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ABSTRACT

Aims. We re-analyse the HARPS radial velocities of HD 10180 and calculate the probabilities of models with differing numbers of
periodic signals in the data. We test the significance of the seven signals, corresponding to seven exoplanets orbiting the star, in the
Bayesian framework and perform comparisons of models with up to nine periodicities.
Methods. We used posterior samplings and Bayesian model probabilities in our analyses together with suitable prior probability
densities and prior model probabilities to extract all significant signals from the data and to receive reliable uncertainties for the
orbital parameters of the six, possibly seven, known exoplanets in the system.
Results. According to our results, there is evidence for up to nine planets orbiting HD 10180, which would make this star a record
holder with more planets in its orbits than there are in the solar system. We revise the uncertainties of the previously reported six
planets in the system, verify the existence of the seventh signal, and announce the detection of two additional statistically significant
signals in the data. If these are of planetary origin, they would correspond to planets with minimum masses of 5.1+3.1

−3.2 and 1.9+1.6
−1.8 M⊕

on orbits with 67.55+0.68
−0.88 and 9.655+0.022

−0.072 day periods (denoted using the 99% credibility intervals), respectively.

Key words. methods: numerical – methods: statistical – techniques: radial velocities – planets and satellites: detection –
stars: individual: HD 10180

1. Introduction

Over the recent years, radial velocity surveys of nearby stars
have provided detections of several exoplanet systems with mul-
tiple low-mass planets, even few Earth-masses, in their orbits
(e.g. Lovis et al. 2011; Mayor et al. 2009, 2011). These sys-
tems include a four-planet system around the M-dwarf GJ 581
(Mayor et al. 2009), which has been proposed to possibly have
a habitable planet in its orbit (von Paris et al. 2011; Wordsworth
et al. 2010), a system of likely as many as seven planets
orbiting HD 10180 (Lovis et al. 2011), and several systems
with 3−4 low-mass planets, e.g. HD 20792 with minimum plan-
etary masses of 2.7, 2.4, and 4.8 M⊕ (Pepe et al. 2011) and
HD 69830 with three Neptune-mass planets in its orbit (Lovis
et al. 2006).

Currently, one of the most accurate spectrographs used in
these surveys is the High Accuracy Radial Velocity Planet
Searcher (HARPS) mounted on the ESO 3.6 m telescope at
La Silla, Chile (Mayor et al. 2003). In this article, we re-analyse
the HARPS radial velocities of HD 10180 published in Lovis
et al. (2011). These measurements were reported to contain six
strong signatures of low-mass exoplanets in orbits ranging from
5 days to roughly 2000 days and a possible seventh signal at
1.18 days. These planets include five 12 to 25 M⊕ planets clas-
sified in the category of Neptune-like planets, a more massive
outer planet with a minimum mass of 65 M⊕, and a likely super-
Earth with a minimum mass of 1.35 M⊕ orbiting the star in close
proximity (Lovis et al. 2011). While the confidence in the ex-
istence of the six more massive companions in this system is
fairly high, it is less so for the innermost super-Earth (Feroz et al.
2011). Yet, even if the radial velocity signal corresponding to

this low-mass companion were an artefact caused by noise and
data sampling or periodic phenomena of the stellar surface, the
HD 10180 system would be second only to the solar system with
respect to the number of planets in its orbits, together with the
transiting Kepler-11 six-planet system (Lissauer et al. 2011).

In this article, we re-analyse the radial velocity data of
HD 10180 using posterior samplings and model probabilities.
We perform these analyses to verify the results of Lovis et al.
(2011) with another data analysis method, to calculate accurate
uncertainty estimates for the planetary parameters, and to see if
this data set contains additional statistically significant periodic
signals that could be interpreted as being of planetary origin.

2. Observations of the HD 10180 planetary system

The G1 V star HD 10180 is a relatively nearby and bright tar-
get for radial velocity surveys with a Hipparcos parallax of
25.39± 0.62 mas and V = 7.33 (Lovis et al. 2011). It is a very
inactive (log RHK = −5.00) solar-type star with similar mass and
metallicity (m� = 1.06 ± 0.05, [Fe/H] = 0.08 ± 0.01) and does
not appear to show any well-defined activity cycles based on the
HARPS observations (Lovis et al. 2011). When announcing the
discovery of the planetary system around HD 10180, Lovis et al.
(2011) estimated the excess variations in the HARPS radial ve-
locities, usually referred to as stellar jitter, to be very low, ap-
proximately 1.0 m s−1. These properties make this star a suitable
target for radial velocity surveys and enable the detection of very
low-mass planets in its orbit.

Lovis et al. (2011) announced in 2010 that HD 10180 is
host to six Neptune-mass planets in its orbit with orbital periods
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of 5.76, 16.36, 49.7, 123, 601, and 2200 days, respectively. In
addition, they reported a 1.18 days power in the periodogram of
the HARPS radial velocities that, if caused by a planet orbiting
the star, would correspond to a minimum mass of only 35% more
than that of the Earth. These claims were based on 190 HARPS
measurements of the variations in the stellar radial velocity be-
tween November 2003 and June 2009.

The HARPS radial velocities have a baseline of more than
2400 days, which enabled Lovis et al. (2011) to constrain the
orbital parameters of the outer companion in the system with al-
most similar orbital period. In addition, these HARPS velocities
have an estimated average instrument uncertainty of 0.57 m s−1

and a relatively good phase coverage with only seven gaps of
more than 100 days, corresponding to the annual visibility cycle
of the star in Chile.

3. Statistical analyses

We analysed the HD 10180 radial velocities using a simple
model that contains k Keplerian signals that are assumed to
be caused by non-interacting planets orbiting the star. We also
assumed that any post-Newtonian effects are negligible in the
timescale of the observations. Our statistical models are then
those described in e.g. Tuomi & Kotiranta (2009) and Tuomi
(2011), where each radial velocity measurement was assumed
to be caused by the Keplerian signals, some unknown reference
velocity about the data mean, and two Gaussian random vari-
ables with zero means representing the instrument noise with
a known variance as reported for the HD 10180 data by Lovis
et al. (2011) together with the radial velocities, and an addi-
tional random variable with unknown variance that we treat as
a free parameter of our model. This additional random variable
describes the unknown excess noise in the data caused by the
instrument and the telescope, atmospheric effects, and the stellar
surface phenomena.

Clearly, the assumption that measurement noise has a
Gaussian distribution might be limiting if it were actually more
centrally concentrated, had longer tails, was skewed, or was
dependent on time and other possible variables, such as stel-
lar activity levels. However, with “only” 190 radial velocities
it is unlikely that we could spot non-Gaussian features in the
data reliably. For this reason, and because as far as we know the
Gaussian one is the only noise model used when analysing radial
velocity data, we restrict our statistical models to Gaussian ones.

3.1. Posterior samplings

We analysed the radial velocities of HD 10180 using the adaptive
Metropolis posterior sampling algorithm of Haario et al. (2001)
because it appears to be efficient in drawing a statistically repre-
sentative sample from the parameter posterior density in practice
(Tuomi 2011; Tuomi et al. 2011). This algorithm is essentialy an
adaptive version of the famous Metropolis-Hastings algorithm
(Metropolis et al. 1953; Hastings 1970), which adapts the pro-
posal density to the information gathered up to the ith member of
the chain when proposing the i+ 1th member. It uses a Gaussian
multivariate proposal density for the parameter vector θ and up-
dates its covariance matrix Ci+1 using

Ci+1 =
i − 1

i
Ci +

s
i

[
iθ̄i−1θ̄

T
i−1 − (i + 1)θ̄iθ̄Ti + θiθ

T
i + εI

]
, (1)

where θ̄ is the mean of the parameter vector, (·)T is used to de-
note the transpose, I is the identity matrix of suitable dimension,

ε is some very small number that enables the correct ergodicity
properties of the resulting chain (Haario et al. 2001), and pa-
rameter s is a scaling parameter that can be chosen as 2.42K−1,
where K is the dimension of θ, to optimise the mixing properties
of the chain (Gelman et al. 1996).

We calculated the marginal integrals needed in model se-
lection using the samples from posterior probability densities
with the one-block Metropolis-Hastings (OBMH) method of
Chib & Jeliazkov (2001), also discussed in Clyde et al. (2007).
However, since the adaptive Metropolis algorithm is not ex-
actly a Markovian process, only asymptotically so (Haario et al.
2001), the method of Chib & Jeliazkov (2001) does not neces-
sarily yield reliable results. Therefore, after a suitable burn-in
period used to find the global maximum of the posterior density,
during which the proposal density also converges to a multivari-
ate Gaussian that approximates the posterior, we fixed the co-
variance matrix to its present value, and continue the sampling
with the Metropolis-Hastings algorithm, which enables the ap-
plicability of the OBMH method.

3.2. Prior probability densities

The prior probability densities of Keplerian models describing
radial velocity data have received little attention in the litera-
ture. Ford & Gregory (2007) proposed choosing the Jeffreys’
prior for the period (P) of the planetary orbit, the radial veloc-
ity amplitude (K), and the amplitude of “jitter”, i.e. the excess
noise in the measurements (σJ). This choice was justified be-
cause Jeffreys’ prior makes the logarithms of these parameters
evenly distributed (Ford & Gregory 2007; Gregory 2007a). We
used this functional form of prior densities for the orbital pe-
riod and choose the cutoff periods such that they correspond to
the one-day period, below which we do not expect to find any
signals in this work, and a period of 10Tobs, where Tobs is the
time span of the observations. We chose this upper limit because
it enables the detection of linear trends in the data correspond-
ing to long-period companions whose orbital period cannot be
constrained, but is not much greater than necessary in practice
(see e.g. Tuomi et al. 2009, for the detectability limits as a func-
tion of Tobs), which could slow down the posterior samplings by
increasing the hypervolume of the parameter space with reason-
ably high likelihood values. Anyhow, if the period of the out-
ermost companion cannot be constrained from above, it would
violate our detection criterion of the previous subsection.

Unlike in Ford & Gregory (2007), we did not use Jeffreys’
prior for the radial velocity amplitudes nor the excess noise pa-
rameter. Instead, because the HARPS data of HD 10180 deviate
about their mean less than 20 m s−1, we used uniform priors for
these parameters as π(Ki) = π(σJ) = U(0, aRV), for all i, and
used a similar uniform prior for the reference velocity (γ) about
the mean as π(γ) = U(−aRV, aRV), where we chose the parame-
ter of these priors as aRV = 20 m s−1. While the radial velocity
amplitudes could in principle have values greater than 20 m s−1

while the data would still not deviate more than that about the
mean, we do not consider that possibility a feasible one.

Following Ford & Gregory (2007), we chose uniform priors
for the two angular parameters in the Keplerian model, the lon-
gitude of pericentre (ω) and the mean anomaly (M0). However,
we did not set the prior of orbital eccentricity (e) equal to a uni-
form one between 0 and 1. Instead, we expect high eccentricities
to be less likely in this case because there are at least six, likely
as many as seven, known planets orbiting HD 10180. Therefore,
high eccentricities would result in instability and therefore we
did not consider their prior probabilities to be equal to the low
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eccentricity orbits. Our choice was then a Gaussian prior for
the eccentricity, defined as π(ei) ∝ N(0, σ2

e) (with the corre-
sponding scaling in the unit interval), where the parameter of
this prior model is set as σe = 0.3. This choice penalises the
high-eccentricity orbits in practice but still allows them if the
data claim it. In practice, with respect to the weight this prior
puts on zero eccentricity, it gives the eccentricities of 0.2, 0.4,
and 0.6 relative weights of 0.80, 0.41, and 0.14, indicating that
this prior can only have a relatively minor effect on the posterior
densities.

Finally, we required that the planetary systems correspond-
ing to out Keplerian solution to the data did not have orbital
crossings between any of the companions. We used this condi-
tion as additional prior information by estimating that the likeli-
hood of having any two planets in orbits that cross one another
is zero. We could have used a more restrictive criteria, such as
the requirement that the planets do not enter each other’s Hill
spheres at any given time, but decided to keep the situation sim-
pler because we wanted to see whether the orbital periods of the
proposed companions are constrained by data instead of stability
criteria, as described in the next subsection.

This choice of restricting the solutions in such a way that
the corresponding planetary system does not suffer from desta-
bilising orbital crossings also helps reducing the computational
requirements by making the posterior samplings simpler. After
finding k Keplerian signals in the data, we simply searched for
additional signals between them by limiting the period space of
the additional signals between these k periods. We set the initial
periods of the k planets close to the solution of the k-Keplerian
model and performed k + 1 samplings where each begins with
the period of the k + 1th signal in different “gaps” around the
previously found k signals, i.e. corresponding to a planet inside
the orbit of the innermost one, between the two innermost ones,
and so forth. If a significant k + 1th signal is not found in one
of these “gaps”, the corresponding solution can simply be ne-
glected. However, if there are signals in two or more gaps, it
is straightforward to determine the most significant one because
they can be treated as different models containing the same exact
number of parameters. We then chose the most significant peri-
odicity as the k+1th one and continued testing whether there are
additional signals in the data. In this way, the problem of being
able to rearrange the signals in any order, that would cause the
posterior density to be actually highly multimodal (Feroz et al.
2011), actually disappears because in a given solution the or-
bital crossings are forbidden and the ordering of the companions
remains fixed.

3.3. Detection threshold

While the Bayesian model probabilities can be used reliably in
assessing the relative posterior probabilities of models with dif-
fering numbers of Keplerian signals (e.g. Ford & Gregory 2007;
Gregory 2011; Loredo et al. 2011; Tuomi & Kotiranta 2009;
Tuomi 2011), we introduced additional criteria to make sure that
the signals we detect can be interpreted as being of planetary
origin and not arising from unmodelled features in the measure-
ment noise or as spurious signals caused by measurement sam-
pling. Our basic criterion is that the posterior probability of a
model with k + 1 Keplerian signals has to exceed 150 times that
of a model with only k Keplerian signals to claim that there are
k+1 planets orbiting the target star. We chose this threshold prob-
ability based on the considerations of Kass & Raftery (1995).

We require that the signals we detect in the measure-
ments have radial velocity amplitudes, Ki for all i, statistically

distinguishable from zero. In practice this means that not only
the maximum a posteriori estimate is clearly greater than zero,
but that the corresponding Bayesian δ credibility sets, as defined
in e.g. Tuomi & Kotiranta (2009), do not allow the amplitude
to be negligible with δ = 0.99, i.e. with a probability of 99%.
The second criterion is that the periods of all signals (Pi) are
well-defined by the posterior samples in the sense that they can
be constrained from above and below and are not constrained
purely by the condition that orbital crossings corresponding to
the planetary orbits are not allowed.

To further increase the confidence of our solutions, we did
not set the prior probabilities of the different models equal in our
analyses. We suspect a priori that detecting k + 1 planets would
be less likely than detecting k planets in any given system. In
other words, we estimated that any set of radial velocity data
would be more likely to contain k Keplerian signals than k + 1.
Therefore, we set the a priori probabilities of models with k and
k + 1 Keplerian signals such that P(k) = 2P(k + 1) for all k, i.e.
we penalise the model with one additional planet by a factor of
two. Because of this subjective choice, if the model with k + 1
Keplerian signals receives a posterior probability that exceeds
our detection threshold of being 150 times greater than that of
the corresponding model with k Keplerian signals, we are likely
underestimating the confidence level of the model with k + 1
Keplerian signals relative to a uniform prior.

Physically, this choice of prior probabilities for different
models corresponds to the fact that the more planets there are
orbiting a star, the less stable orbits there will be left. Therefore,
we estimate that if k planets are being detected, there is naturally
“less room” for an additional k + 1th companion. However, this
might be true statistically, not in an individual case, which leaves
room for discussion. Yet, this and the benefit that we underesti-
mate the significance of any detected signals encourages us to
use this prior.

3.4. Frequentist and Bayesian detection thresholds

In addition to the Bayesian analyses described in the previous
subsections, we analysed the residuals of each model using the
Lomb-Scargle periodograms (Lomb 1976; Scargle 1982). As in
Lovis et al. (2011), we plotted the 10%, 1%, and 0.1% false-
alarm probabilities (FAPs) to the periodograms to see the sig-
nificance of the powers they contain. However, because Lovis
et al. (2011) calculated the FAPs in a frequentist manner by per-
forming random permutations to the residuals while keeping the
exact epochs of the data fixed and by seeing how often this ran-
dom permutation produces the observed powers, we first put this
periodogram approach into its philosophical context.

Generating N random permutations of the residuals for each
model aims at simulating a situation where it would be possible
to receive N independent sets of measurements from the system
of interest and seeing how often the measurement noise gener-
ates the signals corresponding to the highest powers in the peri-
odogram. While they would not have been independent even in
the case this process tries to simulate, because the exact epochs
are fixed making the measurements actually dependent through
the dimension of time (the measurement is actually a vector of
two numbers, radial velocity, and time), this approach suffers
from another more significant flaw. The uncertainties of the sig-
nals removed from the data cannot be taken into account, which
means that the method assumes the removed signals were known
correctly. Obviously this is not the case even with the strongest
signals, and even less so for the weaker ones, making the pro-
cess prone to biases. Therefore, while likely producing reliable
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results when the signals are clear and their periods can be con-
strained accurately, this method cannot be expected to provide
reliable results for extremely weak signals with large (and un-
known) uncertainties. As noted by Lovis et al. (2011), when
testing the significance of the 600-day signal, they could not
take into account the uncertainties of the parameters of each
Keplerian signal, that of the reference velocity, or the uncertainty
in estimating the excess noise in the data correctly.

The above “frequentist” way of performing the analyses and
intepreting the consequent results is different from the Bayesian
one. Because we only received one set of data, we have to
base all our results on that and not some hypothetical data that
would have corresponded to a repetition of the original measure-
ments. The Bayesian philosophy is to infer all the information
from the data by combining them with our prior beliefs on what
might be producing them. For instance, as described above when
discussing our choice of priors, we can expect tightly packed
multiplanet systems to be more likely to contain planets on
close-circular orbits than on very eccentric ones. Also, with the
powerful posterior sampling algorithms available, it is possible
to take the uncertainties in every parameter into account simulta-
neously, which enables the detection of weak signals in the data
(e.g. Gregory 2005, 2007a,b; Tuomi & Kotiranta 2009) and pre-
vents the detection of false positives, as happened in the case of
Gliese 581 (Vogt et al. 2010; Gregory 2011; Tuomi 2011).

Yet, despite the above problems in the traditional peri-
odogram analyses, we take advantage of the power spectra of
the residuals in our posterior samplings. The highest peaks
in the periodogram can be used very efficiently together with
Bayesian methods by using the corresponding periodicities as
initial states of the Markov chains in the adaptive Metropolis al-
gorithm. Because of this choice, the initial parameter vector of
the Markov chain starts very close to the likely maximum a pos-
teriori (MAP) solution, which makes its convergence to the pos-
terior density reasonably rapid and helps reducing computational
requirements.

4. Results

When drawing a sample from the parameter posterior density
and using it to calculate the corresponding model probabilities,
it became crucial that this sample was a statistically representa-
tive one. While posterior samplings generally provide a global
solution, it is always possible that the chain converges to a lo-
cal maximum and stays in its vicinity within a sample of finite
size. To make sure that we indeed received the global solution,
we calculated several Markov chains starting from the vicinity
of the apparent MAP solution and compared them to see that
they indeed corresponded to the same posterior probability den-
sity. In practice, sampling the parameter spaces was computa-
tionally demanding because the probability that the parameter
vectors drawn from the Gaussian proposal density are close to
the posterior maximum decreases rapidly when the number of
parameters with non-Gaussian probability densities increases.
Therefore, while models with 0−6 planets were reasonably easy
to sample and we received acceptance rates of 0.1−0.3, these
rates decreased when increasing the number of signals in the
model further. As a result, for models with 8−9 Keplerian sig-
nals, the acceptance rates decreased below 0.1 and forced us to
increase the chain lenghts by two orders of magnitude from a
typical 106 to as high as 108.

In the following subsections, the results are based on sev-
eral samplings that yielded the same posterior densities, and also
consistent model probabilities.

Table 1. The relative posterior probabilities of models with k = 0, ..., 9
Keplerian signals (Mk) given radial velocities of HD 10180 (or data, d)
together with the periods (Ps) of the signals added to the model when
increasing the number of signals in the model by one.

k P(Mk|d) log P(d|Mk) rms [m s−1] Ps [days]

0 1.5 × 10−125 −621.29 ± 0.03 6.29 –
1 1.6 × 10−114 −595.15 ± 0.04 5.39 5.76
2 1.5 × 10−98 −556.87 ± 0.02 4.34 123
3 4.1 × 10−86 −528.44 ± 0.07 3.62 2200
4 2.7 × 10−53 −452.17 ± 0.13 2.43 49.8
5 7.2 × 10−20 −374.42 ± 0.05 1.59 16.35
6 3.4 × 10−13 −358.36 ± 0.12 1.41 600
7 3.8 × 10−7 −343.73 ± 0.09 1.32 1.18
8 0.003 −334.06 ± 0.06 1.24 67.5
9 0.997 −327.79 ± 0.06 1.18 9.65

Notes. Also shown are the logarithmic Bayesian evidence (P(d|Mk))
and its uncertainties as standard deviations and the root mean square
(rms) values of the residuals for each model.

4.1. The number of significant periodicities

The posterior probabilities of the different models provide in-
formation on the number of Keplerian signals (k) in the data.
Lovis et al. (2011) were confident that there are six planets
orbiting HD 10180 based on their periodogram-based analy-
ses of model residuals and the corresponding random permu-
tations of them when calculating the significance levels of the
periodogram powers. They also concluded that the six plan-
ets in the system with increasing periods of 5.75962± 0.00028,
16.3567± 0.0043, 49.747± 0.024, 122.72± 0.20, 602± 11, and
2248+102

−106 days comprise a stable system given that the masses of
the planets are within a factor of ∼3 from the minimum masses
of 13.70± 0.63, 11.94± 0.75, 25.4± 1.4, 23.6± 1.7, 21.4± 3.0,
and 65.3± 4.6 M⊕, respectively.

Because Lovis et al. (2011) pointed out that there are actu-
ally two peaks in the periodogram corresponding to the seventh
signal, i.e. 1.18 and 6.51 day periodicities that are the one-day
aliases of each other, but noted that the 6.51 signal, if corre-
sponding to a planet, would cause the system to be unstable on
short timescales, we adopted the 1.18 periodicity as the seventh
signal in the data. The relative probabilities of the models with
k = 0, ..., 9 are shown in Table 1 together with the period (Ps) of
the next Keplerian signal added to the model.

According to the model probabilities in Table 1, the eight-
and nine-Keplerian models are the most probable descriptions
of the processes producing the data out of those considered.
Improving the statistical model by adding the seventh signal,
with a period of 1.18 days, increases the model probability by a
factor of more than 106, which makes the credibility of this sev-
enth signal high. Adding two more signals corresponding to 67.6
and 9.66 day periodicities increases the model probabilities even
more. As a result, the nine-Keplerian model receives the greatest
posterior probability of slightly more than 150 times more than
the next best model, the eight-Keplerian model. This enables us
to conclude that there is strong evidence in favour of the hypoth-
esis that the 67.6 and 9.66 days periodicities are not produced by
random processes, i.e. measurement noise.

4.2. Periodograms of residuals

We subtracted the models with six to nine periodic signals from
the data and calculated the Lomb-Scargle periodograms (Lomb
1976; Scargle 1982) of these residuals (Fig. 1) together with the
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Fig. 1. Lomb-Scargle periodograms of the HD 10180 radial velocities
for the residuals of the models with six (top) to nine (bottom) periodic
signals. The dotted, dashed, and dot-dashed lines indicate the 10%, 1%,
and 0.1% FAPs, respectively.

standard analytica FAPs. As already seen in Lovis et al. (2011),
the two strong powers corresponding to a 1.18 day periodic-
ity and its 1-day alias at 6.51 days are strong in the residuals
of the six-Keplerian model (top panel in Fig. 1) and exceed
the 1% FAP. These peaks are also removed from the residuals
of the seven-Keplerian model (second panel). However, it can
be seen that the 9.66 and 67.6 day periods have strong powers
in these residuals, yet neither of them exceeds even the 10%
FAP level. Modelling these periodicities as Keplerian signals
and plotting the periodograms of the corresponding residuals of
the nine-Keplerian model (bottom panel) shows that there are
no strong powers left in the residuals. While this does not indi-
cate that these two periodicities are significant, it shows that they
are clearly present in the periodograms of the residuals and sup-
port the findings in the previous subsection based on the model
probabilities.

We note that there appear to be two almost equally strong
peaks in the eight-Keplerian model residuals (Fig. 1, panel 3).
However, these powers corresponding to periods of 9.66
and 1.11 days are one-day aliases of one another. This aliasing

is clear because the 1.11 day power is absent in the periodogram
of the nine-Keplerian model (Fig. 1, bottom panel).

4.3. Planetary interpretation: orbital parameters

Because of the samplings of parameter posterior densities of
each statistical model, we were able to calculate the estimated
shapes of the parameter distributions for each model and use
these to estimate the features in the corresponding densities. We
describe these densities using three numbers, the MAP estimates
and the corresponding 99% Bayesian credibility sets (BCSs), as
defined in e.g. Tuomi & Kotiranta (2009). The simple MAP point
estimates and the corresponding 99% BCSs do not represent
these dentities very well because some of the parameters are
highly skewed and have tails on one or both sides. However, in
this subsection we use these estimates when listing the parame-
ters and interpret that all the signals we observe are of planetary
origin.

When calculating the semimajor axes and minimum masses
of the planets, we took the uncertainty in the stellar mass into
account by treating it as an independent random variable. We as-
sumed that this random variable had a Gaussian density with
mean equal to the estimate given by Lovis et al. (2011) of
1.06 M� and a standard deviation of 5% of this estimate. As a
consequence, the densities of these parameters are broader than
they would be if using a fixed value for the stellar mass, which
indicates greater uncertainty in their values.

4.3.1. The six planet solution

The parameter estimates of our 6-Keplerian model are listed in
Table 21. This solution is consistent with the solution reported
by Lovis et al. (2011) but the uncertainties are slightly greater,
likely because we took into account the uncertainty in the jitter
parameter σj and because Lovis et al. (2011) used more conser-
vative uncertainty estimates from the covariance matrix of the
parameters that does not take the nonlinear correlations between
the parameters into account. The greatest difference is therefore
in the uncertainty of the orbital period of the outermost com-
panion, whose probability density has a long tail towards longer
periods and periods as high as 2670 days cannot be ruled out
with 99% confidence (the supremum of the 99% BCS).

4.3.2. The nine planet solution

Assuming that all periodic signals in the data are indeed caused
by planetary companions orbiting the star, the parameters of
out nine-Keplerian solution are listed in Table 3 and the phase-
folded orbits of the nine Keplerian signals are plotted in Fig. 2.

Because the simple estimates in Table 3 can be very mis-
leading in practice, especially if there are nonlinear correlations
between the parameters, we also plotted the projected distribu-
tions of some of the parameters in the appendix. The distribu-
tions of Pi, Ki, and ei, for each planet i = 1, ..., 9 (with in-
dice 1 (9) referring to the shortest (longest) period) are shown
in Fig. A.1 and show that the periods of all Keplerian signals
are indeed well constrained, the radial velocity amplitudes differ
significantly from zero, and the orbital eccentricities peak at or
close to zero, indicating likely circular orbits. We also plotted

1 Lovis et al. (2011) used letter b for the 1.18 day periodicity not
present in the six-Keplerian model. Therefore, we use letters c−h in
Table 2 to have the letters denote the same signals. Yet, the solution of
Feroz et al. (2011) denotes the 5.76 day signal with letter b.
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Fig. 2. Phase-folded Keplerian signals of the nine-planet solution with the other eight signals removed.

Table 2. The six-planet solution of HD 10180 radial velocities.

Parameter HD 10180 c HD 10180 d HD 10180 e
P [days] 5.7596 [5.7588, 5.7606] 16.354 [16.340, 16.368] 49.74 [49.67, 49.82]
e 0.06 [0.00, 0.17] 0.12 [0.00, 0.29] 0.01 [0.00, 0.14]
K [m s−1] 4.54 [4.06, 5.02] 2.85 [2.35, 3.34] 4.32 [3.74, 4.83]
ω [rad] 5.8 [–] 5.8 [–] 2.6 [–]
M0 [rad] 4.7 [–] 5.8 [–] 3.7 [–]
mp sin i [M⊕] 13.2 [11.2, 15.1] 11.8 [9.5, 14.2] 25.6 [21.5, 29.7]
a [AU] 0.0641 [0.0608, 0.0673] 0.1287 [0.1220, 0.1349] 0.270 [0.256, 0.283]

HD 10180 f HD 10180 g HD 10180 h
P [days] 122.76 [122.152, 123.44] 603 [568, 642] 2270 [2020, 2670]
e 0.06 [0.00, 0.26] 0.05 [0.00, 0.49] 0.03 [0.00, 0.31]
K [m s−1] 2.88 [2.28, 3.42] 1.46 [0.71, 2.21] 2.97 [2.40, 3.68]
ω [rad] 5.8 [–] 6.0 [–] 2.8 [–]
M0 [rad] 4.9 [–] 4.5 [–] 3.7 [–]
mp sin i [M⊕] 23.1 [18.2, 28.4] 19.4 [10.2, 29.8] 64.5 [51.5, 78.9]
a [AU] 0.491 [0.468, 0.518] 1.42 [1.33, 1.52] 3.44 [3.15, 3.88]

γ [m s−1] –0.43 [–0.87, –0.02]
σj [m s−1] 1.40 [1.18, 1.70]

Notes. MAP estimates of the parameters and their 99% BCSs.

the parameter describing the magnitude of the excess noise, or
jitter, in Fig. A.1 to demonstrate that the MAP estimate of this
parameter of 1.15 m s−1, with a BCS of [0.92, 1.42] m s−1, is
consistent with the estimate of Lovis et al. (2011) of 1.0 m s−1,
while this is not the case for the six-Keplerian model for which
the σj receives a MAP estimate of 1.40 m s−1 with a BCS of
[1.18, 1.70] m s−1 (Table 2).

The periods of all companions are constrained well but that
of the 9.66 day signal remains bimodal with two peaks at 9.66
and 9.59 days (Fig. A.1). The 9.59 day peak was found to have
lower probability based on our posterior samplings because the
Markov chain had good mixing properties in the sense that it
visited both maxima several times during all the samplings, the
posterior density had always a global maximum at 9.66 days.
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Table 3. The nine-planet solution of HD 10180 radial velocities.

Parameter HD 10180 b HD 10180 c HD 10180 i
P [days] 1.17766 [1.17744, 1.17787] 5.75973 [5.75890, 5.76047] 9.655 [9.583, 9.677]
e 0.05 [0.00, 0.54] 0.07 [0.00, 0.16] 0.05 [0.00, 0.28]
K [m s−1] 0.78 [0.34, 1.21] 4.50 [4.07, 4.92] 0.53 [0.02, 0.99]
ω [rad] 0.7 [–] 5.8 [–] 2.4 []
M0 [rad] 1.2 [–] 4.7 [–] 1.6 [–]
mp sin i [M⊕] 1.3 [0.5, 2.1] 13.0 [11.2, 15.0] 1.9 [0.1, 3.5]
a [AU] 0.0222 [0.0211, 0.0233] 0.0641 [0.0610, 0.0671] 0.0904 [0.0857, 0.0947]

HD 10180 d HD 10180 e HD 10180 j
P [days] 16.354 [16.341, 16.366] 49.75 [49.68, 49.82] 67.55 [66.67, 68.23]
e 0.11 [0.00, 0.24] 0.01 [0.00, 0.11] 0.07 [0.00, 0.19]
K [m s−1] 2.90 [2.45, 3.34] 4.14 [3.67, 4.66] 0.75 [0.29, 1.21]
ω [rad] 5.6 [–] 1.6 [–] 1.6 [–]
M0 [rad] 6.0 [–] 2.0 [–] 6.0 [–]
mp sin i [M⊕] 11.9 [9.9, 14.2] 25.0 [21.1, 28.9] 5.1 [1.9, 8.2]
a [AU] 0.1284 [0.1223, 0.1346] 0.270 [0.257, 0.283] 0.330 [0.314, 0.347]

HD 10180 f HD 10180 g HD 10180 h
P [days] 122.88 [122.28, 123.53] 596 [559, 626] 2300 [2010, 2850]
e 0.13 [0.00, 0.28] 0.03 [0.00, 0.43] 0.18 [0.00, 0.44]
K [m s−1] 2.86 [2.33, 3.38] 1.61 [1.00, 2.23] 3.02 [2.47, 3.64]
ω [rad] 5.8 [–] 0.3 [–] 4.1 [–]
M0 [rad] 4.9 [–] 2.6 [–] 4.1 [–]
mp sin i [M⊕] 22.8 [18.6, 27.9] 22.0 [13.3, 30.8] 65.8 [52.9, 78.7]
a [AU] 0.494 [0.468, 0.517] 1.415 [1.324, 1.498] 3.49 [3.13, 4.09]

γ [m s−1] –0.34 [–0.75, –0.01]
σj [m s−1] 1.15 [0.92, 1.42]

Notes. MAP estimates of the parameters and their 99% BCSs.

4.4. Dynamically allowed orbits

We performed tests of dynamical stability within the context of
Lagrange stability to see whether the two additional signals in
the HD 10180 radial velocities could correspond to low-mass
planets orbiting the star. We used the analytically derived ap-
proximated Lagrange stability criterion of Barnes & Greenberg
(2006) to test the stability of each subsequent pair of planets in
the system. While this analytical criterion is only a rough ap-
proximation and only applicable for two-planet systems, it can
nevertheless provide useful information on the likely stability
or instability of the system. According to Barnes & Greenberg
(2006), the orbits of two planets (denoted using subindices 1
and 2, respectively) satisfy approximately the Lagrange stabil-
ity criterion if

α−3
(
μ1 − μ2

δ2

)(
μ1γ1 + μ2γ2δ

)2
> 1 + μ1μ2

( 3
α

)4/3
, (2)

where μi = miM−1, α = μ1 + μ2, γi =

√
1 − e2

i , δ =
√

a2/a1,
M = m� + m1 + m2, ei is the eccentricity, ai is the semimajor
axis, mi is the planetary mass, and m� is stellar mass.

Using the above relation, we calculated the threshold curves
for the ith planet with both the next planet inside its orbit (i−1th)
and the next planet outside its orbit (i + 1th). We used the MAP
parameter estimates for the ith planet and calculated the allowed
eccentricities of the i−1th and i+1th planets as a function of their
semimajor axes by using the MAP estimates for their masses.

Because Lovis et al. (2011) found their six-planet solution
stable, we used it as a test case when calculating the Lagrange
stability threshold curves. We used the six-planet solution in
Table 2, and plotted the threshold curves together with the orbital
parameters in Fig. 3. In this figure, the shaded areas indicate the
likely unstable parameter space and the red circles indicate the
positions of the modelled planets in the system.

Fig. 3. Approximated Lagrange stability thresholds between each of the
two planets and the MAP orbital parameters of the six-planet solution
(Table 2).

It can be seen in Fig. 3 that the ith planet has orbital pa-
rameters that keeps it inside the Lagrange stability region of the
neighbouring planetary companions for all i = 1, ..., 6. This re-
sult then agrees with the numerical integrations of Lovis et al.
(2011) and, while only a rough approximation of the reality, en-
courages us to use the criterion in Eq. (2) for our seven-, eight-,
and nine-companion solutions as well. Figure 3 also suggests
that there might be stable regions between the orbits of these
six planets for additional low-mass companions.

When interpreting all the signals in our nine-planet solu-
tion as being of planetary origin, the stability thresholds show
some interesting features (Fig. 4). The periodicities at 9.66
and 67.6 days would correspond to planets that satisfy the condi-
tion in Eq. (2) if the orbital eccentricities of all the companions
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Fig. 4. Approximated Lagrange stability thresholds between each of the
two planets and the MAP orbital parameters of the nine-planet solution
(Table 3).

were close to or below the MAP estimate, which, according to
the probability densities in Fig. A.1, appears to be likely based
on the data alone. This means that the planetary origin of these
periodicities cannot be ruled out by this analysis.

In reality, the stability constraints are necessarily more lim-
iting than those described by the simple Eq. (2) because of the
gravitational interactions between all the planets, not only the
nearby ones. Also, it does not take the stabilising or destabilis-
ing effects of mean motion resonances into account. However,
the numerical integrations of the orbits of the seven planets
performed by Lovis et al. (2011) do not rule out the 0.09
and 0.33 AU orbits (Table 3) out as unstable but show that
there are regions of at least “reasonable stability” in the vicin-
ity of these orbits given that they are close-circular and that the
planetary masses in these orbits are small. When interpreted as
being of planetary origin, the periodic signals at roughly 9.66
and 67.6 days satisfy these requirements.

We note that the selected prior density for the orbital eccen-
tricities, namely π(ei) ∝ N(0, σ2

e) for all i, in fact helps slightly
in removing a priori unstable solutions from the parameter pos-
terior density. However, this effect is not very significant in this
case, because the prior requirement that the signals in the data
do not correspond to planets with crossing orbits constrains the
eccentricities much more strongly and the parameter posteriors
we would receive with uniform eccentricity prior would there-
fore not differ significantly from those reported in Table 3 and
Figs. 2 and A.1.

4.5. Avoiding unconstrained solutions

To further emphasise our confidence in the nine periodic sig-
nals in the data, we tried finding additional signals in the
gaps between the nine Keplerians, especially, between the 123
and 600 day orbits. This part of the period-space is interesting
because any habitable planet in the system would have its or-
bital period in this space and because the stability thresholds al-
low the existence of low-mass planets in close-circular orbits in
this region (see Fig. 4).

As could already be suspected based on the periodograms of
residuals in Fig. 1, we were unable to find any signals between
the periods of 123 and 600 days. The sampling of the parameter
space of this ten-Keplerian model was much more difficult than
that of the models with fewer signals because the orbital period

Fig. 5. Posterior densities of the minimum mass and orbital period of
the planet that could exist in the habitable zone of HD 10180 with-
out having been detected using the current data. The solid curve is a
Gaussian density with the same mean (μ) and variance (σ2) as the pa-
rameter distribution.

of this hypothetical tenth signal was only constrained by the fact
that a priori we did not allow orbital crossings (Fig. 5). As a
result, the probability density of the orbital period did not have
one clear maximum, but several small maxima, whose relative
significance is not known because we cannot be sure whether
the Markov chain converged to the posterior in this case (Fig. 5).
Therefore, the distribution of the orbital period in Fig. 5 is only
a rough estimate of what the density might look like.

Because different samplings yielded similar but not equal
densities for the orbital period, we could not be sure whether
the chain had indeed converged to the posterior or not. For this
reason, we did not consider the corresponding posterior proba-
bility of this model trustworthy and do not show it in Table 1.
The posterior probabilities we received were roughly 1−5% of
that of the nine-Keplerian model. However, these samplings still
provide some interesting information in the sense that we can put
an upper limit to the planetary masses that could exist between
the 123 and 600 day periods and still not be detected confidently
by the current observations.

According to the samplings of the parameter space, the prob-
ability of there being Keplerian signals between the 123 and
600 day periods with radial velocity amplitudes in excess of
1.1 m s−1 is less than 1%. Our MAP solution for this amplitude
is 0.12 m s−1 with a BCS of [0.00, 1.10] m s−1. This means that
we can rule out the existence of planets more massive than ap-
proximately 12.1 M⊕ in this period space because such com-
panions would likely have been detected by the current data.
Therefore, even the fact that a signal was not detected can help
constraining the properties of the system, as seen in the probabil-
ity density of the minimum mass of this hypothetical planet in
Fig. 5 – this signal is clearly indistinguishable from one with
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negligible amplitude because the density is peaking close to
zero. This result means that an Earth-mass planet could exist
in the habitable zone of HD 10180 and most likely, if there is
a low-mass companion orbiting the star between orbital peri-
ods of 123 and 600 days, it has a minimum mass of less than
12.1 M⊕. However, we cannot say much about the possible or-
bit of this hypothetical companion, because all the orbits be-
tween 123 and 600 days without orbital crossings are almost
equally probable (Fig. 5). All we can say is that orbital crossings
limit the allowed periodicities and yield a 99% BCS of [128,
534] days for this orbital period, though, additional dynamical
constraints would narrow this interval even more, as shown in
Fig. 4 and Fig. 12 of Lovis et al. (2011).

4.6. Detectability of Keplerian signals

To further emphasise the significance of the nine signals we de-
tect in the HD 10180 radial velocities, we generated an artificial
data set to see if known signals could be extracted from it confi-
dently given the definition of our criteria for the detection thresh-
old. This data set was generated by using the same 190 epochs as
in the HD 10180 data of Lovis et al. (2011). We generated the ra-
dial velocities corresponding to these epochs by using a superpo-
sition of the nine signals with parameters roughly as in Table 3.
Furthermore, we added three noise components, Gaussian noise
with zero mean as described by the uncertainty estimates of each
original radial velocity of Lovis et al. (2011), Gaussian noise
with zero mean and σ = 1.1 m s−1, and uniform noise as a ran-
dom number drawn from the interval [−0.2, 0.2] m s−1. The latt-
ter two produce together the observed excess noise in the data
of roughly 1.15 m s−1 when modelled as pure Gaussian noise.
We used this different noise model when generating the data to
not commit an inverse crime, i.e. to not generate the data us-
ing the same model used to analyse it which would correspond
to studying the properties of the model only (see e.g. Kaipio &
Somersalo 2005).

Analysing these artificial data yielded results confirming the
trustworthiness of our methods. Using the detection criteria de-
fined above, we could extract all nine signals from the artifi-
cial data with well-constrained amplitudes and periods that were
consistent with the added signals in the sense that the 99% BCSs
of the parameters contained the values of the added signals.
The MAP estimates did differ from the added signals but not
significantly so, given the uncertainties as described by distri-
butions corresponding to the parameter posterior density. This
simply represents the statistical nature of the solutions based on
posterior samplings. As an example, we show the periods and
amplitudes of the three weakest signals with the lowest radial
velocity amplitudes as probability distributions (Fig. 6). This
figure indicates that if the radial velocity noise is indeed dom-
inated by Gaussian noise, the low-amplitude signals we report
can be detected confidently. This conclusion was also supported
by the corresponding model probabilities we received for the
artificial data set. These probabilities indicated that the nine-
Keplerian model had the greatest posterior probability exceed-
ing the threshold of 150 times greater than the probability of the
eight-Keplerian model.

4.7. Comparison with earlier results

The analyses of Lovis et al. (2011) of the same radial veloci-
ties yielded differing results, i.e. the number of significant pow-
ers in periodogram was found to be seven instead of the nine
significant periodic signals reported here. While this difference
is likely due to the fact that the power spectrums are calculated

Fig. 6. Distributions of the periods and amplitudes received for the three
weakest signals in the artificially generated data. The added signals had
Pi = 1.18, 9.66, and 67.55 days, and Ki = 0.78, 0.53, and 0.75 m s−1 for
i = 1, 3, 6, respectively.

by fixing the parameters of the previous signals to some point
estimates when searching for additional peaks, the analyses of
Feroz et al. (2011) suffered from similar sources of bias. The
Bayesian approach of Feroz et al. (2011) was basically a search
of k + 1th signal in the residuals of the model with k Keplerian
signals. These authors derived the probability densities of the
residuals by assuming they were uncorrelated, which is unlikely
to be the case, especially if there are signals left in the resid-
uals. Therefore, any significance test, in this case the compar-
ison of Bayesian evidence of a null hypothesis and an alterna-
tive one with a model containing one more signal, is similarly
biased because these correlations are not fully accounted for.
While this source of bias might be relatively small, in the ap-
proach of Feroz et al. (2011) the effective number of parameters
is artificially decreased by the very fact that residuals are being
analysed. This decrease, in turn, might make any comparisons
of Bayesian evidence estimates biased. Modifying the uncertain-
ties corresponding to the posterior density of the model residuals
does not necessarily account for this decrease in the dimension
when the weakest signals among the k detected ones are at or
below the residual uncertainty and their contribution to the total
uncertainty of the residuals becomes negligible in the first place.

Indeed, we were able to replicate the results of Feroz et al.
(2011) using the OBMH estimates of marginal integrals. Using
their simple method, we received a result that the six-Keplerian
model residuals could not be found to contain an additional
signal. While the Bayesian evidence for this additional signal
did not exceed that of having the six-Keplerian model residu-
als consist of purely Gaussian noise, the amplitude of this addi-
tional signal in the residuals was also found indistinguishable
from zero, in accordance with our criteria of not detecting
a signal. Therefore, the results we present here do not actu-
ally conflict with those of Feroz et al. (2011). As an example,
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the log-Bayesian evidences of six- and seven-Keplerian models
(Table 1) were −358.36 and −343.73, respectively. Analysing
the residuals of the model with k = 6 using 0- and 1-Keplerian
models should yield similar numbers, if the method of Feroz
et al. (2011) were trustworthy. Instead, we received values of
roughly −338 for both models. This means that the probabil-
ity of the null-hypothesis is exaggerated because of the fact that
the corresponding model contains only two free parameters, the
jitter magnitude and the reference velocity. The Occamian prin-
ciple cannot therefore penalise this model as much as it should,
and the results are biased in favour of the null-hypothesis, which
effectively prevents the detection of low-amplitude signals.

We also tested the method of Feroz et al. (2011) in analysing
the artificial test data described in the previous subsection. The
results were almost similar: the log-Bayesian evidence given
the residuals of a model with k Keplerian signals was found to
favour the six-Keplerian interpretation, while the artificial data
was known to contain nine signals. This further emphasises that
the method of Feroz et al. (2011), while capable of detecting the
strongest signals in the data, cannot be considered trustworthy if
it fails to make a positive detection of a low-amplitude signal.
Yet, it is likely trustworthy if it provides a positive detection.

5. Conclusions and discussion

We have re-analysed the 190 HARPS radial velocities of
HD 10180 published in Lovis et al. (2011) and reported our find-
ings in this article. First, we revised the orbital parameters of the
proposed six planetary companions to this star and calculated re-
alistic uncertainty estimates based on samplings of the parame-
ter space. We also verified the significance of the 1.18 day signal
reported by Lovis et al. (2011) and interpreted as arising from
a planetary companion with this orbital period and a minimum
mass of as low as 1.3 M⊕. In addition to these seven signals,
we reported two additional periodic signals that are, according
to our model probabilities in Table 1, statistically significant and
unlikely to be caused by noise or data sampling or poor phase-
coverage of the observations. Their amplitudes are well con-
strained and differ statistically from zero, which would not be
the case unless they corresponded to actual periodicities in the
data. We can also constrain their periods from above and below
reasonably accurately.

A related analysis of the same radial velocities was recently
carried out by Feroz et al. (2011) but they received results differ-
ing in the number of significant periodicities. They claimed that
only six signals can be reliably detected in the data, as opposed
to nine detected in the current work. However, they first analysed
the data using a model with k Keplerian signals and analysed the
remaining residuals to see if they contained one more, k + 1th
signal. While, as in the analyses of Lovis et al. (2011), this ap-
proach does not fully account for the uncertainties of the first k
signals when they have low amplitudes and their contribution
to the residual uncertainty is negligible, it also actually assumes
that the k-Keplerian model is a correct one and then tests if it is
not so, which is a clear contradiction and, while useful for strong
signals, as demonstrated by Feroz et al. (2011), likely prevents
the detection of weak signals in the data. This is underlined by
the fact that Feroz et al. (2011) assumed the residual vector to
have an uncorrelated multivariate Gaussian distribution – this
clearly cannot be the case if there are signals left in the residu-
als. Our analyses are not prone to similar weaknesses.

Because planetary companions orbiting the star would pro-
duce the kind of periodicities we observe in the radial veloci-
ties, the interpretation of the two new signals as caused by two

new low-mass planets seems reasonable. As noted by Lovis et al.
(2011), the star is a very quiet one without clear activity-induced
periodicities, which makes it unlikely that one or some of the
periodic signals in the data were caused by stellar phenomena.
Also, the periodicities we report, namely 9.66 and 67.6 days, do
not coincide with any periodicities arising from the movement
of the bodies in the solar system. Therefore, we consider the in-
terpretation of these two new signals of being as planetary origin
to be the most credible explanation. If this were the case, these
two signals would correspond to planets on close-circular orbits
with minimum masses of 1.9+1.6

−1.8 and 5.1+3.1
−3.2 M⊕, respectively,

enabling the classification of them as super-Earths.
Apart from the significance of the signals we observe, there

is another reasonably strong argument in favour of the interpre-
tation that all nine signals in the data are indeed of planetary
origin. Assuming that they were not, which based on stability
reasons is the case with the 6.51 day signal that is quite certainly
an alias of the 1.18 day periodicity likely caused by a planet
(Lovis et al. 2011), we would expect the weakest signals to be at
random periods independent of the six strong periodicities in the
data and the seventh 1.18 periodicity. Instead, this is not the case
but the two additional signals reported in the current work ap-
pear at periods that fall in between the existing ones and, if inter-
preted as being of planetary origin, likely have orbits that enable
long-term stability of the system (Fig. 4) if their orbital eccen-
tricities are close to or below the estimates in Table 3. As stated
by Lovis et al. (2011), there are “empty” places in the HD 10180
system that allow dynamical stability of low-mass planets in the
orbits corresponding to these empty places in the orbital param-
eter space, especially in the a−e space. The two periodic signals
we observe in the data correspond exactly to those empty places
if interpreted as being of planetary origin.

Additional measurements are needed to verify the signifi-
cance of the two new periodic signals in the radial velocities
of HD 10180 and to set tighter constraints on the orbital param-
eters of the planets in the system. Also, the possibility that all
nine signals in the data correspond to planets should be tested
by full-scale numerical integrations of their orbits. If all the con-
figurations allowed by our solution in Table 3 were found to
correspond to unstable systems in any timescales of less than
the estimated stellar age of 4.3± 0.5 Gyr (Lovis et al. 2011), it
would be a strong argument against the planetary interpretation
of one or both of the signals we report in this article or the third
low-amplitude 1.18 day signal. However, the results we present
here and those in Lovis et al. (2011) suggest that this planetary
interpretation of all the signals cannot be ruled out by dynamical
analyses of the system.

If the significance of these signals increases when additional
high-precision radial velocities become available, and their inter-
pretation as being of planetary origin is confirmed, the planetary
system aroung HD 10180 will be the first one to top the solar
system in terms of number of planets in its orbits. Furthermore,
according to the rough dynamical considerations of the current
work and the more extensive numerical integrations of Lovis
et al. (2011), there are stable orbits for a low-mass companion
in or around the habitable zone of the star. If such a companion
exists, its minimum mass is unlikely to exceed 12.1 M⊕ accord-
ing to our posterior samplings of the corresponding parameter
space.
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Appendix A: Parameter distributions

Fig. A.1. Posterior densities of orbital periods (Pi), eccentricities (ei), and radial velocity amplitudes (Ki) corresponding to the nine Keplerian
signals in the data and of the magnitude of the excess jitter (σ j). The solid curve is a Gaussian density with the same mean (μ) and variance (σ2)
as the parameter distribution has.
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