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Highlights  

 It is the first ever work that shows the response of microbial communities involved in 

proteolysis, to maize plants with different Nitrogen Utilizing Efficiencies (NUE). 

 This study shows the so far unknown nature of protease encoding bacterial genes by 

Illumina sequencing. 

 Out of the two proteases genes studied here (apr and npr), it has been found that most of 

the npr gene pool is formed by sequences belonging to unknown uncultured bacterial 

species. 

 Plants with different NUEs have shown to harbor different proteolytic communities. 
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Abstract 29 

Present study was carried out to understand the interplay of 30 

plant Nitrogen utilizing efficiency (NUE) with potential 31 

proteolytic activity and proteolytic community composition of 32 

the rhizosphere and bulk soils, sampled from rhizoboxes with 33 

two inbred maize lines, L05 and T250, with higher and lower 34 

NUErespectively. Microbial biomass was estimated as ATP 35 

content and two key bacterial protease encoding genes: alkaline 36 

metallo-peptidases (apr)and neutral-metallopeptidases( npr) 37 

were characterized by DGGE and Illumina sequencing of 38 

amplicons. Higher protease activity and microbial biomass 39 

were observed in rhizosphere soil of the plant line with higher 40 

NUE (L05), which also had higher values for Shannon-Weiner 41 

diversity indices (H) for DGGE band pattern, with nprgene 42 

showing higher overall diversity in rhizosphere soil than in the 43 

lower NUE plant (T250) rhizosphere. Stronger root effects 44 

were observed for apr gene than npr. Illumina sequencing 45 

showed differences in the composition of proteolytic microbial 46 

communities inrhizosphere and bulk soils for both L05 and 47 

T250, and many unknown apr and npr gene sequences were 48 

also reported. Furthermore, Illumina sequencing results agreed 49 

with DGGE data in highlighting higher overall diversity for npr 50 

(1,520,600 unique sequences) than for apr (934,598 unique 51 

sequences). Different members of Bacillus sp. were identified 52 

as most abundant contributors to npr gene pool whereas 53 
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aprgene pool was dominated by genes from Pseudomonas sp. 54 

This research suggests that plants with different NUE select 55 

different bacterial populations with protease encoding genes, 56 

which may affect the protease activity of the rhizosphere soil.   57 

Highlights  58 

 It is the first ever work that shows the response of 59 

microbial communities involved in proteolysis, to maize 60 

plants with different Nitrogen Utilizing Efficiencies 61 

(NUE). 62 

 This study shows the so far unknown nature of protease 63 

encoding bacterial genes by Illumina sequencing. 64 

 Out of the two proteases genes studied here (apr and 65 

npr), it has been found that most of the npr gene pool is 66 

formed by sequences belonging to unknown uncultured 67 

bacterial species. 68 

 Plants with different NUEs have shown to harbor 69 

different proteolytic communities. 70 

Keywords: Nitrogen use efficiency; rhizosphere; protease 71 

activity; protease encoding genes; Illumina sequencing; PCR-72 

DGGE 73 

1. Introduction  74 

Genetic and physiological mechanisms of N acquisition by 75 

important cereal plants are increasingly known (Hirel et al., 76 

2007) but currently, at field scale, the Nitrogen Use Efficiency 77 

(NUE) in cereal production is still lower than 40% (Raun and 78 
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Johnson, 1999). This is because although the NUE is an 79 

inherent plant characteristic, regulated by complex genetic and 80 

metabolic factors (Xu et al. 2012, Ngezimana and Agenbag, 81 

2014, Zamboni et al., 2015), the N acquisition by crop plants is 82 

also limited by N losses by volatilization, runoff and leaching, 83 

and by microbial N immobilization. Moreover, there are 84 

increasing evidences that plant NUE also depends on microbial 85 

activity in the rhizosphere, particularly on activity of the 86 

proteolytic communities (Mooshammer et al. 2004). This is 87 

linked to the fact that the most of soil N is of peptide or protein 88 

origin, as 96-99% of soil total N is organic and after acid 89 

hydrolysis, amino acidic N accounts for 30-50% of the N in soil 90 

(Nannipieri and Paul, 2009). The N phyto-availability in soil 91 

also depends on the hydrolysis of other organic N forms, such 92 

as urea and chitin catalyzed by the ureases and chitinases, the 93 

latter being produced by fungi and bacteria (Metcalfe et al., 94 

2002). Chitinase is,therefore, a key soil enzyme, regulating the 95 

release of low molecular weight N-sugars from which N is 96 

rapidly mineralized to inorganic N (Gooday 1994). Proteins in 97 

soil originate from plants, animals and microorganisms, either 98 

through active excretion or passive release, and therefore a high 99 

proportion of protein N in the rhizosphere is expected. In soil 100 

environment, protein N is released after protein hydrolysis by 101 

extracellular proteases of plants, animals and microbial origin 102 

(Adamczyk et al., 2010, Godlewski and Adamczyk, 2007; 103 
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Hayano 1993; Watanabe, 2009), and previous studies indicated 104 

that metalloproteases of bacterial origin mainly contribute to 105 

the measured soil protease activity (Hayano et al. 1987, Bach 106 

and Munch, 2000, Kammimura and Hayano, 2000). 107 

Soil management and environmental factors influence the 108 

abundance and distribution of microbial genes encoding for 109 

neutral metallo-peptidases (npr), alkaline metallo-peptidases 110 

(apr) and serine peptidases (sub) (Bach et al. 2001, 2002, Fuka 111 

et al. 2008a, 2008b, 2009, Rasche et al. 2014, Sakurai et al. 112 

2007; Tsuboi et al. 2014,). Proteases catalyze the hydrolysis of 113 

the terminal amino acid of polypeptide chains (exopeptidases) 114 

or of internal peptide bond (endopeptidases) on one or few 115 

related substrates, with the majority of proteases acting on 116 

several substrates. However, the number of assays for soil 117 

protease activity is limited to few substrates and optimal pH 118 

values. Increased N mineralizing activities in response to the 119 

release of root exudates has been reported (Renella et al., 120 

2007), but in spite of their importance in determining N 121 

availability to plants, studies on the link between the diversity 122 

of protease encoding genes and protease activities in the 123 

rhizosphere are still scarce(Nannipieri et al., 2012). Little 124 

information is also available on the relations between the 125 

proteolytic microbial community of the rhizosphere and the 126 

plant NUE.Next generation sequencing technologies (NGS) 127 

provide advanced tools to analyze microbial genes in soil: this 128 



6 
 

approach has been applied for the analyses of PCR amplicons 129 

of 16S rRNA (Vasileiadis et al. 2013), ITS (Internal 130 

Transcribed Spacer) (McHugh and Schwartz, 2015) and 131 

ammonia monooxygenases (Pester et al., 2012), but not yet for 132 

assessing the abundance and diversity of proteases genes in 133 

soil.  134 

We hypothesized that plants with different NUE select different 135 

proteolytic microbial communities characterized by different 136 

levels of proteolytic activity in the rhizosphere. To test our 137 

hypotheses, we studied the composition of the proteolytic 138 

microbial communities and proteolytic activities in the 139 

rhizosphere and bulk soil of the L05 and T250 maize lines, 140 

characterized by high and low NUE, respectively. Previous 141 

work showed that these two maize lines have different genetic 142 

responses to N availability (Zamboni et al., 2014) and also host 143 

different microbial communities in their rhizosphere (Pathan et 144 

al., 2015). Furthermore, we have also applied a NGS 145 

assessment of neutral metallo-peptidases (npr) and alkaline 146 

metallo-peptidases (apr) PCR amplicons, in order to unravel 147 

the diversity of these genes in the bulk and rhizosphere soils of 148 

the two maize lines. We also measured the urease and chitinase 149 

activities to understand their contribution to N availability in 150 

the maize rhizosphere. Results of thisresearch can improve our 151 

understanding of the effects of microbial selection in the 152 
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rhizosphere of maize plants with different plant NUE on the 153 

turnover of protein-N in the rhizosphere. 154 

 155 

2. Materials and methods 156 

2.1 Soil properties and rhizobox set up  157 

A sandy clay loam EutricCambisol (World Reference Base for 158 

Soil Resources, 2006), under conventional maize crop regime, 159 

located at Cesa (Tuscany, Central Italy), was sampled from the 160 

Ap horizon (0-25 cm). Soil had a pH value (in H2O) of 7.1, 161 

contained 32.1% sand, 42.2% silt, 25.7% clay, 10.8 g kg
-1

 total 162 

organic C (TOC), 1.12 g kg
-1

 total N and 6.45 g kg
-1

 total P. 163 

The soil was sieved at field moisture (< 2 mm), after removing 164 

visible plant material. After sieving, 600 g of soil was placed in 165 

the soil compartment of the rhizoboxes as reported by Pathan et 166 

al. (2015). The L05 and T250 maize lines were grown for 21 167 

and 28 days, respectively, a suitable growth period to allow the 168 

full colonization of the plant compartment by plant roots and 169 

prevent nutrient starvation. Plants were regularly watered with 170 

distilled sterile H2O and no fertilizers were applied during the 171 

plant growth. Full details on the maize growth conditions were 172 

reported by Pathan et al. (2015). Five rhizobox replicates for 173 

each maize lines were prepared. The used rhizoboxes allowed 174 

precise sampling of the rhizosphere due to the presence of fixed 175 

sampling groves at precise gradual distances from the surface 176 

of the plant compartment. Rhizosphere (R) and bulk soil (B) 177 
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samples of the L05 and T250 maize lines were named as L05 178 

R, L05 B, T250 R and T250 B, respectively. Rhizosphere and 179 

bulk samples were kept separate after sampling, and 180 

immediately analyzed for the enzyme activities or stored at -181 

80°C before ATP determination or DNA extraction. 182 

 183 

2.2 Soil microbial biomass and enzymatic activities 184 

Soil microbial biomass was estimated by determining the ATP 185 

content according to Ciardi and Nannipieri (1990). The N-186 

benzoyl-L-argininamide (BAA) and casein hydrolyzing 187 

activities (protease activities) were determined according to 188 

Ladd and Butler (1972) and Nannipieri et al (1974), 189 

respectively. Concentrations of NH4
+
-N and tyrosine released 190 

by the assays with BAA or Na-caseinate, respectively, were 191 

spectrophotometrically quantified (Perkin Elmer Lambda 2) 192 

from calibration curves obtained using standards after reaction 193 

with the Nessler or Folin reagents after subtracting the 194 

absorbance of controls.Urease activity was determined using 195 

6% urea solution as substrate according to Nannipieri et al. 196 

(1980), and NH4
+
-N concentration was determined as above 197 

described for the for the protease assay. Toaccount for fixation 198 

of NH4
+
-N released by BAAase and urease activities, NH4

+
-N 199 

solutions withconcentrations in the range of thosereleased by 200 

urease andprotease activitieswere incubated with the same soil, 201 

and recovery ofNH4
+
-N were in the range 95-98%.Chitinase 202 
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activity was determined by the hydrolysis of 4-nitrophenyl-β-203 

D-glucosaminidine (SIGMA) in 0.1 acetate buffer at pH 5.2, 204 

for 1 h at 50°C using 1 g d.w. soil. The p-nitrophenol released 205 

by the chitinase activity was spectrophotometrically quantified 206 

using calibration curves, after subtracting of the absorbance of 207 

controls. Preliminary experiments have showed that 50C was 208 

the optimal temperature for soil chitinase activity.  209 

 210 

2.3 Nucleic acids extraction and PCR-DGGE analysis 211 

DNA was extracted by sequential extraction method from 0.5 g 212 

soil as described by Ascher et al. (2009) using the FastDNA 213 

spin kit for soil (MP Biomedicals, USA ), andthe intracellular 214 

DNA fraction was used in this study. The DNA yield and purity 215 

were analysed with a Qubit 2.0 fluorometer (Life Technologies, 216 

USA) using Quant-iTdsDNA HS kitaccording to the 217 

manufacturer’s instructions, and stored at -20°C till prior to 218 

analysis. 219 

The primersFaprI/RaprII for apr gene and FnprI/RnprII for 220 

npras mentioned in Bach et al. (2001) were used for PCR and 221 

were amplified according to conditions as used by Bach et al. 222 

(2001). The DGGE conditions for the fingerprinting of the apr 223 

and nprampliconswere those previously used by Sakurai et al. 224 

(2007). The DGGE fingerprints were performed using 225 

aINGENY PhorU System (Ingeny International BV, 226 

Netherlands), theDGGE gels were stained with SybrGreen I 227 
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(FMC Bio Products, Rockland, ME, USA), and the banding 228 

patterns were analysed by a Gel Doc system (Bio-Rad, USA). 229 

 230 

2.4 Quantification of protease encoding genes 231 

Quantitative PCR (qPCR) was conducted on a CFX Connect 232 

Real-Time PCR Detection System (Bio-rad Laboratories) to 233 

determine the abundance of apr and npr genes, using the 234 

primer sets FP aprI/ RP aprII for the apr gene and FP nprI/ RP 235 

nprII for the npr gene, according to Bach et al. (2001). 236 

Pseudomonas fluorescence (isolated from an agricultural soil) 237 

and Bacillus cereus (DSM31)were used aspositive controls for 238 

aprandnprgenes respectively. Each qPCR assay was conducted 239 

in a 96-well plate and included three replicates for each 240 

standard, negative controls, and sample. Amplification was 241 

performed using the iTaq Universal SYBR Green Supermix 242 

(Bio-rad Laboratories), adding to each reaction mixture forward 243 

and reverse primers for both genes at concentration of 0.6 µM, 244 

3% of bovine serum albumin (BSA), 20 ng DNA template for 245 

apr gene and 30 ng DNA template for npr. The PCR runs for 246 

both genes started with an enzyme activation step at 95°C for 3 247 

min, followed by 42 cycles of denaturation at 94°C for 25 s. 248 

Annealing conditions were 54°C for 30 s for the apr and at 249 

53°C for 30 s for the nprgene, respectively, followed by 250 

extension at 72°C for 30 s. The specificity of amplification 251 

products were confirmed by melting curve analysis and 252 
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expected sizes of amplified fragments were checked by running 253 

the ampliconson a 2% agarose gel stained with ethidium 254 

bromide for 90 mins at 100 V. 255 

 256 

2.5 Illumina sequencing of apr and npr genes  257 

Alkaline metallo-peptidase (apr) and neutral metallopeptidase 258 

(npr) genes were targeted by PCR as previously described 259 

(Bach et al. 2001), using primers pairs FP aprI/RP aprII for apr 260 

(amplicon length 194 bp) and FP nprI/RP nprIIfor the nprgene 261 

(amplicon length 233 bp), respectively. The PCR reactions 262 

were carried out on a Biometra T Professional thermocycler 263 

(Biometra BiomedizinischeAnalytik GmbH, Germany). For 264 

both apr and nprgenes the reaction mixture contained 0.8 µM 265 

of forward and reverse primers, 20 ng of template DNA, 0.3% 266 

BSA, 0.2 mMdNTP mix, 2.5 µl of 10X DreamTaq Buffer 267 

having 20 mM MgCl2 and 1 unit of Dream Taq Polymerase 268 

(Thermo Fisher Scientific, USA). The PCR programs consisted 269 

of a hot start step for 5 min at 95°C, followed by 80 °C for 5 270 

min during which Taq polymerase was added. Thirty-five 271 

cycles of denaturation at 94°C for 30 s, annealing at 55°C for 272 

npr and 58°C for apr, respectively, followed by an extension 273 

step at 72°C for 30s and a final extension step at 72°C for 7 274 

mins. After PCR, amplicons were run on a 2% agaorose gel for 275 

90 mins, single bands were excised and purified from gel using 276 

Nucleospin Gel and PCR cleanup kit (MACHERY-NAGEL 277 



12 
 

GmbH and Co. KG, Germany), according to the manufacturer’s 278 

instructions. Purified amplicons were quantified on Qubit 2.0 279 

fluorometer using Quant-iTdsDNA HS reagent as per 280 

manufacturer’s instructions and sequenced using 281 

anIlluminaHiSeq 2000 in paired-end 150x2 bp at the Beijing 282 

Genomics Institute. For Illumina sequencing the five replicates 283 

of each plant were pooled together for an in depth analysis of 284 

all gene sequences, according to the Illumina sample 285 

preparation guide 286 

(http://supportres.illumina.com/documents/documentation/c287 

hemistry_documentation/16s/16s-metagenomic-library-prep-288 

guide-15044223-b.pdf). The obtained Illumina sequences of 289 

apr and nprampliconswere processed separately, using the 290 

USEARCH and UPARSE pipelines (Edgar, 2010, 2013). 291 

Paired reads from each sample were firstly assembled with the 292 

fastq_mergepairs command. Assembled reads were then 293 

filtered allowing a maximum expected error of 0.5 and 294 

discarding reads with length <190 and <230 bp for aprandnpr 295 

gene, respectively. Barcode labels were then added to the 296 

sequences, and 4 samples available for each gene were merged 297 

with the cat command. Unique sequences were then identified, 298 

sorted by abundance, and singletons were discarded. Gene 299 

sequences were assigned to operational taxonomical units 300 

(OTUs)at minimum identity levels of 97% or 95%, according 301 

to the UPARSE algorithm. The OTUs were further filtered for 302 

http://supportres.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://supportres.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://supportres.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://supportres.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
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the presence of chimeras with the UCHIME tool, andreads 303 

were finally mapped back to obtain OTUs abundance.For each 304 

gene, sequences were pooled together and dereplicated in order 305 

to identify and count the unique sequences. 306 

 307 

2.6 Data analyses 308 

Microbial biomass and enzyme activities data were analyzed by 309 

ANOVA. The significance of differences between mean values 310 

were determined by the Fisher PLSD. For PCR-DGGE 311 

analysis, bands were identified and their intensities were 312 

measured after normalizing lanes and background subtraction 313 

using Quantity-One
®
 software (Bio-Rad Laboratories, USA). 314 

Band intensities were used to calculate the Shannon-Weaver 315 

diversity index H (Shannon and Weaver, 1963) according to the 316 

eq. 1, using the PAST software (Hammer et al. 2001), 317 

        318 

 (eq. 1) 319 

 320 

where ni is the relative intensity of each DGGE band, S is the 321 

number of DGGE bands for each lane  and N is the sum of 322 

intensities for all bands in a given sample (or lane).The DGGE 323 

banding pattern was clustered to UPGAMA dendrograms based 324 

on Raup and Crick similarity indices (Raup and Crick, 1979) 325 

using the PAST software. A principal component analysis 326 

(PCA) for enzyme activity data and Shannon-Wiener diversity 327 

𝐻 = −  
𝑛𝑖
𝑁
 log(𝑛𝑖/𝑁) 



14 
 

index were carried out based on correlation matrix and results 328 

were displayed as biplot using PAST.  329 

2.7 Analysis of the Illuminasequencing data  330 

Mothur v. 1.32.1 was used for calculating diversity indexes and 331 

rarefaction curves from the OTU data (Schloss et al., 2009). 332 

The OTUs fasta sequences were analysed and annotated on 333 

NCBI with blastx and blastnusing the Blast2go software 334 

(Conesa et al., 2005). Phylogenetic trees were constructed on 335 

the aligned sequences with the PhyML (Phylogeny Maximum 336 

Likelihood) approach (Guindon and Gascuel, 2003) by 337 

applying the Shimodaira–Hasegawa [SH]-aLRT test, and 338 

alignments and tree generation were carried out using the 339 

SeaView software (Gouy et al., 2010). 340 

 341 

3 Results 342 

3.1 Microbial biomass and enzyme activities 343 

Microbial biomass based on ATP content was significantly 344 

higher in the rhizosphere of the L05 maize line, as compared to 345 

its bulk soil, whereas no significant differences were observed 346 

between rhizosphere and bulk soil of the T250 maize line 347 

(Figure 1A). BAAhydrolyzingactivity was significantly higher 348 

in the rhizosphere of both L05 and T250 maize line, as 349 

compared to their respective bulk soils (Figure 1B). Moreover, 350 

BAAhydrolyzingactivity was significantly higher in the 351 

rhizosphere of the L05 than in the T250 maize line rhizosphere 352 
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(Figure 1B). Caseinasehydrolyzing activity was only enzyme 353 

activity that was significantly lower in the rhizosphere of both 354 

L05 and T250 maize line, as compared to their respective bulk 355 

soils (Figure 1C), andalso it was only enzyme activity that  was 356 

significantly lower in the rhizosphere of the L05 than in the 357 

T250 maize line rhizosphere (Figure 1C). Chitinase activity 358 

was significantly higher in the rhizosphere of the L05 than its 359 

respective bulk soil, whereas there was no significant 360 

difference between rhizosphere and bulk soil of the T250 maize 361 

line (Figure 1D). Moreover, the chitinase activity was 362 

significantly higher in the rhizosphere of the L05 than in the 363 

T250 maize line rhizosphere (Figure 1D).Urease activity was 364 

significantly higher in the rhizosphere of both L05 and T250 365 

maize line, as compared to their respective bulk soils (Figure 366 

1E). Moreover, the urease activity was significantly higher in 367 

the rhizosphere of the L05 than in the T250 maize line 368 

rhizosphere (Figure 1D). The PCA analysis showed that ATP, 369 

Urease, caseinase hydrolysing and chitinase activities were 370 

related to each other, but not related to BAA hydrolysing 371 

activity (Figure 2). 372 

 373 

3.2 PCR-DGGE microbial community composition 374 

The DGGE analysis showed complex banding patterns for both 375 

npr and apr genes. The UPGAMA based on Raupand Crick’s 376 

similarity index for npr and apr genes showed that the 377 
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rhizosphere and bulk soils of the L05 and T250 maize lines 378 

clustered separately, although the separation between clusters 379 

was not significant (Figure 3).The Shannon-Wiener diversity 380 

indices for the apr gene showed a significantly greater (P< 381 

0.05) diversity in the rhizosphere of both maize lines, as 382 

compared to their respective bulk soils: the diversity indices for 383 

the npr gene could be ranked as : T250B, > L05R > L05B > 384 

T250R (Table 1).  385 

 386 

3.3 Protease gene quantification  387 

The qPCR analysis showed a significantly (P< 0.05) higher 388 

number of apr gene copies in the rhizosphere and bulk soil of 389 

the L05 as compared to the T250 maize line, whereas for the 390 

npr gene there were no significant differences between the 391 

copy numbers regardless of the maize line and soil type (Table 392 

1). The PCA carried out on qPCR and, ATP data and enzyme 393 

activities showed that the rhizosphere of the high NUE L05 394 

maize line clustered separately from the respective bulk soil 395 

and from the T250 rhizosphere and bulk soil (Figure 2). The 396 

first two axes explained 52.89% of the total variance. The PCA 397 

also showed that both apr and npr gene abundances clustered 398 

together, with higher correspondence to the BAA-hydrolazing 399 

activity than to the caseinasehydrolyzing activity (Figure 2). 400 

 401 

3.4 Proteases high throughput sequencing analyses 402 
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Assembly of paired-reads was correctly performed for more 403 

than 99% of sequences for each sample (Supplementary Table 404 

1). After discarding ambiguous sequences and sequences 405 

shorter than target length for apr gene (190 bp) and npr(230 406 

bp) amplicons, the retained sequences were 49.2 % and 72.4 % 407 

for the apr gene and npr genes, respectively. A total of 408 

9,34,598and 1,520,600 unique sequenceswere obtained for the 409 

apr and for the npr gene respectively (Table 2 a). Clustering of 410 

these sequences at 97% similarity resulted in 1767 and 411 

1308average OTUs for the apr and npr gene, 412 

respectively(Table 2 a). Blastx results at 97% identity showed 413 

that many OTUs gave the same hits, albeit their nucleotidic 414 

sequences were different ; for this reason analyses were also 415 

performed with OTUs at 95% similarity, in this case the 416 

number of detected OTUs per samples were as expected lower, 417 

varying between 631 for T250 rhizosphere and 765 for L05 418 

bulk sample (Table 2 b). Results herewith presented refer to the 419 

analyses of OTUs with 95% minimum identity. 420 

The rarefaction curves (Supplemetary figure 1) indicated a 421 

representative and deep sampling of total diversity for both apr 422 

and npr genes, with Good’s coverage values that were always 423 

>99.99% (Table 2 b). OTUsanalyses were conducted on the 424 

first 50 most abundant OTUs covering 74% of total OTUs 425 

diversity for apr and 85.4% for npr (Supplementary Table 1 a 426 

and 1 b ). The most abundant apr OTUs revealed high 427 
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phylogenetic similarity with Pseudomonassp, followed by 428 

Caulobactersp.and Dickeyasp.(Figure 4A). Both hierarchical 429 

clustering (Supplementary figure 6 and 7 ) and PCA (Figure 430 

5A, B) analyses indicated that the protease gene diversity was 431 

influenced by the maize line, less from the rhizosphere or bulk 432 

soil, particularly for the T250 maize line (Figure 5A, B).  433 

Analysis of the most abundant npr OTUs revealed that majority 434 

of OTUs assigned to uncultured bacteria; most of the others 435 

showed highphylogenetic similarity with members of Bacillus 436 

sp.(Supplementary Table 1b ). Based on their sequences, thenpr 437 

OTUs were more diverse than apr OTUs (Figure 4). 438 

Multivariate analyses were conducted to explore the 439 

discrimination between samples, and to identify OTUs mostly 440 

responsible for differences. Both hierarchical clustering 441 

(Supplementary figure 1 and 3) and PCA (Figure 5) analyses 442 

indicated that the samples are grouped mostly according to the 443 

plant variety, and not to the soil sampling position (bulk or 444 

rhizosphere). For the T250 variety, bulk and rhizosphere 445 

samples are closely grouped, while for L05 variety differences 446 

between rhizosphere and bulk soil apr OTUs patterns were 447 

higher. PCA also highlighted a number of OTUs that were 448 

more related to samples, especially for L05 bulk and 449 

rhizosphere (Figure 5). 450 

4 Discussion  451 
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With the exception of the casein hydrolyzing activity, all 452 

enzymatic activities and microbial biomass were found to be 453 

higher in the rhizosphere of the L05 maize as compared to 454 

T250 maize line, indicating that the high NUE L05maize line 455 

has a higher N mineralization rate in the rhizospherethan the 456 

low NUE T250 maize line. These results are in agreement with 457 

previous reports on the greater capability of the L05 maize line 458 

to acquire N from the rhizosphere (Zamboni et al., 2014; 459 

Pathan et al., 2015). The rhizosphere of the L05 and T250 460 

maize lines also differed for the type of protease activities, as 461 

the L05 rhizosphere displayed a higher BAA-hydrolyzing 462 

activity whereas the rhizosphere of the T250 had a higher 463 

caseinhydrolyzing activity (Figure 1). It is important to note 464 

that casein hydrolysing activities probably measured protease 465 

activity acting on high molecular weight substrates that 466 

generally are associated to microbial death events or release of 467 

extracellular enzymes degrading organic polymers (Nannipieri 468 

et al., 2012). These differences could depend on different 469 

factors including genetic diversity of the protease encoding 470 

genes, molecular integrity and extracellular stabilization of 471 

different proteases by the rhizosphere organic matter (Bonmati 472 

et al., 2009, Overall these results indicated that in the 473 

rhizosphere of the two maize lines the protein N mineralization 474 

depended on different proteolytic mechanisms. 475 
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Analysis of the DGGE fingerprints indicated highercomplexity 476 

of the proteolytic communities in the rhizosphere of the L05 477 

than thoseof the T 250 maize, showing that the two plant lines 478 

selected different proteolytic populations during the plant 479 

growth. These results are in line with those of Sakurai et al. 480 

(2007) who also reported rhizosphere effects on the diversity of 481 

the apr gene.Gene copy numbers were also significantly 482 

affected for the apr gene. These results support overall  positive 483 

rhizosphere effect of high NUE on the apr as compared to the 484 

npr, as shown by the significantly higher apr abundance in 485 

rhizosphere of L05 than T250 (Table 1).Previous studies on 486 

Maize rhizosphere by Aira et al.  (2010), revealed that different 487 

genotypes modifies the structure of rhizospheric microbial 488 

communities, but not their abundance and no significant 489 

changes in biomass of main microbial groups were reported. 490 

But in our studies we have noticed significant changes in copy 491 

numbers of apr gene, but no significant changes in abundance 492 

of npr gene.  493 

Our results based on the composition of the proteolytic 494 

community of the rhizosphere and bulk soil of the two maize 495 

lines indicate asignificantly higher richness for npr than apr 496 

gene, and significant differences betweenrhizosphere of L05 497 

and T250 maize lines. Analysis of OTUs confirmedresults by 498 

Watanabe and Hayano (1994a, 1994b) that Bacillus spp. are the 499 

main source of npr genes in soil. However, several unknown 500 
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metallo-peptidase nprgene sequences outnumbered other 501 

known OTUs in both rhizosphere and bulk of the studied maize 502 

lines. This is indeed the first work dealing with the high-503 

throughput assessment of protease genes in bulk and 504 

rhizosphere soils. Results indicate a high diversity of these 505 

genes in soil, as shown by the number of unique sequences and 506 

OTUs. However, together with the high number of unassigned 507 

sequences suggest that our current knowledge on the abundance 508 

and distribution of the protease encoding genes in soil is still 509 

very limited. Taken together, the genetic and biochemical 510 

analysis of the rhizosphere of the both maize lines indicated 511 

that the L05 maize line with higher NUE selected more 512 

strongly the proteolytic microbial communities in the 513 

rhizosphere as compared to the low NUE T250 maize line, with 514 

potential influence on the predominant protease mechanism. In 515 

fact, while the BAAhydrolyzing activity has a trypsin-like 516 

protease activity, the casein hydrolyzing activity is less specific 517 

serine proteases (Ladd, 1972). It can’t be excluded that a more 518 

specialized proteolytic community may contribute to the 519 

observed higher NUE of the L05that the T250 maize line.  520 

For apr, the most abundant OTUs were reported to belong to  521 

different members of Pseudomonas sp.;this confirms previous 522 

studies reporting high Proteobacteria populations in maize 523 

rhizopshere(Peiffer et al., 2013). Furthermore these OTUs were 524 

significantly more abundant in the rhizosphere of the L05 than 525 



22 
 

in the T250rhizosphere. Other abundantaprOTUs detected in 526 

the maize rhizosphere such as S.griseus and Caulobacter sp., N. 527 

watsoni and Clostridium sp., Brevibacillussp. and 528 

Thermoactinomyces sp.play important roles in maize growth, 529 

being involved in chitinase activity, plant pathogen biocontrol, 530 

non-symbiotic N fixationNO3
-
-N reduction, or N and P 531 

mineralization (Jackson et al., 1997; Philippot et al. 2002; 532 

Bressan and Figueiredo, 2008; Peiffer et al., 2013; Yadav et al., 533 

2013;Li et al., 2014). Interestingly, another dominant OTU was 534 

identified as a protease of Dickeyasp., a plant pathogen, also 535 

detected in maize rhizosphere (Chaparro et al., 2014); this may 536 

be related to the past use of the soil for maize cultivation.  537 

Very interestingly many identified organisms contributing to 538 

both apr and npr OTUs, like Bacillussp, Paenibacillussp, 539 

Clostridium sp., Pseudomonas sp., Azoarcus sp., are genera 540 

encompassing several plant growth promoting rhizobacteria 541 

(PGPR) (Hurek and Reinhold-Hurek, 2003, Kumar et al., 2011, 542 

Goswami et al., 2015, Kefela et al., 2015). Certain plant growth 543 

promoting microbes have been found to enhance N uptake from 544 

soil, primarily by nutrient mobilization and increase plant NUE 545 

( Parra-Cota et al., 2014). Present results also support the 546 

hypothesis that most soil proteolytic communities may also 547 

play important roles as PGPRs, thus supporting their 548 

involvement in soil fertility.  549 

5. Conclusion  550 
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Our work showed that maize lines differing for NUE, host 551 

different microbial communities and select different protease 552 

encoding genes in their rhizosphere. In particular, the two 553 

maize lines mainly influenced the abundance and diversity of 554 

the apr gene than npr gene. Though npr gene was less affected 555 

by rhizosphere and plant properties , it has been unraveled that 556 

most npr OTUs were from unknown organisms and this 557 

suggests the need for a future research identifying hidden 558 

players behind npr gene pool. NUE-dependent selective effect 559 

also results in differences in the functional potential of the 560 

rhizosphere microbial communities and apparently in the 561 

mechanisms responsible for the protein N mineralization. 562 

Future research should also characterize the N forms in the 563 

rhizosphere of the two maize lines and the maize root exudate 564 

profiles to further clarify the link between the protease gene 565 

diversity and the protein N fate in the rhizosphere of the studied 566 

maize lines. 567 
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Table 1. Gene copy numbers and valuesof the Shannon-Weiner indices for DGGE bands for the 

npr and apr genes in the rhizosphere and bulk soil of the L05 and T250 maize lines. Values are 

shown as mean (n = 5) and standard deviation, and different superscripts indicate significant 

differences (P< 0.05) of values within each column. 
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Table 2(a). Preprocessing and OTUs clustering of apr and npr Illumina reads. 

amaximum error 0.5, length > 190 bp for apr, > 230 bp for npr 
 
 
Table 2(b). Coverage, diversity and richness indexes in the analyzed apr and npr Illumina 
reads. 
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Figure 1.Activity results (a) ATP content,(b) urease activity,(c) BAA-ase activity,(d) caseinase 

activity,(e) chitinase activity, of the rhizosphere and bulk soil of the L05 and T250 maize lines. 

Values are the mean of five replicates and the error bars represent the standard deviation of the 

mean values. Significant differences are shown by different alphabetic letters over error bars.  
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Figure 2. PCA on ATP, Urease, BAA-ase, Caesinase,Chitinase, npr gene copy numbers and apr 

gene copy numbers . Solid sky blue squares reperesents L05 rhizosphere samples, blue boxes 

represent L05 bulk samples, solid orange dots represent T250 rhizosphere samples and brown 

circles represent T250 bulk samples  
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(a) 
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Figure 3. UPGAMA custers based on Raup Crick similarity for  (a) npr gene and (b) apr 
gene 
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(b) 
 
 
Figure 4. Species distribution of the hits of the 50 most abundant (a)  apr OTUs and (b) npr 
OTUs 
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Figure 5  Principal Component Analysis of (a) apr OTU data and (b) npr OUT data covering 
the 99.9% of total diversity. Samples grouping is reported, together with ordiplot of OTUs 
scores. 
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