the efficiency of a market where buyers learn from the trade

signal can be lower than of a market where buyers do not observe this in-

formation. The extra information makes buyers, on average, too optimistic

about the unknown distribution because the buyers who observe no trade are

relatively too optimistic. Optimistic buyers search longer, which is inefficient

in this model.

In contrast, the efficiency of a market where buyers observe the realisation

of a signal with an appropriate exogenously given precision is higher than both

of a market where buyers do not observe this information and of a market

where buyers know the true distribution. The paper highlights that the type

of information that buyers access is a crucial determinant of whether more

information improves market efficiency. This is an important consideration for

policy-makers and especially relevant in a computerised world as the cost of

emitting information is low.

In Chapter 3, A Two-Agent Model of Sequential Search and Choice, I study

a natural extension of the standard single-agent sequential search problem: a

two-agent (or, equivalently, a multi-selves) search problem with misaligned

preferences. One of the agents, the searcher, inspects items sequentially and
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the other, the chooser, makes the final choice among the inspected items.

Their preferences differ. Many real-world situations can be viewed as two-

party search problems: a political leader chooses a policy option from a pool

collected by his advisers, a boss hires a new worker from the application stack

compiled by the HR manager, and a person chooses from the investment op-

tions shortlisted by an earlier “self”.

I characterise the optimal stopping rule of the searcher who knows that

the final choice is made according to the chooser’s preferences. The optimal

stopping rule is a cutoff rule. The cutoff decreases weakly in time, that is,

exhibits the“discouragement effect“: the searcher is discouraged from searching

longer and for better items as time goes on. The cutoff decreases weakly in

time because of the following. At any point in time, the cutoff depends on the

items that the searcher has inspected. In particular, the searcher’s expected

value from continuing with the search process, thus, the cutoff, decreases in the

chooser’s utility from the chooser-preferred inspected item, i.e., the item that

would be chosen were the searcher to stop immediately. The result is intuitive:

an item that yields a high utility for the chooser acts as a restriction on the

searcher’s problem as he has to find an item that is even better for the chooser

in order to induce the chooser to change her choice. Since the chooser’s utility

from the chooser-preferred item weakly increases in time, the searcher’s cutoff

weakly decreases in time.

I discuss the testable implications of the discouragement effect and explain

how the characteristics of my model differ from two single-agent search models

that feature a time-varying cutoff (convex search costs or deadline). In partic-

ular, in my model the cutoff decreases endogenously over time and the finally

chosen item is never an item found earlier, in contrast to the other models.

In Chapter 4, Search with Mistakes, I analyse a single-agent sequential

search problem, where the searcher is boundedly rational in that she makes

14



mistakes when choosing. With some probability she chooses not the item that

she intended to, but any other of the inspected items. A person may choose

an unintended item because she trembles, is inattentive, or cannot determine

the utilities of items precisely

I show, first, that the agent’s optimal cutoff is history-dependent. This is

because the agent’s expected value from continuing with the search process is

affected by each new item that she inspects as each is chosen with positive

probability. The new item’s utility positively affects the continuation value: a

low-utility item (weakly) lowers and a high-utility item (weakly) increases the

continuation value. Thus, the cutoff can both decrease and increase in time.

Second, I show that, for some parameter values, the erring agent may

search longer than an unerring agent and the erring agent’s behaviour exhibits

regret. The erring agent searches longer to insure herself against trembles:

she accumulates a set of items most of which have an acceptable quality. Her

behaviour exhibits regret if she stops when her expected value from stopping

is lower than it was in the past when she chose to continue. Regret is possible

after the agent receives low-utility items that lower both her optimal cutoff

and stopping value, but in a way that makes stopping optimal.

Finally, I explain how the characteristics of the agent’s optimal behaviour

in my model differ from an unerring agent’s optimal behaviour in some other

extensions to the standard sequential search model that generate a history-

dependent cutoff. For example, neither convex search costs nor a deadline

alone generate regret. A deadline and either uncertain or costly recall together

can generate regret, but for a different reason than my model.

15





Chapter 2

Learning from Trades

2.1 Introduction

In many markets, a buyer discovers what option a seller sells (e.g., a product’s

characteristics and price) only when he visits the seller’s store or website. If

the market distribution of options is unknown to the buyer, he learns about the

distribution from the options that he observes during the visits. In many in-

stances, a buyer learns about the unknown distribution also from other sources

of information, for example, aggregate statistics, sellers’ sales talk, hearsay, and

observing if others trade.

In this paper I study how a signal about trading frequency affects the equi-

librium of a sequential search model where the market distribution of options

is unknown to buyers. A signal about trading frequency is both practically rel-

evant because it is often present in real markets and theoretically interesting

because its precision is determined in equilibrium. I characterise the model’s

equilibria and show that a market with the signal on trading frequency may

be less efficient than a market without the signal. This is among the first

papers to study a search model where buyers’ actions have both informational

and payoff externalities on other buyers. Buyers’ actions have informational
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externalities because they determine the informativeness of the signals other

buyers get and payoff externalities because the market distribution of options

(or, payoffs) is determined in equilibrium. Payoff externalities exist in reality,

are a novel feature of my model, and matter for my results.

The model that I propose describes various dynamic markets where a per-

son who searches for a good option faces an unknown distribution of options.

A person who searches for a house is often unsure about the distribution of the

characteristics of houses within his budget. A job-seeker may not know the

distribution of pay packages across firms. In these markets, first, one person’s

decisions affect the distribution of options that the others face: if a person

bought a certain house or accepted a job, it is not available to the others. Sec-

ond, people often learn about the unknown distribution by observing a signal

about trading frequency. A job-seeker learns if a vacancy is still available and

a house-hunter hears if a colleague has moved. In these markets, both the dis-

tribution of the available options and the precision of the signal are determined

by the actions of all agents in equilibrium.

In my model, an equal amount of buyers and non-strategic sellers enter the

market in each period. The distribution of options (“qualities”, for concrete-

ness) among the entering sellers (the “state”) is fixed for all periods. The state

is unknown to buyers and can be either “good” or “bad”: good means more

high-quality sellers. A buyer meets a seller and decides whether to accept the

seller’s quality. If he accepts, both he and the seller exit the market. Other-

wise, the buyer continues to search for another period. A buyer dies after two

periods, hence, he accepts any quality when “old”. A “young” buyer decides

whether to accept or continue based on the quality of the seller he met and on

the realisation of a private “trade signal”.

The trade signal reveals to a buyer whether a randomly drawn seller traded

yesterday: if the seller traded, the buyer observes a“trade”, and if the seller did
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not trade, the buyer observes “no trade”. The signal’s precision is determined

in equilibrium. This is the trade-signal regime. I also analyse two benchmark

regimes. Under the no-signals’ regime, buyers receive no signal and under the

known-state regime, buyers know the true state.

I study the model’s symmetric stationary equilibria in cutoff strategies:

a young buyer accepts a quality if it exceeds a cutoff quality (“cutoff” for

short). I focus on inefficiency due to delay in trading. Delay is the only

source of inefficiency in my model because buyers are homogeneous and receive

positive utility from all qualities, the amounts of buyers and sellers are equal,

matching is frictionless, and the quality distribution of entrants is fixed. Delay

is positively related to equilibrium cutoff(s).

The three main results of the paper are as follows. First, I characterise

the cutoff-strategy equilibrium under the trade-signal regime. The equilibrium

cutoff that a buyer uses depends on the signal realisation that he observes and

is higher if the realisation indicates the good rather than the bad state. A

trade indicates the good state because a trade is more likely in the good state.

A trade is more likely in the good state because buyers use cutoff strategies:

more qualities exceed the cutoffs in the good state.

In equilibrium, buyers who observe a trade use a higher cutoff than buyers

who observe no trade, despite buyers’ learning from sampled options that puts

a countervailing pressure on the cutoffs. In particular, the level of a cutoff

depends on the informativeness of both the trade signal and a quality equal

to the cutoff. In equilibrium, observing a quality equal to the lower cutoff is

better news about the state than observing a quality equal to the higher cutoff.

Second, for a restricted set of parameter values I show that the trade-signal

regime is less efficient than the no-signals’ regime.1 Intuitively, buyers use too

high cutoffs on average under the trade-signal regime because the lower cutoff,

1My numerical results suggest that the result holds throughout the parameter space.
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used by buyers who observe no trade, is relatively “too high”. The cutoff is

“too high” because observing a quality equal to the lower cutoff is better news

about the state than a quality equal to the higher cutoff. Thus, buyers are

on average “too optimistic” under the trade-signal regime and delay trading,

which is inefficient.

Finally, I show that an exogenous-signal regime that reveals the bad state

with one signal realisation and shrouds the state with the other realisation

is more efficient than both the no-signals’ and the known-state regimes. The

efficiency-improving exogenous signal imitates the more efficient of the known-

state and no-signals’ regimes state by state: the market is more efficient under

the known-state regime than the no-signals’ regime in the bad state and vice

versa in the good state.

Related literature. Wolinsky (1990) established the literature on learning in

dynamic markets with pairwise meetings. In Wolinsky (1990), an uninformed

agent learns about the state of the market from the bargaining position of his

partner (which is equivalent to the option that a buyer observes in my model).

At the time of making a purchase decision all buyers of the same age have the

same belief about the unknown distribution in Wolinsky (1990), but they can

have different beliefs in my model. In Section 2.6 I argue that the heterogeneity

in beliefs is an important driver of my result on the trade-signal regime. In

Wolinsky (1990) and several related models2 buyers learn only from sampled

options, but in my model learn from sampled options and an additional signal.

The idea that a buyer in a search market learns from others’ actions is

present in adverse-selection search models such as Kircher and Postlewaite

(2008), Hendricks et al. (2012), and Garcia and Shelegia (2015). In these

models a buyer learns about a single seller’s option from others’ behaviour,

while in my model he learns about the aggregate state of the market.

2See, e.g., Serrano and Yosha (1993), Isaac (2010), and Isaac (2011).
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Sequentially arriving buyers learn about the quality of a single seller from

their own experience and from additional information in other dynamic adverse

selection models such as Hörner and Vieille (2009), Kim (2014), Kaya and Kim

(2015), and Lauermann and Wolinsky (2015). In these models, there are no

payoff externalities (i.e., a buyer’s actions do not affect the distribution of

payoffs that later-arriving buyers face), while payoff externalities are present

in my model. Hörner and Vieille (2009) and Kim (2014) show that more

information may delay trade or hurt efficiency respectively. I show a similar

result in a novel setting, a model with informational and payoff externalities.

Models of observational learning in financial markets are also related. Mul-

tiple papers consider the effect of exogenous signals and demonstrate that

greater transparency can lead to less efficiency.3 The closest among these is

Asriyan et al. (2015). In Asriyan et al. (2015) the distribution of payoffs that

a single buyer faces essentially does not depend on the actions of other buyers,

whereas it does in my model.4

Papers on social learning where an agent’s action/outcome is observed by a

subset of the other agents, for example Ellison and Fudenberg (1995), Bala and

Goyal (1998), Araujo and Camargo (2006), and Camargo (2014), are also re-

lated.5 The most related among these is Camargo (2014). In Camargo (2014),

like in my paper, an agent learns from the action of one other randomly cho-

sen agent in the economy. The crucial difference between these social learning

models and mine is that in the former there are no payoff externalities: an

agent’s actions do not affect the distribution of payoffs that other agents face.

3See, e.g., Daley and Green (2012), Cespa and Vives (2015), and Duffie et al. (2015).
4In Asriyan et al. (2015) payoff externalities are not present in equilibrium because, by

assumption, a single seller always meets multiple buyers who bid so that the winning buyer
always receives zero expected utility (as do losing buyers).

5Ellison and Fudenberg (1995) study the long-run behaviour of agents who choose be-
tween alternatives based on a simple decision rule that depends on others’ choices. Araujo
and Camargo (2006) study the stability of fiat money in a model where an agent learns from
the experience of his “parent”. Bala and Goyal (1998) study social learning in a network.
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The rest of the paper is structured as follows. In Section 2.2 I introduce

the model. In Section 2.3, I analyse a single buyer’s decision problem who does

not know the true state. I then analyse the equilibria of the model with many

buyers. I introduce the equilibrium and efficiency concepts and prove the

existence of an equilibrium in Section 2.4. The known-state and no-signals’

regimes are analysed in Section 2.5. The trade-signal and exogenous-signal

regimes are analysed in Sections 2.6 and 2.7 respectively. In each section, I

first characterise the equilibrium under that regime and then compare efficiency

across regimes. Section 2.8 summarises and discusses alternative modelling

choices.

2.2 Model

Time is discrete and runs from −∞ to ∞. The market is characterised by

state s ∈ {γ, β}, which is fixed for all periods. The amount of agents in the

market is measured at the start of a period, after entry.

Sellers. In each period a mass one of infinitesimal, non-strategic, and

infinitely-lived sellers enter the market. Each seller has one unit of an in-

divisible good of quality q for sale for a given price, normalised to zero.6 If

the state is “bad”, s = β, the quality distribution among the entering sellers,

Fβ(q), is U [0, 1]. If the state is “good”, s = γ, the entry distribution, Fγ(q), is

U [0, a] with a ∈ (1, 2].7

Buyers. In each period a mass one of infinitesimal, homogeneous, risk-

neutral, and short-lived buyers enter the market. A buyer has a unit demand

and his utility from quality q is u(q) = q. He discounts future payoffs at rate

6More generally, q stands for the indirect utility that a buyer obtains from the seller
denoted by q.

7I make the assumption that a ≤ 2 to ensure equilibrium existence as explained in more
detail when I introduce the equilibrium concept, on p. 29.
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δ ∈ (0, 1).8 A buyer dies after two periods. In state s, the amount of buyers

who entered today, called “young” buyers, is one. In state s, the amount of

buyers who entered yesterday and did not exit (“old” buyers) is defined to be

Os.
9 The total amount of buyers is 1 +Os in state s.

Timing. In each period, first, new entrants enter. Second, each buyer is

matched to a seller. Third, buyers update their beliefs. Fourth, buyers who

want to purchase do so and the agents who trade exit the market. Finally, the

period ends, old buyers die, and the agents who neither traded nor died are

carried over to the next period.

Matching. A buyer is randomly matched to a seller in each period and

meets each seller with equal probability. Matching is frictionless: each seller

is matched to exactly one buyer in a period. The quality of the seller that a

young buyer meets is denoted q1 and that an old buyer meets, q2.

Information. Buyers do not know the true state s. A buyer assigns prior

probability π ∈ (0, 1) to the event s = γ and updates his belief according to

Bayes’ rule. I denote the prior odds by ω := π
1−π .

A young buyer updates his belief based on two pieces of information. He

observes the quality of the seller he meets, q1, and the realisation of a private

signal with binary outcome i ∈ {G,B}.10 Conditional on the true state, the

signal realisations are i.i.d. across buyers and periods. The precision of the

signal is P (G|γ) =: pG and P (B|β) =: pB. Without loss of generality, I assume

that pG ≥ 1 − pB so that outcome G is (weakly) good news, i.e., (weakly)

indicative of state γ. A young buyer’s belief after observing quality q1 and

signal outcome i is π(q1, i) and his private history is (q1, i). His posterior odds

are π(q1,i)
1−π(q1,i)

.

8The assumption δ < 1 is used for efficiency comparisons, as explained on p. 30.
9I study stationary equilibria so I omit time indicators on stock and flow variables.

10The quality q1 is a signal about the state, too, if it informs the buyer about which state
is more likely. However, I restrict the term “signal” to refer to only the second piece of
information that a young buyer receives.
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An old buyer learns from the quality of the seller he meets, q2.11 An old

buyer’s private history is (q1, i, q2).

Information regimes. The precision of the signal that a young buyer receives

differs across the four information regimes that I consider:

1. Known state. Buyers know the state. Equivalently, they receive a per-

fectly informative signal with precision pG = pB = 1.

2. No signals. Buyers receive no signals. Equivalently, they receive a per-

fectly uninformative signal with precision pB = 1− pG.

3. Trade signal. Buyers receive a “trade signal” with outcome i ∈ {T,N}: a

buyer b observes whether a randomly drawn seller (equivalently, a buyer)

traded yesterday, without observing the quality of the seller.12 If b ob-

serves that the seller traded, I say b observes a “trade” (outcome T )

and if he observes that the seller did not trade, I say b observes “no

trade” (outcome N). The signal’s precision is determined in equilibrium:

P (T |s) =: ts is the equilibrium probability that a randomly drawn seller

trades in state s. A trade is informative if the equilibrium probability of

a trade differs across states. If a trade is good news (as I will prove in

Section 2.6), then outcome T corresponds to G (and N to B) and the

signal’s precision is pG = tγ and pB = 1− tβ.

4. Exogenous signal. Buyers receive a private signal with an exogenously

given precision pG = 1 and pB ∈ (0, 1).13

11I do not specify an old buyer’s belief because it is irrelevant for his optimal decision, as
I argue shortly.

12Note that it is irrelevant whether the buyer observes the trading activity of the previous
or an earlier period because I focus on the model’s stationary equilibria, as defined in Section
2.4.

13I restrict the set of values that the precision of the exogenous signal can take because
the set (pG = 1, pB) is sufficiently rich to demonstrate that the exogenous-signal regime can
be more efficient than the known-state and no-signals’ regimes.
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Table 2.1 summarises the four regimes. When comparing the information

regimes, I use the calligraphic superscripts K, N , T , and E for the four regimes

respectively. I suppress the superscripts when there is no ambiguity about

which regime is considered.

Table 2.1: Summary of the information regimes

Regime Signal outcomes Precision

i j P (i|s = γ) P (j|s = β)

Known-state (K) G B 1 1

No-signals’ (N ) G B pG 1− pG
Trade-signal (T ) T N tγ 1− tβ
Exogenous-signal (E) G B pG pB

Strategies. A young buyer’s strategy specifies for each possible private

history whether to accept the quality he observes, q1, or to continue to search.

Search is without recall: an old buyer cannot accept the quality he was offered

when young. An old buyer’s strategy is whether to accept or reject the quality

q2 and he optimally accepts any q2. Thus, a relevant strategy only specifies

the conditions under which a young buyer accepts q1 rather than continues.

Formally, a (relevant) strategy σ is a mapping from the space of a young

buyer’s private histories to the space of all probability distributions over his

actions“accept”and“continue”, σ : [0, a]×{G,B} → Ω({A,C}), where Ω is the

set of all probability distributions over accepting q1 (A) and continuing (C). A

strategy σ is a cutoff strategy if there exists a unique number q̄i (“cutoff”) for

i = G,B such that a young buyer who has observed signal outcome i accepts

all q1 ≥ q̄i and continues after q1 < q̄i. I call this strategy σ = (q̄G, q̄B).

I describe the equilibrium concept and provide the existence result after

analysing the problem of a single buyer who faces an unknown distribution of

options.
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2.3 Single-buyer problem

In this section I present the solution to the optimisation problem of a single

buyer who does not know the market distribution of options. I also describe

how the optimal policy and the expected quality that the buyer accepts depend

on his prior beliefs. Proposition 1 summarises the results.

Proposition 1. A single buyer’s optimal policy is a cutoff rule. The optimal

cutoff ¯̄q is

¯̄q =
δa(1 + ω)

2(a+ ω)
.

The cutoff increases in the buyer’s prior odds, ω.

The expected quality that the buyer accepts is

1

2a(1 + ω)
[a(aω + 1) + ω ¯̄q(aδ − ¯̄q) + a¯̄q(δ − ¯̄q)],

which also increases in ω.

Proof. In Appendix A.

Consider the market described in Section 2.2 with the difference that in

total only one buyer enters the market. The buyer does not know whether the

true state s is good or bad. Since in each period the distribution of entering

sellers is Fs and there is no other buyer to buy from these sellers, the market

distribution of qualities that the single buyer faces is identical to the entry

distribution. I derive the buyer’s optimal policy.

Consider the single buyer when old. An old single buyer accepts all qualities

since he has no further opportunities to search. Thus, I only consider the

buyer’s optimal decision when young in what follows. A young buyer has to

decide whether to accept the quality of the seller he meets, q1, or to continue

to search for another period. The young buyer’s optimal policy is to accept
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all qualities that exceed his continuation value, i.e., his discounted expected

utility from continuing with the search process for another period and then

accepting any offer. Thus, the optimal policy is a cutoff rule and the cutoff

equal to the continuation value.

The continuation value of a young buyer who meets a seller with quality q1

is

δ[π(q1)EFγ (q) + (1− π(q1))EFβ(q)].

The first term in the squared brackets accounts for the possibility that the

true state is good, in which case the buyer expects to receive the mean quality

EFγ (q) when old. The buyer’s belief depends on q1 because all qualities are

offered with different probabilities under the two possible distributions: fγ(q)

and fβ(q) differ for all q ∈ [0, a]. The second term accounts for the possibility

that the true state is bad and is interpreted analogously. The buyer discounts

the future at rate δ. The only unknown quantity in the above expression is

the buyer’s posterior belief π(q1).

The buyer’s posterior odds after any q1 ≤ 1 are

π(q1)

1− π(q1)
= ω

fγ(q1)

fβ(q1)
=
ω

a
, (2.1)

because random matching means that the probability of observing any quality

q1 in state s is equal to its density. Note that the posterior belief is the same

for all q1 ≤ 1. The buyer becomes more pessimistic about the state after any

q1 ≤ 1 because these qualities are more likely in the bad rather than the good

state. The buyer knows that the state is good after any q1 > 1, i.e., π(q1) = 1

for all q1 > 1, because sellers with such qualities do not enter the market if the

state is bad.

The buyer is indifferent between continuing to search for another period
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and accepting quality q1 = ¯̄q that solves

¯̄q = δ[π(¯̄q)EFγ (q) + (1− π(¯̄q))EFβ(q)].

The RHS of this equation is constant for all ¯̄q ≤ 1 and the LHS increases in ¯̄q so

the equation has at most one solution. The equation has exactly one solution

because after any q1 ≤ 1 the buyer’s continuation value is strictly below δ even

if he knows the state to be good: the mean quality in the good state is at most

one. Thus, also the optimal cutoff ¯̄q is below δ.

The optimal cutoff ¯̄q is solved for explicitly by using equation (2.1) for

beliefs and is presented in Proposition 1. It is straightforward to check that

the optimal cutoff increases in the buyer’s prior odds that the state is good, ω

(or, equivalently, in the prior belief π). A more optimistic buyer is willing to

forgo some medium qualities that a less optimistic buyer accepts because the

former is more hopeful that he draws a high quality when old.

The expected quality that the buyer accepts is

∑
s

P (s)[(1− Fs(¯̄q))EFs(q|q > ¯̄q) + Fs(¯̄q)δEFs(q)], (2.2)

The first term in the squared brackets accounts for the possibility that in state s

the young buyer’s offer q1 exceeds ¯̄q, in which case the buyer accepts the offer.

The second term accounts for the possibility that q1 falls below ¯̄q, in which

case the buyer accepts any offer when old. Equation (2.2) simplifies to the

expression in Proposition 1 after some manipulation. The expected accepted

quality increases in the buyer’s prior odds that the state is good, ω. To see

that, consider an increase in ω, i.e., suppose that the buyer becomes more

optimistic about the state. If the buyer did not change his cutoff in response,

the effect on the expected accepted quality would be positive because the buyer
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expects to get the higher, good-state, mean quality with a larger probability.

The buyer, however, optimally also increases the cutoff he uses, which has an

ambiguous effect on the expected accepted quality. But the total effect on the

expected accepted quality is positive because the buyer could also leave the

cutoff unchanged if it were optimal.

I turn to the equilibrium analysis of the model in the subsequent sections.

The most important change that many buyers introduce is that the market

distribution of qualities that a buyer faces is different from the entry distribu-

tion, because the market distribution is partly determined by the equilibrium

behaviour of all buyers.

2.4 Equilibrium concept, existence, and effi-

ciency

In this section, I introduce the equilibrium and efficiency concepts and prove

the existence of an equilibrium in cutoff strategies.

2.4.1 Equilibrium concept

I study the model’s symmetric stationary equilibria in cutoff strategies. I focus

on cutoff strategies because, first, the unique equilibrium under the known-

state regime (for any a) is in cutoff strategies. Second, an equilibrium in

cutoff strategies exists for all parameter values under the trade-signal regime.14

Third, cutoff strategies are simple, hence, a plausible description of reality.

A strategy profile σ∗ = (q̄G, q̄B) is an equilibrium if for all (q1, i), σ
∗ is

14The assumption a ≤ 2 is sufficient to guarantee that an equilibrium in cutoff strategies
exists under the no-signals’ regime (and is also sufficient for the trade-signal regime). It is
known already from Rothschild (1974) that the optimal stopping rule of a buyer who faces an
unknown distribution of options may not be a cutoff rule and depends on the distributions
the buyer considers possible.
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(a) consistent: Hs(q) =: Hs, s = γ, β, is the equilibrium distribution of

qualities in state s induced by σ∗;

(b) optimal: a buyer prefers accepting q1 to continuing for all q1 ≥ q̄i and

vice versa for all q1 < q̄i, i.e., for i = B,G,

q1 ≥ δ
∑
s=γ,β

P (s|q1, i)EHs(q2) for all q1 ≥ q̄i,

q1 < δ
∑
s=γ,β

P (s|q1, i)EHs(q2) for all q1 < q̄i;

(c) uses Bayes updating: π(q1,i)
1−π(q1,i)

= ω P (q1|γ)
P (q1|β)

P (i|γ)
P (i|β)

, where P (x|s) is the equi-

librium probability of observing event x in state s;

(d) stationary: the equilibrium strategy σ∗ and distribution Hs, s = γ, β,

are independent of the time period.

To distinguish the equilibrium cutoffs under the four regimes, I use different

denotation for the cutoffs: q̄β and q̄γ under the known-state, q̄ under the no-

signals’, q̄N and q̄T under the trade-signal, and q̄B and q̄G under the exogenous-

signal regime.

2.4.2 Efficiency

Delay in trading is the only possible source of inefficiency in the model because

buyers receive positive utility from any quality, the quality distribution of

entrants is fixed, matching is frictionless, and the amounts of buyers and sellers

equal.15 If buyers discount future payoffs, i.e., δ < 1, an equilibrium is the less

efficient the longer the delay.16 The (expected) delay as measured across the

15Welfare is equal to a young buyer’s expected utility of participating in the market, which
is a standard efficiency measure in this literature (see Lauermann (2012)).

16If buyers did not discount, i.e., δ = 1, delay would not matter.
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possible states is

D := πOγ + (1− π)Oβ, (2.3)

as a buyer delays trade only if he becomes old.

2.4.3 Equilibrium existence

I prove that an equilibrium in cutoff strategies exists under the four regimes.17

Proposition 2. An equilibrium in cutoff strategies exists under the known-

state, no-signals’, trade-signal, and exogenous-signal regimes. Under the known-

state regime, the unique equilibrium is in cutoff strategies.

Proof. In Appendix A.

The idea of the proof is standard. I first suppose that all buyers but one

use a cutoff strategy and show that the best response of the single buyer is to

use a cutoff strategy, too. Then I show that the equation that an equilibrium

cutoff must satisfy has a solution. Finally, I prove that under the known-state

regime the unique equilibrium is in cutoff strategies.

I have to prove existence and cannot rely on results present in the literature

because the distribution of options is determined in equilibrium in my model.

I explain the complication in more detail in Section 2.5.

2.5 Known-state and no-signals’ regimes

In this section I first present the equilibrium cutoffs and distribution of qualities

under both regimes (Proposition 3). I argue informally why a cutoff-strategy

17I cannot show that the cutoff-strategy equilibrium is unique under the trade-signal
and exogenous-signal regimes. However, as all the results of the paper (most importantly,
comparisons across regimes) hold for all of the equilibria, should there be many, I use the
singular “equilibrium” throughout the paper.
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equilibrium exists by describing a young buyer’s decision. I then characterise

the equilibria. Finally, I compare the delay under the two regimes (Proposition

4).

Under the known-state regime, buyers know the true state s. Under the

no-signals’ regime, buyers do not know the state and a young buyer learns

about the state only from the offer of the seller he meets, q1. I present the

equilibrium cutoffs and distribution of qualities in Proposition 3.

Proposition 3. 1. Under the known-state regime, the equilibrium cutoffs

q̄β and q̄γ are

q̄β = δ
4− δ −

√
δ(8− 3δ)

2(2− δ)2
, and q̄γ = aq̄β.

The equilibrium density of qualities in state s = γ, β is

hKs (q) =


fs(q)√
Fs(q̄s)

if q < q̄s,

fs(q)

1+
√
Fs(q̄s)

if q ≥ q̄s.

2. Under the no-signals’ regime, the equilibrium cutoff q̄ solves

q̄ =
δ

2− δ
ω(1 +

√
q̄)(a−

√
aq̄) + (a+

√
aq̄)(1−

√
q̄)

ω(1 +
√
q̄) + a+

√
aq̄

.

The equilibrium density of qualities in state s = γ, β is

hNs (q) =


fs(q)√
Fs(q̄)

if q < q̄,

fs(q)

1+
√
Fs(q̄)

if q ≥ q̄.

Proof. In Appendix A.

In the proof, I derive the equations that the cutoffs solve and the equilib-
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rium distribution of qualities by using the equilibrium description provided in

the proof of Proposition 2. I now describe a young buyer’s decision and explain

why I need to prove existence of an equilibrium in my model.

2.5.1 A young buyer’s decision

First consider the known-state regime. A young buyer knows that the true

state is s and must decide whether to accept the quality he observes, q1, or

to continue to search for another period. An old buyer accepts any quality.

Hence, a young buyer accepts q1 only if it exceeds his continuation value: the

discounted mean quality in state s, where the expectation is taken under the

equilibrium distribution hs. For a fixed behaviour of all other buyers, the mean

quality in a given state is constant. Hence, a buyer’s optimal rule is a cutoff

rule and the cutoff q̄s equals his continuation value in state s. The cutoff is

a solution to a fixed-point equation because the equilibrium distribution of

options hs depends on the cutoff.

Now consider the no-signals’ regime. A young buyer b’s choice is the same

as under the known-state regime, except that b’s continuation value is a dis-

counted average of the mean qualities in the good and bad states because he

does not know the true state s if q1 ≤ 1.18 Buyer b optimally accepts q1 iff it

exceeds his continuation value. I show that b’s continuation value is discontin-

uous in q1 if other buyers use a cutoff strategy so that it is not evident that b’s

best response is a cutoff rule.

Suppose that all young buyers but b use a cutoff q̂. In the continuation

value, the weight that b puts on the good-state mean quality is his posterior

18A young buyer who observes quality q1 ≥ 1 optimally accepts q1 under all information
regimes as q1 ≥ 1 exceeds the discounted expected value of quality q2, i.e., the discounted
mean quality. In equilibrium, the mean quality is less than one because a cutoff strategy
means that high qualities are accepted more often than low, so that the mean quality under
the equilibrium distribution is smaller than under the entry distribution, EHs(q) < EFs(q),
and EFs(q) ≤ 1 for s = γ, β.
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belief that the true state is good. His posterior differs from the prior as the

probability of observing quality q1 ≤ 1 differs in the two possible states. If

all other buyers use cutoff q̂, then observing any quality below q̂ is equally

informative about the state (because if all buyers but one use a single cutoff,

the market distribution in state s = γ, β is piece-wise constant with a jump at

the cutoff; see Proposition 3). Likewise, observing any quality below one and

above the cutoff q̂ is equally informative about the state. Thus, as a function

of q1, a young buyer’s belief about the true state (and hence his continuation

value) has a discontinuity at q̂ and it is no longer evident that the fixed-point

equation that determines the equilibrium cutoff has a solution. In Appendix

A I show that the equation has a solution.

2.5.2 Equilibrium characterisation

I describe the equilibrium distribution of qualities and establish the relative

size of the cutoffs under the two regimes. The equilibrium distribution of

qualities Hs differs from the entry distribution, Fs. In particular, since high

qualities are accepted by all buyers while low qualities are accepted by only old

buyers, high qualities are under-represented in the equilibrium distribution as

compared to the entry distribution. The difference between the mean quality

under the equilibrium and entry distributions captures the payoff externality

that other buyers impose on a single buyer.

The ratio of equilibrium densities, hγ(q1)

hβ(q1)
, captures the change in the buyer’s

belief that the state is good after observing a certain quality q1. Since this ratio

varies with q1, young buyers have heterogeneous beliefs about the state under

the no-signals’ regime. An analogous heterogeneity in beliefs drives some of the

results under the trade-signal regime, in Section 2.6. The ratio of equilibrium

densities is not monotone increasing in q1, despite the ratio of entry densities
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being monotone.

I compare the sizes of the cutoffs under the two regimes in Lemma 1.

Lemma 1. The buyers’ equilibrium cutoff under the no-signals’ regime is be-

tween the cutoffs used under the known-state regime: q̄ ∈ (q̄β, q̄γ).

Proof. In Appendix A.

The result is intuitive. Suppose that buyers know the state at first. The

optimal cutoff in state s equals the discounted mean quality in state s. Now

consider making the state unknown (as under the no-signals’ regime). Then the

optimal cutoff is equal to an average between the discounted mean qualities in

the good and bad states. Thus, if we ignore the effect that buyers’ actions have

on the equilibrium distributions, a buyer’s optimal cutoff under the no-signals’

regime is between the cutoffs of the known-state regime. Buyers’ actions affect

the equilibrium distributions via the equilibrium cutoff, but not enough to

overturn the intuitive effect of making the state unknown.

I show in Appendix A that in a given state, the increasing function that

maps the cutoff into the probability of becoming old is the same under the

known-state and no-signals’ regimes.19 Hence, Lemma 1 implies Corollary 1,

which I use to provide intuition for the efficiency result in Section 2.7.

Corollary 1. In the bad state the expected delay is longer under the no-signals’

than the known-state regime, and vice versa in the good state.

2.5.3 Efficiency comparison

Proposition 4 compares efficiency under the no-signals’ and known-state regimes.

19See equations (A.3) and (A.12), on p. 114 and p. 121 respectively.
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Proposition 4. The expected delay under the known-state regime is

DK =
√
q̄β,

and under the no-signals’ regime

DN = π

√
q̄

a
+ (1− π)

√
q̄.

The known-state regime is more efficient than the no-signals’ regime (i.e.,

DK < DN ) if δ > 2
3

and vice versa if δ < 2
3
.

Proof. In Appendix A.

In the proof, I show that the expected delays under the no-signals’ and

known-state regimes are equal if a = 1 and that DN increases in a if δ > 2
3

and decreases if δ < 2
3
, while DK is independent of a. Note that even the

known-state regime is not fully efficient because a buyer does not internalise

the externality that he imposes on others. A low quality that a young buyer

b rejects remains in the market until it is accepted by some (old) buyer. The

rejection by b delays the realisation of gains from trade, creating an ineffi-

ciency. In Lauermann (2012), a similar reason causes the symmetric informa-

tion benchmark to be inefficient (Proposition 2). The comparative efficiency

result in Proposition 4 is driven by the specific assumption that the entry dis-

tributions of qualities are uniform and does not extend to more general entry

distributions.

2.6 Trade-signal regime

In this section, I first present the buyers’ equilibrium cutoffs and distribution of

qualities under the trade-signal regime (Proposition 5). I then characterise the
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equilibrium in steps: I show that a trade is good news (Lemma 3), that a low

quality is better news than a higher quality (Lemma 4), and the relative size

of the equilibrium cutoffs (Lemma 5).20 The characterisation is summarised in

Proposition 6. Finally, I show for certain parameter values that this regime is

less efficient than the no-signals’ regime (Proposition 7).21

Under the trade-signal regime, a young buyer learns about the true state s

from the quality he observes, q1, and a trade signal. The trade signal reveals

to a buyer b whether a randomly chosen seller traded in the previous period,

without revealing the seller’s quality. I say that b observes a “trade” (i = T )

if the seller traded and observes “no trade” (i = N) if the seller did not trade.

Conditional on the true state s, the signal’s realisations are i.i.d. across buyers

and periods. The precision of the signal is determined in equilibrium: the

per-period probability of observing a trade in state s, ts, is the equilibrium

probability that a randomly selected seller (equivalently, buyer) trades in state

s. A buyer who observes a trade uses the cutoff q̄T and a buyer who observes

no trade, the cutoff q̄N . The trade signal is a natural way to model a type of

information that is often observed in markets: information about the trading

frequency of other agents.

Proposition 5. Under the trade-signal regime, the equilibrium cutoffs q̄T and

20Lemmas 2, 3, 4, and 5 prove that the characterisation is consistent and part one of the
proof of Proposition 5 that it is unique.

21My numerical results across the grid of (δ, a, π) suggest that the result holds for all
parameter values.
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q̄N solve the following system of equations:



q̄T =
δ

2

ω(1 +Oβ)2 1
aOγ

[
a2 − a2−q̄2T

1+Oγ
− q̄2T−q̄

2
N

2+Oγ

]
+ a(1 +Oγ)2 1

Oβ

[
1− 1−q̄2T

1+Oβ
− q̄2T−q̄

2
N

2+Oβ

]
ω(1 +Oβ)2 + a(1 +Oγ)2

,

q̄N =
δ

2

ω(2 +Oβ) 1
aOγ

[
a2 − a2−q̄2T

1+Oγ
− q̄2T−q̄

2
N

2+Oγ

]
+ a(2 +Oγ) 1

Oβ

[
1− 1−q̄2T

1+Oβ
− q̄2T−q̄

2
N

2+Oβ

]
ω(2 +Oβ) + a(2 +Oγ)

,

aO2
γ =

q̄T + (1 +Oγ)q̄N
2 +Oγ

,

O2
β =

q̄T + (1 +Oβ)q̄N
2 +Oβ

.

The equilibrium density of qualities in state s = γ, β is

hs(q) =



fs(q)
Os

if q < q̄N ,

fs(q)(1+Os)
Os(2+Os)

if q ∈ [q̄N , q̄T ),

fs(q)
1+Os

if q ≥ q̄T ,

where Oγ and Oβ are defined by the above system of equations.

Proof. In Appendix A.

In the proof of Proposition 2 I showed that an equilibrium with charac-

teristics as summarised in Proposition 6 exists. The first part of the proof

of Proposition 5 (together with Lemma 4) shows that this characterisation is

unique. The second part is similar to the proof of Proposition 3.

Since trades and no trades take place in both states if cutoff strategies

are used, both cutoffs q̄T and q̄N are used under the trade-signal regime in a

given state, while a single cutoff is used under the benchmark regimes. Ac-

cordingly, under the trade-signal regime, the equilibrium density of qualities,

hs, is piecewise constant and has two downward jumps, at q̄N and q̄T .
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2.6.1 Trade is good news

A trade is good news if the probability of observing a trade is higher in the

good state than in the bad. Lemma 3 establishes that a trade is good news. I

first show that the amount of old buyers is smaller in the good state than in

the bad.

Lemma 2. The amount of old buyers is smaller in the good state than in the

bad state, i.e., Oγ < Oβ, in an equilibrium where q̄T > q̄N and tγ > tβ.

Proof. In Appendix A.

Intuitively, the amount of old buyers is positively related to the entry

amount of sellers with qualities below q̄N and below q̄T because buyers use

cutoff strategies. Fewer low-quality sellers enter the market in the good state

so a young buyer is less likely to observe a below-cutoff quality and become

old in the good state. In the context of a real-estate market, Lemma 2 sug-

gests that fewer houses remain unsold from one month to the next if many

high-quality houses become available each month.

Lemma 2 implies that a trade is good news.

Lemma 3. The probability of observing a trade is higher in the good state than

in the bad, i.e., tγ > tβ, in an equilibrium where Oγ < Oβ.

Proof. In Appendix A.

Intuitively, trades happen more frequently in the good state than in the bad

because buyers use cutoff strategies and more sellers whose qualities exceed the

cutoffs enter in the good state. In a real-estate market context, learning that a

colleague has moved is good news about the qualities of houses on the market

because a person knows that his colleague has certain standards for the house

that he wants to live in (i.e., uses a cutoff strategy).
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2.6.2 Low quality is better news than high

If a young buyer learned only from the trade signal, then a trade being good

news would imply that a buyer who observes a trade uses a higher cutoff than

a buyer who observes no trade, i.e., that q̄T > q̄N . But a young buyer learns

from both the trade signal and the quality of the seller he meets, q1. In fact,

by the definition of a cutoff, a young buyer who has observed quality q1 = q̄i

and signal realisation i must be just indifferent between accepting the offer

q1 = q̄i and continuing. The buyer’s information (q1 = q̄i and i) affects his

continuation value via his belief about the state. Thus, the good-news content

of the quality q1 = q̄i matters for the level of the cutoff q̄i, i = N, T .

A trade being good news (Lemma 3) would translate directly into a higher

q̄T than q̄N if q1 = q̄T was (weakly) better news than q1 = q̄N . But the next

Lemma shows the opposite: q1 = q̄T is strictly worse news than q1 = q̄N

because the equilibrium odds of observing q1 = q̄T are lower than of observing

q1 = q̄N . The equilibrium odds of observing a quality q1 are equal to the

equilibrium densities’ ratio of q1 because of random matching.

Lemma 4. In any equilibrium with a binary signal that has outcomes B and G

and a precision such that P (B|β) > P (B|γ), if the equilibrium cutoffs satisfy

q̄B < q̄G and Oγ < Oβ, the equilibrium densities’ ratio of q = q̄B is higher than

of q = q̄G, i.e., hγ(q̄B)

hβ(q̄B)
> hγ(q̄G)

hβ(q̄G)
.

Proof. In Appendix A.

Lemma 4 shows that the equilibrium densities’ ratio is not monotone in-

creasing in quality (despite the ratio of entry densities being monotone in-

creasing). The intuition behind the result in Lemma 4 is that a buyer knows

that other young buyers reject the offer q1 = q̄N more often in the good state

(because good news, i.e., trades, are observed more often in the good state),
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while no buyer rejects offer q1 = q̄T . That is, a seller of quality q = q̄N is more

likely to stay on the market in the good state than in the bad, while a seller

of quality q = q̄T stays on the market in neither of the states. Thus, observing

q1 = q̄N is relatively better news than observing q1 = q̄T . In Wolinsky (1990)

such an asymmetry in the inference from options does not happen: all buyers

of the same age must have observed the same sequence of options in the past.

2.6.3 Relative size of equilibrium cutoffs

Despite q1 = q̄N being better news than q1 = q̄T , observing q1 = q̄N and no

trade together is worse news than observing q1 = q̄T and a trade together.

Lemma 5. The equilibrium cutoff used by a buyer who has observed a trade,

q̄T , is higher than the cutoff used by a buyer who has observed no trade, q̄N , in

an equilibrium where Oγ < Oβ, tγ > tβ, and hγ(q̄N )

hβ(q̄N )
> hγ(q̄T )

hβ(q̄T )
.

Proof. In Appendix A.

Intuitively, the effect of the trade signal outweighs the effect of the quality

draw q1 because q1 is less informative than the trade signal. By definition, q1

is a single quality draw. In contrast, the trade signal aggregates the experience

of many buyers and their respective quality draws. Since most quality draws

are informative, the aggregate is more informative than the single draw. As a

result, the equilibrium cutoff used after a trade is higher than the cutoff used

after no trade.

The equilibrium characterisation result is summarised in Proposition 6.

Proposition 6. Under the trade-signal regime, in equilibrium

(i) the cutoff used after a trade is higher than the cutoff used after no trade,

i.e., q̄T > q̄N ,
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(ii) the lower quality q = q̄N is better news than the higher quality q = q̄T ,

i.e., hγ(q̄N )

hβ(q̄N )
> hγ(q̄T )

hβ(q̄T )
, and

(iii) a trade is good news, i.e., tγ > tβ.

Proof. Lemmas 2, 3, 4, and 5 prove that the characterisation is consistent. Its

uniqueness is proven in the proof of Proposition 5.22

2.6.4 Trade signal can reduce efficiency

Now I show that (for certain parameter values) the trade-signal regime is less

efficient than the no-signals’ regime.23

Proposition 7. The expected delay under the trade-signal regime is

DT = πOγ + (1− π)Oβ,

where Oγ and Oβ are defined by the system of equations in Proposition 5.

A sufficient condition for the no-signals’ regime to be more efficient than

the trade-signal regime (i.e., DN < DT ) is that ω = 1 and a ≤ ā(δ), where

ā(δ) := 2δ
4− δ −

√
δ(8− 3δ)

(2− δ)2
.

Proof. In Appendix A.

In the proof I show by a series of approximations that a lower bound on the

expected delay under the trade-signal regime is greater than the expected delay

22The only proof that relies on the assumption that fγ and fβ are uniform is Lemma 4. In
the proof of Proposition 5 I show that the only alternative characterisation of an equilibrium

in a model where
fγ(q)
fβ(q) increases in q is that a trade is good news and the cutoff used after

a trade is higher than the cutoff used after no trade, but a lower quality q = q̄N is worse
news than a higher quality q = q̄T .

23My numerical results suggest that the result holds throughout the parameter space.
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under the no-signals’ regime. Note that a necessary condition for a ≤ ā(δ) to

hold is that δ > 2
3
.

Intuitively, under the trade-signal regime buyers use “too high” cutoffs, in

particular q̄N , on average as compared to the cutoff used under the no-signals’

regime. As explained above, in equilibrium, observing the quality q1 = q̄N

makes a buyer more optimistic than the quality q1 = q̄T . Accordingly, under

the trade-signal regime the equilibrium cutoff used after no trade is relatively

“too high” as compared to the cutoff used after a trade, which leads to a

longer delay under the trade-signal than the no-signals’ regime. Proposition

7 suggests that trades could happen faster in a real estate market if people

would not share their experiences on the market with each other.

Allowing buyers to observe options from a continuum, or, more precisely,

from a set with more than two elements, is important for the efficiency result.

Recall that in Wolinsky (1990), at the time of making a purchase decision,

all buyers of the same age hold the same beliefs about the state. I show in

Appendix A (Claim 1, p. 144) that in a version of my model that corresponds

most closely to Wolinsky (1990), i.e., with two possible qualities, where buyers

of the same age have the same beliefs, the trade signal can improve efficiency.

Finally, I comment on the importance of payoff externalities for the ef-

ficiency result. Payoff externalities arise because the market distribution of

options is determined in equilibrium. The equilibrium distribution of options

determines the informativeness and good-news content of a certain option.

The asymmetric good-news content of different options leads to “too opti-

mistic” buyers on average under the trade-signal regime. In fact, if payoff

externalities are ignored (i.e., if we assume that the distribution of options

that buyers face is identical to the entry distribution) then the trade signal

does not change market efficiency as compared to the no-signals’ regime (the

proof is in Appendix A, Claim 2, p. 148).

43



2.7 An exogenous signal that improves effi-

ciency

The aim of this section is to show that the trade signal is special: there exist

precisions of a private signal that improve upon market efficiency as compared

to both the no-signals’ and known-state regimes (Proposition 9). Before pre-

senting the result, I derive the buyers’ equilibrium cutoffs and distribution of

qualities under the exogenous-signal regime (Proposition 8).

Under the exogenous-signal regime, young buyers learn about the true state

s from q1 and a private signal with realisation i ∈ {G,B}. The precision of the

private signal is exogenously given: pG := P (G|γ) = 1 and pB := P (B|β) ∈

(0, 1). Realisation B reveals the bad state and realisation G is good news as

pG > 1− pB.

Proposition 8. Under the exogenous-signal regime with pG = 1 and pB ∈

(0, 1), the equilibrium cutoffs q̄G and q̄B solve the following system of equations:



q̄G =
δ
2
ω(1 +Oβ)(a−

√
aq̄G + q̄G) + (a+

√
aq̄G)(1− pB)q̄B

ω(1 +Oβ) + (a+
√
aq̄G)(1− pB)

,

q̄B =
δ

2Oβ

[
1− 1− q̄2

G

1 +Oβ

− pB(q̄2
G − q̄2

B)

pB +Oβ

]
,

O2
β =

(1− pB)Oβ q̄G + pB(1 +Oβ)q̄B
pB +Oβ

.

The equilibrium density of qualities in state s = γ, β is

hs(q) =


fs(q)O

−1
s if q < q̄B,

fs(q)(Os + P (B|s))−1 if q ∈ [q̄B, q̄G),

fs(q)(1 +Os)
−1 if q ≥ q̄G.

where Oβ is defined by the above system of equations and Oγ =
√

q̄G
a

.
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Proof. In Appendix A.

The proof of Proposition 8 is similar to the proof of Proposition 5.

The equilibrium densities have similar features under the exogenous-signal

and trade-signal regimes: both feature downward jumps at the two relevant

cutoffs in each state. Under the exogenous-signal regime, the cutoff used after

signal realisation G is higher than the cutoff used after realisation B, i.e.,

q̄G > q̄B. A buyer is maximally pessimistic after B because he knows that the

state is bad, while G leaves a buyer uncertain about the state.

I now prove that precisions for the exogenous signal exist such that the

exogenous-signal regime is more efficient than both the known-state and the

no-signals’ regime.

Proposition 9. The expected delay under the exogenous-signal regime is

DE = πOγ + (1− π)Oβ,

where Oγ =
√

q̄G
a

and Oβ is defined by the system of equations in Proposition

8.

Precisions of the exogenous signal exist such that the exogenous-signal regime

is more efficient than the more efficient of the no-signals’ and known-state

regimes.

Proof. In Appendix A.

The proof shows that if pB is close to one, the exogenous-signal regime is

more efficient than the known-state regime for all δ. I show separately that

if δ < 2
3

and pB is close to zero, the exogenous-signal regime is more efficient

than the no-signals’ regime (recall Proposition 4: the no-signals’ regime is more

efficient than the known-state regime if δ < 2
3
).
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The intuition behind the result in Proposition 9 is the following. Recall

Corollary 1: in the bad state, delay is shorter under the known-state regime

than under the no-signals’ regime and vice versa in the good state. The

efficiency-improving exogenous-signal regime tries to mimic the more efficient

of the known-state and no-signals’ regimes state by state. The exogenous sig-

nal reveals the state in which buyers trade quickly if they know the state (i.e.,

the bad state) and shrouds the state where buyers trade slowly if they know

the state (i.e., the good state).

The trade signal cannot be more efficient than the more efficient of the

known-state and no-signals’ regimes because it cannot mimic the more efficient

of the two extreme information regimes state by state. In particular, the trade

signal can never reveal one state. Any optimal strategy prescribes that a young

buyer rejects some qualities (e.g., q1 = 0) and accepts others (e.g., q1 = 1) so

trades and no trades take place in both states. Hence, rather than inducing

the buyers to shift towards using the more efficient cutoff state by state, a

trade signal moves the buyers’ cutoffs in the same direction in the two states:

towards the no-signals’ cutoff as compared to the known-state cutoffs and

towards the known-state cutoffs as compared to the no-signals’ cutoff. Not

surprisingly, this cannot be better than the more efficient of the known-state

and no-signals’ regimes.

In fact, the precision of the trade signal is such that the regime is less

efficient than the no-signals’ regime even if the no-signals’ regime is less efficient

than the known-state regime (i.e., for δ > 2
3
). Recall the intuition: the cutoff

used after no trade, q̄N , is too high as compared to the other cutoff, q̄T , because

observing the low quality q1 = q̄N is better news than observing the higher

quality q1 = q̄T . In contrast, the similar discrepancy between the good-news

content of q1 = q̄B versus q1 = q̄G has no effect on the cutoff q̄B under the

exogenous-signal regime because pG = 1: the buyer knows that the state is
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bad after B. Hence, q̄B is not too high relative to q̄G.

I argued in Section 2.6 that if payoff externalities are ignored (i.e., if we as-

sume that the distribution of options that buyers face is identical to the entry

distribution) then the trade signal does not change market efficiency as com-

pared to the no-signals’ regime. In fact, if the payoff externalities are ignored,

neither the trade signal nor the exogenous signal change market efficiency as

compared to the no-signals’ regime (see Claim 2 in Appendix A, p. 148).

2.8 Conclusion

I summarise the paper and then discuss some alternative modelling choices.

In many markets, buyers do not know exactly the distribution of options

they face. In a model of such a market, I analyse the effect a signal about

trading frequency (“trade signal”) on the model’s cutoff-strategy equilibrium.

In equilibrium, observing that another market participant traded is good news.

Buyers who observe a trade use a higher cutoff than buyers who observe no

trade, despite buyers’ learning from relevant sampled options that puts a coun-

tervailing pressure on the cutoffs. Contrary to the intuition that more informa-

tion increases market efficiency, the trade signal can reduce market efficiency as

compared to a market without this signal. That is, a real estate market could

be more efficient if people would not talk to each other about their experiences

on the market. The reason is that buyers are “too optimistic” on average in a

market with the trade signal and delay trade, which is inefficient. Conversely,

a private signal with an appropriately chosen precision increases market effi-

ciency as compared to both a market without this signal and a market where

buyers know the distribution of options.

This exogenous signal is less likely to arise endogenously in a market than

a trade signal because the informational requirements for generating the ex-
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ogenous signal are much larger. Generating the exogenous signal requires the

knowledge of the true distribution of options while a trade signal requires

sellers to report their own past trading behaviour. The exogenous signal

with the efficiency-improving precision can be implemented, for example, by a

consumer-protection agency. If the true distribution is bad, the agency some-

times (but not always) produces a condemning report about the qualities in

the market. No report is produced if the distribution is good. Hence, a con-

demning report reveals the bad distribution, but no report leaves the buyers

in darkness about the true distribution.

Strategic information transmission. I argue that strategic sellers would

emit and strategic buyers acquire the information provided by a trade signal,

leading to an outcome that is worse for all impatient agents on the aggregate.

First, impatient sellers would emit information on trades. High-quality

sellers trade in their entry period and prefer (weakly) not to reveal that they

traded. But low-quality sellers may not trade in their entry period and prefer

strictly to reveal not trading. Buyers understand that signal realisation“trade”

or no information can come from a high-quality seller and “no trade” comes

from a low-quality seller (just like in my model). Hence, “no trade” makes

a buyer more willing to accept a low quality, which is in the interests of a

low-quality seller.

Second, buyers would acquire information on trades. Since a trade signal

informs the buyer about the true state and improves his assessment of his

continuation value, he would optimally acquire it.

General entry distributions of sellers. Suppose that the quality distribu-

tions of the entering sellers, Fγ and Fβ, are some continuous distributions with

a common positive support and Fγ first-order stochastically dominates Fβ. The

equations that describe an equilibrium in cutoff strategies are straightforward

to derive, but the cutoffs do not have closed-form solutions.
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However, I expect the three main results of the paper (the equilibrium char-

acterisation, that a trade signal can reduce welfare as compared to no signals,

and that an appropriate exogenous signal improves welfare as compared to

both no signals and known state) to continue to hold. I showed in Section 2.6

that under the assumption that Fγ first-order stochastically dominates Fβ, the

only alternative cutoff-strategy equilibrium characterisation to the one pro-

vided in Proposition 6 is that a trade is good news, the cutoff used after a

trade is (weakly) higher than after no trade, and the lower quality q = q̄N is

worse news than the higher quality q = q̄T . Two crucial asymmetries in the

model drive the two other results. The first asymmetry, between updating

after q1 = q̄N and q1 = q̄T , drives the result that the trade signal can reduce

efficiency. This asymmetry continues to exist (unless the ratio fγ
fβ

grows too

quickly) because a cutoff strategy affects the equilibrium distribution asym-

metrically under a private signal regime. The second asymmetry, that delay is

shorter in the bad state under the known-state than the no-signals’ regime and

vice versa in the good state, drives the result that an exogenous signal with

precision pG = 1 and pB ∈ (0, 1) improves efficiency. I expect this asymme-

try to continue to exist because I expect the cutoff used under the no-signals’

regime to be between the two cutoffs used under the known-state regime.

More possible states. Many possible quality distributions means that a

buyer has a distribution of beliefs over all the possible states and updates this

distribution when new information arrives. I expect the three main results

to continue to hold because there is no argument above that relies on the

assumption that only two distributions are possible.

Long-lived buyers. If buyers live infinitely, then the existence of a stationary

equilibrium in cutoff strategies fails, but can be restored with an additive search

cost. If buyers live for ∞ > L > 2 periods, the analysis of the model does

not change substantially. In each life period, a buyer uses some cutoff that
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depends on his belief. The three main results of the model should continue to

hold.
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Chapter 3

A Two-Agent Model of

Sequential Search and Choice1

3.1 Introduction

Standard sequential search models with recall build on the assumption that the

search and choice stages comprise an undivided whole: the person who searches

can stop and choose an item from the accumulated choice set at any time during

the search process. This is an innocuous assumption if the preferences of the

person are stable over time. In this paper, I extend the standard search model

by allowing the preferences according to which the final choice is made to differ

from the preferences according to which search is conducted. The set-up has

two natural interpretations. First, the preferences belong to different parties:

a “searcher” compiles a choice set via sequential search and a “chooser” chooses

from the collected choice set. Second, the preferences belong to one individual,

but change between the search and choice stages. I show that the searcher’s

optimal policy is a cutoff rule and characterise the cutoff.

1A version of this chapter was published in Journal of Economic Behavior & Organiza-
tion, 2016, vol. 123, pp. 122–137, doi:10.1016/j.jebo.2015.12.010.
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Examples of such search problems are an HR manager collecting applica-

tions for a boss who wants to hire a new worker and a real estate agent collect-

ing offers for a client interested in buying a flat. An example involving a person

and a set of individuals is a spouse looking for a job that determines the living

place of the couple. A person who is interested in the return while search-

ing for an investment opportunity, but later tempted to invest in an option

that involves the least paperwork is a “multi-selves” example. More generally,

many household decisions, organisational decisions involving different phases

and multiple agents, choice processes partially outsourced to external partners,

and political decisions involving advisers feature one party compiling a choice

set for another party via search.

In this paper I analyse the optimal policy of a searcher who compiles a

choice set for a chooser. I describe the model as a two-agent search problem.

The searcher (he) and the chooser (she) have preferences over all items in

some grand set of alternatives and the preferences are distributed according

to a general full-support distribution function. The searcher has access to an

arrival process. In each period, one item arrives and the searcher discovers how

much utility both he and the chooser receive from the item if it is chosen. The

searcher decides in each period whether to stop or continue the search process.

If he stops the process, all the items that have arrived are presented to the

chooser. The chooser then chooses the best item in the choice set according

to her preferences, unless all the items in the set yield her less utility than her

exogenous outside option. Utilities are realised when an item or the outside

option is chosen. The process ends after the chooser moves. The searcher’s

problem is to choose an optimal policy, knowing the chooser’s choice rule.

First, I derive and characterise the searcher’s optimal policy. His optimal

policy is a cutoff rule and the cutoff depends on the item that would be chosen

by the chooser were the searcher to stop immediately, xm. The searcher’s
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cutoff is the lower the higher the chooser values this item because it acts as a

restriction for the searcher: if he is unsatisfied with the utility he would receive

from xm, a new item is chosen only if the chooser’s utility from it exceeds her

utility from xm. This has two implications. First, if the searcher finds an

item that has a very high value for the chooser, he optimally stops searching

regardless of the value that the item yields him. Second, the observed cutoff

that the searcher uses weakly decreases in time, although the search horizon is

infinite and the search environment stationary. I call this the “discouragement

effect”. The discouragement effect is present because the restriction that xm

poses on the searcher’s problem becomes more stringent over time: as time

passes, the searcher is less and less likely to find an item that the chooser values

higher than the chooser-preferred item in the choice set. The searcher is thus

optimally willing to accept a lower-value item. The time-decreasing cutoff is

in contrast with the standard single-agent search model where a stationary

environment translates into a stationary cutoff. The searcher’s cutoff in my

model is defined implicitly by a differential equation. I use a specific joint

distribution where the utilities’ correlation is captured by a single parameter to

numerically show that an increase in the correlation parameter unambiguously

increases the searcher’s cutoff, in line with intuition.

Second, I compare the optimal cutoff of the searcher in the main model

with imperfectly correlated preferences to the benchmark where the agents’

preferences are perfectly aligned. I first show that in the main model the

searcher’s cutoff is always lower than in the benchmark: the searcher is “less

picky”. The reason is that the chooser chooses according to her preferences not

the searcher’s, which lowers the latter’s continuation value, thus, his cutoff. I

then provide an example where, as a result of a mean-preserving spread, the

searcher’s cutoff decreases in the main model, while it always increases in the
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benchmark: the searcher is “more conservative” in the main model.2 A mean-

preserving spread increases the probability that an item arrives that yields

very high utility to the chooser, which restricts the searcher and lowers his

continuation value.

Third, I explain how the model’s characteristics differ from those of two

single-agent search models that feature a cutoff that varies in time. The first

model has convex search costs and the second, a deadline. Both models result

in an optimal cutoff that decreases over time (for a fixed searcher-preferred item

in the choice set) because they assume non-stationarity of the environment.

My model features a time-decreasing cutoff in a stationary environment. Also,

in those models returning to an item found earlier is possible, while search

always stops with the item found last in my model. The searcher returns to

an item found earlier in the models with convex search costs or a deadline

because his cutoff decreases exogenously over time. In my model, the decrease

is endogenous: it happens only if there is a change in the item that would be

chosen if the searcher stopped. I suggest three tests on data that allow us to

reject one or more of the three models.

Finally, I extend the model to allow the searcher to hide items. The searcher

can hide an item only upon its arrival and succeeds with some given probability

that is strictly less than one. He observes whether he succeeded before making

the decision whether to stop or continue. As in the main model, I find that

the searcher’s cutoff is unambiguously decreasing in the value that the chooser

receives from the chooser-preferred item in the choice set. For independent

uniform utilities, I show that the cutoff is strictly increasing in the probability

that the searcher succeeds in hiding. The constraint of having to account

for the chooser’s preferences becomes the less restrictive the likelier that the

searcher can ignore those preferences.

2The terms“less picky”and“more conservative”are borrowed from Albrecht et al. (2010).
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Related literature. This paper is closely related in spirit to other papers

on multi-agent search. In “committee” search problems the committee has a

common arrival process and must agree on when to stop.3 In “couple” search

problems each person has his own arrival process, but they pool income.4 In

these papers some part of the entire search process is joint, while distinct

parties are engaged in distinct stages of the process in my paper. I borrow

the terms “less picky” and “more conservative” in their specific meaning from

Albrecht et al. (2010) (AAV henceforth). AAV analyse a committee search

problem, where M members of an N -member committee must agree in order

to stop the search process. They find that a committee is both less picky and

more conservative than a single searching agent. I find that the searcher is

both less picky and more conservative if his and the chooser’s preferences are

misaligned as opposed to when they are perfectly aligned. These results echo

those of AAV, but the reasons behind the results are somewhat different, as I

explain in Section 3.5.

The paper is also related to the literature on delegated choice in a principal-

agent set-up.5 In these papers an agent makes the final choice and the principal

either restricts the set of items that the agent can choose from or designs a

contract. The available set of items is assumed to be given so the problem is

static, unlike in this paper.

Finally, the paper is related to a recent literature on delegated search,

where an agent conducts search on behalf of the principal in a principal-agent

set-up, by Postl (2004), Armstrong and Vickers (2008), Lewis (2012), Kováč

et al. (2014), and Ulbricht (2016). These models study how the principal can

3For example, see Albrecht et al. (2010), Compte and Jehiel (2010), Bergemann and
Välimäki (2011), Kamada and Muto (2015), and Moldovanu and Shi (2013).

4For example, see Dey and Flinn (2008), Ek and Holmlund (2010), Flabbi and Mabli
(2012), and Guler et al. (2012).

5For example, see Holmström (1977), Armstrong (1995), Alonso and Matouschek (2008),
Armstrong and Vickers (2010), Amador and Bagwell (2013), and Kováč and Krähmer (2015).
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direct the agent to conduct search in the best possible manner for her, whereas

here I focus on the “agent’s” optimal policy in the case when the “principal”

cannot affect the search process directly. In Postl (2004), Lewis (2012), and

Ulbricht (2016) utility is transferable, the agent does not receive direct utility

from a chosen item, and the focus is on the principal’s optimal contracts. In

the other two papers, which are the most closely related to mine, utility is non-

transferable. I point out how the modelling choices in Armstrong and Vickers

(2008) (AV henceforth) and Kováč et al. (2014) (KKT henceforth) result in a

simpler optimal policy for the agent in AV and KKT than in my paper. In

AV, the working paper version of Armstrong and Vickers (2010), the agent

makes the final choice and the principal permits the choice among a subset

of all items. In an extension to the main model of AV, the agent collects the

items via costly search. The most important aspect of my paper that sets

it apart from AV is that the final choice is made by the “principal”, whereas

in AV it is made by the agent. In AV the agent’s cutoff is constant in time.

In KKT the agent’s preferences differ cardinally, but not ordinally, from the

principal’s and the final choice is made by the principal. They solve for the

principal’s optimal mechanism. The most important aspect of my paper that

sets it apart from KKT is that the agent and principal do not necessarily agree

on which item is the best, whereas they do in KKT. The latter assumption

together with assuming that the agent wants to stop with any item trivialises

the unrestricted agent’s optimal stopping rule in KKT, unlike in this paper.

The next section contains the details of the model. Section 3.3 intro-

duces the benchmarks: the searcher’s optimal policy when the chooser’s pref-

erences are either perfectly aligned or opposed to his. Section 3.4 solves for

the searcher’s optimal policy when the agents’ preferences are arbitrarily im-

perfectly correlated. Section 3.5 characterises the solution. The final section

concludes. All omitted proofs are in Appendix B.
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3.2 Model

A “chooser” (“she”) has to choose an item. The chooser makes the final choice

from a choice set, but the choice set is compiled by someone else, a “searcher”

(“he”). The final choice determines the agents’ payoffs. The searcher compiles

the choice set over time via sequential search. He chooses when to stop and

take the accumulated choice set to the chooser.

The arrival process. Time, t, is discrete and t = 1, 2, ...,∞. The searcher

uncovers one new item in each period. He cannot affect how frequently or

which items arrive. Search costs c > 0 per period for the searcher.6

Preferences. The t’th item that arrives, xt = (ut, vt), is worth ut to the

searcher and vt to the chooser. The xt are independent draws from a time-

invariant distribution H(u, v) with support [0, 1]2. The marginal distributions

of u and v are Fu(·) and Fv(·) respectively. The conditional distribution of

u is G(u|v). The associated pdfs are h, fu, fv and g, with fu(u) > 0 for all

u ∈ [0, 1]. I assume that the cost of search is relatively low, c < E[u], so that

at least one period of search is desirable for the searcher. In the main part

of the paper, Section 3.4, the joint distribution H has full support. In the

benchmarks of Section 3.3, the preferences are either perfectly aligned (i.e.,

P (v = u) = 1 and u ∼ Fu) or opposed (i.e., P (v = 1 − u) = 1 and u ∼ Fu).

The chooser has an outside option v̄ ∈ [0, 1].

Actions. In period t the searcher chooses an action at ∈ {S,C}. If the

searcher continues (at = C), the chooser does not get to act in period t. If the

searcher stops (at = S), he takes the accumulated choice set to the chooser.

He cannot hide or lie about items.7 Let the v-maximal item in a choice set

be denoted xm = (um, vm). From any non-empty choice set brought to the

6The main results of the paper are not sensitive to the assumption of an additive search
cost as opposed to discounting. I will comment on the result that does change in Section
3.4.

7The assumption of no hiding is relaxed in Section 3.6.
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chooser, she chooses xm if vm ≥ v̄, which yields utility vm to the chooser and

um to the searcher. If vm < v̄, the chooser chooses her outside option, which

yields utility v̄ to her and zero utility to the searcher. The entire process ends

after the choice of an item or the outside option.

Timing. In each period, first, the searcher uncovers an item and pays the

search cost. Second, he chooses whether to stop or continue to search. If the

searcher stops searching, the chooser chooses an item from the choice set or her

outside option, after which utilities are realised and the entire process ends. If

the searcher continues search, the process moves to the next period.

Problem. The searcher’s problem is to maximise his expected utility from

the search process, taking as given the chooser’s outside option and her choice

rule. The searcher refuses to start the search process if his expected utility is

negative.

3.3 Two benchmarks

In this section, I derive the searcher’s optimal policy in two benchmark versions

of the model: in the first benchmark, the chooser’s preferences are perfectly

aligned with the searcher’s, and in the second, her preferences are perfectly

opposed to the searcher’s.

3.3.1 Perfectly aligned preferences

Suppose that the chooser’s preferences are perfectly aligned with the searcher’s,

i.e., v = u with probability one and u ∼ Fu. If the chooser’s outside option

is zero, the searcher’s problem is equivalent to the standard single-agent se-

quential search problem (see McCall (1970) for the seminal contribution). In

the standard search model, the searcher’s optimal policy is a cutoff rule and

the optimal cutoff is equal to the searcher’s expected value from starting the
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search process (if the value is positive).

The presence of the outside option changes the analysis, but not consid-

erably. The searcher’s optimal policy is a cutoff rule because of the standard

argument: if it is optimal for the searcher to stop with some item which yields

him u, then it is optimal for him to stop with any item that yields him u′ > u.

If the u-value of an item that he finds exceeds the cutoff, he stops and the

chooser chooses this item; the searcher continues otherwise. The cutoff does

not depend on time as the problem is stationary. Since the chooser has an

outside option worth v̄, the searcher must wait for an item that exceeds the

outside option to receive non-zero utility from the search process. The searcher

uses one of two possible cutoffs depending on the size of the chooser’s outside

option. First, if the outside option is low, the cutoff equals ũ, the optimal

cutoff in the standard single-agent sequential search problem. This cutoff is

optimal if v̄ ≤ ũ. McCall (1970) shows that ũ solves

∫ 1

ũ

u− ũ dFu(u) = c.

The cutoff decreases in the cost of search, in line with intuition.

Second, if the chooser’s outside option v̄ is higher than ũ, the searcher is

restricted by v̄ in the sense that in the absence of it he would stop with items

with u ∈ [ũ, v̄), but has to continue in the presence of v̄. Then the searcher

optimally searches until he finds the first item that exceeds the chooser’s out-

side option (if his expected payoff from search is positive). His expected payoff

from the search process, Ua(·), is

Ua(v̄ > ũ) = P (u ≥ v̄)E[u|u ≥ v̄] + P (u < v̄)Ua(v̄ > ũ)− c. (3.1)

The first term on the right-hand side (RHS) accounts for the possibility that
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the first item’s value exceeds the outside option, in which case the searcher

stops and receives u. If the value of the first item is lower than the outside

option, he continues and his expected continuation value is the same as at the

start of today. The searcher also pays the search cost c. The expected payoff

decreases in the cost of search and the chooser’s outside option. If the outside

option is very high, i.e., v̄ > v∗a where v∗a solves Ua(v
∗
a > ũ) = 0, the searcher

refuses to search because his expected payoff from searching is negative.

3.3.2 Perfectly opposed preferences

The chooser’s preferences are perfectly opposed to the searcher’s if v = 1 − u

with probability one and u ∼ Fu. I argue that the searcher’s optimal cutoff is

zero: he stops with any first item acceptable to the chooser, if he searches at

all.

The searcher knows that the chooser chooses according to v. As a result,

he optimally stops after uncovering the first item which satisfies v ≥ v̄ if he

searches at all. The reason is as follows. Without loss of generality, suppose

that v1 ≥ v̄. Then for any realisation of u1, x2 satisfies one of the following.

Either v2 ≥ v1 (so that u2 ≤ u1) or v2 < v1 (so that u2 > u1). If the searcher

stopped after observing the second item, in the former case the chooser would

choose x2 and in the latter case x1. Since u2 ≤ u1 in the former case and the

searcher would end up getting x1 at an extra search cost in the latter case, he

prefers stopping after x1 for any realisation of x2.

The searcher’s expected payoff from stopping with the first item which

satisfies v ≥ v̄, Uo(·), is

Uo(v̄) = P (v ≥ v̄)E[1− v|v ≥ v̄] + P (v < v̄)Uo(v̄)− c.

The equation is interpreted analogously to equation (3.1), except that here the
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searcher receives u = 1 − v when he stops. The searcher’s expected payoff is

decreasing in the cost of search and the chooser’s outside option. The expected

payoff from searching is positive if v̄ < v∗o where v∗o solves Uo(v
∗
o) = 0. If the

expected payoff from searching is negative, the searcher refuses to search and

receives zero.

The results of the first two sections are summarised in the following:

Lemma 6. (i) If the agents’ preferences are perfectly aligned, the searcher’s

optimal policy is a cutoff rule and the cutoff is max{ũ, v̄}, where ũ solves

∫ 1

ũ

u− ũ dFu(u) = c.

(ii) If the agents’ preferences are perfectly opposed, the searcher’s optimal

policy is a cutoff rule and the cutoff is zero.

3.4 Imperfectly correlated preferences

In this section the searcher’s preferences, u, are imperfectly correlated with

the chooser’s preferences, v. The only assumption I make is that their joint

distribution H(u, v) has full support. I derive the first main result of this paper:

the searcher’s optimal policy is a cutoff rule, the cutoff is ū = max{0, ū(vm)},

and decreases in vm.

The searcher’s optimal policy is a cutoff rule because of the standard argu-

ment: if it is optimal for the searcher to stop with some item x = (u, v) (which

yields him u), then it is optimal for him to stop with any x′ = (u′, v) with

u′ > u. The searcher stops if the utility that he receives from the item that

would be chosen by the chooser if the searcher was to stop immediately (i.e.,

from the v-maximal item in the choice set) exceeds the cutoff, and continues

otherwise. The optimal cutoff ū(·) is equal to the searcher’s value from con-
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tinuing, U(·), if the value is positive as in the standard search problem (and

zero if the value is negative).

The cutoff differs from the standard search problem’s in several ways. Re-

call that xm = (um, vm) is the v-maximal item in the choice set. First, the

cutoff is defined only if the choice set contains at least one item with v ≥ v̄,

i.e., if vm ≥ v̄. If no such item exists in the choice set, the searcher optimally

continues for all um (if it was optimal for him to start the search process).

Second, the positive part of the cutoff ū(·), or, equivalently, the searcher’s con-

tinuation value U(·), depends on vm if vm > v̄, but not on um. Suppose that

the v-maximal item in the choice set is xm = (u′, v′) with v′ = vm > v̄. If

the searcher stops, xm is chosen and he receives u′. If he is not satisfied with

u′, i.e., if u′ < ū(·), he continues. I argue that his continuation value depends

on v′, but not on u′. The first part is simple: the continuation value depends

on v′ because a new item x′′ = (u′′, v′′) is chosen only if v′′ > v′. The second

part requires considering two scenarios. Suppose a new item (u′′, v′′) arrives.

If v′′ > v′, then vm changes to v′′: the new item would be chosen if the searcher

stopped. Hence, u′ is irrelevant. If v′′ ≤ v′, then vm stays v′. But then nothing

has changed as compared to the previous period (when the searcher continued)

so that u′ < ū(·) must still hold. In neither of the cases does the searcher’s

continuation value depend on u′. Hence, the expected value of continuing de-

pends only on vm so I write U(vm) and ū(vm). Third, the cutoff is weakly

positive for vm ∈ [v̄, v∗]. The lower bound v̄ is explained above. The upper

bound v∗ is present because vm acts as a restriction: if vm is very high, finding

an item with v > vm becomes so unlikely that the searcher’s continuation value

becomes negative and he is better off accepting any positive um. The upper

bound is defined as ū(vm = v∗) = 0 and v∗ ∈ [0, 1] is guaranteed to exist for

all c > 0 because of the full support assumption.

I solve for the searcher’s continuation value for various values that vm can
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take. Suppose first that vm ≤ v̄. Then no item in the choice set is acceptable

to the chooser. The searcher’s expected value from continuing (equivalently,

starting) the search process is

U(v̄) =

∫ 1

v̄

∫ 1

0

max{u, U(v)}h(u, v) du dv +

∫ v̄

0

U(v̄)fv(v) dv − c, (3.2)

if the next item that he finds is (u, v). The first term on the RHS accounts for

the possibility that v exceeds the chooser’s outside option: the item would be

chosen if the searcher stopped. The searcher chooses optimally whether to stop

or continue, where the continuation value is now a function of v. The second

term on the RHS accounts for the possibility that v is below the chooser’s

outside option: the searcher continues and the continuation value is the same

as at the start of today. The last term accounts for the search cost. As U(v̄) is

also the searcher’s expected payoff from the entire search process, he optimally

starts search if and only if U(v̄) ≥ 0.8

Suppose now that vm > v̄. The searcher’s expected value from continuing

is

U(vm) =

∫ 1

vm

∫ 1

0

max{u, U(v)}h(u, v) du dv +

∫ vm

0

U(vm)fv(v) dv − c, (3.3)

which is interpreted analogously to (3.2), except that v̄ in (3.2) is replaced by

vm in (3.3).

As argued above, the searcher’s optimal cutoff ū(·) is equal to his continu-

ation value U(·) if the latter is positive, which is true for vm ∈ [v̄, v∗] for some

v∗ ∈ [0, 1] that satisfies U(v∗) = 0. The optimal cutoff is zero if the continua-

tion value is negative, i.e., if vm > v∗. Thus, by substituting U(vm) = ū(vm)

8If I assume discounting instead of an additive search cost, then the searcher optimally
starts search for all v̄ < 1 as U(v̄) > 0 for all positive discount factors. This is the only
result that qualitatively changes in a model with discounting.
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into equation (3.3) and using the fact that the agent continues for x = (u, v)

s.t. v > vm and u < ū(v), I can rewrite (3.3) for vm ∈ [v̄, v∗] as

ū(vm) = [1− Fv(vm)]−1

∫ v∗

vm

[∫ ū(v)

0

ū(v)h(u, v) du+

∫ 1

ū(v)

uh(u, v) du

]
dv,

(3.4)

where v∗ satisfies
∫ 1

0

∫ 1

v∗
uh(u, v) dv du = c. As search becomes more costly,

i.e., c increases, v∗ decreases. Intuitively, if search becomes more costly, it

becomes unprofitable for the searcher to continue searching at lower values of

vm. Note that the function ū(vm) does not depend on v̄: the chooser’s outside

option affects the searcher’s expected payoff from the entire search process,

but does not affect his optimal policy for vm > v̄. The above integral equation

can be converted into an ODE by differentiation:

∂ū(vm)

∂vm
= − fv(vm)

1− Fv(vm)

∫ 1

ū(vm)

u− ū(vm) dG(u|vm). (3.5)

On the RHS of the equation, the first term is the hazard rate, i.e., the proba-

bility that an item with v = vm arrives, given that such an item has not arrived

earlier. The integral term is the utility that the searcher expects to get from

the new item, u, in excess of the continuation value ū(vm), which is realised

only if u exceeds the continuation value. The slope of the cutoff depends on

the search cost c indirectly via the level of the cutoff ū(vm), because the level

depends on the search cost via v∗ (see equation (3.4)).

Equation (3.5) does not, in general, have a closed form solution (I provide

a closed form solution for an example below; further examples can be provided

under the assumption that u and v are independent). However, equation (3.5)

together with the initial condition ū(v∗) = 0 fully pin down the function ū(vm),

which proves the first main result of this paper.

Proposition 10. If the agents’ preferences are imperfectly correlated, the
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searcher’s optimal policy is a cutoff rule. The cutoff is ū = max{0, ū(vm)},

where ū(vm) solves

∂ū(vm)

∂vm
= − fv(vm)

1− Fv(vm)

∫ 1

ū(vm)

u− ū(vm) dG(u|vm),

for vm ∈ [v̄, v∗], where v∗ satisfies ū(v∗) = 0.

The cutoff ū(vm) is clearly decreasing in vm for any joint distribution of

u and v with full support. The chooser’s value from the v-maximal item in

the choice set, vm, acts as a restriction on the searcher’s problem because a

new item x′ = (u′, v′) is chosen only if v′ > vm. The stricter the restriction,

the lower the searcher’s expected payoff from the process. I provide sufficient

conditions for the cutoff ū(vm) to be concave in the Appendix.

The fact that the cutoff ū(vm) decreases in vm means that the searcher

does not start searching for high enough outside options for the chooser, v̄.

The chooser’s outside option acts as a similar restriction on the searcher’s

problem as vm. If the outside option is very high, i.e., v̄ > v∗, the searcher

prefers to receive payoff zero to starting the process and making a loss in

expectation. The critical outside option above which the searcher prefers not

to start searching is lower if the agents’ preferences are misaligned as opposed

when they are perfectly aligned (v∗ < v∗a), in line with intuition.

Example 1 (Analytic solution). Suppose the utilities are independent and h

uniform on [0, 1]2. The searcher’s expected value from continuing, equation

(3.4), simplifies to

ū(vm) =
1

2
(1− vm)−1

∫ v∗

vm

1 + ū(v)2 dv,
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Figure 3.1: Searcher’s cutoff as a function of vm if utilities are independent
and uniform for v̄ = 1

10
and c = 1

8
. Dashed line: ũ.

and the associated ODE (3.5) to

∂ū(vm)

∂vm
= −1

2
(1− vm)−1(1− ū(vm))2. (3.6)

In Appendix B I solve equation (3.6) in detail using a standard method and

the initial condition ū(v∗) = 0. The explicit solution is

ū(vm) = 1−
[

1

2
ln

(
1− vm
1− v∗

)
+ 1

]−1

, (3.7)

where the value v∗ has a simple closed form: v∗ = 1− 2c. The conditions that

guarantee that ū(vm) is concave in vm are satisfied. An example of the cutoff

as a function of vm is depicted in Figure 3.1.

3.5 Characterisation

In this section, I first prove that the cutoff policy exhibits the “discouragement

effect” and derive testable implications of my model (Sections 3.5.1 and 3.5.2).
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I then show that, as compared to when the agents’ preferences are perfectly

aligned, if the preferences are misaligned, the searcher is “less picky” and “more

conservative” (Sections 3.5.3 and 3.5.4).9 These two results echo the results

of AAV, but the mechanisms are slightly different as I explain below. I then

provide a numerical example where a higher correlation of preferences results

in an unambiguously higher cutoff. Finally, I show how the implications of

my model differ from two models that extend the standard single-agent search

model and generate a cutoff that varies over time. Omitted details are in

Appendix B.

3.5.1 The cutoff exhibits the discouragement effect

I present the second main result of the paper, that the searcher’s cutoff exhibits

the discouragement effect.

Definition 1 (Discouragement effect). A cutoff policy exhibits the discourage-

ment effect if the cutoff weakly decreases in time.

I call a time-decreasing cutoff the discouragement effect because the longer

the searcher searches, the lower-utility items he is willing to accept and the

more likely he is to stop: he is discouraged from searching longer and for better

items as time goes on.

Proposition 11. The cutoff policy ū(vm) exhibits the discouragement effect.

Proof. The cutoff ū(vm) is weakly decreasing in time if and only if vm is weakly

increasing in time because ∂ū(vm)
∂vm

< 0 (by Proposition 10). Since vm is the

maximum utility that the chooser gets from a choice set collected up to some

time t, vm is formally the tth (or largest) order statistic of the choice set at time

t: vm = max{v1, v2, ..., vt}. But the tth order statistic must weakly increase in

9The terms “less picky” and “more conservative” are borrowed from AAV.

67



t: for any vm at date t, either vt+1 ≤ vm, in which case vm is left unchanged,

or vt+1 > vm, in which case vm takes on the new, higher value vt+1.

Proposition 2 states that he searcher’s cutoff stochastically weakly decreases

over time, despite the search environment being stationary. This is in contrast

to the standard sequential search model where a stationary environment trans-

lates into a stationary cutoff.

The source of the discouragement effect in my model is an endogenous

restriction on the searcher’s problem that becomes more stringent over time.

In particular, the v-value of the v-maximal item in the choice set, vm, acts as

a restriction on the searcher’s problem. The value vm restricts the searcher

because he has to uncover a new item that yields higher utility to the chooser

than vm in order for her to choose the new item. The higher vm, the less likely

is the searcher to uncover an item with a v-value that exceeds vm. But vm

weakly increases in time because it is the largest order statistic of the choice

set according to the chooser’s utility. If search has gone on for long enough, vm

is high and the searcher optimally stops after uncovering any new item (u, v)

with v > vm regardless of how low u is. Suppose that the HR manager in the

example in the Introduction cares about the amiability of a future colleague

and the boss about the new worker’s qualifications. The discouragement effect

means that if the HR manager receives the application of a highly qualified

worker who does not seem like an amiable colleague, he stops looking for other

applicants since he anticipates that the boss hires the highly qualified applicant.

3.5.2 Testable implications of the discouragement effect

I describe the testable implications of my model and especially the discourage-

ment effect. I assume that we have data on multiple search instances involving

the same (or a group of representative) searcher(s) and the same chooser.
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Each search instance is identified with an observation i. I assume that each

observation contains information on the duration of search (denoted Di), the

identity of item that is the final choice (denoted Mi), and on the searcher’s and

chooser’s utility from the finally chosen item xMi
= (uMi

, vMi
). Data on utili-

ties is unlikely to occur in field settings, but can be generated in a laboratory

experiment. The model has three testable implications.

1. uMi and vMi are negatively correlated across i. This is a direct impli-

cation of the negatively-sloped cutoff. If at any point during the search

process vm is low, the searcher only stops if um is high. Conversely, if

vm is high, then a low um is sufficient for the searcher to stop. Across

many instances, the utilities from the finally chosen item should, thus,

be negatively correlated.

2. Di and uMi (vMi) are negatively (positively) correlated across i. The

longer the searcher searches, the more likely is vm to be high. But when

vm is high, the searcher accepts items with lower u-values as compared

to when vm is low. Across many instances, the search duration and the

searcher’s utility from the finally chosen item should, thus, be negatively

correlated.

3. Di = 1 for some observations i. The searcher stops after any first item

x1 if v1 > v∗. In this case, the utility that he gets from the item, u1, is

irrelevant for his stopping problem and he stops immediately.

I explain in Section 3.5.6 how my model’s implications differ from the impli-

cations of two other models with a time-varying cutoff.
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3.5.3 The searcher is less picky if the preferences are

misaligned

I borrow the terminology from AAV and say that a searcher with a lower cutoff

is “less picky” than a searcher with a higher cutoff.

Proposition 12. The searcher is less picky if the agents’ preferences are mis-

aligned as compared to when they are perfectly aligned, i.e., max{ũ, v̄} > ū(vm)

for all vm.

Proof. In Appendix B.

The reason why the searcher whose preferences differ from the chooser’s is

willing to accept a lower utility item is that his search process is restricted by

the chooser’s preferences: an item that the searcher “likes” is chosen only if

the chooser “likes” it, too. If their preferences are not perfectly aligned, the

agents “like” the same item with a probability less than one. This reduces the

searcher’s value from continuing with the search process, hence, his optimal

stopping cutoff. In terms of the hiring example, if amiable people have higher

qualifications, then the HR manager is optimally satisfied with a more ami-

able new colleague as opposed to when amiability and qualifications are not

perfectly correlated, despite the HR manager’s preferences not changing.

In AAV, a committee is less picky than a single searcher because the com-

mittee members need to compromise. In my model, the searcher is less picky

if his and the chooser’s preferences are misaligned because choice is made ac-

cording to the chooser’s not the searcher’s preferences.
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3.5.4 The searcher is more conservative if the prefer-

ences are misaligned

I say that the searcher is “more conservative” if his cutoff may decrease as

a result of a mean-preserving spread (MPS) to the distribution of utilities,

following AAV. In order to make the comparison between the benchmark and

full model and give an unambiguous meaning to a MPS, I assume in this

section that the marginal distributions of u and v equal: Fu = Fv =: F . I

show by example that the searcher is more conservative if his and the chooser’s

preferences are misaligned as compared to when they are perfectly aligned.

Proposition 13. If Fu = Fv and the joint distribution of the utilities is sub-

jected to a mean-preserving spread, the searcher’s cutoff always increases when

the preferences are perfectly aligned, but for a certain set of parameter values

the cutoff decreases when the agents’ preferences are misaligned.

Proof. (a) If the joint distribution of the utilities is subjected to a mean-

preserving spread, the searcher’s cutoff ũ always increases when the pref-

erences are perfectly aligned. For proof, see e.g., AAV.

(b) If the joint distribution of the utilities is subjected to a mean-preserving

spread, the searcher’s cutoff may decrease when the agents’ preferences

are misaligned.

By example: I provide an example where a MPS leads to a decrease in

ū(vm). Assume that u and v are independent and have the same uniform

marginal U [a, b] for 0 < a < b. An example of a MPS for the distribution

is U [a′, b′] such that 0 < a′ < a, b′ > b and a+ b = a′ + b′.

The cutoff of the searcher satisfies the ODE

∂ū(vm)

∂vm
= − (b− ū(vm))2

2(b− a)(b− vm)
.
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The searcher prefers continuing to accepting any item if his value from

continuing is higher, i.e., if U(vm) ≥ a. Define v∗ by U(v∗) = a, or

ū(v∗) = a. The closed form is v∗ = b− 2c. Then I can solve the ODE by

using similar methods as in the proof of Claim 3 (in Appendix B). The

result is

ū(vm) =
2(b+ a)− 2b− b ln[ b−v

∗

b−vm ]

2− ln[ b−v
∗

b−vm ]
.

Differentiating the expression with respect to b while keeping a+ b con-

stant gives

∂ū(vm)

∂b
= 4vm − 2(a+ b) + (b− vm)

(
ln

[
b− v∗

b− vm

])2

.

This is negative, for example, if b = 3, a = 1, vm = 1.5 and c = 1
4
.

The reason why a MPS leads to an unambiguous increase in the searcher’s

optimal cutoff in a single-agent search problem is that a MPS increases the

option value of searching by making really high (and really low) draws possible.

The gain from the really high draws outweighs the loss from the really low

draws because the latter are not accepted.

But if the searcher’s and chooser’s preferences are misaligned, the searcher’s

optimal cutoff may decrease under a MPS: the searcher behaves more conser-

vatively under more risk by accepting lower-utility items. Two counteracting

effects lie behind the result. On the one hand, a MPS of the u-value distribu-

tion benefits the searcher through the same mechanism as in the single-agent

setup: the option value of searching increases and the cutoff rises. On the

other, a MPS increases the probability of items with high v-value occurring. A

high v-value acts as a stricter constraint for the searcher, thus decreasing his

value of continuing and his cutoff. In the example in the proof of Proposition
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13, the negative effect outweighs the positive.

In AAV, a committee is more conservative than a single searcher. The

result emanates from one committee member exerting a negative externality

on another, e.g., in a unanimity committee a member can veto stopping in a

case where everyone but the vetoing member would receive a high utility from

the last item. The externality can become more severe under a MPS. Here, the

result emanates from the fact that under a MPS, the searcher is more likely to

find an item with a v-value that restricts him more.

3.5.5 The searcher prefers more aligned preferences

I use a simple parametric family of joint distributions to demonstrate numer-

ically that the searcher is unambiguously better off as the agents’ preferences

become more aligned. Analytic results are not available even for this simple

family. Let the marginals of u and v be uniform on [0, 1] throughout. The

family of distributions deals with positive and negative correlation separately.

For positive correlation, let the correlation be governed by parameter q ∈ [0, 1].

The conditional distribution of u given v is

u|v =

 v with probability q,

∼ U [0, 1], u |= v −′′− 1− q.

The searcher’s optimal cutoff is the solution to a system of two differential

equation that have the form

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[A(1− ū(vm))2 +B(vm − ū(vm))],

where A and B depend only on q. I provide the exact differential equations in

Appendix B, but omit them here as they do not possess closed form solutions
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that could be interpreted.

For negative correlation, let the correlation be governed by parameter r ∈

[0, 1]. The conditional distribution of u given v is

u|v =

 1− v with probability r,

∼ U [0, 1], u |= v −′′− 1− r.

The searcher’s optimal cutoff is the solution to a system of at most two differ-

ential equations, with a general form given by

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[A(1− ū(vm))2 +B(1− vm − ū(vm))],

where A and B depend only on r. Again, I provide the exact differential

equations in Appendix B.

The positive and negative correlation parameters q and r can be comprised

in a single parameter ρ: ρ = q for q ≥ 0 and r = 0, and ρ = −r for r ≥ 0 and

q = 0. I show numerically that ū(vm) increases in ρ. The result is illustrated

in Figure 3.2 (a lower curve corresponds to a lower level of correlation). The

dashed grey line corresponds to ũ = 1−
√

2c. The intuition behind the result is

simple: if the utilities become more correlated, then the searcher is better off as

his continuation value, thus, his cutoff, increases. An increase in ρ affects the

cutoff via several channels. First, a higher ρ directly increases the searcher’s

value from stopping because a high v is more likely to be accompanied by

a high u. Second, a higher ρ indirectly increases the searcher’s continuation

value both through the decreased likelihood that a high v is restrictive and

through the increased future value of stopping.
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−0.9,−0.5, 0, 0.5, 0.9 (from lowest to highest curve respectively; dashed
line: ũ), for v̄ = 0, c = 1

8
.

3.5.6 Differences with other models with time-varying

cutoffs

Here, I first explain how the characteristics of my model differ from two single-

agent search models that feature a time-varying cutoff. I then explain how

data allows us to test between the three models. Recall that in my model the

searcher’s cutoff decreases (weakly) over time because vm increases (weakly)

over time. Extensions to the standard single-agent search model that produce

a time-varying cutoff are, for example, a finite horizon, i.e., a deadline, (see

Gronau (1971) and Lippman and McCall (1976)) or convex search costs (see

Stiglitz (1987)). For a fixed u-value of the u-maximal item in a choice set

(denoted uw), the cutoff in these models is decreasing over time.

First, I compare the reasons behind the decreasing cutoffs. The reason be-

hind a decreasing cutoff (for a fixed uw) in all the models is that the searcher’s

value of continuing decreases over time. However, the deeper reasons differ.

In the case of a deadline, the decrease is due to the exogenous end of search
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possibilities beyond the deadline. In the case of convex search costs, the de-

crease is due to search becoming exogenously more expensive over time. In

fact, in these models the environment is non-stationary to start with (so that

a non-stationary optimal policy is expected), contrary to my model.

Second, for a fixed uw, the time path of the cutoff in a model with a deadline

or convex search costs is strictly concave in time (for infinitesimally short time

periods) whereas it is not concave in time in my model. In a model with a

deadline, the cutoff is concave in time because for a fixed time increment, the

loss of future search opportunities for the searcher becomes larger the closer

the deadline. In a model with convex search costs, the cutoff is concave in the

number of items (equivalently, in the number of time periods). In my model,

the cutoff is not concave in time because with positive probability, a new item’s

v-value does not change vm, in which case the cutoff is constant in time, thus,

not concave. The time path of the cutoff cannot be constant in time in a model

with either a deadline or convex search costs.

Third, the models generate different outcomes. In my model, the item that

is finally chosen is always the one uncovered last. This is because the cutoff

decreases only if the v-maximal item changes. If a new item becomes the v-

maximal item in the choice set, it changes the cutoff ū(vm), and the new item

may be attractive for the searcher to stop with (if um ≥ ū(vm)). Alternatively,

the new item does not become the v-maximal item in the choice set and the

u-value of the v-maximal item still falls below the cutoff. In contrast, there

may be return to an item uncovered earlier in a model with either a deadline

or convex search costs. This is because in those models the cutoff can decrease

independently of the changes in the choice set. An item that yielded too little

utility to warrant stopping in the past may exceed the decreased cutoff. In

sum, in my model the final choice is always the item uncovered last despite

the searcher’s decreasing cutoff.

76



Finally, I explain how data allows to test between the three models. For

this exercise, let us first assume that each observation i in the data corresponds

to a search instance and contains information on the duration of the search

process, Di, and the identity of the item that is the final choice, Mi. Suppose

we have data on i ≥ 1 of such search instances. Then the following predictions

are made.

1. If in any observation the finally chosen item is not the last item, i.e., Mi 6=

Di for an i, we can reject my model. This prediction is a straightforward

implication of the last of the three differences between the three models

that I discussed above.

2. If the deadline in the deadline model is some known number Ti for each

observation and the duration of search exceeds the deadline in any ob-

servation, i.e., Di > Ti for some i, we can reject the deadline model.

If each observation would additionally contain information about the utilities

of all the items that the searcher has observed, a further prediction is made.

3. If the finally chosen item does not have the highest utility for the searcher

among all the observed items, i.e., if for some i, uMi
6= argmaxx∈CDi

u(x),

where CDi is the choice set collected until the process ends, we can reject

the deadline and the convex search cost models. In my model, the final

choice is made according the chooser’s preferences, v, but is made ac-

cording to the searcher’s preferences, u, in the two other models. Thus,

in the two models the final choice must be the u-maximal item, but not

in my model.
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3.6 An extension: hiding

Suppose that the searcher can hide the items that he wants to at the arrival of

the items, but is not always successful.10 The searcher takes two actions in any

period: a1t ∈ {H,D} and a2t ∈ {S,C}, where H stands for for trying to hide,

D for not trying to hide, S for stopping, and C for continuing. In particular,

after an item xt arrives and the searcher has found out its utilities (ut, vt),

he can attempt to hide the item xt. He succeeds with probability p ∈ (0, 1).

After taking the hiding action and observing its outcome, he chooses whether

to stop or continue.

I derive the searcher’s optimal hiding and stopping policy. In sum, the

searcher (weakly) prefers hiding all items that he does not want to stop with.

He prefers stopping to continuing if his value from stopping exceeds the value

from continuing. Let us consider all the possible cases that the searcher may en-

counter. Suppose that the v-maximal item found until today is xm = (um, vm),

the searcher decided to continue yesterday (so that um < U(vm)), and the item

found today is x = (u, v). I describe the searcher’s optimal policy for all pos-

sible values of xm and x. If v < vm, the searcher continues (with or without

attempting to hide x) because xm is chosen if the searcher stopped (so that his

continuation value is definitely U(vm)) and um < U(vm) still holds. If v ≥ vm,

it must be that U(v) ≤ U(vm) because a higher vm is a greater restriction

for the searcher (I verify later that this property holds). Then the maximum

continuation value that the searcher can achieve is, after successfully hiding x,

U(vm). Hence, if u > U(vm) it is optimal for the searcher to not to hide the

item and stop. Suppose that u < U(vm): the searcher would like to continue if

he could guarantee himself the continuation value U(vm). Hence, the searcher

attempts hiding, a1t = H, and if he succeeds, continues as um < U(vm). If

10I thank Ludo Visschers for proposing this particular hiding technology.
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he fails, he compares u to his continuation value U(v): if u ≥ U(v), he stops,

and continues otherwise. In sum, the optimal sequence of actions for the agent

after receiving x = (u, v) with v ≥ vm is

(a1t, a2t) =



(D,S) if u ≥ U(vm),

(H,C) if u < U(vm) and hiding succeeds,

(H,S) if u ∈ [U(v), U(vm)) and hiding fails,

(H,C) if u < U(v) and hiding fails.

(3.8)

The optimal sequence of actions for the agent after receiving x = (u, v) with

v < vm is

(a1t, a2t) = ({H,D}, C). (3.9)

Thus, the optimal policy of the searcher can no longer be characterised by a

cutoff only, but the buyer’s continuation value U(vm) is sufficient to describe

his optimal policy.

Note that if vm is very high, then the searcher’s continuation value is neg-

ative for the same reason as in the main model. For any p < 1, if vm is very

high, the probability that an item arrives with v > vm (and u > um) is very

low, so that the searcher’s benefit from continuing is less than the cost c. As

before, let the smallest vm s.t. U(vm) ≤ 0 be v∗.

Formally, the searcher’s continuation value when the v-maximal item is

(um, vm) and the newly arrived item is (u, v) satisfies

U(vm) =

∫ vm

0

U(vm)fv(v) dv +

∫ v∗

vm

∫ U(v)

0

[pU(vm) + (1− p)U(v)]h(u, v) du

(3.10)

+

∫ U(vm)

U(v)

[pU(vm) + (1− p)u]h(u, v) du+

∫ 1

U(vm)

uh(u, v) du dv
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+

∫ 1

v∗

∫ U(vm)

0

[pU(vm) + (1− p)u]h(u, v) du+

∫ 1

U(vm)

uh(u, v) du dv − c,

where v∗ satisfies U(v∗) = 0. Each of the terms corresponds to the optimal

sequence of actions for the searcher as described in equations (3.8) and (3.9).

For example, the first terms reads that if the new item’s v-value falls below

the v-value of the v-maximal item found so far, then the searcher optimally

continues to search (as described in equation (3.9)). The last double integral

reads that if v > v∗ (so we know that the searcher’s continuation value is

negative if he fails to hide x), the searcher stops for sure if u exceeds his

best possible continuation value U(vm) (last term). If u falls short of this

continuation value, the searchers tries to hide x. If he succeeds, he continues.

If he fails, he stops.

In a similar fashion as in the main model, I derive the differential equation

that the continuation value satisfies by differentiating (3.10) with respect to

vm and obtain the ODE

∂U(vm)

∂vm

∫ 1

vm

∫ 1

0

h(u, v) du− p
∫ U(vm)

0

h(u, v) du dv

= −
∫ 1

U(vm)

h(u, vm)(u− U(vm)) du,

with terminal condition U(v∗) = 0, or
∫ 1

v∗

∫ 1

0
uh(u, v) du dv = c. Since the RHS

of the ODE is negative and the multiplier after ∂U(vm)
∂vm

on the LHS positive,

the continuation value is unambiguously decreasing in vm. I explain why v∗

is independent of p. The value v∗ is defined as the smallest vm such that

U(vm = v∗) ≤ 0 so that the searcher wants to stop with any um when vm = v∗.

Suppose that vm = v∗ and the searcher continues (so that um = 0). Then the

best continuation value that he can hope for is U(v∗) = 0. If an item (u, v)

arrives with v > v∗, the searcher optimally accepts any u because U(v) < 0
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for all v > v∗. But the expected value of u (given that v > v∗) is independent

of p, hence, v∗ is independent of p.

The comparative static derivative of U(vm) with respect to p cannot be

determined without solving for the function U(vm). I show for an example

below that, in line with intuition, the searcher’s continuation value is strictly

increasing in p for all vm < v∗.

Example 2 (Analytic solution, continued). Suppose that the utilities are in-

dependent and h uniform on [0, 1]2. The searcher’s expected value from con-

tinuing simplifies to

U(vm)(1− vm) =

∫ 1

v∗

∫ U(vm)

0

[pU(vm) + (1− p)u] du+

∫ 1

U(vm)

u du dv − c

+

∫ v∗

vm

∫ U(v)

0

[pU(vm)+(1−p)U(v)] du+

∫ U(vm)

U(v)

[pU(vm)+(1−p)u] du+

∫ 1

U(vm)

u du dv.

The derivative of the above is

∂U(vm)

∂vm
= −1

2
(1− vm)−1(1− pU(vm))−1(1− U(vm))2,

with terminal condition U(v∗) = 0, which yields v∗ = 1 − 2c. Note that the

equation collapses to equation (3.6) if p = 0.

I use the same method to solve the ODE as before, using the initial condition

U(1− 2c) = 0. The implicit solution for U(vm) is

2(1− p) U(vm)

1− U(vm)
− 2p ln(1− U(vm)) = ln

(
1− vm
1− v∗

)
.

The RHS is constant in U(·) and p so the derivative dU(·)
dp

= − LHSp
LHSU(·)

> 0 as

LHSU(·) > 0 and LHSp < 0 (straightforward to verify from above). In line

with intuition, the searcher becomes unambiguously better off as his probability

of successfully hiding the items that he wants to hide increases: he is less likely
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Figure 3.3: Searcher’s cutoff ū(vm) at hiding probabilities p = 0, 0.5, 0.999
(from lowest to highest curve respectively), for v̄ = 0, c = 1

8
. Dashed line: ũ.

to have to account for the chooser’s preferences as p increases. The result is

illustrated on Figure 3.3: higher curves stand for higher p.

Allowing the searcher to hide items acts in a similar manner as making

the agents’ preferences more aligned in the sense that the searcher’s expected

continuation value increases. However, the parametric examples illustrate that

there are differences (see Figure 3.2 and Figure 3.3). For a given correlation

structure, an increase in p shifts the searcher’s continuation value up, with-

out changing the value of vm above which the continuation value is zero (v∗).

Conversely, for a given p, an increase in the correlation parameter shifts both

the searcher’s continuation value and v∗ up. The reason behind the difference

is as follows. If the utilities become more positively correlated, then a high vm

is not as great a restriction on the searcher’s problem: the probability that an

item arrives tomorrow with a v-value that exceeds vm does not change, but it is

more likely that the high v-value is accompanied by a high u-value. Thus, the

searcher’s continuation value at any given vm goes up, including at vm = v∗. If,

instead, the probability that the searcher successfully hides an item increases,
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then if the searcher fails to hide an item with a high vm, the high vm is exactly

as great a restriction on the searcher’s continuation problem as in the original

model (i.e., where p = 0).

3.7 Conclusion

I study a sequential search problem where the preferences according to which

the final item is chosen differ from the preferences according to which search

is conducted. A natural interpretation of this set-up is that the preferences

belong to separate parties: a searcher and a chooser. Alternatively, the pref-

erences of an individual change between the search and choice stages. I show

that the optimal policy of the searcher is a cutoff rule and that the cutoff de-

pends on the items that the searcher has found so far. Due to this dependence,

the search behaviour features the discouragement effect: the cutoff decreases

weakly in time. The cutoff is characterised in detail in Section 3.5. The charac-

teristics of my model differ from two single-agent search models that feature a

time-varying cutoff (convex search costs or deadline). In particular, my model

features a cutoff that decreases endogenously over time and never generates

return to an item rejected earlier, in contrast to the other models.

I interpret some of the results in the context of the multi-selves example

presented in Introduction. The cutoff decreasing in vm means that a person

who has an investment opportunity readily available that involves minimal

paperwork (i.e., if the outside option for the chooser is high) optimally does

not even attempt to look for an opportunity with a higher return as he knows

he will choose the minimal-paperwork option when the time to invest arrives.

A person who is intimidated by paperwork optimally stops searching at an

opportunity that offers a lower return (but little paperwork) than a person

who likes paperwork: the former is less picky. He is less picky not because he
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cares less about returns, but because he anticipates that he chooses a minimal

paperwork option when investing.

The model can be extended in several ways. First, if the model is limited

to the principal-agent set-up it is reasonable to think that the principal (the

chooser) has a direct influence on the agent’s (the searcher’s) search process.

The possibilities of extending the model are rich due to the many possible

assumptions that can be made on the action space and commitment power of

the principal.

For example, the principal’s optimal restrictions on the length of search

are interesting to study because these are prevalent in real life. I have derived

partial results on the principal’s optimal minimal search duration restriction, t̄

(equivalently in this model, on the principal’s optimal restriction on the min-

imal number of options that she requires the agent to inspect). The agent’s

optimal policy is not affected by the minimal search duration restriction be-

cause after t̄ periods have passed, the agent’s problem looks exactly like for

the searcher who does not face time restrictions (as in the main part of this

Chapter).

The principal’s optimal minimal search duration restriction is more com-

plicated to derive. In a two-period model, I have shown for the same class

of joint distributions as in Section 3.5.5 that the principal’s optimal minimal

search duration restriction is shorter if the agent’s and principal’s utilities are

more positively correlated. I have not been able to derive analytic results for

the infinite-horizon model because the functional form of the searcher’s optimal

cutoff is complicated even for this simple class of joint distributions. However,

I expect the result of the two-period model to generalise because of the fol-

lowing. The minimal search duration restriction helps the principal to prevent

the agent to stop searching too early. The agent is more likely to stop too

early from the principal’s viewpoint if he inspects an item that has a low value
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for the principal and a high value for the agent. Such items are more likely

to occur if the agent’s and principal’s utilities are more negatively correlated,

thus lengthening the minimal search duration restriction that is optimal for

the principal.

Results on more general time restrictions are complex to derive because a

maximal search duration restriction (a deadline) means that the agent’s cutoff

depends directly on the amount of time available before the deadline. In fact,

it is unclear that the optimal restriction in the time dimension is a connected

interval.

Second, the model in this paper is very general with respect to the joint

distribution of utilities that is considered. If the model is restricted to some

application, an application-motivated simplifying restriction on the joint dis-

tribution would allow for a more detailed analysis of various aspects of the

optimal cutoff. Third, my model can be enriched by deriving the chooser’s

outside option from the model by considering many searchers competing for

the chooser. I conjecture that a robust equilibrium is such where each searcher

reports to the chooser as soon as he finds the first item. Fourth, my model pro-

vides a natural framework in which to think about issues related to naivete and

sophistication in a search framework. This forms part of my planned future

work.
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Chapter 4

Search with Mistakes

4.1 Introduction

The standard sequential search model with recall assumes that the person

who searches always succeeds in choosing the item that she intends to choose

from the items she has inspected, never erring. I modify the standard model

by allowing the person to make mistakes: she mostly chooses the item she

intends to choose, but sometimes makes a mistake and chooses another item.

A person may choose an unintended item for one or more of several reasons.

The person may choose an item she knows to be inferior because she trembles

or because she is inattentive. She may choose an inferior item because she

cannot determine the items’ utilities exactly or because her preferences change

between the time she assessed the items’ utilities and the time the utility of

the final choice is realised. I derive and characterise the optimal choice and

stopping rules of the person who makes choice mistakes.

The model that I use is the following. A decision-maker (DM) inspects

items over discrete time. An item is either a low- or a high-utility item. In

each period, the DM pays a constant search cost and decides whether to stop

or continue to search. If she continues, the next period arrives and she inspects
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another item. If she stops, she attempts to choose an item from amongst all

the inspected items. She chooses the intended item with probability 1− ε and

chooses uniformly among the other inspected items, i.e., makes a mistake, with

probability ε.1 By assumption, the probability of making a mistake is less than

a half, so the DM optimally attempts to choose the utility-maximising item.

Given the optimal choice rule, the DM’s optimal policy is fully characterised

by her optimal stopping rule.

I show, first, that the DM’s optimal stopping rule is a cutoff rule and the

cutoff is history-dependent. As usual, the DM’s optimal cutoff equals her ex-

pected value from continuing to search. I argue that the continuation value can

both increase and decrease in time. The DM’s continuation value is positively

related to her stopping value because she receives positive utility only when

she stops the search process. When she stops, she optimally intends to choose

the utility-maximising inspected item, but may make a mistake and choose

any other inspected item. The utility from the utility-maximising inspected

item weakly increases in time, but the utility from making a mistake can both

increase and decrease. Thus, the DM’s stopping value can both increase and

decrease in time and the optimal cutoff inherits these traits.

Second, I show that under some parameter values the erring DM stops

searching later than an unerring DM, i.e., the erring DM prefers larger choice

sets than the unerring DM. This result is in contrast to the intuition that an

erring DM prefers to simplify her choice as compared to the unerring DM by

having fewer items to choose from. The erring DM prefers larger choice sets

because she wants to insure herself against her mistakes.

Third, I show that the DM’s behaviour can exhibit regret. The DM’s

1An alternative interpretation of the choice process is akin to the two-agent or multi-selves
interpretation as in Chapter 3: the DM chooses from the choice set with probability 1 − ε
and someone else, whose preferences the DM does not know, with probability ε. I maintain
the erring single-agent interpretation throughout the paper and in Section 4.5 explain how
the results in my model differ from those in Chapter 3.
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behaviour exhibits regret if she stops when her expected value from stopping

is lower than it was in the past when she chose to continue. Regret occurs

if the DM receives low-utility items that lower both her optimal cutoff and

stopping value, but in a way that makes stopping optimal.

Finally, I explain how the characteristics of the DM’s optimal behaviour

in my model differ from an unerring DM’s optimal behaviour in some other

extensions to the sequential search model that generate a history-dependent

cutoff. Such extensions are, for example, convex search costs, a deadline, and

a deadline together with either uncertain or costly recall (see Stiglitz (1987),

Gronau (1971) and Lippman and McCall (1976), Akın and Platt (2014), and

Janssen and Parakhonyak (2014) respectively). The unique feature of my

model as compared to these is that, for a fixed utility-maximising inspected

item, the optimal cutoff can increase over time in my model, while the cutoff

weakly decreases over time in the other models. The increase is possible in

my model because a new item with a relatively high utility increases the DM’s

expected stopping value via the mistake utility. Regret cannot be generated by

extensions of the standard sequential search model where the DM can always

pick the item that she intends to from amongst the inspected items. Thus,

neither convex search costs nor a deadline alone generate regret. A deadline

and either uncertain or costly recall together can generate regret: regret occurs

if an item that was unattractive at the start of search becomes attractive if

the deadline is close, but is no longer available or is costly to retrieve.

Literature. My model is related to the well-established literature on stochas-

tic choice. I classify the best-known models into three groups following Loomes

et al. (2002). The first group contains a model where the mistake occurs in

the choice stage. In Harless and Camerer (1994) a DM makes the utility-

maximising choice with probability 1− ε and makes a mistakes with probabil-

ity ε. As Harless and Camerer (1994) study choices across pairs of items, they
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do not specify how a mistake is made among three or more items. I take the

stance that the mistake is a true tremble: if the DM does not pick the best

item for her, she is equally likely to choose among all other items. The second

group contains models where the mistake occurs in the stage of calculating

items’ utilities, such as Fechner (1860/1948), Marschak (1960), and Block and

Marschak (1960).2 The third group contains models where where the mistake

occurs in the stage of specifying the utility function, for example, Becker et al.

(1963), Loomes and Sugden (1995), and Gul and Pesendorfer (2006). In these

models, the DM’s utility function is either one of multiple functions or contains

a random element.

In another branch of related literature, stochastic choice is the result of

a constrained or non-standard optimisation problem. For example, in Smith

and Walker (1993), Mattsson and Weibull (2002), Caplin and Dean (2015),

Matějka and McKay (2015), and Cheremukhin et al. (2015) stochastic choice

arises because information acquisition is costly. In Masatlioglu et al. (2012)

and Manzini and Mariotti (2014) the DM does not consider each alternative

in the choice set. In Swait and Marley (2013) the DM maximises two separate

goals. In Payró and Ülkü (2015) the DM sometimes chooses an item that

is similar to the utility-maximising item (where similarity can be defined in

terms of utility). In Koida (2015) the DM’s choice depends on her previously

chosen mood. These models study static choice behaviour, whereas I analyse

how stochastic choice affects the optimal dynamic search behaviour of a DM.

In Chapter 3 of this thesis the DM is not the one who makes the final choice

from the choice set, but knows the preferences of the agent who makes the final

choice. An interpretation of my model is that the DM is the one who makes

2Fechner (1860/1948) proposes that a separable error term enters the DM’s estimate of
utility differences between items, whereas Marschak (1960) and Block and Marschak (1960)
propose that the error term enters the estimate of an individual item’s utility (the latter is
known as the random utility model). The well-known Luce (1959) model is equivalent to
the random utility model.
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the final choice with probability 1 − ε and does not know the preferences of

the agent who makes the final choice with the rest of the probability.

Most search models assume that the searching DM makes no mistakes. An

exception is Caplin et al. (2011), where the DM observes her utility from an

item with an error term (as in Fechner (1860/1948)). The DM’s optimal policy

is to search as in the standard model (see, e.g., McCall (1970)), except that

she applies the optimal cutoff to the observed (not true) utility of an item. In

my model, the DM can calculate an item’s utility, but trembles when choosing

(as in Harless and Camerer (1994)), which results in an optimal policy for the

DM that differs from the standard model.

The connection between regret and stochastic choice has been studied in

the past. Regret is experienced if the actual choice is inferior to a potential

choice.3 Loomes and Sugden (1982) and Bell (1985) study the static choice of

a DM who experiences regret, Irons and Hepburn (2007) study the effect of

regret preferences on optimal search behaviour, and Strack and Viefers (2015)

on dynamic decisions more generally. In these models, regret is the primitive

of the models and choice mistakes a result of regret. In my model, regret is a

result and choice mistakes the primitive of the model.

The rest of the paper is structured as follows. The model is described in

Section 4.2. A reminder of the standard sequential search model is in Section

4.3. I derive the optimal stopping rule of a DM who makes mistakes in Section

4.4 and characterise it in Section 4.5. Section 4.6 concludes.

3I introduce the definitions of regret used by different authors in more detail in Section
4.5.3.
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4.2 Model

A decision-maker searches for a good item over time. In each period of time

t = 1, 2, ... she inspects one item xt. The DM gets utility xt ∈ {L,H}, ∞ >

H > L ≥ 0, if she chooses this item.4 The probability that an item is of high

utility is P (xt = H) = p ∈ (0, 1). Search costs c > 0 per period. Search is with

recall: if the DM stops the process at time t, she can (try to) choose any of

the items that she inspected at t or earlier. Utility is realised after the choice

of an item. The choice set at t, Xt, consists of all the inspected items up to

period t: Xt = {x1, x2, ..., xt}. The DM’s problem is to decide when to stop

the search process and which item from the choice set to (try to) choose.

The DM makes mistakes when choosing. If she stops the search process

at t and intends to choose some item from the choice set, she succeeds with

probability 1−ε ≥ 1
2
. With probability ε the DM makes a mistake and chooses

any of the other items in the choice set with an equal probability. I assume

that the DM makes no mistake if she only has one item in the choice set. At

any time t, let mt denote (the utility of) the utility-maximising item in the

choice set and nt the expected utility of making the mistake. The optimal

choice rule for the DM is to try to choose mt because she is more likely to

succeed than fail (1 − ε ≥ ε). I characterise her optimal stopping rule in the

next two sections.

4.3 Benchmark: no mistakes

This section contains a brief reminder of the DM’s optimal policy in the stan-

dard sequential search model with recall, as in McCall (1970). In each period

4In what follows, I let H to stand for an item xt with utility H for brevity. The model’s
results continue to hold if xt can take more than two values. I make the binary support
assumption to simplify some proofs.

92



t, the DM decides whether to stop the search process and choose the best item

she has inspected or to continue to search. She stops if the best inspected

item’s utility mt exceeds the optimal cutoff level of utility, x̃, which is equal to

her expected value from continuing, Ṽ . The cutoff x̃ is stationary because the

environment is stationary. I derive the optimal cutoff x̃.

Suppose that the DM’s optimal policy is to accept the first H and continue

if she uncovers only Ls.5 Then her expected continuation value is

Ṽ = pH + (1− p)Ṽ − c.

With probability p, the item inspected next is H, in which case the DM stops

and gets utility H. With probability 1 − p, the next item is L, in which case

she continues and gets the same expected continuation value as at the start of

today, Ṽ . She always pays the search cost c. As the optimal cutoff equals the

continuation value, the closed form for the optimal cutoff is

x̃ = H − c

p
,

which decreases in the cost of search and increases both in the utility value of

H and in the probability that an H arrives.

The assumption that guarantees that accepting the first H and continuing

after Ls is optimal is

Assumption 1. The parameter values satisfy H −L > c
p

so that the DM who

makes no mistakes optimally continues if her value from stopping is L.

I consider parameter values that satisfy Assumption 1 throughout the paper.

I summarise the DM’s optimal policy in Lemma 1.

5I make an assumption on the parameter values below that guarantees that this is the
optimal policy because other parameter values trivialise the searcher’s problem.
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Figure 4.1: Stopping value and optimal cutoff on an unerring DM as a func-
tion of time for c = 1

10
, p = 1

2
, H = 1, L = 1

4
, and (x1, x2, x3, x4, x5) =

(L,H,H,L, L). Solid line: cutoff x̃; dotted line: stopping value; dots: xt.

Lemma 7. The optimal policy of a DM who makes no mistakes is to stop

searching at the earliest time T when her stopping value mT exceeds the cutoff

x̃ = H − c
p
.

A representative sequence of events is depicted in Figure 4.1. The DM’s

optimal cutoff is x̃ = 8
10

, she receives an L = 1
4

in the first period and an H = 1

in the second period. She stops in the second period because her stopping value

exceeds her continuation value. If she continued instead, her stopping value

would remain unchanged at H in all the following periods because she is always

able to choose an H from the choice set. I call a DM who makes no mistakes

an unerring DM.

4.4 Optimal policy

A decision-maker who makes choice mistakes must in each period decide whether

to stop the search process and try to pick the best item she has found so far

or continue to search. I present the optimal policy of the erring DM in the

94



below Proposition and prove its optimality thereafter. The optimal policy is

characterised in Section 4.5.

Proposition 14. The optimal policy of the DM who makes mistakes is to

stop searching at the earliest time T when her stopping value (1− ε)mT + εnT

exceeds the cutoff x̄(mT , nT , T ).

As in the standard search model, in each period t the DM must compare

her expected value from stopping the search process to her expected value from

continuing with the process. Unlike in the standard model, the DM’s expected

value from stopping is not the utility of the best item found so far, mt, but is

an average between the best item’s and mistake utilities:

(1− ε)mt + εnt. (4.1)

The mistake utility at t, nt, is an average of the utilities of all the items in the

choice set, except the best one:

nt =

∑
x∈Xt\mt x

t− 1
. (4.2)

The erring DM’s stopping value can develop differently from the unerring

DM’s, as illustrated in Figure 4.2. In particular, the stopping value of an

unerring DM never decreases in time, whereas the the value of an erring DM

can decrease. Also, the the stopping value of an unerring DM depends on the

best item’s utility only, whereas the value of an erring DM depends on all the

items in the choice set.

Let the DM’s expected continuation value at time t as a function of the best

item’s utility, mistake utility, and time be denoted by V (mt, nt, t).
6 I argue

6I could equivalently express the continuation value as a function of the number of in-
spected Hs and Ls, but choose mt, nt, and t as state variables to show that the results
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Figure 4.2: Stopping value as a function of time for ε = 0.5, H = 1, L = 1
4
,

and (x1, x2, x3, x4, x5) = (L,H,H,L, L). Dotted line: unerring agent; solid
line: erring agent; dots: xt.

that the continuation value depends on the choice set only via the best item’s

utility mt, mistake utility nt, and date t. The continuation value depends

on mt, nt, and t because the DM’s stopping value tomorrow depends on all

three. The stopping value tomorrow is fully determined by mt+1 and nt+1 (see

equations (4.1) and (4.2)). The best item’s utility tomorrow, mt+1, is fully

determined by mt and the new item’s utility xt+1 as mt+1 = max{mt, xt+1}.

The mistake utility tomorrow, nt+1, is fully determined by the mistake utility

today, the best item’s utility today, the new item’s utility, and the time period

as nt+1 = (t−1)nt+xt+1

t
if xt+1 < mt and nt+1 = (t−1)nt+mt

t
if xt+1 ≥ mt. The

continuation value depends on no other information, first, because the search

cost and probability of inspecting an H are constant and, second, because only

the DM’s stopping value tomorrow (and at future dates) matters as she gets

positive utility only when she stops. Altogether, at any date t the DM compares

her stopping value (1− ε)mt + εnt to the continuation value V (mt, nt, t).

extend to settings where items’ utilities can take more than two values.
The continuation value depends on the entire choice set via mt, nt, and t, whereas in

Chapter 3 the continuation value depends on a single item in the choice set.
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The continuation value can in principle be derived from the following Bell-

man equation. At any date t, for any utility of the best item mt = m ∈ {H,L}

and any mistake utility nt = n ∈ [L,H], the Bellman equation is

V (m,n, t) = pmax

{
V (H,

(t− 1)n+m

t
, t+ 1), (1− ε)H + ε

(t− 1)n+m

t

}
(4.3)

+(1− p) max

{
V (m,

(t− 1)n+ L

t
, t+ 1), (1− ε)m+ ε

(t− 1)n+ L

t

}
− c.

If an H arrives at t + 1, the best item in the choice set at t + 1 is H. If an

L arrives at t + 1, the best item in the choice set at t + 1 remains m. The

new item x changes the mistake value to (t−1)n+m
t

if x = H and to (t−1)n+L
t

if

x = L. Both the stopping and continuation values change accordingly. Search

cost c has to be paid per period.

The DM optimally stops at t if her expected stopping value (1−ε)mt+εnt

exceeds her continuation value V (mt, nt, t). Thus, the optimal policy is a

cutoff rule with a cutoff x̄(mt, nt, t) that is equal to the continuation value. The

optimal cutoff decreases in the cost of search c and in the mistake probability ε

because the stopping value decreases in both. An explicit form for the optimal

cutoff x̄(mt, nt, t) does not exist because equation (4.3) does not have a closed

form solution: at each date the arguments of the value function take on new

values. However, aspects of the optimal behaviour can be characterised, which

I do in the next section.

The DM who makes mistakes never wants to stop when she is sure to get

utility L if

V (L,L, t) = pmax {V (H,L, t+ 1), (1− ε)H + εL}

+(1− p) max {V (L,L, t+ 1), L} − c > L,
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holds. The condition is guaranteed to hold if (1 − ε)(H − L) > c
p

as the

continuation value after only Ls can be approximated down to

V (L,L, t) ≥ p[(1− ε)H + εL] + (1− p)L− c.

I formalise the assumption below.

Assumption 2. The parameter values satisfy (1 − ε)(H − L) > c
p

so that

the DM who makes mistakes optimally continues if her expected value from

stopping is L.

Assumption 1 is guaranteed to hold if Assumption 2 holds. A DM who

makes mistakes prefers continuing to stopping and receiving utility L if her

expected gain from waiting for an H, conditional on being able to pick that

item, exceeds the expected cost. A DM who does not make mistakes knows

that she is able to pick an H once it arrives. Thus, if the stopping value is L,

it is easier to provide incentives to continue to an unerring than an erring DM.

4.5 Characterisation

In this section I show that the erring DM’s optimal cutoff is history-dependent,

her optimal behaviour may exhibit regret, and that for some parameter values

she searches longer than an unerring DM.

4.5.1 History-dependent cutoff

I prove in Proposition 15 that as a function of time, the erring DM’s contin-

uation value, hence, her optimal cutoff can both decrease and increase. The

history-dependent cutoff used by an erring DM is in contrast to the station-

ary cutoff used by an unerring DM. In order to prove Proposition 15, I first
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establish that for a fixed time period t, the DM’s continuation value increases

in both the utility of the best item, mt, and in the mistake utility, nt.

Lemma 8. For fixed m (n) and t, the continuation value V (m,n, t) is increas-

ing in n (m).

Proof. Consider period t with mt = m and nt = n. The DM’s expected

stopping value (1−ε)m+εn unambiguously increases in m and n. Recall that

the DM’s continuation value V (m,n, t) is given by equation (4.3). I argue that

the continuation value increases in n for a fixed m and t, and increases in m for

a fixed n and t. The DM receives positive utility from the search process only

after stopping at some date. Thus, the DM’s continuation value is positively

related to future stopping values. But future stopping values unambiguously

increase in m (for a fixed n and t) and n (for a fixed m and t). Hence, the

continuation value increases in n for a fixed m and t, and increases in m for a

fixed n and t.

For any given t, the continuation value of the DM must increase in both of

its other arguments, the best item’s utility and the mistake utility. The reason

is that the DM cares only about the utility that she gets from eventually

stopping, which increases in both. We are ready to prove the main result of

this subsection.

Proposition 15. As a function of time, the DM’s cutoff x̄(m,n, t) can both

increase and decrease.

Proof. (a) A decrease is possible: I argue that for some t large enough, if

m = H and n = L, the continuation value decreases in t.

First, I show that if m = H and n = L, then for t′ large enough, the DM

prefers to stop, i.e., that for t′ large enough, V (H,L, t′) < (1− ε)H + εL. The
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continuation value at a large t = t′ is

V (H,L, t′) = pmax{V (H,
(t′ − 1)L+H

t′
, t′ + 1), (1− ε)H + ε

(t′ − 1)L+H

t′
}

+(1− p) max{V (H,L, t′ + 1), (1− ε)H + εL} − c

≈ pmax{V (H,L, t′+1), (1−ε)H+εL}+(1−p) max{V (H,L, t′+1), (1−ε)H+εL}−c

≈ max{V (H,L, t′), (1− ε)H + εL} − c,

where the first approximation is true for large enough t′ because an additional

H does not change the mistake utility much if t′ is large, which in turn implies

the second approximation: the date does not influence V (H,L, t′) for large

enough t′. But then it must be optimal for the DM to stop at t′ because the

stopping value (1 − ε)H + εL exceeds the continuation value V (H,L, t′). In

the preceding period, t′ − 1, the continuation value is

V (H,L, t′ − 1) = pmax{V (H,
(t′ − 2)L+H

t′ − 1
, t′), (1− ε)H + ε

(t′ − 2)L+H

t′ − 1
}

+(1− p)[(1− ε)H + εL]− c > (1− ε)H + εL− c ≈ V (H,L, t′).

That is, for m = H and n = L the continuation value decreases in t at large

enough t.

(b) An increase is possible: I prove by example that it is possible that the

continuation value increases in t.

Assume that the DM wants to continue after the sequence (x1 = L, x2 =

H), or that V (H,L, 2) > (1−ε)H+εL. A sufficient condition for the assump-

tion to hold is that ε
2
(H − L) > c

p
, because

V (H,L, 2) ≥ p[(1− ε)H + ε
L+H

2
] + (1− p)[(1− ε)H + εL]− c.
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I show that under this assumption, the DM’s continuation value can increase

at t = 2 after x1 = L, i.e., that V (H,L, 2) > V (L,L, 1). The continuation

value after x1 = L is

V (L,L, 1) = pmax{V (H,L, 2), (1−ε)H+εL}+(1−p) max{V (L,L, 2), L}−c.

I approximate the continuation value up:

V (L,L, 1) < pmax{V (H,L, 2), (1−ε)H+εL}+(1−p) max{V (H,L, 2), L}−c

= V (H,L, 2)− c,

where the inequality follows from Lemma 8 and the equality from the assump-

tion that V (H,L, 2) > (1− ε)H + εL. Thus, the continuation value increases

in t for some realisations of the items’ values.

Lemma 8 shows that at any given time, the DM’s continuation value in-

creases in both the best item’s and the mistake utilities. The utility of the

best item in the choice set, mt, can only weakly increase in time because it

is the tth statistic in the choice set at t: for any mt, a new item has either

weakly lower value than mt, in which case mt+1 = mt, or higher value than

mt, in which case mt+1 > mt. But the utility from making a mistake, nt, can

both increase and decrease in time: it increases after the arrival of an item

with value x ∈ (nt,mt) and decreases after the arrival of an item with value

x < nt. Because of these changes, the stopping value can either increase (after

an increase in mt or nt) or decrease (after a decrease in nt). Thus, the DM’s

continuation value and optimal cutoff can both increase and decrease in time.7

Note that an increase in the cutoff is also possible for a fixed best item in the

choice set, mt: the increase happens due to an increase in the mistake utility

7In Chapter 3, the optimal cutoff can only decrease in time.
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nt. I show in Section 4.5.4 that this feature distinguishes my model from some

other search models that feature a history-dependent cutoff.

As a result, it is conceivable that for a given (mt, nt), the DM stops at

t+ 1 both if her cutoff increases and decreases. That is a direct implication of

the result that the DM’s stopping and continuation values move in the same

direction, for all values of the new item xt+1. That is, the DM’s behaviour can

potentially exhibit endogenous search fatigue.

4.5.2 Longer search

I prove that an unerring DM sometimes searches longer, i.e., prefers larger

choice sets than an unerring DM, in contrast to the intuition that the erring

DM prefers simpler choice situations.

Proposition 16. Under some parameter values, histories exist such that the

erring DM stops searching later than an unerring DM.

Proof. I first argue that the erring DM can stop strictly later than an unerring

DM. Suppose that both the erring and an unerring agents receive the sequence

(x1 = L, x2 = H). At t = 1, both agents continue under Assumption 2 on

the parameter values. At t = 2, the unerring DM stops, whereas the erring

DM continues if ε
2
(H − L) > c

p
(see the proof of Proposition 15). Thus, the

unerring DM stops earlier than the erring DM.8

Under Assumption 2, the erring DM prefers (weakly) larger choice sets

than an unerring DM because she wants to insure herself against her mistakes.

If the mistake probability is high, then it is very risky for the DM to stop

and try to pick an H if there are only a few Hs and many Ls in the choice

8Note that if Assumption 2 does not hold, but Assumption 1 does, i.e., if H − L ∈
( cp ,

c
p(1−ε) ), then the erring DM stops at t = 1 with probability one, while the unerring DM

stops at t = 1 only if she uncovers an H.
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set. If the probability of an H arriving is large enough, the DM prefers to

continue searching in order to improve her mistake utility and insure herself

against trembles.9 Note that the intuition behind this result is similar to that

in the directed search model of Galenianos and Kircher (2009), where searching

agents can visit multiple firms. In particular, in Galenianos and Kircher (2009)

an agent visits both a low- and high-priced firm that in equilibrium serve the

agent with a low and a high probability respectively. She visits the low-priced

firm to try to get a good deal and insures herself against the possibility of not

being able to buy at the low-priced firm by also visiting a high-priced firm.

4.5.3 Regret

I show that an erring DM may regret her earlier decision to continue. I define

regret analogously to the definition of regret over past decisions used in Strack

and Viefers (2015): the DM experiences regret when her utility from stopping

is lower than it was any time in the past.

Definition 2 (Regret). The DM’s behaviour exhibits regret when stopping in

period T if her expected stopping value was higher any time in the past, i.e., if

maxt<T (1− ε)mt + εnt > (1− ε)mT + εnT .

In Loomes and Sugden (1982) and Bell (1985) the DM experiences regret

if the realised payoff from an (action) choice is lower than from a potential

(action) choice. The erring DM clearly experiences regret in this sense because

she makes mistakes. In Irons and Hepburn (2007) the DM experiences regret

if the maximal expected utility from searching the entire set of items is higher

than when stopping. The erring DM clearly may experience regret in this sense

(if the items’ utilities can take more than two values or if Assumption 2 fails)

9In Chapter 3, the searching agent’s cutoff is below the standard model’s cutoff so he
never stops searching later than in the standard model.
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because she uses a cutoff that is below the maximal potential utility. I thus

adopt the above notion of regret which is analogous to that used in Strack and

Viefers (2015).

Proposition 17. The erring DM’s optimal behaviour can exhibit regret.

Proof. Suppose that the erring DM started with the sequence (L,H,H), opti-

mally continued, and thereafter received only Ls. Then at t = 3 her stopping

value was (1− ε)H + εL+H
2

but she optimally chose to continue. But at some

large t = t′, her continuation value is (1− ε)H + ε (t′−2)L+H
t′−1

, which for t′ large

enough is approximately equal to (1 − ε)H + εL. Recall from the proof of

Proposition 15 that there exists a time t′ large enough such that a DM with

m = H and n = L wants to stop at t′. Hence, there also exists a time t′′ > t′

large enough such that a DM with m = H and n ≈ L wants to stop at t′′. But

then the optimal policy of the DM who sees the sequence (L,H,H,L, L, L, ...)

and stops at t′′ exhibits regret.

Suppose that the erring DM inspects some Hs, but not early enough to

warrant stopping. If she then receives multiple Ls in a row, her stopping value

decreases, but so does her continuation value. If the DM receives enough Ls,

she stops, despite her stopping value being lower than before she inspected the

sequence of Ls. The erring DM can experience regret because her stopping

and continuation values move in the same direction: a bad item makes both

stopping and continuing less valuable. For an unerring DM, the continuation

value is constant so the DM never regrets having continued in the past.10

10In Chapter 3, the searching agent can experience regret because he is not in charge of
the final choice.

104



4.5.4 Other models with a history-dependent cutoff

I explain how the characteristics of the DM’s optimal behaviour in my model

differ from an unerring DM’s optimal behaviour in some other search models

that generate a history-dependent cutoff. Such models are, for example, a

model with a deadline (see Gronau (1971) and Lippman and McCall (1976); I

call it the pure deadline model below), convex search costs (see Stiglitz (1987)),

and a combination of a deadline and costly or uncertain recall (see Janssen and

Parakhonyak (2014) and Akın and Platt (2014) respectively). I show that the

unique feature of my model is that the DM’s cutoff can increase in time when

the utility from the best item in the choice set remains unchanged.

I first explain how the stopping value changes in time in these models. In

the pure deadline and convex search costs’ models, the DM’s stopping value

is the best item’s utility found so far (mt) because returning to an item found

earlier is always possible and costless. In the costly recall model, the stopping

value is the maximum of the value of the item found today and the best item

found earlier minus the recall cost (max{mt−1 − b, xt}, where b is the cost of

recall). In the uncertain recall model, the stopping value is either the value of

the item found today or the best item found so far (xt or mt).

These differences in the stopping values produce different outcomes in terms

of the optimal cutoff’s development in time and regret. In all of the models,

the optimal cutoff can decrease in time. In case of a deadline, the DM’s

continuation value, thus, optimal cutoff, decreases because her opportunities

to search further are restricted from some period onwards. In case of convex

search costs, the continuation value decreases because observing another item

becomes more costly over time. However, in only my model can the cutoff

increase in time for a fixed utility-maximising item in the choice set (mt).

For a fixed mt, an increase in the cutoff happens in my model if the mistake
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value nt increases because nt affects future stopping values, thus, the expected

continuation value. But in the other models, the future stopping value depends

on the past only via mt, which increases in time.

Regret can be generated in the models with uncertain or costly return, but

not in the pure deadline and convex search costs’ models. The pure deadline

and convex search costs’ models do not generate regret because the DM’s stop-

ping value weakly increases in time so whenever she stops, her past stopping

value cannot have been higher and thus cannot trigger regret. The uncertain

and costly return models can generate regret. If recall is uncertain, regret is

triggered when an item that was unacceptable in terms of utility in the past

becomes both acceptable (because the cutoff has decreased) and unavailable. If

recall is costly, regret is triggered when an item that was unacceptable in terms

of utility in the past becomes acceptable (because the cutoff has decreased)

since now it costs to retrieve the item. In my model, regret is triggered when

the stopping value decreases due to the arrival of low-utility items.

4.6 Conclusion

Economic agents sometimes choose items that they did not intend to choose,

either because they are not able to determine which item has the highest util-

ity, their utility assessment changes between the choice and utility realisation

phases, they tremble or are inattentive. This paper investigates what happens

if a decision-maker (DM) who searches for a good item makes mistakes when

choosing. The erring DM’s optimal policy is a cutoff rule, as in the standard

sequential search model, but unlike in the standard model, the cutoff is history-

dependent. The erring DM’s cutoff can both increase and decrease in time.

The value of the best item in the choice set weakly increases in time, but the

value from making a mistake can both increase and decrease. Thus, the DM’s
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stopping value can both increase and decrease in time and the optimal cutoff

inherits these traits. The DM may experience regret: regret occurs if she stops

the process at some period t, despite the stopping value having been higher in

the past, when she continued. A DM who makes mistakes can search longer,

or prefer larger choice sets, than a DM who makes no mistakes.

I conclude by discussing the robustness of my model’s results to alternative

modelling choices.

More possible utilities. If the items’ utilities can take on more than two

possible values (e.g., xt ∼ F with support [x, x̄], 0 < x < x̄ <∞ and F ′(x) > 0

for all x ∈ [x, x̄]), all of the model’s results continue to hold.

Other mistake processes. Other plausible mistake processes are such that

the probability that the DM chooses a particular item is positively related to

its utility. A candidate is, for example, a version of Luce (1959) model where

the probability that an item is chosen from a choice set X is proportional to its

utility, i.e., P (x ∈ X is chosen) = x∑
y∈X y

. This choice process means that the

stopping and continuation values, thus the optimal cutoff of the DM, depend

on the entire choice set that she has collected. The results of my model are

robust to the change.

Mistake processes such that the DM’s continuation value does not depend

on the entire choice set she has collected are, for example, the DM choosing the

second-best item or, more generally, among the n items with utility just below

the best, if she fails to choose the best item. These processes would represent

an almost-rational DM. However, both of these processes are arbitrary and the

analysis thus omitted.
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Appendix A

Appendix for Chapter 2

This section contains the proofs and some formal calculations to accompany

the informal arguments made in the body of the Chapter.

A.1 Single-buyer problem

Proof of Proposition 1. The explicit form of the cutoff is easily obtained by

using equation (2.1) for the buyer’s beliefs and the mean qualities in the ex-

pression for his continuation value where q1 = ¯̄q. The expected quality that

the buyer accepts, Eq, is

Eq :=
∑
s

P (s)[(1− Fs(¯̄q))EFs(q|q > ¯̄q) + Fs(¯̄q)δEFs(q)]

= π

[(
1−

¯̄q

a

)
¯̄q + a

2
+

¯̄q

a
δ
a

2

]
+ (1− π)

[
(1− ¯̄q)

¯̄q + 1

2
+ ¯̄qδ

1

2

]
,

which, after some manipulation, simplifies to the expression in the body of the

Chapter.

To see the comparative statistics’ result, take the derivative of the optimal

cutoff and the expected accepted quality with respect to the prior odds, ω.
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The derivatives are

∂ ¯̄q

∂ω
=
δa(a− 1)

2(a+ ω)2
,

and

∂Eq

∂ω
=

1

2a(1 + ω)2
{ (a− 1)

2(a+ ω)
[2(a+ ω)(a+ ¯̄q2)− δa(ω + 1)¯̄q]

+(ω + 1)[ω(aδ − ¯̄q)¯̄q′ + a(δ − ¯̄q)¯̄q′]},

where ¯̄q′ := ∂ ¯̄q
∂ω

. The first derivative is clearly positive because a > 1. The

second derivative is positive because in the first squared brackets the first

term is larger than the second, factor by factor, and in the second squared

brackets, the optimal cutoff is less than the discount factor.

A.2 Equilibrium existence

Proof of Proposition 2. In order to show that an equilibrium in cutoff strate-

gies exists, I need to show that the best response of a buyer to others’ using a

cutoff strategy (q̄B, q̄G) is to use a cutoff strategy (Part a), and that this cutoff

strategy is (q̄B, q̄G) (Part b). Part c shows uniqueness for the known-state

regime.

Part a. A cutoff strategy is a best response to others’ using a cutoff strategy

(q̄B, q̄G) with q̄G ≥ q̄B.

First, I derive the parts of equilibrium that are common for the four regimes.

When the common parts end, I show separately for each regime that either

a sufficient condition (denoted (SC)) or a necessary and sufficient condition

(denoted (NC)) for the best response of a buyer to be a cutoff strategy is

satisfied.

Suppose that all young buyers but one, b, use the cutoffs (q̄G, q̄B) with

q̄G ≥ q̄B when young. Buyer b who observes quality q1 ∈ [0, 1] and signal
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realisation i ∈ {G,B} decides whether to accept q1 or continue, taking other

buyers’ actions as given.1 His best response is to accept q1 if q1 exceeds his

continuation value, V (q1, i), and to continue otherwise.2 A sufficient condition

for b’s best response to be a cutoff rule is

(SC): V (q1, i) decreases weakly in q1 for i = G,B.

A necessary and sufficient condition for b’s best response to be a cutoff rule is

(NC): for i = G,B, there exists a unique q̂i such that for all q1 < q̂i, the buyer’s

continuation value is higher than q1, or q1 < V (q1, i), and for all q′1 ≥ q̂i,

the value is lower than q′1, or V (q′1, i) ≤ q′1.

I show that the sufficient condition (SC) is satisfied for the known-state,

no-signals’ and trade-signal regimes ((i) to (iii) below) and that the necessary

and sufficient condition (NC) is satisfied for the exogenous-signal regime (iv).

The continuation value of b equals the discounted expected value of q2 (i.e.,

mean quality) because b accepts any quality when old. After q1 and signal

realisation i, given that others use cutoff strategy (q̄G, q̄B), the continuation

value is

V (q1, i) = δ[π(q1, i)EHγ (q) + (1− π(q1, i))EHβ(q)],

where Hs is the distribution of qualities induced by strategy (q̄G, q̄B) in state

s (derived below, see (A.2)) and π(q1, i) is b’s posterior belief that the state

is good after quality q1 and signal realisation i. As EHγ (q) > EHβ(q) must

hold when all buyers (but one) use a cutoff strategy, the continuation value

decreases in q1 if π(q1, i) decreases in q1.

1Recall that b optimally accepts q1 ≥ 1 under all information regimes as q1 ≥ 1 exceeds
the discounted mean qualities. If others use cutoff strategies, then the mean quality that
b faces is smaller than under the entry distribution, EHs(q) < EFs(q), and EFs(q) ≤ 1 for
s = γ, β.

2The continuation value could equivalently be expressed as a function of posterior beliefs,
but since this would increase the notational burden, I express the value as a function of q1

and i.
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I derive b’s beliefs. I focus on the posterior odds instead of the posterior

beliefs because the two are equivalent (especially, the posterior increases iff

the posterior odds increase), but the odds easier to interpret. A young buyer

updates his belief that the true state is good based on the signal realisation i

and q1. After any q1 ≤ 1 and realisation i, the buyers’ posterior odds are

π(q1, i)

1− π(q1, i)
= ω

hγ(q1)

hβ(q1)

P (i|γ)

P (i|β)
. (A.1)

Random matching means that the buyer observes q1 in state s with a probabil-

ity equal to the equilibrium density of q1, hs(q1). Hence, the odds of observing

quality q1 are hγ(q1)

hβ(q1)
. The final term in (A.1) is the odds of observing signal

outcome i. For all the regimes except the trade-signal regime, this term is

clearly a constant because the precision of the signal is exogenously given. I

argue that the term is constant also for the trade-signal regime. Under the

trade-signal regime, the probabilities of observing outcomes G and B are de-

termined by the probability that a randomly chosen seller trades, ts. But the

behaviour of all agents but b is fixed in this step and b has measure zero so the

odds of observing outcome i are constant in q1 (ts is derived formally below).

Hence, in order to show that π(q1, i) decreases weakly in q1, I need to show

that hγ(q1)

hβ(q1)
decreases weakly in q1 (or that the odds of q1 do not affect the

posterior).

I derive the equilibrium distribution of sellers to determine whether the

odds of q1, hγ(q1)

hβ(q1)
, weakly decrease in q1. An intuitive way to derive hs(q) is

to impose the stationarity condition: the distribution of sellers is independent

of the time period only if the inflow of sellers of a certain quality equals the

outflow of sellers of that quality. For any q, an amount fs(q) of sellers with

quality q enter. If buyers use the cutoff strategy (q̄B, q̄G) with q̄B ≤ q̄G, a

seller of quality q < q̄B trades with a buyer only if he meets an old buyer. In
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equilibrium, there is a fraction hs(q) of these sellers in the market and because

of random matching, each is equally likely to meet any buyer. The probability

of meeting an old buyer is Os
1+Os

(where Os is the amount of old buyers in state

s) as the total number of buyers (and sellers) in the market is 1+Os. The total

number of sellers with quality q in the market is hs(q)(1 + Os). Altogether,

an amount hs(q)Os sellers with quality q < q̄B trade in each period. Hence,

the equilibrium density for sellers with quality q < q̄B is determined by the

equality fs(q) = hs(q)Os. A seller of q ∈ [q̄B, q̄G) trades with an old buyer

and a young buyer who has observed the bad signal outcome. By a similar

argument as in the previous case, for these sellers the equilibrium density is

determined by the equality fs(q) = hs(q)(Os + P (B|s)). A seller of quality

q ≥ q̄G trades with any buyer so the equilibrium density is determined by the

equality fs(q) = hs(q)(Os + 1). In sum, the equilibrium density of qualities in

state s, hs(q), is

hs(q) =


fs(q)O

−1
s if q < q̄B,

fs(q)(Os + P (B|s))−1 if q ∈ [q̄B, q̄G),

fs(q)(Os + 1)−1 if q ≥ q̄G.

(A.2)

The equilibrium density is a piecewise constant weakly decreasing function in

each state as O−1
s ≥ (Os + P (B|s))−1 ≥ (Os + 1)−1. In equilibrium, qualities

lower than a cutoff are overrepresented as compared to the entry distribution:

buyers impose a negative payoff externality on others.

Now I show separately for the known-state, no-signals’, and trade-signal

regimes that the odds of quality q1 weakly decrease in q1 or that they do not

matter for the posterior odds.

(i) The posterior odds of b are constant under the known-state regime,

regardless of the odds of q1: in (A.1), the final term is equal to either zero

113



or plus infinity, hence, the posterior odds are constant in q1. The sufficient

condition (SC) is satisfied for the known-state regime: b’s continuation value

is weakly decreasing in q1 as it is independent of q1. Let q̄γ denote the cutoff

used in the good state and q̄β the cutoff used in the bad state under the

known-state regime.

(ii) Under the no-signals’ regime, a single cutoff is used (q̄B = q̄G =: q̄)

because the signal is perfectly uninformative. Hence, in state s the amount of

old buyers, ONs , is derived by integrating hs(q) from zero to q̄ and solving for

ONs :

ONs =

∫ q̄

0

hNs (q) dq = Fs(q̄)
1

ONs
,

which gives,

ONs =
√
Fs(q̄). (A.3)

Note that ONγ < ONβ as a > 1.

Using (A.2), we get the odds of q1 under the no-signals’ regime:

hNγ (q1)

hNβ (q1)
=


ONβ
aONγ

if q1 < q̄,

1+ONβ
a(1+ONγ )

if q1 ≥ q̄.

In order to show that the odds of q1 weakly decrease in q1, it is sufficient to

check that the odds of q1 = 0 are at least as high as the odds of q1 = q̄N ,

or equivalently, that
ONβ
aONγ

≥ 1+ONβ
a(1+ONγ )

. But the inequality holds as ONγ < ONβ .

Altogether, b’s continuation value decreases (weakly) in q1 under the no-signals’

regime so the sufficient condition (SC) is satisfied.

(iii) Under the trade-signal regime, assume that a trade is good news (tγ >

tβ) and that the cutoff used by buyers who have observed a trade, q̄T , is higher

than the cutoff used by buyers who have observed no trade, q̄N (in terms of

the above notation, q̄G = q̄T and q̄B = q̄N). Then the missing probability in
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the equilibrium distribution of qualities, (A.2), is P (B|s) = 1− ts, where ts is

the probability of observing a trade. The odds of quality q1 are, explicitly

hTγ (q1)

hTβ (q1)
=



OTβ
aOTγ

if q1 < q̄N ,

(OTβ +1−tβ)

a(OTγ +1−tγ)
if q1 ∈ [q̄N , q̄T ),

1+OTβ
a(1+OTγ )

if q1 ≥ q̄T .

(A.4)

To get an explicit form of the distribution, I derive the probability of observing

a trade and the amount of old buyers.

The probability of observing a trade is the equilibrium probability that a

randomly chosen seller trades in a period because a buyer does not observe the

quality of the seller whose trade/no trade he observes. The total amount of

sellers that trade and exit in a period is one because the market is stationary

and the entry amount of sellers is equal to one. The total amount of sellers is

equal to the amount of buyers, 1 + Os, in state s. Hence, the probability of

observing a trade in state s is

ts =
1

1 +OTs
. (A.5)

Note that OTγ < OTβ implies that tγ > tβ, as assumed above.

The amount of old buyers in the market equals the amount of sellers that

are carried from one period to the next. This amount is made up, first, of all

the sellers with quality q < q̄N that have entered the market and have always

met young buyers, and, second, of all the sellers with quality q ∈ [q̄N , q̄T ) that

have entered and have always met young buyers who have observed trades. The

probability that a seller who entered j periods ago has always met young buyers

is (1 +Os)
−j and that he has always met young buyers who have observed

trades is tjs (1 +Os)
−j. In sum, the amount of sellers that are carried from one
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period to the next is

OTs =
∞∑
j=1

Fs(q̄N)

(
1

1 +OTs

)j
+ (Fs(q̄T )− Fs(q̄N))

(
ts

1 +OTs

)j

=
1

OTs

Fs(q̄T ) + (1 +OTs )Fs(q̄N)

2 +OTs
. (A.6)

The last fraction decreases in OTs and as fewer sellers both with qualities below

q̄N and below q̄T enter the market in the good state, it must be that OTγ < OTβ .

I now show that the odds of q1, (A.4), decrease (weakly) in q1. The first

inequality that has to be satisfied is
OTβ
aOTγ

>
(OTβ +1−tβ)

a(OTγ +1−tγ)
. After cross-multiplying,

inserting the equation for ts, and collecting terms, the inequality simplifies to

OTβ
OTγ

1 +OTγ
> OTγ

OTβ
1 +OTβ

,

which holds as OTβ > OTγ . The second inequality that has to be satisfied

is
(OTβ +1−tβ)

a(OTγ +1−tγ)
>

1+OTβ
a(1+OTγ )

. After cross-multiplying and collecting terms, the

inequality simplifies to

tγ(1 +OTβ ) > tβ(1 +OTγ ),

which holds as OTβ > OTγ and tγ > tβ. In sum, the odds
hTγ (q1)

hTβ (q1)
decrease

(weakly) in q1. Altogether, under the trade-signal regime b’s continuation value

decreases (weakly) in q1 so that the sufficient condition (SC) is satisfied and

b’s best response is a cutoff rule if others use strategy (q̄T , q̄N) with q̄T > q̄N .

(iv) Under the exogenous-signal regime, assume that all buyers but b opti-

mally use strategy (q̄G, q̄B) with q̄γ > q̄G > q̄B > q̄β. I show that the necessary

and sufficient condition for the best response for b to be a cutoff strategy (NC)

holds under the exogenous-signal regime with pG = 1 and pB ∈ (0, 1). Recall
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(NC): for signal realisation i = B,G there exists a unique q̂i such that for all

q1 < q̂i, b’s continuation value is higher than q1, or q1 < V (q1, i), and for all

q′1 ≥ q̂i, b’s continuation value is lower than q′1, or V (q′1, i) ≤ q′1.

As before, a sufficient condition for the existence of such q̂i is that πE(q1, i),

weakly decreases in q1. The sufficient condition holds for i = B: if pG = 1,

then b’s belief after B and any q1 is zero, πE(q1, B) = 0, as he knows that the

state is bad (in (A.1), P (B|γ) = 1− pG = 0).

Suppose b observed i = G. I show that the sufficient condition that the

odds of q decrease weakly in q does not hold, but the necessary and sufficient

condition (NC) holds. To see that, write down the buyer’s odds of observing

q1 explicitly:

hEγ(q1)

hEβ(q1)
=



OEβ
aOEγ

if q1 < q̄B,

OEβ+pB

aOEγ
if q1 ∈ [q̄B, q̄G),

1+OEβ
a(1+OEγ )

if q1 ≥ q̄G.

Comparing the odds of q1 = 0 and q1 = q̄B, we see that the odds of q1 do

not weakly decrease in q1. I show that a unique q̂i as required by (NC) exists

nevertheless.

In order to do so, I establish that the amount of old buyers is smaller in the

good than in the bad state state so that the odds of q1 are lowest for q1 ≥ q̄G.

Similarly to the trade-signal regime, the amount of old buyers, OEs , is equal

to the amount of sellers that are carried from one period to the next. This

amount is made up of all the sellers with quality q < q̄B that have always met

young buyers, and of all the sellers with quality q ∈ [q̄B, q̄G) that have always

met young buyers who have observed signal realisations G. That is,

OEs =
∞∑
j=1

Fs(q̄B)

(
1

1 +OEs

)j
+ (Fs(q̄G)− Fs(q̄B))

(
P (G|s)
1 +OEs

)j
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=
1

OEs

P (G|s)OEsFs(q̄G) + (1 +OEs )(1− P (G|s))Fs(q̄B)

1 +OEs − P (G|s)
. (A.7)

In the good state, P (G|γ) = 1 so the last fraction simplifies to Fγ(q̄G). In the

bad state, P (G|β) = 1 − pB and I show that, as a function of OEs , the last

fraction in (A.7) exceeds Fγ(q̄G) for all OEs . To see that, note that if s = β,

the fraction increases in OEs and at OEs = 0 the fraction equals Fβ(q̄B). But

Fβ(q̄B) exceeds Fγ(q̄G) because the thresholds are ordered q̄γ > q̄G > q̄B > q̄β

and under the known-state regime, Fγ(q̄γ) = Fβ(q̄β).3 Hence, OEγ < OEβ must

hold. But this implies that the odds of q1 = q̄G are lower than of q1 = 0.

I now show that the necessary and sufficient condition (NC) holds after

i = G. Since q̄G is an optimal cutoff used by other buyers, it must be that after

observing (q1, i) = (q̄G, G) the buyers are just indifferent between accepting

the offer q1 = q̄G and continuing, or V E(q̄G, G) = q̄G. Buyer b’s continuation

value after G is piecewise constant because the beliefs are piecewise constant

(see (A.1) and (A.2) in conjunction). Hence, it is clear that for all q′ ≥ q̄G,

the constant continuation value V E(q′, G) is less than the increasing q′. I

need to show that for all q < q̄G, the continuation value exceeds q, i.e., that

V E(q,G) > q. To see that this holds, note that the odds of q1, hence, the

continuation value, are lowest for q′ ≥ q̄G. Hence, for all q < q̄G, it must

be that the continuation value V E(q,G) is higher than V E(q̄G, G). But the

continuation value V E(q̄G, G) is equal to q̄G so is higher than q. In sum, the

unique q̂i that satisfies the necessary and sufficient condition is q̂i = q̄G. This

completes the proof that under the exogenous-signal regime with pG = 1 and

pB ∈ (0, 1), the necessary and sufficient condition (NC) holds: a buyer’s best

response is a cutoff rule if others use strategy (q̄G, q̄B) with q̄γ > q̄G > q̄B > q̄β.

This completes Part a of the proof.

3I show that Fγ(q̄γ) = Fβ(q̄β) under the known-state regime in the proof of Proposition
3 and do not repeat the argument here to save space.
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Part b. Equilibrium cutoff qualities.

Let us treat the four regimes together again. An equilibrium cutoff q̄i

equals the buyer’s continuation value after observing q1 = q̄i and realisation i

for i = G,B:

q̄i = δ[π(q̄i, i)EHγ (q) + (1− π(q̄i, i))EHβ(q)]. (A.8)

I show that this equation has a solution for i = G,B. At q̄i = 0, the RHS

of equation (A.8) is positive because either π(q̄i, i) or 1 − π(q̄i, i) is positive.

At both q̄i = 0 and q̄i = 1, the RHS is smaller than one because EHs(q) <

EFs(q) ≤ 1 and δ < 1. Hence, the LHS and RHS of equation (A.8) cross

at least once so that an equilibrium in cutoff strategies exists under all four

regimes.

I need to verify that the equilibrium cutoffs satisfy the assumptions that

I made above: that q̄T > q̄N under the trade-signal regime and that q̄γ >

q̄G > q̄B > q̄β under the exogenous-signal regime. First, under the trade-signal

regime, it is sufficient to show that πT (q̄T , T ) > πT (q̄N , N) as EHγ (q) > EHβ(q)

(see (A.8)). Inserting the definition of ts, (A.5), and hT (q), (A.4), into (A.1),

yields

πT (q̄T , T )

1− πT (q̄T , T )
= ω

hTγ (q̄T )

hTβ (q̄T )

tγ
tβ

=
ω

a

(
1 +OTβ
1 +OTγ

)2

, (A.9)

and

πT (q̄N , N)

1− πT (q̄N , N)
= ω

hTγ (q̄N)

hTβ (q̄N)

1− tγ
1− tβ

=
ω

a

(
2 +OTβ
2 +OTγ

)
. (A.10)

But cross-multiplying and simplifying
(

1+OTβ
1+OTγ

)2

>
2+OTβ
2+OTγ

shows that it holds if

OTγ < OTβ (which was established in Part a) so indeed πT (q̄T , T ) > πT (q̄N , N).

Second, consider the exogenous-signal regime. I show that q̄γ > q̄G and

q̄B > q̄β in the proof of Proposition 8 (after presenting the explicit equation

that the equilibrium cutoffs satisfy under the two regimes). For q̄G > q̄B, it
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is sufficient to show that πE(q,G) > πE(q, B) for any q < 1. But this clearly

holds as πE(q,G) > 0 (see (A.1) for P (G|γ) = pG = 1) and πE(q, B) = 0.

This completes the proof of the existence of an equilibrium in cutoff strate-

gies for all four regimes.4

Part c. Equilibrium uniqueness under the known-state regime.

A simple argument shows that the unique equilibrium under the known-

state regime is in cutoff strategies. For any fixed behaviour of other buyers, b’s

continuation value, i.e., the discounted mean quality is constant as he knows

the state: hence, b’s optimal strategy is a cutoff strategy.

A.3 Known state and no signals

Proof of Proposition 3. I derive the explicit forms of the cutoff qualities for

the known-state regime (Part 1) and the equation that the cutoff solves for the

no-signals’ regime (Part 2). To do that, I simplify equation (A.8) in the proof

of Proposition 2 by deriving the mean quality in state s and buyers’ beliefs

under both regimes. The equilibrium distribution of qualities is derived as a

side-product.

Part 1. Known-state regime.

Under the known-state regime, all buyers know the state after the signal

realisation: their posterior belief is πK(q1, G) = 1 if s = γ and πK(q1, B) = 0

if s = β. A buyer uses cutoff q̄γ after realisation G and q̄β after realisation B,

and each satisfies equation (A.8). The equilibrium density (A.2) in state s is

4Note that the existence proof for the known-state regime does not depend on the entry
distributions Fγ and Fβ .
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explicitly,

hKs (q) =


fs(q)(O

K
s )−1 if q < q̄s,

fs(q)(O
K
s + 1)−1 if q ≥ q̄s.

(A.11)

The density is piecewise constant so that the mean quality under the equilib-

rium distribution (A.11) is

EHKs (q) = HKs (q̄s)
q̄s
2

+ (1−HKs (q̄s))
x+ q̄s

2
,

where x = 1 if s = β and x = a if s = γ. The probability that a young buyer

becomes old, i.e., observes an unacceptable offer q1 < q̄s, H
K
s (q̄s), is equal

to the equilibrium amount of old buyers, OKs , because the measure of young

buyers is one. The probability is derived by integrating hKs (q) from zero to q̄s

and solving for OKs :

HKs (q̄s) = OKs =

∫ q̄s

0

hKs (q) dq = Fs(q̄s)
1

OKs
,

which gives,

OKs =
√
Fs(q̄s). (A.12)

Hence, the mean quality in state s simplifies to

EHKs (q) = xOKs
(OKs )2

2
+ x(1−OKs )

1 + (OKs )2

2

=
x+ q̄s −

√
xq̄s

2
.

Plugging this (and the correct constant belief) into (A.8) and simplifying gives

that the equilibrium cutoff in state γ, q̄γ, solves

q̄γ =
δ

2− δ
(a−

√
aq̄γ),
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and in state β, q̄β, solves

q̄β =
δ

2− δ
(1−

√
q̄β).

The explicit solutions to these are given in the statement of the Proposition.

Note that q̄γ = aq̄β means that Fγ(q̄γ) = Fβ(q̄β).

Part 2. No-signals’ regime.

Under the no-signals’ regime, the signal is perfectly uninformative. A

buyer’s posterior belief is πN (q1, G) = πN (q1, B) and q̄G = q̄B =: q̄. The

equilibrium cutoff solves equation (A.8) with belief πN (q̄) that satisfies

πN (q̄)

1− πN (q̄)
= ω

1 +
√
q̄

a+
√
q̄a
. (A.13)

The mean qualities are derived in the same way as under the known-state

regime as a single cutoff is used in one state under both regimes. Thus, q̄

solves

q̄ =
δ

2− δ
[π(q̄)(a−

√
aq̄) + (1− π(q̄))(1−

√
q̄)], (A.14)

The exact expression in the Proposition is obtained by plugging π(q̄), (A.13),

into (A.14). The equilibrium distribution is obtained by substituting K with

N and q̄s with q̄ in (A.11).

Proof of Lemma 1. Recall that the cutoff q̄ can be written as in equation

(A.14). Note that a − √aq > 1 − √q for all q ∈ (0, 1) and both sides of

this inequality decrease in q. Hence, q̄ > δ
2−δ (1 −

√
q̄) and q̄ < δ

2−δ (a −
√
aq̄).

Recall that the known-state cutoffs were defined by q̄β = δ
2−δ (1 −

√
q̄β) and

q̄γ = δ
2−δ (a−

√
aq̄γ). Hence, the inequality q̄ > δ

2−δ (1−
√
q̄) implies that q̄ > q̄β

and the inequality q̄ < δ
2−δ (a−

√
aq̄) implies that q̄ < q̄γ.

Proof of Proposition 4. The expected delay in the two regimes is derived by
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plugging equation (A.12) or (A.3) into equation (2.3). To show that DN > DK,

I show that DN |a=1 = DK and ∂DN

∂a
> 0 for δ > 2

3
and ∂DN

∂a
< 0 for δ < 2

3
.

First, note that if a = 1, then the good distribution Fγ is the same as

the bad distribution Fβ, which translates directly into Hγ(q) = Hβ(q). Hence,

a−√aq = 1−√q and q̄ = q̄β so that DN |a=1 = DK.

Second, I show that the derivative ∂DN

∂a
is positive for δ > 2

3
and negative

for for δ < 2
3
. Under the no-signals’ regime, the derivative of the expected

delay is

∂DN

∂a
=
π

2

1

a
√
aq̄

(
a
∂q̄

∂a
− q̄
)

+
1− π

2

1√
q̄

∂q̄

∂a
.

I derive ∂q̄
∂a
. By inserting π(q̄) and multiplying by a positive amount, equation

(A.14) can be rewritten as

C := π(1+y)[δ(a−
√
ay)−(2−δ)y2]+(1−π)(a+

√
ay)[δ(1−y)−(2−δ)y2] = 0,

(A.15)

where y :=
√
q̄. The two terms in the squared brackets are positive and

negative respectively.

Totally differentiating C and using equation (A.15) to substitute terms that

have multiplier 1− π with terms that have multiplier π, I get

∂q̄

∂a
=
y2(1 + y)[2δa+ 2

√
ay(2− δ) + (2− δ)y2][(2− δ)y2 − δ(1− y)]

aC2
> 0,

where y :=
√
q̄ and

C2 := (1 + y)(
√
a+ y)[(2− δ)y2 − δ(1− y)][δ

√
a+ 2(2− δ)y]

+[δ(a−
√
ay)−(2−δ)y2]{(

√
a+y)[2δ+(2−δ)y(2+y)]+(1+y)[(2−δ)y2−δ(1−y)]}.

123



Showing that ∂DN

∂a
> 0 is equivalent to showing that

C3 := a
∂q̄

∂a
{(
√
a+ y)[(2− δ)y2 − δ(1− y)] + (1 + y)[δ(a−

√
ay)− (2− δ)y2]}

−y2(
√
a+ y)[(2− δ)y2 − δ(1− y)] > 0,

where I have again used equation (A.15) to substitute terms that have multi-

plier 1−π with terms that have multiplier π and then multiplied by a positive

term. Plugging in the expression for ∂q̄
∂a

, collecting terms and dividing with

positive amounts (2− δ)y2 − δ(1− y), and δ(a−
√
ay)− (2− δ)y2, I get that

C3 > 0 is equivalent to

(3δ − 2)[2
√
ay(
√
a− 1) + y2(a− 1)] > 0,

which holds iff δ > 2
3

because a > 1. This completes the proof.

A.4 Trade signal

Proof of Proposition 5. I first show that in every equilibrium under the trade-

signal regime, a trade is good news, q = q̄N is better news than q = q̄T , and

q̄T > q̄N holds (Part 1). I then derive the exact forms of the equations that

the equilibrium cutoffs and distribution of qualities satisfy (Part 2).

Part 1. I show that under the trade-signal regime, in all equilibria in cutoff

strategies, trade is good news, q = q̄N is better news than q = q̄T , and q̄T > q̄N .

The existence of such an equilibrium was proven in Proposition 2.

In order to do so, I consider all the possible characterisations and show that

the only possible combination is the one above. First recall that the relative

size of the equilibrium cutoff q̄i is determined by how optimistic a young buyer
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is after observing quality q1 = q̄i and signal outcome i as opposed to q1 = q̄j

and signal outcome j. That is, if q1 = q̄i is better news than q1 = q̄j and signal

outcome i better news that j, then cutoff q̄i is definitely higher than cutoff

q̄j. In the other cases, the relative magnitude of the cutoffs is ambiguous.

Therefore, an exhaustive list of the cases that I need to consider is

(i) T is better news than N and q1 = q̄T is better news than q1 = q̄N

(together implying that q̄T > q̄N).

(ii) T is better news than N and q1 = q̄T is worse news than q1 = q̄N and

(a) q̄T > q̄N , or

(b) q̄T < q̄N .

(iii) T is worse news than N and q1 = q̄T is worse news than q1 = q̄N (together

implying that q̄T < q̄N).

(iv) T is worse news than N and q1 = q̄T is better news than q1 = q̄N and

(a) q̄T > q̄N , or

(b) q̄T < q̄N .

I show in turn that all of the cases but (ii)(a) lead to a contradiction.

(i) T is better news than N and q1 = q̄T is better news than q1 = q̄N

(together implying that q̄T > q̄N), i.e., tγ > tβ and hγ(q̄T )

hβ(q̄T )
> hγ(q̄N )

hβ(q̄N )
.

We know from Lemma 4 that in any equilibrium under a regime with a

binary signal such that P (B|β) > P (B|γ), if Oγ < Oβ (so that tγ > tβ)

and the equilibrium cutoffs satisfy q̄B < q̄G, the odds of q = q̄B are higher

than of q = q̄G, i.e., q = q̄B is better news than q = q̄G. Substituting N

for B means that if P (N |β) = 1 − tβ > P (N |γ) = 1 − tγ and q̄N < q̄T ,
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then hγ(q̄T )

hβ(q̄T )
< hγ(q̄N )

hβ(q̄N )
, which contradicts the initial assumption about the

relative size of the odds.5

(ii) T is better news than N and q1 = q̄T is worse news than q1 = q̄N , i.e.,

tγ > tβ and hγ(q̄T )

hβ(q̄T )
< hγ(q̄N )

hβ(q̄N )
.

(a) q̄T > q̄N : in the proofs of Lemmas 2, 3, 4, and 5 together I showed

that T is better news than N and q1 = q̄T is worse news than

q1 = q̄N are consistent with q̄T > q̄N .

(b) q̄T < q̄N : I show that assuming q̄T < q̄N leads to a contradiction.

Consider a young buyer who observes q1 = q̄T . We know that he

is just indifferent between accepting this quality and continuing if

he has observed signal outcome T , i.e., q̄T = V T (q1 = q̄T , T ). But

trade being good news means that for any given q ∈ [0, 1], a buyer

who observes q and T is more optimistic than a buyer who observes

q and N , i.e., V T (q, T ) > V T (q,N) for all q ∈ [0, 1]. But then

a buyer who observes q1 = q̄T and signal outcome N must strictly

prefer accepting this quality to continuing as q̄T = V T (q1 = q̄T , T ) >

V T (q1 = q̄T , N). This is a contradiction because q̄T < q̄N means

that the buyer should instead prefer to continue after q1 = q̄T and

N .

(iii) T is worse news than N and q1 = q̄T is worse news than q1 = q̄N (together

implying that q̄T < q̄N), i.e., tγ < tβ and hγ(q̄T )

hβ(q̄T )
< hγ(q̄N )

hβ(q̄N )
.

An analogous argument to that provided for (i) (where now T is substi-

tuted for B) proves that this case is impossible.6

5Note that if
fγ(q)
fβ(q) increases in q, Lemma 4 is no longer guaranteed to hold.

6This proof relies on the assumption that
fγ(q)
fβ(q) is constant in q, but for general distri-

butions Fγ and Fβ such that Fγ first-order stochastically dominates Fβ , (iii) is ruled out in
(iv)(b).
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(iv) T is worse news than N and q1 = q̄T is better news than q1 = q̄N , i.e.,

tγ < tβ and hγ(q̄T )

hβ(q̄T )
> hγ(q̄N )

hβ(q̄N )
.

(a) q̄T > q̄N : By an analogous argument as in (ii)(b), q̄T > q̄N leads to

a contradiction.

(b) q̄T < q̄N : I argue that q̄T < q̄N and tγ < tβ together lead to a

contradiction. I use an argument analogous to that in the proof of

Lemma 2: I derive the equation that the amount of old sellers in

state s must satisfy and show that it leads to Oγ < Oβ. But here,

Oγ < Oβ contradicts the assumption that tγ < tβ as ts = (1+Os)
−1.

The amount of old buyers in the market is equal to the amount of

sellers that are carried from one period to the next. This amount

is made up of all the sellers with quality q < q̄T that have entered

and always met young buyers and of all the sellers with quality

q ∈ [q̄T , q̄N) that have entered and always met young buyers who

have observed no trades. The probability that a seller who entered

j periods ago has always met young buyers is (1 +Os)
−j and that

he has always met young buyers who have observed no trades is

(1− ts)j (1 +Os)
−j. In sum, the amount of sellers that are carried

from one period to the next is

Os =
∞∑
j=1

Fs(q̄T )

(
1

1 +Os

)j
+ (Fs(q̄N)− Fs(q̄T ))

(
1− ts
1 +Os

)j

=
1

Os

(1 +Os)Fs(q̄T ) +O2
sFs(q̄N)

1 +Os +O2
s

.

Equivalently, the amount of old sellers in state s satisfies the equa-

tion

O2
s =

(1 +Os)Fs(q̄T ) +O2
sFs(q̄N)

1 +Os +O2
s

. (A.16)
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I show that equation (A.16) implies that Oγ < Oβ, which contra-

dicts the assumption that tγ < tβ. The derivative of the RHS of

(A.16) with respect to Os is

∂RHS

∂Os

=
Os(2 +Os)(Fs(q̄N)− Fs(q̄T ))

(1 +Os +O2
s)

2
,

which is positive for all Os. As a function of Os, the RHS of (A.16)

evaluated at s = γ is lower than the RHS evaluated at s = β because

fewer sellers both with qualities below q̄N and below q̄T enter the

market in the good state than in the bad state (for all Fγ and Fβ

such that Fγ first–order stochastically dominates Fβ). But the LHS

of (A.16) increases in Os so that the solutions to equation (A.16)

in the two states must satisfy Oγ < Oβ. But this contradicts the

assumption that tγ < tβ because ts = (1 +Os)
−1.7

Altogether, only case (ii)(a), i.e., T is better news than N , q1 = q̄T is worse

news than q1 = q̄N , and q̄T > q̄N , is possible in equilibrium.

Part 2. I derive the system of equations that the equilibrium cutoffs q̄T and

q̄N satisfy. I write out the mean quality in state s and the beliefs relevant for

the cutoffs, and then plug them into equation (A.8). Most of the detail that I

need for the derivation is presented in the proof of Proposition 2.

First, I derive the mean quality in state s if the equilibrium distribution

is described by two cutoffs as in (A.2) (the derivation is valid both for the

7Note that this proof does not rely on the assumption about the informativeness of
different qualities so that it also rules out (iii) for general distributions Fγ and Fβ such that
Fγ first-order stochastically dominates Fβ .
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trade-signal and the exogenous-signal regimes). I rewrite the density, (A.2), as

hs(q) =


fs(q)O

−1
s if q < q̄B,

fs(q)O
−1
s

(
1− P (B|s)

P (B|s)+Os

)
if q ∈ [q̄B, q̄G),

fs(q)O
−1
s

(
1− 1

Os+1

)
if q ≥ q̄G.

Denoting fs(q) = 1
x

where x = 1 if s = β and x = a if s = γ and using the

above equation for hs(q), the mean quality in state s can be written as

EHs(q) = O−1
s

[
EFs(q)−

P (B|s)
P (B|s) +Os

∫ q̄G

q̄B

q

x
dq − 1

1 +Os

∫ x

q̄G

q

x
dq

]

=
1

2xOs

[
x2 − P (B|s)

P (B|s) +Os

(q̄2
G − q̄2

B)− 1

1 +Os

(x2 − q̄2
G)

]
. (A.17)

Under the trade-signal regime, no trade is bad news so the term P (B|s)
P (B|s)+Os in

the mean is 1−ts
1−ts+Os = 1

2+Os
, where the last step follows from plugging in the

equation for ts, (A.5). Plugging the explicit term into (A.17) gives the exact

form of the expected value of EHs(q) used in the statement of the Proposition.

The beliefs of the buyers that are relevant for the equilibrium cutoffs, i.e.,

after observing (q1, i) = (q̄T , T ) and (q̄N , N) were derived earlier and the result

was equations (A.9) and (A.10). Using equations (A.17), (A.9), and (A.10) in

(A.8), gives the two first equations in the statement of the Proposition.

I derive the last two equations in the statement of the Proposition. The

amount of old buyers is given by equation (A.6), which can be simplified to

Os =
1

x

q̄T + (1 +Os)q̄N
Os(2 +Os)

,

by plugging in Fs(q̄i) = q̄i
x

, where x = 1 if s = β and x = a if s = γ, and

collecting terms. Rearranging the equation for s = γ completes the system
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of equations in the Proposition. The exact form of the equilibrium density of

qualities is obtained by plugging P (B|s) = 1 − ts = Os
1+Os

into equation (A.2)

and rearranging the density for q ∈ [q̄N , q̄T ).

The proofs of Lemmas 2, 3, and 5 (and a specific version of Lemma 4) ap-

pear in the proof of Proposition 2, but I restate them here for the completeness

of the argument.

Proof of Lemma 2. Suppose that q̄T > q̄N and tγ > tβ. The amount of old

buyers in the market is equal to the amount of sellers that are carried from

one period to the next. These sellers consist of those with quality q < q̄N

that have ever entered and always met young buyers, and those with quality

q ∈ [q̄N , q̄T ) that have ever entered and always met young buyers who observed

good news: trades.

In state s the per-period probability that a seller meets a young buyer

is (1 +Os)
−1 and that he meets a young buyer who has observed a trade is

ts (1 +Os)
−1 because matching is random, the amount of young buyers is one,

and the total amount of buyers is 1+Os. Since meetings are independent across

periods, the probability that a seller who entered j periods ago has always met

young buyers is (1 +Os)
−j and that he has always met young buyers who

observed trades is tjs (1 +Os)
−j. Thus, the amount of sellers that are carried

from one period to the next is

Os =
∞∑
j=1

Fs(q̄N)

(
1

1 +Os

)j
+ (Fs(q̄T )− Fs(q̄N))

(
ts

1 +Os

)j

=
1

Os

Fs(q̄T ) + (1 +Os)Fs(q̄N)

2 +Os

, (A.18)

where I have inserted the equilibrium probability of a trade, (A.19) in the proof

of Lemma 3, in the last step. The last fraction in (A.18) decreases in Os and
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as fewer sellers both with qualities below q̄N and below q̄T enter the market in

the good state, it must be that Oγ < Oβ.8

Proof of Lemma 3. Suppose that Oγ < Oβ. The probability of observing a

trade is the equilibrium probability that a randomly chosen seller trades in a

period. Mass one of sellers that trade (and exit) in a period because the market

is stationary and mass one of sellers is enter. The total amount of sellers is

equal to the amount of buyers, 1 + Os, in state s, because equal amount of

buyers and sellers enter and, in equilibrium, a buyer and a seller leave the

market together. Hence, the probability of a trade in state s is

ts = (1 +Os)
−1. (A.19)

A trade is, thus, more probable in the good state because Oγ < Oβ.9

Proof of Lemma 4. Suppose that q̄B < q̄G and Oγ < Oβ. The odds of observ-

ing quality q are obtained by inserting the equilibrium density, equation (A.2)

in the Appendix, into hγ(q)

hβ(q)
:

hγ(q)

hβ(q)
=



fγ(q)

fβ(q)

Oβ
Oγ

if q < q̄B,

fγ(q)

fβ(q)

Oβ+P (B|β)

Oγ+P (B|γ)
if q ∈ [q̄B, q̄G),

fγ(q)

fβ(q)

Oβ+1

Oγ+1
if q ≥ q̄G.

I show that hγ(q̄B)

hβ(q̄B)
> hγ(q̄G)

hβ(q̄G)
holds. The inequality is explicitly

Oβ+P (B|β)

a(Oγ+P (B|γ))
>

Oβ+1

a(Oγ+1)
. Now the LHS of this inequality is larger than

Oβ+P (B|γ)

a(Oγ+P (B|γ))
as P (B|β) >

P (B|γ). But then the initial inequality must hold because ∂
∂z

Oβ+z

Oγ+z
∝ −(Oβ −

Oγ) < 0 as Oβ > Oγ.
10

8The proof uses only the assumption that Fγ first-order stochastically dominates Fβ .
9The proof uses only the assumption that Fγ first-order stochastically dominates Fβ .

10The proof relies on the assumption that
fγ(q)
fβ(q) = 1

a is constant in q. The proof still holds
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Proof of Lemma 5. Suppose that Oγ < Oβ, tγ > tβ, and hγ(q̄N )

hβ(q̄N )
> hγ(q̄T )

hβ(q̄T )
. The

relative size of the cutoffs depends only on the relative size of the buyers’ beliefs

after observing q1 = q̄T and a trade as opposed to q1 = q̄N and no trade. A

young buyer’s posterior odds that are relevant for the equilibrium cutoffs are

(see equations (A.9) and (A.10) in the Appendix)

π(q̄T , T )

1− π(q̄T , T )
= ω

hγ(q̄T )

hβ(q̄T )

tγ
tβ

=
ω

a

(
1 +Oβ

1 +Oγ

)2

,

and

π(q̄N , N)

1− π(q̄N , N)
= ω

hγ(q̄N)

hβ(q̄N)

1− tγ
1− tβ

=
ω

a

(
2 +Oβ

2 +Oγ

)
.

It is straightforward to verify that π(q̄T ,T )
1−π(q̄T ,T )

> π(q̄N ,N)
1−π(q̄N ,N)

as Oγ < Oβ so that

the optimal cutoffs satisfy q̄N < q̄T .

Proof of Proposition 7. The expected delay is obtained by plugging equation

(A.6) into (2.3).

The proof of DT > DN holds for π = 1
2

and all a, δ such that OTγ > 1
2
, for

which the condition q̄β >
a
4

is sufficient (I show below that a(OTγ )2 > q̄N > q̄β).

Note that a necessary condition for q̄β >
a
4

to hold is that δ > 2
3

as q̄β|δ= 2
3

= 1
4
.

The proof is in four steps. I first show that a sufficient condition for DT >

DN is that OTβ > ONβ (Step 1). Then I approximate OTβ down to ÕTβ (Step 2).

The rest of the proof shows that ÕTβ > ONβ (Steps 3 and 4). Hence, OTβ > ONβ

must hold.

Step 1. It is sufficient to show that OTβ > ONβ .

Recall that the expected delay is D = πOγ + (1 − π)Oβ. Under the no-

signals’ regime, a(ONγ )2 = (ONβ )2 = q̄. Under the trade-signal regime, the

if
fγ(q̄B)
fβ(q̄B) is not “too much lower” than

fγ(q̄G)
fβ(q̄G) , i.e., holds for general entry distributions Fγ

and Fβ if the entry densities’ ratio
fγ(q)
fβ(q) does not grow “too quickly” in q.
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equations for OTs are, explicitly:

(OTβ )2 =
q̄T + (1 +OTβ )q̄N

2 +OTβ
, (A.20)

and

a(OTγ )2 =
q̄T + (1 +OTγ )q̄N

2 +OTγ
, (A.21)

so that a(OTγ )2 > (OTβ )2 as OTγ < OTβ and q̄T > q̄N . Note that equation (A.21)

proves that a(OTγ )2 > q̄N as claimed at the start of the proof. Hence, in order

to show that DT > DN , it is sufficient to show that OTβ > ONβ .

Step 2. I approximate OTβ down to ÕTβ by approximating q̄N and q̄T down.

As I deal almost solely with the trade-signal regime in this step, I suppress the

superscript T .

Consider the trade-signal regime. Let q̃i equal

q̃i = δ

[
π(q̃i, i)

2
a(1− Õγ + Õ2

γ) +
1− π(q̃i, i)

2
(1− Õβ + Õ2

β)

]
, (A.22)

for i = T,N , where Õs on the RHS is the amount of old buyers in state s if the

cutoffs are q̃i instead of q̄i. I show that q̃i is less than the equilibrium cutoff q̄i.

The equilibrium cutoff q̄i satisfies

q̄i = δ
[
π(q̄i, i)EHγ (q) + (1− π(q̄i, i))EHβ(q)

]
. (A.23)

I show that EHγ (q) > a
2
(1 − Oγ + O2

γ) and EHβ(q) > 1
2
(1 − Oβ + O2

β). The

expected value of q in state s can be written as

EHs(q) =
1

2xOs

[
x2 − x2 − q̄2

T

1 +Os

− q̄2
T − q̄2

N

2 +Os

]
,

where x = a if s = γ and x = 1 if s = β, so that EHs(q) > x
2
(1 − Os + O2

s) is
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equivalent to

x2 − x2 − q̄2
T

1 +Os

− q̄2
T − q̄2

N

2 +Os

> x2Os(1−Os +O2
s).

Rearranging the inequality and using equations (A.20) and (A.21), I can in-

stead show that

q̄T
q̄T + (1 +Os)q̄N

>
1

2 +Os

,

which holds as q̄T > q̄N . Hence, the RHS of equation (A.23) is approximated

down by substituting EHs(q) with x
2
(1−Os +O2

s) for s = γ, β:

q̄i > δ

[
π(q̄i, i)

2
a(1−Oγ +O2

γ) +
1− π(q̄i, i)

2
(1−Oβ +O2

β)

]
:= Y (q̄i).

(A.24)

A sufficient condition for Y (q̄i) to be monotonically increasing in the equilib-

rium cutoff q̄i is that 2Oγ > 1 as

∂Y (q̄i)

∂q̄i
=
δ

2

{
∂π(q̄i, i)

∂q̄i
[a(1−Oγ +O2

γ)− (1−Oβ +O2
β)]

+
∂Oγ

∂q̄i
π(q̄i, i)a(2Oγ − 1) +

∂Oβ

∂q̄i
(1− π(q̄i, i))(2Oβ − 1)

}
,

and ∂Os
∂q̄i

> 0, ∂π(q̄i,i)
∂q̄i

> 0, and 2Oβ > 1. First, ∂Os
∂q̄i

> 0, as

∂Os

∂q̄i
=

k

2xOs(2 +Os) + xO2
s − q̄N

> 0,

where k = 1 for i = T and k = 1 + Os for i = N , and x = a for s = γ and

x = 1 for s = β.

Second, ∂π(q̄i,i)
∂q̄i

> 0 as

∂π(q̄T , T )

∂q̄T
∝ (1 +Oγ)

∂Oβ

∂q̄T
− (1 +Oβ)

∂Oγ

∂q̄T
> 0,
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if

4(aOγ −Oβ) + 7(aO2
γ −O2

β) + 3(aO3
γ −O3

β) + q̄N(Oβ −Oγ) > 0.

Since aOγ >
√
aOβ, aO2

γ > O2
β, and aO3

γ >
O3
β√
a
, the LHS of the above is greater

than

4Oβ(
√
a− 1) + 3O3

β

1√
a

(1−
√
a) ∝ 4

√
a− 3O2

β,

which is positive. Hence, ∂π(q̄T ,T )
∂q̄T

> 0.

Third, ∂π(q̄N ,N)
∂q̄N

> 0. A sufficient condition for the derivative

∂π(q̄N , N)

∂q̄N
∝ (2 +Oγ)

∂Oβ

∂q̄N
− (2 +Oβ)

∂Oγ

∂q̄N
,

to be positive is that ∂π(q̄T ,T )
∂q̄T

> 0, which is satisfied.

Finally, 2Oβ > 1 as O2
β > q̄N > q̄β and q̄β >

1
4

for all δ > 2
3
. Altogether,

∂Y (q̄i)
∂q̄i

> 0 for sure if 2Oγ > 1.

The RHS of expression (A.24), Y (q̄i), evaluated at q̄i = 0 is greater than

zero and at q̄i = 1, less than one. Hence, the cutoff that solves equation

(A.22), q̃i, is less than q̄i. Note that q̄γ > q̃T > q̃N > q̄β holds (because q̃T

can be approximated up to q̄γ by setting π(q̃T , T ) = 1 and q̃N down to q̄β by

setting π(q̃N , N) = 0). Hence, q̄N > q̄β holds, which was claimed at the start

of this proof.

The amount of old buyers in state s if the cutoffs are q̃i instead of q̄i, Õ
T
β ,

is, explicitly,

(ÕTβ )2 =
q̃T + (1 + ÕTβ )q̃N

2 + ÕTβ
, (A.25)

with ÕTβ < OTβ because Oβ(q̄i) increases in the cutoff q̄i. Hence, to prove the

Proposition, it suffices to show that ÕTβ > ONβ . Recall that q̄β ≥ 1
4

for all

δ ∈ [2/3, 1] so that ÕTβ ,
√
aÕTγ >

1
2
.

Step 3. I write comparable equations for ONβ and ÕTβ .
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Consider the no-signals’ regime. Suppressing the superscript N , I can

rewrite the equation for q̄, (A.14), as

2O2
β = δ[1−Oβ +O2

β + π(q̄)(a− 1 +Oβ −
√
aOβ)] := Z1(Oβ), (A.26)

by multiplying the equation through by 2 − δ, substituting Oγ with
Oβ√
a
, and

collecting terms.

Consider the trade-signal regime and suppress T . I insert q̃i as defined by

equation (A.22) into the equation for (ÕTβ )2, (A.25), and rearrange to get an

expression comparable to equation (A.26):

2O2
β = δ[1−Oβ +O2

β +
π(q̃T , T ) + (1 +Oβ)π(q̃N , N)

2 +Oβ
(a−1+aO2

γ−O2
β +Oβ−aOγ)],

(A.27)

where Oβ := ÕTβ and Oγ := ÕTγ .

Step 4. In a sequence of algebra-heavy steps, I show that, as a function of

Oβ, the RHS of equation (A.27) is higher than the RHS of equation (A.26) for

all Oβ. This implies that ÕTβ > ONβ .

Consider equations (A.26) and (A.27) as functions of Oβ. Since the last

term on the RHS of equation (A.27) increases in Oγ if Oγ >
1
2

and Oγ >
Oβ√
a

under the trade-signal regime, I approximate the RHS of equation (A.27) down

by substituting Oγ with
Oβ√
a

in the last term:

1−Oβ +
π(q̃T , T ) + (1 +Oβ)π(q̃N , N)

2 +Oβ

(a− 1 + aO2
γ −O2

β +Oβ − aOγ)

> 1−Oβ+
π(q̃T , T ) + (1 +Oβ)π(q̃N , N)

2 +Oβ

(a−1+O2
β−O2

β+Oβ−
√
aOβ) := Z2(Oβ).

To show that (ÕTβ )2 > (ONβ )2, it is sufficient to show that Z2(Oβ) > Z1(Oβ)
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for all Oβ. Equivalently, it is sufficient to show that

π(q̃T , T ) + (1 +Oβ)π(q̃N , N)

2 +Oβ

> π(q̄). (A.28)

Inequality (A.28) can be rewritten by using equations (A.13), (A.9), (A.10)

(and because under the no-signals’ regime Oγ =
Oβ√
a
) as

(1 +Oβ)

(1 +Oβ)2 + a(1 +Oγ)2
+

(2 +Oβ)

(2 +Oβ) + a(2 +Oγ)
>

(2 +Oβ)

(1 +Oβ) + a+
√
aOβ

,

(A.29)

for all Oβ and Oγ := ÕTγ as defined by

a(ÕTγ )2 =
q̃T + (1 + ÕTγ )q̃N

2 + ÕTγ
. (A.30)

Note that a(ÕTγ )2 > (ÕTβ )2. After cross-multiplying inequality (A.29) and

collecting terms, it becomes

a2

[
(1 +Oβ)

(
1 +

Oβ√
a

)
(2 +Oγ)− (1 +Oγ)

2(2 +Oβ)

]
︸ ︷︷ ︸

A1

+ a(Oβ −Oγ)(1−Oβ −O2
β) +

√
a(2 +Oβ)(O2

β −
√
aO2

γ)︸ ︷︷ ︸
A2

−
√
a(
√
aOγ −Oβ)(2 +Oβ)[1 + (1 +Oβ)2 + a(1 +Oγ)

2]︸ ︷︷ ︸
A3

> 0.

I show separately that A1 > 0 and A2 + A3 > 0.

Step 4a. A1 > 0.

Showing that A1 > 0 is equivalent to showing that A1

a
√
a
> 0 or, after

expanding the LHS of A1

a
√
a
> 0 and collecting terms, that

2(O2
β −
√
aO2

γ)− (
√
a− 1)OγOβ︸ ︷︷ ︸

B1

+
√
a(Oβ −Oγ)− (2 +OγOβ)(

√
aOγ −Oβ)︸ ︷︷ ︸

B2

> 0.
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The first part, B1, is greater than

B′1 := 2(O2
β −
√
aO2

γ)− (
√
a− 1)O2

β =
1√
a

[(3
√
a− a)O2

β − 2aO2
γ],

as Oγ < Oβ. Inserting the equations for O2
β and aO2

γ, (A.25) and (A.30) re-

spectively, B′1 can be rewritten as

B′1 =
(3
√
a− a)(2 +Oγ)[q̃T + (1 +Oβ)q̃N ]− 2(2 +Oβ)[q̃T + (1 +Oγ)q̃N ]√

a(2 +Oβ)(2 +Oγ)

> −2(Oβ −Oγ)(q̃T − q̃N)√
a(2 +Oβ)(2 +Oγ)

=: B′′1 ,

where the last step follows from 3
√
a−a ≥ 2 for all a ∈ (1, 2]. Hence, B1 > B′′1 .

The other part, B2, can be written as

B2 =
√
a(Oβ −Oγ)− (2 +OγOβ)

(Oβ −Oγ)(q̃T − q̃N)

(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

,

where the fraction is a rewritten version of the difference of equations (A.30)

and (A.25).

Now A1 = a
√
a(B1 + B2) > a

√
a(B′′1 + B2) > 0 and showing the last

inequality is equivalent to showing that B′′1 +B2 > 0, or

√
a(Oβ −Oγ)−

(2 +OγOβ)(Oβ −Oγ)(q̃T − q̃N)

(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

− 2(Oβ −Oγ)(q̃T − q̃N)√
a(2 +Oβ)(2 +Oγ)

> 0.

I approximate the LHS down in several steps and show that the resulting

expression is positive.

First, I show that (
√
a−1)q̃N > q̃T − q̃N or,

√
aq̃N > q̃T . Showing the latter

is equivalent to showing that
√
aπ(q̃N , N) > π(q̃T , T ), or

√
a

2 +Oβ

2 +Oβ + a(2 +Oγ)
>

(1 +Oβ)2

(1 +Oβ)2 + a(1 +Oγ)2
.
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Cross-multiplying the inequality and collecting terms gives

(
√
a− 1)(2 +Oβ)(1 +Oβ)2 + a[2(

√
a− 1)(1 +OγOβ)− 2(O2

β −
√
aO2

γ)

+(4 +OγOβ)(
√
aOγ −Oβ) +

√
aOβ −Oγ] > 0,

which holds as
√
a− 1 > O2

β −
√
aO2

γ. Hence, I can substitute (q̃T − q̃N) with

(
√
a − 1)q̃N and, instead of B′′1 + B2 > 0, show that the following inequality

holds:

B′2 := a− (
√
a− 1)q̃N [

√
a(2 +OγOβ) + 2(

√
aOγ +Oβ)]

(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

> 0.

The LHS of this inequality can be approximated down by making the nu-

merator of the negative fraction larger and the denominator smaller:

B′2 > a−
(
√
a− 1)O2

β[
√
a · 3 + 2(

√
a+ 1)]

(Oβ +Oβ) · 2 · 2
∝ 8a− (

√
a− 1)Oβ(5

√
a+ 2),

where the substitutions work because q̃N < O2
β (follows from equation (A.25)),

√
aOγ > Oβ, and Oγ, Oβ ∈ (0, 1). The last expression can in turn be approxi-

mated down by making the negative part larger:

8a− (
√
a− 1)Oβ(5

√
a+ 2) > 8a− 5a− 2,

as
√
a− 1 < 1, Oβ < 1, and

√
a < a. But 3a− 2 is positive, which concludes

the proof that A1 > 0.

Step 4b. A2 + A3 > 0. Recall that

A2 + A3 = a(Oβ −Oγ)(1−Oβ −O2
β) +

√
a(2 +Oβ)(O2

β −
√
aO2

γ)
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−
√
a(
√
aOγ −Oβ)(2 +Oβ)[1 + (1 +Oβ)2 + a(1 +Oγ)

2].

I will show that a more stringent condition than A2 +A3 > 0 holds by approx-

imating
√
aOγ −Oβ up.

The term
√
aOγ − Oβ is proportional to the difference between equations

(A.30) and (A.25):

√
aOγ −Oβ =

(Oβ −Oγ)(q̃T − q̃N)

(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

=
(Oβ −Oγ)(π(q̃T , T )− π(q̃N , N))

(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

δ

2
[a(1−Oγ +O2

γ)− (1−Oβ +O2
β)] =: B3

where the last step follows from plugging in the definitions of q̃T and q̃N ,

equation (A.22). I approximate B3 up by showing that π(q̃T , T )− π(q̃N , N) <

Oβ−Oγ
3

. To approximate the difference π(q̃T , T )−π(q̃N , N) up, I insert equations

(A.9) and (A.10) and collect terms:

π(q̃T , T )− π(q̃N , N) =
a(Oβ −Oγ)[3 + 2(Oβ +Oγ) +OγOβ]

[(1 +Oβ)2 + a(1 +Oγ)2][2 +Oβ + a(2 +Oγ)]
.

Hence, after collecting terms, π(q̃T , T )− π(q̃N , N) <
Oβ−Oγ

3
is equivalent to

a− 2 + aOγ(1− a) + 2a(1− a) + a− 4Oβ + aOβ(1− 2Oβ) + a(1− 2aOγ)

< 2O2
β+Oβ(1+Oβ)2+aO2

γ(2+Oβ)+aOγOβ(1+Oβ)+a2Oγ[(1+2Oγ)+(1+Oγ)
2].

The LHS of the last inequality is negative because 2 ≥ a > 1, 2Oβ > 1 and

2aOγ > 1 as 2
√
aOγ > 1. Hence, the inequality holds, or π(q̃T , T )−π(q̃N , N) <

Oβ−Oγ
3

.

Return to B3. By the last approximation, we know that

B3 <
(Oβ −Oγ)

2

3(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

δ

2
[a(1−Oγ +O2

γ)− (1−Oβ +O2
β)],
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and by approximating the last term on the RHS up, that

B3 <
δ(Oβ −Oγ)

2

6(
√
aOγ +Oβ)(2 +Oβ)(2 +Oγ)

(a− 1),

where I have used the fact that −(aOγ − Oβ) + aO2
γ − O2

β < 0 (as Oγ < Oβ).

I approximate the RHS up further by reducing the denominator so that

B3 <
δ(Oβ −Oγ)

2

6 · 2Oβ · (2 +Oβ) · 2
(a− 1) =

δ(Oβ −Oγ)
2(a− 1)

24Oβ(2 +Oβ)
,

as Oγ ≥ 0 and
√
aOγ > Oβ. Altogether, I have shown so far that

√
aOγ −Oβ <

δ(Oβ −Oγ)
2(a− 1)

24Oβ(2 +Oβ)
.

Return to A2 + A3. We now know that

A2 + A3 > a(Oβ −Oγ)(1−Oβ −O2
β) +

√
a(2 +Oβ)(O2

β −
√
aO2

γ)

−
√
a
δ(Oβ −Oγ)

2(a− 1)

24Oβ

[1 + (1 +Oβ)2 + a(1 +Oγ)
2].

Instead of showing that A2 + A3 > 0, I show that the RHS is positive, or,

(2 +Oβ)(O2
β −
√
aO2

γ)−
√
aOβ(Oβ −Oγ)︸ ︷︷ ︸

B4

+
√
a(Oβ −Oγ)(1−O2

β)− δ(Oβ −Oγ)
2(a− 1)

24Oβ

[1 + (1 +Oβ)2 + a(1 +Oγ)
2]︸ ︷︷ ︸

B5

> 0.

I show in turn that B4 > 0 and B5 > 0.

I rewrite
√
aB4 > 0 and insert the definitions of O2

β and aO2
γ to get

√
aB4 = (2 +Oβ)

√
a
q̃T + (1 +Oβ)q̃N

2 +Oβ

− (2 +Oβ)
q̃T + (1 +Oγ)q̃N

2 +Oγ
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− Oβ

Oβ +Oγ

(
a
q̃T + (1 +Oβ)q̃N

2 +Oβ

− q̃T + (1 +Oγ)q̃N
2 +Oγ

)
> 0.

Multiplying the inequality through with (2 + Oγ)(2 + Oβ)(Oβ + Oγ) and col-

lecting terms yields

B4 ∝
√
a(2 +Oγ)[q̃T + (1 +Oβ)q̃N ][(2 +Oβ)(Oβ +Oγ)−

√
aOβ]

−(2 +Oβ)[q̃T + (1 +Oγ)q̃N ][(2 +Oβ)(Oβ +Oγ)−Oβ] > 0.

As Oβ > Oγ, the above inequality holds for sure if I replace (1 + Oγ)q̃N with

(1 +Oβ)q̃N in the second row, or (after collecting terms), equivalently, if

[Oγ(2 +Oβ) + (1 +Oβ)Oβ](
√
aOγ −Oβ)

+(
√
a− 1)

[
1√
a

(4
√
aOγ − aOβ) +OγOβ(2−

√
a) +Oβ(2−

√
a) + 2O2

β

]
> 0.

The inequality holds as 4
√
aOγ > 2 > aOβ. Hence, B4 > 0.

Finally, I need to show that B5 > 0. I approximate B5 down by approxi-

mating its second, the negative, term up:

B5 >
√
a(Oβ −Oγ)(1−O2

β)− δ(Oβ −Oγ)
2(a− 1)

241
2

· 12,

where I used Oβ ∈ [1
2
, 1) and 1 + (1 + Oβ)2 + a(1 + Oγ)

2 < 12 because aO2
γ <

q̃T < 1. Hence, it is sufficient to show that

B′5 :=
√
a(1−O2

β)− δ(Oβ −Oγ)(a− 1) > 0.

But Oγ >
Oβ√
a

so B′5 is greater than

√
a(1−O2

β)− δ
(
Oβ −

Oβ√
a

)
(a− 1)
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∝ a(1−O2
β)− δ

(√
a− 1

)
Oβ(a− 1) > a(1−O2

β)− δ1

2
Oβ,

where the last follows from noting that
√
a − 1 < 1

2
and a − 1 ≤ 1. Since

q̃T > O2
β and q̄γ > q̃T , it is sufficient to show that

2a(1− q̄γ)− δ
√
q̄γ > 0,

or that

2a > 2aq̄γ + δ
√
q̄γ. (A.31)

The LHS is constant in δ, but the RHS increases in δ as q̄γ increases in δ. The

derivative of q̄γ is proportional to

∂q̄γ
∂δ
∝ (2− δ)

[
4− 2δ −

√
δ(8− 3δ)− δ(4− 3δ)√

δ(8− 3δ)

]
+ 2δ[4− δ−

√
δ(8− 3δ)].

(A.32)

Since δ(8 − 3δ) increases in δ, I know that
√
δ(8− 3δ) ∈ (2,

√
5) for all δ ∈

[2/3, 1] and
√

5 < 2.25. Hence, the RHS of (A.32) is greater than

1

2

[
(2− δ)(8− 8δ − 4.5 + 3δ2) + δ(7− 4δ)

]
∝ 7 + 10δ2 − 12.5δ − 3δ3 > 7(1− δ)2 + 3δ2(1− δ) > 0,

so that ∂q̄γ
∂δ

> 0.

Hence, it is sufficient to show that inequality (A.31) holds for δ = 1, or,

equivalently, that

4 > 2a(3−
√

5) +

√
2(3−

√
5)

a
. (A.33)

The derivative of the RHS of (A.33) with respect to a is proportional to 4a
3
2 (3−
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√
5)−

√
2(3−

√
5). But

a
3
2 (3−

√
5)−

√
2(3−

√
5) > 2(3−

√
5)−

√
2(3−

√
5) > 0,

where the first inequality follows from a > 1 and the second from 2(3−
√

5) > 1.

Hence, the RHS of (A.33) increases in a so that it is sufficient to show that

inequality (A.33) holds for a = 2, which is true.

Altogether, this shows that B5 > 0, which in turn proves that A2 +A3 > 0,

as required. This completes the proof of the Proposition.

I now prove that the trade-signal regime can be more efficient than the

no-signals’ regime if the quality distribution has binary support as claimed on

p. 43.

Claim 1. In a model where the quality distribution has binary support, the

trade-signal regime can be more efficient than the no-signals’ regime.

Proof. Consider the same model as in the main part of the paper, except that

now qualities can take two values, q ∈ {qL, qH}. In the bad state, all entering

sellers offer quality qL and in the good state, a fraction xγ offer the high

quality qH and the rest offer quality qL. Let xβ := 0 so that I can treat the two

states simultaneously below. Since the aim of this claim is to demonstrate a

possibility result, i.e., that the trade-signal regime can be more efficient than

the no-signals’ regime, I assume (for simplicity) that a buyer’s utility from the

qualities are u(qL) = 1
2

and u(qH) = 1 and that the prior odds ω equal to one.

Note that, as in the main model, old buyers optimally accept all qualities and

a young buyer optimally accepts qH . I show that in a region of the parameter

space where the unique equilibrium under the no-signals’ regime is such that

a young buyer rejects a low quality with probability one, an equilibrium exists

under the trade-signal regime such that a young buyer rejects a low quality
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with probability less than one. That is, a buyer is less likely to delay under

the trade-signal regime.

First, consider the no-signals’ regime and recall that we look for an equi-

librium where a young buyer rejects qL with probability one. Let p be the

probability with which the young buyer accepts qL. A buyer’s utility from

accepting q1 = qL is 1
2
. His continuation value after receiving q1 = qL is

WN (p) = δ

[
π(qL)

(
1− λγ + λγ

1

2

)
+ (1− π(qL))

1

2

]
,

where the posterior belief π(qL) is the probability that the state is good after

q1 = qL and λγ is the equilibrium proportion of low-quality sellers. Both

depend on p. A buyer gets utility one only if the state is good and he meets a

high-quality seller tomorrow. Otherwise, he gets utility of a half.

The optimal probability for a young buyer to reject q1 = qL is p = 0

if WN (p = 0) ≤ 1
2
. But if all buyers accept low qualities, the equilibrium

distribution is the same as the entry distribution and λγ(p = 0) = 1− xγ.

The optimal probability is p = 1 if WN (p = 1) ≥ 1
2
. If all young buyers

reject the low quality, then the equilibrium amount of old buyers is

Os = λs =
1 +Os − xs

1 +Os

,

where the last equality follows from noting that the only high-quality seller

in the market are those who just entered, in the amount xs. The solution is

λγ(p = 1) =
√

1− xγ. The posterior odds of a buyer after observing q1 = qL

are

π(qL)

1− π(qL)
= λγ,

because the buyer receives a low-quality offer with probability λγ in the good

state and probability one in the bad state.
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Thus, the equilibrium probability that a young buyer rejects qL is one if

the young buyer does not want to deviate, i.e., if WN (p = 1) ≥ 1
2

which can

be rearranged to give

δ >
1

1 +

√
1−xγ√

1−xγ+1
(1−

√
1− xγ)

:= δ̄N2 .

Likewise, we get that the equilibrium probability that a young buyer rejects

qL is zero if

δ <
1

1 + 1−xγ
1−xγ+1

xγ
:= δ̄N1 .

Hence, the equilibrium where a young buyer delays with certainty exists if

δ > δ̄N2 and is unique if δ̄N1 < δ̄N2 (the latter holds for all xγ ≤ x̄2). I now

show that for some xγ ≤ x̄2 and δ > δ̄N2 , an equilibrium under the trade-signal

regime exists such that a young buyer delays with probability less than one.

Consider the trade-signal regime. I derive the conditions under which in

equilibrium a young buyer continues after q1 = qL if he observes a trade and

accepts q1 = qL if he observes no trade. His continuation value after observing

q1 = qL and signal outcome i is

W T (i) = δ

[
π(qL, i)

(
1− λγ + λγ

1

2

)
+ (1− π(qL, i))

1

2

]
,

where the posterior belief π(qL, i) is the probability that the state is good

after q1 = qL and signal outcome i, and λγ is the equilibrium proportion of

low-quality sellers. I will derive them now.

A young buyer only becomes old if he observes q1 = qL and trade so the

amount of old buyers is

Os = λsts,

where ts is the probability of observing a trade in state s. The probability of
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observing a trade is ts = 1
1+Os

because amount one of buyers trade and exit

in each period and the total amount of buyers is 1 +Os. Thus, the amount of

old buyers can be solved from the equation Os(1 +Os)
2 = 1 +Os − xs, which

gives a unique solution Os that decreases in xs. Since xγ > xβ, Oγ < Oβ so

that trade is indeed good news as I assumed earlier.

A buyer’s posterior odds are

π(qL, T )

1− π(qL, T )
= λγ

tγ
tβ

=
(1 +Oγ − xγ)(1 +Oβ)

(1 +Oγ)2
,

after a trade and

π(qL, N)

1− π(qL, N)
= λγ

1− tγ
1− tβ

=
(1 +Oγ − xγ)(1 +Oβ)Oγ

(1 +Oγ)2Oβ

,

after no trade. A buyer is more optimistic after a trade, or π(qL, T ) > π(qL, N)

because Oγ < Oβ.

Altogether, it is optimal for a young buyer to continue after observing

q1 = qL and a trade if W T (T ) ≥ 1
2

and to accept q1 = qL after observing

q1 = qL and no trade if W T (N) ≤ 1
2
. The conditions can be rearranged to give

δ ≥ 1

1 +
(1+Oγ−xγ)(1+Oβ)

(1+Oγ)2+(1+Oγ−xγ)(1+Oβ)

xγ
1+Oγ

=: δ̄T1 ,

and

δ ≤ 1

1 +
(1+Oγ−xγ)(1+Oβ)Oγ

(1+Oγ)2Oβ+(1+Oγ−xγ)(1+Oβ)Oγ

xγ
1+Oγ

=: δ̄T2 .

The fact that there are more old buyers in the bad state guarantees that

δ̄T1 < δ̄T2 always holds.

Finally, to prove that the trade-signal regime can be more efficient than

the no-signals’ regime, I need to show that within the region of the parameter

space where in the unique equilibrium under the no-signals’ regime young
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Figure A.1: Trade-signal regime is more efficient than no-signals’ regime if
xγ ∈ (x̄1, x̄2) and δ ∈ (δ̄N2 , δ̄

T
2 ): δ̄N2 (red), δ̄T1 (dashed) and δ̄T2 (black).

buyers delay with certainty, an equilibrium of the above type exists under the

trade-signal regime. That is, I need to show that δ̄N2 < δ̄T2 is possible for some

xγ ≤ x̄2. Figure A.1 illustrates that there exists a unique x̄1 < x̄2 such that if

xγ = x̄1, then δ̄N2 = δ̄T2 and for all xγ > x̄1, δ̄N2 < δ̄T2 , as required.

Here, I formally prove that payoff externalities matter for the efficiency

results as claimed on pp. 43 and 47.

Claim 2. For any private signal precisions pG ∈ [0, 1] and pB ∈ [0, 1] with

pG ≥ 1− pB, if we assume that the equilibrium distribution is the same as the

entry distribution, the delay is independent of pG and pB.

Proof. Consider the exogenous signal regime with some given P (G|γ) = pG ∈

[0, 1] and P (B|β) = pB ∈ [0, 1] with pG ≥ 1− pB (so that G is at least weakly

better news than B) and assume that the equilibrium distribution in state s is

given by Fs. I aim to show that the delay, DE , is independent of both pG and

pB.
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The buyers’ equilibrium beliefs are derived analogously to equation (A.1),

except that now the equilibrium density of any q ∈ [0, 1] is one in the bad state

and 1
a

in the good state. Hence, the belief after (q̄G, G), or equation (A.35),

becomes

π(q̄G, G)

1− π(q̄G, G)
= ω

fγ(q̄G)

fβ(q̄G)

pG
1− pB

= ω
pG

a(1− pB)
,

and the belief after (q̄B, B) is

π(q̄B, B)

1− π(q̄B, B)
= ω

fγ(q̄B)

fβ(q̄B)

1− pB
pG

= ω
1− pB
apG

.

The buyer’s expected value of continuing in state γ is a
2

and in state β is 1
2
. An

equilibrium cutoff must again equal a buyer’s discounted expected continuation

value, which, after collecting terms, gives

q̄G =
δa

2

ωpG + (1− pB)

ωpG + a(1− pB)
,

and

q̄B =
δa

2

ω(1− pG) + pB
ω(1− pG) + apB

.

Since a buyer becomes old only if he observes an unacceptable offer when

young, the probability of becoming old in state s is

Os = P (G|s)Fs(q̄G) + P (B|s)Fs(q̄B).

As a result, the expected delay is explicitly

D = π
[
pG
q̄G
a

+ (1− pG)
q̄B
a

]
+ (1− π) [(1− pB)q̄G + pB q̄B]
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which can be rearranged to give

D = 1 + (1− π)
1

a
{q̄B [ω(1− pG) + apB] + q̄G[ωpG + a(1− pB)]} = 1 +

δ

2
,

where the last step follows from inserting the explicit solutions for q̄G and q̄B

and collecting terms.

A.5 Exogenous signal

Proof of Proposition 8. I derive the system of equations that the equilibrium

cutoffs q̄G and q̄B satisfy. I write out the mean quality in state s and the beliefs

relevant for the cutoffs, and then plug them into equation (A.8). Most of the

detail that I need for the derivation is presented in the proofs of Proposition 2

and of Proposition 5.

The derivation of the mean quality in the proof of Proposition 5, (A.17),

works for the exogenous-signal regime, too, hence, I can plug in the exogenous

signal’s precision into (A.17) to get

EHγ (q) =
a2Oγ + q̄2

G

2aOγ(1 +Oγ)
, (A.34)

and

EHβ(q) =
1

2Oβ

[
1− pB

pB +Oβ

(q̄2
G − q̄2

B)− 1

1 +Oβ

(1− q̄2
G)

]
.

Since the posterior of a buyer is zero after B, the explicit form for EHβ(q)

plugged into (A.8) gives the second equation in the statement of the Proposi-

tion.

After (q1, i) = (q̄G, G) the buyers’ beliefs are, explicitly,

π(q̄G, G)

1− π(q̄G, G)
= ω

hγ(q̄G)

hβ(q̄G)

pG
1− pB

=
ω

a

1 +Oβ

1 +Oγ

1

1− pB
, (A.35)
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which are used in the first equation in the statement of the Proposition. To

obtain the exact version of the first equation, I need to derive the explicit

form of the probability of becoming old in the good state. As only signal

realisation G occurs in the good state, only cutoff q̄G is used in the good state

so the derivation of Oγ works exactly as under the known-state and no-signals’

regimes. Accordingly, the functional form of Oγ is the same under the three

regimes:

Oγ =
√
Fγ(q̄G). (A.36)

I simplify equation (A.7) for s = β:

O2
β =

(1− pB)Oβ q̄G + pB(1 +Oβ)q̄B
Oβ + pB

. (A.37)

Equation (A.37) is the third equation in the statement of the Proposition. To

get the exact form of the first equation, I use (A.36) in (A.34) and (A.35) that,

together with the second equation in the statement of the Proposition, in turn

are plugged into (A.8). This completes the proof of the Proposition.

In order to complete the proof of Proposition 2, I need to show that q̄γ > q̄G

and q̄B > q̄β.

I first show that show that q̄γ > q̄G. Under the exogenous-signal regime,

the cutoff q̄G satisfies

q̄G = δ[αEHEγ (q) + (1− α)EHEβ (q)],

for an appropriate α so that the cutoff is less than the discounted mean quality

in the good state: q̄G < δEHEγ (q). Using, (A.34) and (A.36), the discounted

mean quality in the good state can be written explicitly as

δEHEγ (q) =
δ

2
(a−

√
aq̄G + q̄G),
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so that

q̄G <
δ

2− δ
(a−

√
aq̄G).

But recall that under the known-state regime, cutoff q̄γ satisfies equation

q̄γ =
δ

2− δ
(a−

√
aq̄γ).

As δ
2
(a−√aq) decreases in q, it must be that q̄G < q̄γ.

Finally, I show that q̄B > q̄β. Under the exogenous-signal regime, the cutoff

q̄B satisfies

q̄B = δEHEβ (q),

and under the known-state regime, the cutoff q̄β satisfies

q̄β = δEHKβ (q).

I compare the mean quality in the bad state in the case where the buyers who

know that the state is bad use the optimal cutoff q̃ and others use q̄G > q̃ (as

is the case under the exogenous-signal regime) to the case where all buyers use

cutoff q̃ (as is the case under the known-state regime). In case both cutoffs

q̃ and q̄G are used, the qualities q > q̃ that are left on the market by some

buyers increase the discounted mean quality in the market (because q̃ equals

the discounted mean quality) . Thus, the mean quality must be higher in the

market where some buyers use cutoff q̃ and others q̄G > q̃ as compared to a

market where all buyers use cutoff q̃. Hence, it must be that q̄B > q̄β.

Proof of Proposition 9. The expected delay is obtained by plugging equation

(A.7) into (2.3). I show that the exogenous-signal regime with pG = 1 and

pB = 1− η for η > 0 small is more efficient than the known-state regime, i.e.,

DE < DK, (Part 1). I then prove that the exogenous-signal regime with pG = 1
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and pB = 1−η for η > 0 small is more efficient than the the no-signals’ regime

if δ > 2
3

(Part 2a) and with pG = 1 and pB = 1 − η for η ≈ 1 if δ < 2
3

(Part

2b).

Consider the exogenous-signal regime with pG = 1 and pB = 1 − η, η ∈

(0, 1). Recall that pG = 1 means that in the good state only cutoff q̄G is used

and Oγ =
√
Fγ(q̄G) (see (A.36)). Hence, for any η ∈ (0, 1), if the precision of

the exogenous signal is pG = 1 and pB = 1− η, the expected delay under the

exogenous-signal regime is

DE = π

√
q̄G
a

+ (1− π)Oβ,

where Oβ = (1 − η) q̄B
Oβ

+ η
(
q̄B
Oβ

+ q̄G−q̄B
Oβ+1−η

)
(which is obtained by plugging

pB = 1− η into (A.37)).

Part 1. DE < DK if the precision of the exogenous signal is pG = 1 and

pB = 1− η for η > 0 small.

If pG = pB = 1, then DE = DK. I show that DE < DK for pG = 1 and

pB = 1 − η for η > 0 small by proving that the derivative of DE with respect

to η is negative as η → 0.

The derivative of the expected delay under the exogenous-signal regime

with respect to η is

∂DE

∂η
=
π

2

q̄′G√
aq̄G

+ (1− π)O′β ∝
ω

2

q̄′G√
aq̄G

+O′β, (A.38)

where q̄′G := ∂q̄G
∂η

and O′β :=
∂Oβ
∂η

. I use the rewritten versions of the three

equations in the statement of Proposition 8 to derive the missing derivatives
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in equation (A.38). The equations give

Y1 := O2
β(Oβ + 1− η)− q̄B(Oβ + 1)(1− η)− q̄GηOβ = 0,

Y2 := 2q̄B − δq̄2
BO
−1
β − δ(q̄

2
G − q̄2

B)(Oβ + 1− η)−1 − δ(1− q̄2
G)(Oβ + 1)−1 = 0,

Y3 := ω(1 +Oβ)[δ(a+ q̄G −
√
aq̄G)− 2q̄G] + 2η(q̄B − q̄G)(a+

√
aq̄G) = 0.

The derivatives required for ∂DE

∂η
are obtained by totally differentiating Y1

through Y3. In the limit as η → 0, q̄B → q̄β (so that O2
β → q̄B) and q̄G → q̄γ,

so that the derivatives become

lim
η→0

O′β =
q̄′B(Oβ + 1) + (q̄G − q̄B)Oβ

2Oβ(Oβ + 1)
,

lim
η→0

q̄′B = − δ

2(Oβ + 1)

q̄BO
′
β(Oβ + 1)2 + (q̄2

G − q̄2
B)(O′β − 1) + (1− q̄2

G)O′β
Oβ + 1− δOβ

,

and

lim
η→0

q̄′G =
4(q̄G − q̄B)(a+

√
aq̄G)

ω(1 +Oβ)

[
δ

(
2−

√
a
q̄G

)
− 4

] .
Inserting the second into the first, we get

lim
η→0

O′β =
(q̄G − q̄B)(2q̄B − 2δq̄B + 2Oβ + δq̄G)

δ + 8q̄B − 3δq̄B + 4q̄BOβ − δq̄BOβ + 4Oβ

.

Thus, in the limit, the derivative ∂DE

∂η
is proportional to

lim
η→0

∂DE

∂η
∝ − 2(a+

√
aq̄G)

(4
√
aq̄G − 2δ

√
aq̄G + δa)

+
(1 +Oβ)(2q̄B − δq̄B + 2Oβ + δq̄G)

δ + 8q̄B − 3δq̄B + 4q̄BOβ − 2δq̄BOβ + 4Oβ
.

I show that the cross-multiplied version of the RHS is negative. Using the

identities 2q̄B = δ − δOβ + δq̄B and aq̄B = q̄G that hold in the limit η → 0, I

rewrite the RHS as

−
√
aq̄G[9δ(1−Oβ) + 8q̄BOβ(1− δ) + 4q̄B(1− δ)]− δq̄GOβ[2(1− q̄G) + 2− δa]
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−4q̄G(1−Oβ)− δq̄G[2(1− q̄G) +
2

δ
− δa]− q̄G(2− δ)− δ

√
aq̄G(1− δ)

−δ2q̄2
G(Oβ + 1)− 2δ2q̄B q̄G,

which is negative as a ≤ 2 and δ < 1. Hence, the delay is shorter for precision

pG = 1 and pB = 1− η with η > 0 small enough than for precision pG = 1 and

pB = 1, or, DE < DK if pG = 1 and pB = 1− η for η > 0 small.

Part 2a. For δ > 2
3
, DE < DN if the precision of the exogenous signal is

pG = 1 and pB = 1− η for η > 0 small.

Recall that under the exogenous-signal regime the expected delay is

DE = π

√
q̄G
a

+ (1− π)Oβ.

Now limη→0D
E = DK and we know from Proposition 4 that DK < DN if δ > 2

3
.

Since everything is continuous, if pG = 1 there exists a small neighbourhood

of pB = 1 s.t. DE < DN .

Part 2b. For δ < 2
3
, DE < DN if the precision of the exogenous signal is

pG = 1 and pB = 1− η for η ≈ 1.

I first take the limits of the exogenous-signal regime’s cutoffs as η → 1. By

plugging η = 1, or pB = 0, into the system of equations that determines the

cutoffs of the exogenous-signal regime (see Proposition 8), I get



q̄G =
δ
2
ω(1 +Oβ)(a−

√
aq̄G + q̄G) + (a+

√
aq̄G)q̄B

ω(1 +Oβ) + (a+
√
aq̄G)

,

q̄B =
δ

2Oβ

[
1− 1− q̄2

G

1 +Oβ

]
,

O2
β = q̄G.

Combining the three equations, I get that in the limit as η → 1, q̄G is defined
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by the following equation:

lim
η→1

q̄G =
δ

2

ω(1 +
√
q̄G)(a−

√
aq̄G + q̄G) + (a+

√
aq̄G)(1−

√
q̄G + q̄G)

ω(1 +
√
q̄G) + (a+

√
aq̄G)

,

which is identical to the equation that defines the equilibrium cutoff under the

no-signals’ regime, q̄ (see Proposition 3). Hence, limη→1 q̄G = q̄. However, note

that the limit of q̄B is much smaller than q̄:

lim
η→1

q̄B =
δ

2
(1−

√
q̄ + q̄),

which is much smaller than q̄ because a−
√
aq̄ + q̄ > 1−

√
q̄ + q̄.

Since everything is continuous, we know that there exists a neighbourhood

of η = 1 s.t. for pG = 1 and pB = 1 − η, q̄G ≈ q̄, but q̄B < q̄, so that

O2
β < q̄G ≈ q̄. Accordingly, the expected delay under the exogenous-signal

regime with this precision is

DE |η≈1 = π

√
q̄G
a

+ (1− π)Oβ ≈ 1 + π

√
q̄

a
+ (1− π)Oβ,

which is smaller than DN because Oβ <
√
q̄.
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Appendix B

Appendix for Chapter 3

This section contains the proofs that were omitted in the body of the Chapter.

B.1 Imperfectly correlated preferences

The following provides sufficient conditions for the searcher’s cutoff ū(vm) to

be concave and is a corollary to Proposition 10.

Corollary 2. Sufficient conditions for the cutoff ū(vm) to be concave are: (a)

monotone increasing hazard rate for fv:
∂

∂vm

fv(vm)
1−Fv(vm)

≥ 0, and (b) ∂g(u|vm)
∂vm

≥ 0

for all u ∈ [ū(vm), 1].

Proof. I derive the sufficient conditions for ū(vm) to have a negative second

derivative. Differentiating equation (3.5) gives

∂2ū(vm)

∂v2
m

= −
(

∂

∂vm

fv(vm)

1− Fv(vm)

)∫ 1

ū(vm)

g(u|vm)(u− ū(vm)) du

− fv(vm)

1− Fv(vm)

[∫ 1

ū(vm)

∂g(u|vm)

∂vm
(u− ū(vm))− g(u|vm)

∂ū(vm)

∂vm
du

]
,

which is negative for sure if (a) ∂
∂vm

fv(vm)
1−Fv(vm)

≥ 0 and (b) ∂g(u|vm)
∂vm

≥ 0 for

u ∈ [ū(vm), 1] as ∂ū(vm)
∂vm

< 0. For example, log-concave distributions satisfy (a)
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and independent u and v satisfy (b).

Claim 3. For u independent of v and h uniform on [0, 1]2, the searcher’s cutoff

is given by equation (3.7).

Proof. I solve the differential equation for ū(vm) as follows. Rewrite (3.6) as

dy

dx
= −1

2
(1− x)(1− y)2,

and rearrange to separate the variables:

(1− y)−2 dy = −1

2
(1− x) dx.

I use the standard method, integrating and rearranging, to solve the above

equation. Integrating both sides of the equation yields

(1− y)−1 =
1

2
ln(1− x) + k,

where k is a constant and which can be rearranged to yield

y = 1−
{

1

2
ln(1− x) + k

}−1

. (B.1)

The constant k is pinned down by the initial condition ū(v∗) = ū(1− 2c) = 0:

k = 1− 1

2
ln(1− v∗).

Inserting k to (B.1) and reverting to the original notation yields the result.

B.2 Characterisation

This section contains the omitted details of Section 3.5.
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B.2.1 The searcher is less picky if the preferences are

misaligned

Proposition 12. The searcher is less picky if the agents’ preferences are mis-

aligned as compared to when they are perfectly aligned, i.e., max{ũ, v̄} > ū(vm)

for all vm.

Proof. I show that ũ > ū(vm) for all vm. Recall that ũ is the optimal cutoff

if the searcher could choose himself and equals the searcher’s value from the

search process. Recall that ū(vm) is the optimal cutoff if the chooser chooses

instead of the searcher and equals the searcher’s value from the search process.

The proof is by noting that the searcher can do as least as well in the absence

of a chooser as in the presence of her.

Let us call a searcher who can choose himself A and call a searcher who

searches for a chooser B. Consider a sequence of items drawn from the dis-

tribution H with misaligned preferences (u1, v1), (u2, v2), (u3, v3), etc., that

is relevant for B and the equivalent sequence (u1, u1), (u2, u2), (u3, u3), etc.,

relevant for A. A can mimic the behaviour of B by using the cutoff ū(v1) in

the first period, cutoff ū(max{v1, v2}) in the second, and so on. However, A

can do strictly better in expectation as he can ignore the v-value of the items.

For example, if v1 > v∗, then ū(v1) = 0 so that B would accept (u1, v1) even

if u1 ≤ ε for ε > 0 very small. A can do better by continuing to search. The

probability of an item with u1 < ε and v1 ≥ v∗ occurring is positive under H

because of the full support assumption. Since A’s value from searching equals

ũ, B’s value equals ū(v̄), and ū(vm) decreases in vm, it must be that ũ ≥ ū(vm)

for all vm.
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B.2.2 The searcher prefers more aligned preferences

For positive correlation parametrised by q, the differential equations that pin

down the solution are, for vm < v̂,

∂ū(vm)

∂vm
= −1

2
(1− vm)−1(1− q)(1− ū(vm))2,

with initial condition ū(v̂) = v̂, and for vm ∈ (v̂, v∗),

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[(1− q)(1− ū(vm))2 + 2q(vm − ū(vm))],

with initial condition ū(v∗) = 0. The differential equations do not have man-

ageable closed form solutions (i.e., the solutions are nonlinear functions involv-

ing Bessel and gamma functions) and are thus omitted.

For negative correlation parametrised by r, the relevant system of equa-

tions depends on the size of c (or, more precisely, on whether the curve ū(vm)

intersects with the line 1− vm). For c large enough, the curve and line do not

intersect and the differential equation that pins down the solution is for any

vm < v∗,

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[(1− r)(1− ū(vm))2 + 2r(1− vm − ū(vm))],

with initial condition ū(v∗) = 0. Again, the differential equation does not have

a manageable closed form solution and is omitted.

For small search cost, the curve ū(vm) and line 1−vm intersect. Let ū(v̂i) =

1− v̂i for i = 1, 2 such that v̂1 < v̂2. The differential equation that pins down

the solution is for vm < v̂1 and vm ∈ (v̂2, v
∗)

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[(1− r)(1− ū(vm))2 + 2r(1− vm − ū(vm))],
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with initial conditions ū(v̂1) = 1 − v̂1 and ū(v∗) = 0 for vm < v̂1 and vm ∈

(v̂2, v
∗) respectively, and for vm ∈ (v̂1, v̂2)

∂ū(vm)

∂vm
= −1

2
(1− vm)−1(1− r)(1− ū(vm))2,

with initial condition ū(v̂2) = 1− v̂2. The solutions to these equations are not

informative and thus omitted.
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Akın, Ş. and B. Platt (2014): “A Theory of Search with Deadlines and

Uncertain Recall,” Economic Theory, 55, 101–133.

Albrecht, J., A. Anderson, and S. Vroman (2010): “Search by Com-

mittee,” Journal of Economic Theory, 145, 1386–1407.

Alonso, R. and N. Matouschek (2008): “Optimal Delegation,” Review of

Economic Studies, 75, 259–293.

Amador, M. and K. Bagwell (2013): “The Theory of Optimal Delegation

With an Application to Tariff Caps,” Econometrica, 81, 1541–1599.

Araujo, L. and B. Camargo (2006): “Information, Learning, and the

Stability of Fiat Money,” Journal of Monetary Economics, 53, 1571–1591.

Armstrong, M. (1995): “Delegation and Discretion,” MPRA Paper, Univer-

sity of Munich, 17069.

Armstrong, M. and J. Vickers (2008): “A Model of Delegated Project

Choice,” MPRA Paper, University of Munich, 8963.

——— (2010): “A Model of Delegated Project Choice,” Econometrica, 78,

213–244.

Asriyan, V., W. Fuchs, and B. Green (2015): “Information Spillovers in

Asset Markets with Correlated Values,” mimeo.

163



Bala, V. and S. Goyal (1998): “Learning from Neighbours,” Review of

Economic Studies, 65, 595–621.

Becker, G., M. Degroot, and J. Marschak (1963): “Stochastic Models

of Choice Behavior,” Behavioral Science, 8, 41–55.

Bell, D. (1985): “Disappointment in Decision Making Under Uncertainty,”

Operations Research, 33, 1–27.
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