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Abstract
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1 Introduction

Standard sequential search models with recall build on the assumption that the search

and choice stages comprise an undivided whole: the person who searches can stop and

choose an item from the accumulated choice set at any time during the search process.

This is an innocuous assumption if the preferences of the person are stable over time.

In this paper, I extend the standard search model by allowing the preferences according

to which the final choice is made to differ from the preferences according to which

search is conducted. The set-up has two natural interpretations. First, the preferences

belong to different parties: a “searcher” compiles a choice set via sequential search and

a “chooser” chooses from the collected choice set. Second, the preferences belong to one

individual, but change between the search and choice stages. I show that the searcher’s

optimal policy is a threshold rule and characterise the threshold.

Examples of such search problems are an HR manager collecting applications for a

boss who wants to hire a new worker and a real estate agent collecting offers for a client

interested in buying a flat. An example involving a person and a set of individuals is

a spouse looking for a job that determines the living place of the couple. A person

who is interested in the return while searching for an investment opportunity, but later

tempted to invest in an option that involves the least paperwork is a “multi-selves”

example. More generally, many household decisions, organisational decisions involving

different phases and multiple agents, choice processes partially outsourced to external

partners, and political decisions involving advisers feature one party compiling a choice

set for another party via search.

In this paper I analyse the optimal policy of a searcher who compiles a choice set for

a chooser. I describe the model as a two-agent search problem. The searcher (he) and

the chooser (she) have preferences over all items in some grand set of alternatives and

the preferences are distributed according to a general full-support distribution function.

The searcher has access to an arrival process. In each period, one item arrives and the

searcher discovers how much utility both he and the chooser receive from the item if it

is chosen. The searcher decides in each period whether to stop or continue the search

process. If he stops the process, all the items that have arrived are presented to the

chooser. The chooser then chooses the best item in the choice set according to her

preferences, unless all the items in the set yield her less utility than her exogenous

outside option. Utilities are realised when an item or the outside option is chosen. The

process ends after the chooser moves. The searcher’s problem is to choose an optimal

policy, knowing the chooser’s choice rule.

First, I derive and characterise the searcher’s optimal policy. His optimal policy is
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a threshold rule and the threshold depends on the item that would be chosen by the

chooser were the searcher to stop immediately, xm. The searcher’s threshold is the lower

the higher the chooser values this item because it acts as a restriction for the searcher:

if he is unsatisfied with the utility he would receive from xm, a new item is chosen only

if the chooser’s utility from it exceeds her utility from xm. This has two implications.

First, if the searcher finds an item that has a very high value for the chooser, he

optimally stops searching regardless of the value that the item yields him. Second,

the observed threshold that the searcher uses is weakly decreasing in time, although

the search horizon is infinite and the search environment stationary. I call this the

“discouragement effect”. This is in contrast with the standard single-agent search model

where a stationary environment translates into a stationary threshold. The searcher’s

threshold in my model is defined implicitly by a differential equation. I use a specific

joint distribution where the utilities’ correlation is captured by a single parameter to

numerically show that an increase in the correlation parameter unambiguously increases

the searcher’s threshold, in line with intuition.

Second, I compare the optimal threshold of the searcher in the main model with

imperfectly correlated preferences to the benchmark where the agents’ preferences are

perfectly aligned. I first show that in the main model the searcher’s threshold is always

lower than in the benchmark: the searcher is “less picky”. The reason is that the

chooser chooses according to her preferences not the searcher’s, which lowers the latter’s

continuation value, thus, his threshold. I then provide an example where, as a result

of a mean-preserving spread, the searcher’s threshold decreases in the main model,

while it always increases in the benchmark: the searcher is “more conservative” in the

main model.1 A mean-preserving spread increases the probability that an item arrives

that yields very high utility to the chooser, which restricts the searcher and lowers his

continuation value.

Third, I explain how the model’s characteristics differ from those of two single-agent

search models that feature a threshold that varies in time. The first model has convex

search costs and the second, a deadline. Both models result in an optimal threshold

that decreases over time (for a fixed searcher-preferred item in the choice set) because

they assume non-stationarity of the environment. My model features a time-decreasing

threshold in a stationary environment. Also, in those models returning to an item found

earlier is possible, while search always stops with the item found last in my model. The

searcher returns to an item found earlier in the models with convex search costs or

a deadline because his threshold decreases exogenously over time. In my model, the

1The terms “less picky” and “more conservative” are borrowed from Albrecht et al. (2010).
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decrease is endogenous: it happens only if there is a change in the item that would be

chosen if the searcher stopped. I suggest three tests on data that allow us to reject one

or more of the three models.

Finally, I extend the model to allow the searcher to hide items. The searcher can

hide an item only upon its arrival and succeeds with some given probability that is

strictly less than one. He observes whether he succeeded before making the decision

whether to stop or continue. As in the main model, I find that the searcher’s threshold

is unambiguously decreasing in the value that the chooser receives from the chooser-

preferred element in the choice set. For independent uniform utilities, I show that the

threshold is strictly increasing in the probability that the searcher succeeds in hiding.

The constraint of having to account for the chooser’s preferences becomes the less

restrictive the likelier that the searcher can ignore those preferences.

Related literature. This paper is closely related in spirit to other papers on multi-

agent search. In “committee” search problems the committee has a common arrival

process and must agree on when to stop.2 In “couple” search problems each person

has his own arrival process, but they pool income.3 In these papers some part of the

entire search process is joint, while distinct parties are engaged in distinct stages of

the process in my paper. I borrow the terms “less picky” and “more conservative” in

their specific meaning from Albrecht et al. (2010) (AAV henceforth). AAV analyse a

committee search problem, where M members of an N -member committee must agree

in order to stop the search process. They find that a committee is both less picky

and more conservative than a single searching agent. I find that the searcher is both

less picky and more conservative if his and the chooser’s preferences are misaligned as

opposed to when they are perfectly aligned. These results echo those of AAV, but the

reasons behind the results are somewhat different, as I explain in Section 5.

The paper is also related to the literature on delegated choice in a principal-agent

set-up.4 In these papers an agent makes the final choice and the principal either restricts

the set of items that the agent can choose from or designs a contract. The available set

of items is assumed to be given so the problem is static, unlike in this paper.

Finally, the paper is related to a recent literature on delegated search, where an

agent conducts search on behalf of the principal in a principal-agent set-up, by Postl

(2004), Armstrong and Vickers (2008), Lewis (2012), Ulbricht (2016), and Kováč et al.

2For example, see Albrecht et al. (2010), Compte and Jehiel (2010), Bergemann and Välimäki
(2011), Kamada and Muto (2015), and Moldovanu and Shi (2013).

3For example, see Dey and Flinn (2008), Ek and Holmlund (2010), Flabbi and Mabli (2012), and
Guler et al. (2012).

4For example, see Holmström (1977), Armstrong (1995), Alonso and Matouschek (2008), Armstrong
and Vickers (2010), Amador and Bagwell (2013), and Kováč and Krähmer (2015).
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(2014). These models study how the principal can direct the agent to conduct search in

the best possible manner for her, whereas here I focus on the “agent’s” optimal policy

in the case when the “principal” cannot affect the search process directly. In Postl

(2004), Lewis (2012), and Ulbricht (2016) utility is transferable, the agent does not

receive direct utility from a chosen item, and the focus is on the principal’s optimal

contracts. In the other two papers, which are the most closely related to mine, utility

is non-transferable. I point out how the modelling choices in Armstrong and Vickers

(2008) (AV henceforth) and Kováč et al. (2014) (KKT henceforth) result in a simpler

optimal policy for the agent in AV and KKT than in my paper. In AV, the working

paper version of Armstrong and Vickers (2010), the agent makes the final choice and

the principal permits the choice among a subset of all items. In an extension to the

main model of AV, the agent collects the items via costly search. The most important

aspect of my paper that sets it apart from AV is that the final choice is made by the

“principal”, whereas in AV it is made by the agent. In AV the agent’s threshold is

constant in time. In KKT the agent’s preferences differ cardinally, but not ordinally,

from the principal’s and the final choice is made by the principal. They solve for the

principal’s optimal mechanism. The most important aspect of my paper that sets it

apart from KKT is that the agent and principal do not necessarily agree on which item

is the best, whereas they do in KKT. The latter assumption together with assuming

that the agent wants to stop with any item trivialises the unrestricted agent’s optimal

stopping rule in KKT, unlike in this paper.

The next section contains the details of the model. Section 3 introduces the bench-

marks: the searcher’s optimal policy when the chooser’s preferences are either perfectly

aligned or opposed to his. Section 4 solves for the searcher’s optimal policy when the

agents’ preferences are arbitrarily imperfectly correlated. Section 5 characterises the

solution. The final section concludes. All omitted proofs are in the Appendix.

2 Model

A “chooser” (“she”) has to choose an item. The chooser makes the final choice from

a choice set, but the choice set is compiled by someone else, a “searcher” (“he”). The

final choice determines the agents’ payoffs. The searcher compiles the choice set over

time via sequential search. He chooses when to stop and take the accumulated choice

set to the chooser.

The arrival process. Time, t, is discrete and t = 1, 2, ...,∞. The searcher uncovers

one new item in each period. He cannot affect how frequently or which items arrive.
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Search costs c > 0 per period for the searcher.5

Preferences. The t’th item that arrives, xt = (ut, vt), is worth ut to the searcher

and vt to the chooser. The xt are independent draws from a time-invariant distribution

H(u, v) with support [0, 1]2. The marginal distributions of u and v are Fu(·) and Fv(·)
respectively. The conditional distribution of u is G(u|v). The associated pdfs are h, fu,

fv and g, with fu(u) > 0 for all u ∈ [0, 1]. I assume that the cost of search is relatively

low, c < E[u], so that at least one period of search is desirable for the searcher. In

the main part of the paper, Section 4, the joint distribution H has full support. In the

benchmarks of Section 3, the preferences are either perfectly aligned (i.e., P (v = u) = 1

and u ∼ Fu) or opposed (i.e., P (v = 1 − u) = 1 and u ∼ Fu). The chooser has an

outside option v̄ ∈ [0, 1].

Actions. In period t the searcher chooses an action at ∈ {S,C}. If the searcher

continues (at = C), the chooser does not get to act in period t. If the searcher stops

(at = S), he takes the accumulated choice set to the chooser. He cannot hide or lie

about items.6 Let the v-maximal element in a choice set be denoted xm = (um, vm).

From any non-empty choice set brought to the chooser, she chooses xm if vm ≥ v̄, which

yields utility vm to the chooser and um to the searcher. If vm < v̄, the chooser chooses

her outside option, which yields utility v̄ to her and zero utility to the searcher. The

entire process ends after the choice of an item or the outside option.

Timing. In each period, first, the searcher uncovers an item and pays the search

cost. Second, he chooses whether to stop or continue to search. If the searcher stops

searching, the chooser chooses an item from the choice set or her outside option, after

which utilities are realised and the entire process ends. If the searcher continues search,

the process moves to the next period.

Problem. The searcher’s problem is to maximise his expected utility from the search

process, taking as given the chooser’s outside option and her choice rule. The searcher

refuses to start the search process if his expected utility is negative.

3 Two benchmarks

In this section, I derive the searcher’s optimal policy in two benchmark versions of the

model: in the first benchmark, the chooser’s preferences are perfectly aligned with the

searcher’s, and in the second, her preferences are perfectly opposed to the searcher’s.

5The main results of the paper are not sensitive to the assumption of an additive search cost as
opposed to discounting. I will comment on the result that does change in Section 4.

6The assumption of no hiding is relaxed in Section 6.
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3.1 Perfectly aligned preferences

Suppose that the chooser’s preferences are perfectly aligned with the searcher’s, i.e.,

v = u with probability one and u ∼ Fu. If the chooser’s outside option is zero, the

searcher’s problem is equivalent to the standard single-agent sequential search problem

(see McCall (1970) for the seminal contribution). In the standard search model, the

searcher’s optimal policy is a threshold rule and the optimal threshold is equal to the

searcher’s expected value from starting the search process (if the value is positive).

The presence of the outside option changes the analysis, but not considerably. The

searcher’s optimal policy is a threshold rule because of the standard argument: if it is

optimal for the searcher to stop with some item which yields him u, then it is optimal

for him to stop with any item that yields him u′ > u. If the u-value of an item

that he finds exceeds the threshold, he stops and the chooser chooses this item; the

searcher continues otherwise. The threshold does not depend on time as the problem

is stationary. Since the chooser has an outside option worth v̄, the searcher must wait

for an item that exceeds the outside option to receive non-zero utility from the search

process. The searcher uses one of two possible thresholds depending on the size of

the chooser’s outside option. First, if the outside option is low, the threshold equals

ũ, the optimal threshold in the standard single-agent sequential search problem. This

threshold is optimal if v̄ ≤ ũ. McCall (1970) shows that ũ solves∫ 1

ũ

u− ũ dFu(u) = c.

The threshold decreases in the cost of search, in line with intuition.

Second, if the chooser’s outside option v̄ is higher than ũ, the searcher is restricted

by v̄ in the sense that in the absence of it he would stop with items with u ∈ [ũ, v̄),

but has to continue in the presence of v̄. Then the searcher optimally searches until

he finds the first item that exceeds the chooser’s outside option (if his expected payoff

from search is positive). His expected payoff from the search process, Ua(·), is

Ua(v̄ > ũ) = P (u ≥ v̄)E[u|u ≥ v̄] + P (u < v̄)Ua(v̄ > ũ)− c. (1)

The first term on the right-hand side (RHS) accounts for the possibility that the first

item’s value exceeds the outside option, in which case the searcher stops and receives

u. If the value of the first item is lower than the outside option, he continues and

his expected continuation value is the same as at the start of today. The searcher

also pays the search cost c. The expected payoff decreases in the cost of search and

the chooser’s outside option. If the outside option is very high, i.e., v̄ > v∗a where v∗a
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solves Ua(v
∗
a > ũ) = 0, the searcher refuses to search because his expected payoff from

searching is negative.

3.2 Perfectly opposed preferences

The chooser’s preferences are perfectly opposed with the searcher’s if v = 1 − u with

probability one and u ∼ Fu. I argue that the searcher’s optimal threshold is zero. That

is, he stops with any first item acceptable to the chooser, if he searches at all.

The searcher knows that the chooser chooses according to v. As a result, he opti-

mally stops after uncovering the first item which satisfies v ≥ v̄ if he searches at all.

The reason is as follows. Without loss of generality, suppose that v1 ≥ v̄. Then for any

realisation of u1, x2 satisfies one of the following. Either v2 ≥ v1 (so that u2 ≤ u1) or

v2 < v1 (so that u2 > u1). If the searcher stopped after observing the second item, in

the former case the chooser would choose x2 and in the latter case x1. Since u2 ≤ u1

in the former case and the searcher would end up getting x1 at an extra search cost in

the latter case, he prefers stopping after x1 for any realisation of x2.

The searcher’s expected payoff from stopping with the first item which satisfies

v ≥ v̄, Uo(·), is

Uo(v̄) = P (v ≥ v̄)E[1− v|v ≥ v̄] + P (v < v̄)Uo(v̄)− c.

The equation is interpreted analogously to equation (1), except that here the searcher

receives u = 1 − v when he stops. The searcher’s expected payoff is decreasing in the

cost of search and the chooser’s outside option. The expected payoff from searching is

positive if v̄ < v∗o where v∗o solves Uo(v
∗
o) = 0. If the expected payoff from searching is

negative, the searcher refuses to search and receives zero.

The results of the first two sections are summarised in the following:

Lemma 1. (i) If the agents’ preferences are perfectly aligned, the searcher’s optimal

policy is a threshold rule and the threshold is max{ũ, v̄}, where ũ solves∫ 1

ũ

u− ũ dFu(u) = c.

(ii) If the agents’ preferences are perfectly opposed, the searcher’s optimal policy is a

threshold rule and the threshold is zero.
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4 Imperfectly correlated preferences

In this section the searcher’s preferences, u, are imperfectly correlated with the chooser’s

preferences, v. The only assumption I make is that their joint distribution H(u, v) has

full support. I derive the first main result of this paper: the searcher’s optimal policy

is a threshold rule, the threshold is ū = max{0, ū(vm)}, and decreases in vm.

The searcher’s optimal policy is a threshold rule because of the standard argument:

if it is optimal for the searcher to stop with some item x = (u, v) (which yields him

u), then it is optimal for him to stop with any x′ = (u′, v) with u′ > u. The searcher

stops if the utility that he receives from the item that would be chosen by the chooser

if the searcher was to stop immediately (i.e., the v-maximal item in the choice set)

exceeds the threshold, and continues otherwise. The optimal threshold ū(·) is equal to

the searcher’s value from continuing, U(·), if the value is positive as in the standard

search problem (and zero if the value is negative).

The threshold differs from the standard search problem’s in several ways. Recall

that xm = (um, vm) is the v-maximal item in the choice set. First, the threshold is

defined only if the choice set contains at least one item with v ≥ v̄, i.e., if vm ≥ v̄. If no

such item exists in the choice set, the searcher optimally continues for all um (if it was

optimal for him to start the search process). Second, the positive part of the threshold

ū(·), or, equivalently, the searcher’s continuation value U(·), depends on vm if vm > v̄,

but not on um. Suppose that the v-maximal item in the choice set is xm = (u′, v′) with

v′ = vm > v̄. If the searcher stops, xm is chosen and he receives u′. If he is not satisfied

with u′, i.e., if u′ < ū(·), he continues. I argue that his continuation value depends on

v′, but not on u′. The first part is simple: the continuation value depends on v′ because

a new item x′′ = (u′′, v′′) is chosen only if v′′ > v′. The second part requires considering

two scenarios. Suppose a new item (u′′, v′′) arrives. If v′′ > v′, then vm changes to

v′′: the new item would be chosen if the searcher stopped. Hence, u′ is irrelevant. If

v′′ ≤ v′, then vm stays v′. But then nothing has changed as compared to the previous

period (when the searcher continued) so that u′ < ū(·) must still hold. In neither of the

cases does the searcher’s continuation value depend on u′. Hence, the expected value

of continuing depends only on vm so I write U(vm) and ū(vm). Third, the threshold

is weakly positive for vm ∈ [v̄, v∗]. The lower bound v̄ is explained above. The upper

bound v∗ is present because vm acts as a restriction: if vm is very high, finding an

item with v > vm becomes so unlikely that the searcher’s continuation value becomes

negative and he is better off accepting any positive um. The upper bound is defined as

ū(vm = v∗) = 0 and v∗ ∈ [0, 1] is guaranteed to exist for all c > 0 because of the full

support assumption.
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I solve for the searcher’s continuation value for various values that vm can take.

Suppose first that vm ≤ v̄. Then the searcher has no item in the choice set that is

acceptable to the chooser. The searcher’s expected value from continuing (equivalently,

starting) the search process is

U(v̄) =

∫ 1

v̄

∫ 1

0

max{u, U(v)}h(u, v) du dv +

∫ v̄

0

U(v̄)fv(v) dv − c, (2)

if the next item that he finds is (u, v). The first term on the RHS accounts for the

possibility that v exceeds the chooser’s outside option: the item would be chosen if the

searcher stopped. The searcher chooses optimally whether to stop or continue, where

the continuation value is now a function of v. The second term on the RHS accounts

for the possibility that v is below the chooser’s outside option: the searcher continues

and the continuation value is the same as at the start of today. The last term accounts

for the search cost. As U(v̄) is also the searcher’s expected payoff from the entire search

process, he optimally starts search if and only if U(v̄) ≥ 0.7

Suppose now that vm > v̄. The searcher’s expected value from continuing is

U(vm) =

∫ 1

vm

∫ 1

0

max{u, U(v)}h(u, v) du dv +

∫ vm

0

U(vm)fv(v) dv − c, (3)

which is interpreted analogously to (2), except that v̄ in (2) is replaced by vm in (3).

As argued above, the searcher’s optimal threshold ū(·) is equal to his continuation

value U(·) if the latter is positive, which is true for vm ∈ [v̄, v∗] for some v∗ ∈ [0, 1] that

satisfies U(v∗) = 0. The optimal threshold is zero if the continuation value is negative,

i.e., if vm > v∗. Thus, by substituting U(vm) = ū(vm) into equation (3) and using the

fact that the agent continues for x = (u, v) s.t. v > vm and u < ū(v), I can rewrite (3)

for vm ∈ [v̄, v∗] as

ū(vm) = [1− Fv(vm)]−1

∫ v∗

vm

[∫ ū(v)

0

ū(v)h(u, v) du+

∫ 1

ū(v)

uh(u, v) du

]
dv, (4)

where v∗ satisfies
∫ 1

0

∫ 1

v∗
uh(u, v) dv du = c. As search becomes more costly, i.e., c

increases, v∗ decreases. Intuitively, if search becomes more costly, it becomes unprof-

itable for the searcher to continue searching at lower values of vm. Note that the function

ū(vm) does not depend on v̄: the chooser’s outside option affects the searcher’s expected

payoff from the entire search process, but does not affect his optimal policy for vm > v̄.

7If I assume discounting instead of an additive search cost, then the searcher optimally starts search
for all v̄ < 1 as U(v̄) > 0 for all positive discount factors. This is the only result that qualitatively
changes in a model with discounting.
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The above integral equation can be converted into an ODE by differentiation:

∂ū(vm)

∂vm
= − fv(vm)

1− Fv(vm)

∫ 1

ū(vm)

u− ū(vm) dG(u|vm). (5)

On the RHS of the equation, the first term is the hazard rate, i.e., the probability

that an item with v = vm arrives, given that such an item has not arrived earlier.

The integral term is the utility that the searcher expects to get from the new item,

u, in excess of the continuation value ū(vm), which is realised only if u exceeds the

continuation value. The slope of the threshold depends on the search cost c indirectly

via the level of the threshold ū(vm), because the level depends on the search cost via

v∗ (see equation (4)).

Equation (5) does not, in general, have a closed form solution (I provide a closed form

solution for an example below; further examples can be provided under the assumption

that u and v are independent). However, equation (5) together with the initial condition

ū(v∗) = 0 fully pin down the function ū(vm), which proves the first main result of this

paper.

Proposition 1. If the agents’ preferences are imperfectly correlated, the searcher’s

optimal policy is a threshold rule. The threshold is ū = max{0, ū(vm)}, where ū(vm)

solves
∂ū(vm)

∂vm
= − fv(vm)

1− Fv(vm)

∫ 1

ū(vm)

u− ū(vm) dG(u|vm),

for vm ∈ [v̄, v∗], where v∗ satisfies ū(v∗) = 0.

The threshold ū(vm) is clearly decreasing in vm for any joint distribution of u and v

with full support. The chooser’s value from the v-maximal item in the choice set, vm,

acts as a restriction on the searcher’s problem because a new item x′ = (u′, v′) is chosen

only if v′ > vm. The stricter the restriction, the lower the searcher’s expected payoff

from the process. I provide sufficient conditions for the threshold ū(vm) to be concave

in the Appendix.

The fact that the threshold ū(vm) decreases in vm means that the searcher does

not start searching for high enough outside options for the chooser, v̄. The chooser’s

outside option acts as a similar restriction on the searcher’s problem as vm. If the

outside option is very high, i.e., v̄ > v∗, the searcher prefers to receive payoff zero to

starting the process and making a loss in expectation. The critical outside option above

which the searcher prefers not to start searching is lower if the agents’ preferences are

misaligned as opposed when they are perfectly aligned (v∗ < v∗a), in line with intuition.
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Example (Analytic solution). Suppose the utilities are independent and h uniform on

[0, 1]2. The searcher’s expected value from continuing, equation (4), simplifies to

ū(vm) =
1

2
(1− vm)−1

∫ v∗

vm

1 + ū(v)2 dv,

and the associated ODE (5) to

∂ū(vm)

∂vm
= −1

2
(1− vm)−1(1− ū(vm))2. (6)

In the Appendix I solve equation (6) in detail using a standard method and the initial

condition ū(v∗) = 0. The explicit solution is

ū(vm) = 1−
[

1

2
ln

(
1− vm
1− v∗

)
+ 1

]−1

, (7)

where the value v∗ has a simple closed form: v∗ = 1−2c. The conditions that guarantee

that ū(vm) is concave in vm are satisfied. An example of the threshold as a function of

vm is depicted in Figure 1.
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Figure 1: Searcher’s threshold as a function of vm if utilities are independent and
uniform for v̄ = 1

10
and c = 1

8
. Dashed line: ũ.
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5 Characterisation

In this section, I first prove that the threshold policy exhibits the “discouragement ef-

fect” and derive testable implications of my model (Sections 5.1 and 5.2). I then show

that, as compared to when the agents’ preferences are perfectly aligned, if the prefer-

ences are misaligned, the searcher is “less picky” and “more conservative” (Sections 5.3

and 5.4).8 These two results echo the results of AAV, but the mechanisms are slightly

different as I explain below. I then provide a numerical example where a higher corre-

lation of preferences results in an unambiguously higher threshold. Finally, I show how

the implications of my model differ from two models that extend the standard single-

agent search model and generate a threshold that varies over time. Omitted details are

in the Appendix.

5.1 The threshold exhibits the discouragement effect

I present the second main result of the paper, that the searcher’s threshold exhibits the

discouragement effect.

Definition (Discouragement effect). A threshold policy exhibits the discouragement

effect if the threshold weakly decreases in time.

I call a time-decreasing threshold the discouragement effect because the longer the

searcher searches, the lower-utility items he is willing to accept and the more likely he

is to stop: he is discouraged from searching longer and for better items as time goes on.

Proposition 2. The threshold policy ū(vm) exhibits the discouragement effect.

Proof. The threshold ū(vm) is weakly decreasing in time if and only if vm is weakly

increasing in time because ∂ū(vm)
∂vm

< 0 (by Proposition 1). Since vm is the maximum

utility that the chooser gets from a choice set collected up to some time t, vm is formally

the tth (or largest) order statistic of the choice set at time t: vm = max{v1, v2, ..., vt}.
But the tth order statistic must weakly increase in t: for any vm at date t, either

vt+1 ≤ vm, in which case vm is left unchanged, or vt+1 > vm, in which case vm takes on

the new, higher value vt+1.

Proposition 2 states that he searcher’s threshold stochastically weakly decreases

over time, despite the search environment being stationary. This is in contrast to

the standard sequential search model where a stationary environment translates into

a stationary threshold. The source of the time-decreasing threshold in my model is

8The terms “less picky” and “more conservative” are borrowed from AAV.
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the endogenous restriction on the searcher’s problem that becomes more stringent over

time, i.e., the v-value of the v-maximal element in the choice set, vm, increases in time.

If search has gone on for long enough, vm is high and the searcher optimally accepts a

newly arriving item (u, v) with v > vm regardless of how low u is. Suppose that the

HR manager in the example in the Introduction cares about the amiability of a future

colleague and the boss about the new worker’s qualifications. The discouragement effect

means that if the HR manager receives the application of a highly qualified worker who

does not seem like an amiable colleague, he stops looking for other applicants since he

anticipates that the boss hires the highly qualified applicant.

5.2 Testable implications of the discouragement effect

I describe the testable implications of my model and especially the discouragement

effect. I assume that we have data on multiple search instances involving the same (or

a group of representative) searcher(s) and the same chooser. Each search instance is

identified with an observation i. I assume that each observation contains information

on the duration of search (denoted Di), the identity of item that is the final choice

(denoted Mi), and on the searcher’s and chooser’s utility from the finally chosen item

xMi
= (uMi

, vMi
). Data on utilities is unlikely to occur in field settings, but can be

generated in a laboratory experiment. The model has three testable implications.

1. uMi and vMi are negatively correlated across i. This is a direct implication of the

negatively-sloped threshold. If at any point during the search process vm is low,

the searcher only stops if um is high. Conversely, if vm is high, then a low um is

sufficient for the searcher to stop. Across many instances, the utilities from the

finally chosen item should, thus, be negatively correlated.

2. Di and uMi (vMi) are negatively (positively) correlated across i. The longer

the searcher searches, the more likely is vm to be high. But when vm is high,

the searcher accepts items with lower u-values as compared to when vm is low.

Across many instances, the search duration and the searcher’s utility from the

finally chosen item should, thus, be negatively correlated.

3. Di = 1 for some observations i. The searcher stops after any first item x1 if

v1 > v∗. In this case, the utility that he gets from the item, u1, is irrelevant for

his stopping problem and he stops immediately.

I explain in Section 5.6 how my model’s implications differ from the implications of two

other models with a time-varying threshold.
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5.3 The searcher is less picky if the preferences are misaligned

I borrow the terminology from AAV and say that a searcher with a lower threshold is

“less picky” than a searcher with a higher threshold.

Proposition 3. The searcher is less picky if the agents’ preferences are misaligned as

compared to when they are perfectly aligned, i.e., max{ũ, v̄} > ū(vm) for all vm.

Proof. In the Appendix.

The reason why the searcher whose preferences differ from the chooser’s is willing

to accept a lower utility item is that his search process is restricted by the chooser’s

preferences: an item that the searcher “likes” is chosen only if the chooser “likes” it,

too. If their preferences are not perfectly aligned, the agents “like” the same item with

a probability less than one. This reduces the searcher’s value from continuing with the

search process, hence, his optimal stopping threshold. In terms of the hiring example,

if amiable people have higher qualifications, then the HR manager is optimally satisfied

with a more amiable new colleague as opposed to when amiability and qualifications

are not perfectly correlated, despite the HR manager’s preferences not changing.

In AAV, a committee is less picky than a single searcher because the committee

members need to compromise. In my model, the searcher is less picky if his and the

chooser’s preferences are misaligned because choice is made according to the chooser’s

not the searcher’s preferences.

5.4 The searcher is more conservative if the preferences are

misaligned

I say that the searcher is “more conservative” if his threshold may decrease as a result

of a mean-preserving spread (MPS) to the distribution of utilities, following AAV.

In order to make the comparison between the benchmark and full model and give an

unambiguous meaning to a MPS, I assume in this section that the marginal distributions

of u and v equal: Fu = Fv =: F . I show by example that the searcher is more

conservative if his and the chooser’s preferences are misaligned as compared to when

they are perfectly aligned.

Proposition 4. If Fu = Fv and the joint distribution of the utilities is subjected to a

mean-preserving spread, the searcher’s threshold always increases when the preferences

are perfectly aligned, but for a certain set of parameter values the threshold decreases

when the agents’ preferences are misaligned.
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Proof. (a) If the joint distribution of the utilities is subjected to a mean-preserving

spread, the searcher’s threshold ũ always increases when the preferences are per-

fectly aligned. For proof, see e.g., AAV.

(b) If the joint distribution of the utilities is subjected to a mean-preserving spread,

the searcher’s threshold may decrease when the agents’ preferences are misaligned.

By example: I provide an example where a MPS leads to a decrease in ū(vm).

Assume that u and v are independent and have the same uniform marginal U [a, b]

for 0 < a < b. An example of a MPS for the distribution is U [a′, b′] such that

0 < a′ < a, b′ > b and a+ b = a′ + b′.

The threshold of the searcher satisfies the ODE

∂ū(vm)

∂vm
= − (b− ū(vm))2

2(b− a)(b− vm)
.

The searcher prefers continuing to accepting any item if his value from continuing

is higher, i.e., if U(vm) ≥ a. Define v∗ by U(v∗) = a, or ū(v∗) = a. The closed

form is v∗ = b− 2c. Then I can solve the ODE by using similar methods as in the

proof of Claim 1 (in the Appendix). The result is

ū(vm) =
2(b+ a)− 2b− b ln[ b−v

∗

b−vm ]

2− ln[ b−v
∗

b−vm ]
.

Differentiating the expression with respect to b while keeping a+ b constant gives

∂ū(vm)

∂b
= 4vm − 2(a+ b) + (b− vm)

(
ln

[
b− v∗

b− vm

])2

.

This is negative, for example, if b = 3, a = 1, vm = 1.5 and c = 1
4
.

The reason why a MPS leads to an unambiguous increase in the searcher’s optimal

threshold in a single-agent search problem is that a MPS increases the option value of

searching by making really high (and really low) draws possible. The gain from the

really high draws outweighs the loss from the really low draws because the latter are

not accepted.

Conversely, if the searcher’s and chooser’s preferences are misaligned, the searcher’s

optimal threshold may decrease under a MPS: the searcher behaves more conservatively

under more risk by accepting lower-utility items. Two counteracting effects lie behind

the result. On the one hand, a MPS of the u-value distribution benefits the searcher
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through the same mechanism as in the single-agent setup: the option value of searching

increases and the threshold rises. On the other, a MPS increases the probability of

items with high v-value occurring. A high v-value acts as a stricter constraint for the

searcher, thus decreasing his value of continuing and his threshold. In the example in

the proof of Proposition 4, the negative effect outweighs the positive.

In AAV, a committee is more conservative than a single searcher. The result em-

anates from one committee member exerting a negative externality on another, e.g., in

a unanimity committee a member can veto stopping in a case where everyone but the

vetoing member would receive a high utility from the last item. The externality can

become more severe under a MPS. Here, the result emanates from the fact that under a

MPS, the searcher is more likely to find an item with a v-value that restricts him more.

5.5 The searcher prefers more aligned preferences

I use a simple parametric family of joint distributions to demonstrate numerically that

the searcher is unambiguously better off as the agents’ preferences become more aligned.

Analytic results are not available even for this simple family. Let the marginals of u and

v be uniform on [0, 1] throughout. The family of distributions deals with positive and

negative correlation separately. For positive correlation, let the correlation be governed

by parameter q ∈ [0, 1]. The conditional distribution of u given v is

u|v =

{
v with probability q,

∼ U [0, 1], u |= v −′′− 1− q.
(8)

The searcher’s optimal threshold is the solution to a system of two differential equation

that have the form

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[A(1− ū(vm))2 +B(vm − ū(vm))],

where A and B depend only on q. I provide the exact differential equations in the

Appendix, but omit them here as they do not possess closed form solutions that could

be interpreted.

For negative correlation, let the correlation be governed by parameter r ∈ [0, 1].

The conditional distribution of u given v is

u|v =

{
1− v with probability r,

∼ U [0, 1], u |= v −′′− 1− r.
(9)

The searcher’s optimal threshold is the solution to a system of at most two differential
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equations, with a general form given by

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[A(1− ū(vm))2 +B(1− vm − ū(vm))],

where A and B depend only on r. Again, I provide the exact differential equations in

the Appendix.

The positive and negative correlation parameters q and r can be comprised in a

single parameter ρ: ρ = q for q ≥ 0 and r = 0, and ρ = −r for r ≥ 0 and q = 0. I show

numerically that ū(vm) increases in ρ. The result is illustrated in Figure 2 (a lower

curve corresponds to a lower level of correlation). The dashed grey line corresponds to

ũ = 1 −
√

2c. The intuition behind the result is simple: if the utilities become more

correlated, then the searcher is better off as his continuation value, thus, his threshold,

increases. An increase in ρ affects the threshold via several channels. First, a higher

ρ directly increases the searcher’s value from stopping because a high v is more likely

to be accompanied by a high u. Second, a higher ρ indirectly increases the searcher’s

continuation value both through the decreased likelihood that a high v is restrictive

and through the increased future value of stopping.

0.2 0.4 0.6 0.8 1
vm0

0.1

0.2

0.3

0.4

0.5

uHvmL

Figure 2: Searcher’s threshold ū(vm) at correlation levels ρ = −0.9,−0.5, 0, 0.5, 0.9
(from lowest to highest curve respectively; dashed line: ũ), for v̄ = 0, c = 1

8
.
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5.6 Differences with other models with time-varying thresh-

olds

Here, I first explain how the characteristics of my model differ from two single-agent

search models that feature a time-varying threshold. I then explain how data allows

us to test between the three models. Recall that in my model the searcher’s threshold

decreases (weakly) over time because vm increases (weakly) over time. Extensions to

the standard single-agent search model that produce a time-varying threshold are, for

example, a finite horizon, i.e., a deadline, (see Gronau (1971) and Lippman and McCall

(1976)) or convex search costs (see Stiglitz (1987)). For a fixed u-value of the u-maximal

item in a choice set (denoted uw), the threshold in these models is decreasing over time.

First, I compare the reasons behind the decreasing thresholds. The reason behind

a decreasing threshold (for a fixed uw) in all the models is that the searcher’s value of

continuing decreases over time. However, the deeper reasons differ. In the case of a

deadline, the decrease is due to the exogenous end of search possibilities beyond the

deadline. In the case of convex search costs, the decrease is due to search becoming

exogenously more expensive over time. In fact, in these models the environment is non-

stationary to start with (so that a non-stationary optimal policy is expected), contrary

to my model.

Second, for a fixed uw, the time path of the threshold in a model with a deadline

or convex search costs is strictly concave in time (for infinitesimally short time peri-

ods) whereas it is not concave in time in my model. In a model with a deadline, the

threshold is concave in time because for a fixed time increment, the loss of future search

opportunities for the searcher becomes larger the closer the deadline. In a model with

convex search costs, the threshold is concave in the number of items (equivalently, in

the number of time periods). In my model, the threshold is not concave in time because

with positive probability, a new item’s v-value does not change vm, in which case the

threshold is constant in time, thus, not concave. The time path of the threshold cannot

be constant in time in a model with either a deadline or convex search costs.

Third, the models generate different outcomes. In my model, the item that is finally

chosen is always the one uncovered last. This is because the threshold decreases only

if the v-maximal item changes. If a new item becomes the v-maximal item in the

choice set, it changes the threshold ū(vm), and the new item may be attractive for the

searcher to stop with (if um ≥ ū(vm)). Alternatively, the new item does not become

the v-maximal item in the choice set and the u-value of the v-maximal item still falls

below the threshold. In contrast, there may be return to an item uncovered earlier in

a model with either a deadline or convex search costs. This is because in those models
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the threshold can decrease independently of the changes in the choice set. An item

that yielded too little utility to warrant stopping in the past may exceed the decreased

threshold. In sum, in my model the final choice is always the item uncovered last despite

the searcher’s decreasing threshold.

Finally, I explain how data allows to test between the three models. For this exercise,

let us first assume that each observation i in the data corresponds to a search instance

and contains information on the duration of the search process, Di, and the identity of

the item that is the final choice, Mi. Suppose we have data on i ≥ 1 of such search

instances. Then the following predictions are made.

1. If in any observation the finally chosen item is not the last item, i.e., Mi 6= Di for

an i, we can reject my model. This prediction is a straightforward implication of

the last of the three differences between the three models that I discussed above.

2. If the deadline in the deadline model is some known number Ti for each observation

and the duration of search exceeds the deadline in any observation, i.e., Di > Ti

for some i, we can reject the deadline model.

If each observation would additionally contain information about the utilities of all the

items that the searcher has observed, a further prediction is made.

3. If the finally chosen item does not have the highest utility for the searcher among

all the observed items, i.e., if for some i, uMi
6= argmaxx∈CDi

u(x), where CDi
is

the choice set collected until the process ends, we can reject the deadline and the

convex search cost models. In my model, the final choice is made according the

chooser’s preferences, v, but is made according to the searcher’s preferences, u,

in the two other models. Thus, in the two models the final choice must be the

u-maximal item, but not in my model.

6 An extension: hiding

Suppose the searcher can hide the items that he wants to at the arrival of the items, but

is not always successful.9 The searcher takes two actions in any period: a1t ∈ {H,D}
and a2t ∈ {S,C}, where H stands for for trying to hide, D for not trying to hide, S for

stopping, and C for continuing. In particular, after an item xt arrives and the searcher

has found out its utilities (ut, vt), he can attempt to hide the item xt. He succeeds with

probability p ∈ (0, 1). After taking the hiding action and observing its outcome, he

chooses whether to stop or continue.

9I thank Ludo Visschers for proposing this particular hiding technology.
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I derive the searcher’s optimal hiding and stopping policy. In sum, the searcher

(weakly) prefers hiding all items that he does not want to stop with. He prefers stopping

to continuing if his value from stopping exceeds the value from continuing. Let us

consider all the possible cases that the searcher may encounter. Suppose that the v-

maximal item found until today is xm = (um, vm), the searcher decided to continue

yesterday (so that um < U(vm)), and the item found today is x = (u, v). I describe the

searcher’s optimal policy for all possible values of xm and x. If v < vm, the searcher

continues (with or without attempting to hide x) because xm is chosen if the searcher

stopped (so that his continuation value is definitely U(vm)) and um < U(vm) still holds.

If v ≥ vm, it must be that U(v) ≤ U(vm) because a higher vm is a greater restriction for

the searcher (I verify later that this property holds). Then the maximum continuation

value that the searcher can achieve is, after successfully hiding x, U(vm). Hence, if

u > U(vm) it is optimal for the searcher to not to hide the item and stop. Suppose

that u < U(vm): the searcher would like to continue if he could guarantee himself the

continuation value U(vm). Hence, the searcher attempts hiding, a1t = H, and if he

succeeds, continues as um < U(vm). If he fails, he compares u to his continuation value

U(v): if u ≥ U(v), he stops, and continues otherwise. In sum, the optimal sequence of

actions for the agent after receiving x = (u, v) with v ≥ vm is

(a1t, a2t) =



(D,S) if u ≥ U(vm),

(H,C) if u < U(vm) and hiding succeeds,

(H,S) if u ∈ [U(v), U(vm)) and hiding fails,

(H,C) if u < U(v) and hiding fails.

(10)

The optimal sequence of actions for the agent after receiving x = (u, v) with v < vm is

(a1t, a2t) = ({H,D}, C). (11)

Thus, the optimal policy of the searcher can no longer be characterised by a threshold

only, but the buyer’s continuation value U(vm) is sufficient to describe his optimal

policy.

Note that if vm is very high, then the searcher’s continuation value is negative for

the same reason as in the main model. For any p < 1, if vm is very high, the probability

that an item arrives with v > vm (and u > um) is very low, so that the searcher’s benefit

from continuing is less than the cost c. As before, let the smallest vm s.t. U(vm) ≤ 0

be v∗.

Formally, the searcher’s continuation value when the v-maximal item is (um, vm)
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and the newly arrived item is (u, v) satisfies

U(vm) =

∫ vm

0

U(vm)fv(v) dv +

∫ v∗

vm

∫ U(v)

0

[pU(vm) + (1− p)U(v)]h(u, v) du+ (12)

+

∫ U(vm)

U(v)

[pU(vm) + (1− p)u]h(u, v) du+

∫ 1

U(vm)

uh(u, v) du dv+

+

∫ 1

v∗

∫ U(vm)

0

[pU(vm) + (1− p)u]h(u, v) du+

∫ 1

U(vm)

uh(u, v) du dv − c,

where v∗ satisfies U(v∗) = 0. Each of the terms corresponds to the optimal sequence of

actions for the searcher as described in equations (10) and (11). For example, the first

terms reads that if the new item’s v-value v falls below the v-value of the v-maximal

item found so far, then the searcher optimally continues to search (as described in

equation (11)). The last double integral reads that if v > v∗ (so we know that the

searcher’s continuation value is negative if he fails to hide x), the searcher stops for

sure if u exceeds his best possible continuation value U(vm) (last term). If u falls short

of this continuation value, the searchers tries to hide x. If he succeeds, he continues. If

he fails, he stops.

In a similar fashion as in the main model, I derive the differential equation that the

continuation value satisfies by differentiating (12) with respect to vm and obtain the

ODE

∂U(vm)

∂vm

∫ 1

vm

∫ 1

0

h(u, v) du−p
∫ U(vm)

0

h(u, v) du dv = −
∫ 1

U(vm)

h(u, vm)(u−U(vm)) du,

with terminal condition U(v∗) = 0, or
∫ 1

v∗

∫ 1

0
uh(u, v) du dv = c. Since the RHS of the

ODE is negative and the multiplier after ∂U(vm)
∂vm

on the LHS positive, the continuation

value is unambiguously decreasing in vm. I explain why v∗ is independent of p. The

value v∗ is defined as the smallest vm such that U(vm = v∗) ≤ 0 so that the searcher

wants to stop with any um when vm = v∗. Suppose that vm = v∗ and the searcher

continues (so that um = 0). Then the best continuation value that he can hope for is

U(v∗) = 0. If an item (u, v) arrives with v > v∗, the searcher optimally accepts any u

because U(v) < 0 for all v > v∗. But the expected value of u (given that v > v∗) is

independent of p, hence, v∗ is independent of p.

The comparative static derivative of U(vm) with respect to p cannot be determined

without solving for the function U(vm). I show for an example below that, in line with

intuition, the searcher’s continuation value is strictly increasing in p for all vm < v∗.

Example (Analytic solution, continued). Suppose that the utilities are independent and
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h uniform on [0, 1]2. The searcher’s expected value from continuing simplifies to

U(vm)(1− vm) =

∫ 1

v∗

∫ U(vm)

0

[pU(vm) + (1− p)u] du+

∫ 1

U(vm)

u du dv − c+ (13)

+

∫ v∗

vm

∫ U(v)

0

[pU(vm)+(1−p)U(v)] du+

∫ U(vm)

U(v)

[pU(vm)+(1−p)u] du+

∫ 1

U(vm)

u du dv.

The derivative of the above is

∂U(vm)

∂vm
= −1

2
(1− vm)−1(1− pU(vm))−1(1− U(vm))2,

with terminal condition U(v∗) = 0, which yields v∗ = 1 − 2c. Note that the equation

collapses to equation (6) if p = 0.

I use the same method to solve the ODE as before, using the initial condition U(1−
2c) = 0. The implicit solution for U(vm) is

2(1− p) U(vm)

1− U(vm)
− 2p ln(1− U(vm)) = ln

(
1− vm
1− v∗

)
.

The RHS is constant in U(·) and p so the derivative dU(·)
dp

= − LHSp

LHSU(·)
> 0 as LHSU(·) >

0 and LHSp < 0 (straightforward to verify from above). In line with intuition, the

searcher becomes unambiguously better off as his probability of successfully hiding the

items that he wants to hide increases: he is less likely to have to account for the chooser’s

preferences as p increases. The result is illustrated on Figure 3: higher curves stand for

higher p.

Allowing the searcher to hide items acts in a similar manner as making the agents’

preferences more aligned in the sense that the searcher’s expected continuation value

increases. However, the parametric examples illustrate that there are differences (see

Figure 2 and Figure 3). For a given correlation structure, an increase in p shifts the

searcher’s continuation value up, without changing the value of vm above which the

continuation value is zero (v∗). Conversely, for a given p, an increase in the correlation

parameter shifts both the searcher’s continuation value and v∗ up. The reason behind

the difference is as follows. If the utilities become more positively correlated, then a

high vm is not as great a restriction on the searcher’s problem: the probability that an

item arrives tomorrow with a v-value that exceeds vm does not change, but it is more

likely that the high v-value is accompanied by a high u-value. Thus, the searcher’s

continuation value at any given vm goes up, including at vm = v∗. If, instead, the

probability that the searcher successfully hides an item increases, then if the searcher
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Figure 3: Searcher’s threshold ū(vm) at hiding probabilities p = 0, 0.5, 0.999 (from
lowest to highest curve respectively), for v̄ = 0, c = 1

8
. Dashed line: ũ.

fails to hide an item with a high vm, the high vm is exactly as great a restriction on the

searcher’s continuation problem as in the original model (i.e., where p = 0).

7 Conclusion

I study a sequential search problem where the preferences according to which the final

item is chosen differ from the preferences according to which search is conducted. A

natural interpretation of this set-up is that the preferences belong to separate parties: a

searcher and a chooser. Alternatively, the preferences of an individual change between

the search and choice stages. I show that the optimal policy of the searcher is a threshold

rule and that the threshold depends on the items that the searcher has found so far.

Due to this dependence, the search behaviour features the discouragement effect: the

threshold decreases weakly in time. The threshold is characterised in detail in Section

5. The characteristics of my model differ from two single-agent search models that

feature a time-varying threshold (convex search costs or deadline). In particular, my

model features a threshold that decreases endogenously over time and never generates

return to an item rejected earlier, in contrast to the other models.

I interpret some of the results in the context of the multi-selves example presented

in Introduction. The threshold decreasing in vm means that a person who has an invest-

ment opportunity readily available that involves minimal paperwork (i.e., if the outside

option for the chooser is high) optimally does not even attempt to look for an oppor-
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tunity with a higher return as he knows he will choose the minimal-paperwork option

when the time to invest arrives. A person who is intimidated by paperwork optimally

stops searching at an opportunity that offers a lower return (but little paperwork) than

a person who likes paperwork: the former is less picky. He is less picky not because

he cares less about returns, but because he anticipates that otherwise he is chooses a

minimal paperwork option when investing.

The model can be extended in several ways. First, if the model is limited to the

principal-agent set-up it is reasonable to think that the chooser has a direct influence

on the searcher’s search process. The possibilities of extending the model are rich due

to the many possible assumptions that can be made on the action space and com-

mitment power of the principal. For example, the principal’s optimal restrictions on

the length of search would be interesting to study because these are prevalent in real

life.10 Second, the model in this paper is very general with respect to the joint distri-

bution of utilities that is considered. If the model is restricted to some application, an

application-motivated simplifying restriction on the joint distribution would allow for

a more detailed analysis of various aspects of the optimal threshold. Third, my model

can be enriched by deriving the chooser’s outside option from the model by consider-

ing many searchers competing for the chooser. I conjecture that a robust equilibrium

is such where each searcher reports to the chooser as soon as he finds the first item.

Fourth, my model provides a natural framework in which to think about issues related

to naivete and sophistication in a search framework. This forms part of my planned

future work.

10I have derived partial results on time restrictions, specifically, the minimal search duration restric-
tion optimal for the principal. Full results are complex to derive because a maximal search duration
restriction (a deadline) means that the agent’s threshold depends directly on the amount of time avail-
able before the deadline. In fact, it is unclear that the optimal restrriction in the time dimension is a
connected interval. In addition, I have considered the principal’s optimal restriction in the v-dimension.
Details of both extensions are available upon request.
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A Appendix

A.1 Imperfectly correlated preferences

The following provides sufficient conditions for the searcher’s threshold ū(vm) to be

concave and is a corollary to Proposition 1.

Corollary 1. Sufficient conditions for the threshold ū(vm) to be concave are: (a)

monotone increasing hazard rate for fv: ∂
∂vm

fv(vm)
1−Fv(vm)

≥ 0, and (b) ∂g(u|vm)
∂vm

≥ 0 for

all u ∈ [ū(vm), 1].
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Proof. I derive the sufficient conditions for ū(vm) to have a negative second derivative.

Differentiating equation (5) gives

∂2ū(vm)

∂v2
m

= −
(

∂

∂vm

fv(vm)

1− Fv(vm)

)∫ 1

ū(vm)

g(u|vm)(u− ū(vm)) du

− fv(vm)

1− Fv(vm)

[∫ 1

ū(vm)

∂g(u|vm)

∂vm
(u− ū(vm))− g(u|vm)

∂ū(vm)

∂vm
du

]
,

which is negative for sure if (a) ∂
∂vm

fv(vm)
1−Fv(vm)

≥ 0 and (b) ∂g(u|vm)
∂vm

≥ 0 for u ∈ [ū(vm), 1]

as ∂ū(vm)
∂vm

< 0. For example, log-concave distributions satisfy (a) and independent u and

v satisfy (b).

Claim 1. For u independent of v and h uniform on [0, 1]2, the searcher’s threshold is

given by equation (7).

Proof. I solve the differential equation for ū(vm) as follows. Rewrite (6) as

dy

dx
= −1

2
(1− x)(1− y)2,

and rearrange to separate the variables:

(1− y)−2 dy = −1

2
(1− x) dx.

I use the standard method, integrating and rearranging, to solve the above equation.

Integrating both sides of the equation yields

(1− y)−1 =
1

2
ln(1− x) + k,

where k is a constant and which can be rearranged to yield

y = 1−
{

1

2
ln(1− x) + k

}−1

. (14)

The constant k is pinned down by the initial condition ū(v∗) = ū(1− 2c) = 0:

k = 1− 1

2
ln(1− v∗).

Inserting k to (14) and reverting to the original notation yields the result.

A.2 Characterisation

This section contains the omitted details of Section 5.
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A.2.1 The searcher is less picky if the preferences are misaligned

Proposition 3. The searcher is less picky if the agents’ preferences are misaligned as

compared to when they are perfectly aligned, i.e., max{ũ, v̄} > ū(vm) for all vm.

Proof. I show that ũ > ū(vm) for all vm. Recall that ũ is the optimal threshold if the

searcher could choose himself and equals the searcher’s value from the search process.

Recall that ū(vm) is the optimal threshold if the chooser chooses instead of the searcher

and equals the searcher’s value from the search process. The proof is by noting that

the searcher can do as least as well in the absence of a chooser as in the presence of

her. Let us call a searcher who can choose himself A and call a searcher who searches

for a chooser B. Consider a sequence of items drawn from the distribution H with

misaligned preferences (u1, v1), (u2, v2), (u3, v3), etc., that is relevant for B and the

equivalent sequence (u1, u1), (u2, u2), (u3, u3), etc., relevant for A. A can mimic the

behaviour of B by using the threshold ū(v1) in the first period, threshold ū(max{v1, v2})
in the second, and so on. However, A can do strictly better in expectation as he can

ignore the v-value of the items. For example, if v1 > v∗, then ū(v1) = 0 so that B would

accept (u1, v1) even if u1 ≤ ε for ε > 0 very small. A can do better by continuing to

search. The probability of an item with u1 < ε and v1 ≥ v∗ occurring is positive under

H because of the full support assumption. Since A’s value from searching equals ũ, B’s

value equals ū(v̄), and ū(vm) decreases in vm, it must be that ũ ≥ ū(vm) for all vm.

A.2.2 The searcher prefers more aligned preferences

For positive correlation parametrised by q, the differential equations that pin down the

solution are, for vm < v̂,

∂ū(vm)

∂vm
= −1

2
(1− vm)−1(1− q)(1− ū(vm))2,

with initial condition ū(v̂) = v̂, and for vm ∈ (v̂, v∗),

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[(1− q)(1− ū(vm))2 + 2q(vm − ū(vm))],

with initial condition ū(v∗) = 0. The differential equations do not have manageable

closed form solutions (i.e., the solutions are nonlinear functions involving Bessel and

gamma functions) and are thus omitted.

For negative correlation parametrised by r, the relevant system of equations depends

on the size of c (or, more precisely, on whether the curve ū(vm) intersects with the line

1 − vm). For c large enough, the curve and line do not intersect and the differential
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equation that pins down the solution is for any vm < v∗,

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[(1− r)(1− ū(vm))2 + 2r(1− vm − ū(vm))],

with initial condition ū(v∗) = 0. Again, the differential equation does not have a

manageable closed form solution and is omitted.

For small search cost, the curve ū(vm) and line 1− vm intersect. Let ū(v̂i) = 1− v̂i
for i = 1, 2 such that v̂1 < v̂2. The differential equation that pins down the solution is

for vm < v̂1 and vm ∈ (v̂2, v
∗)

∂ū(vm)

∂vm
= −1

2
(1− vm)−1[(1− r)(1− ū(vm))2 + 2r(1− vm − ū(vm))],

with initial conditions ū(v̂1) = 1 − v̂1 and ū(v∗) = 0 for vm < v̂1 and vm ∈ (v̂2, v
∗)

respectively, and for vm ∈ (v̂1, v̂2)

∂ū(vm)

∂vm
= −1

2
(1− vm)−1(1− r)(1− ū(vm))2,

with initial condition ū(v̂2) = 1− v̂2. The solutions to these equations are not informa-

tive and thus omitted.

30


	Introduction
	Model
	Two benchmarks
	Perfectly aligned preferences
	Perfectly opposed preferences

	Imperfectly correlated preferences
	Characterisation
	The threshold exhibits the discouragement effect
	Testable implications of the discouragement effect
	The searcher is less picky if the preferences are misaligned
	The searcher is more conservative if the preferences are misaligned
	The searcher prefers more aligned preferences
	Differences with other models with time-varying thresholds

	An extension: hiding
	Conclusion
	Appendix
	Imperfectly correlated preferences
	Characterisation
	The searcher is less picky if the preferences are misaligned
	The searcher prefers more aligned preferences



