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Abstract

Criminal organizations tend to be clustered to reduce risks of detection and in-

formation leaks. Yet, the literature has so far neglected to explore the relevance

of subgroups for their internal structure. The paper applies methods of com-

munity analysis to explore the structure of a criminal network representing the

individuals’ co-participation in meetings. It draws from a case study on a large

law enforcement operation (“Operazione Infinito”) tackling the ’Ndrangheta, a

mafia organization from Calabria, a southern Italian region. The results show

that the network is significantly clustered and that communities are partially

associated with the internal organization of the ’Ndrangheta into different “lo-

cali” (similar to mafia families). Furthermore, community analysis methods can

effectively predict the leadership roles (above 90% precision in classifying nodes

as either bosses or non-bosses) and the locale membership of the criminals (up

to two thirds of any random sample of nodes). The implications of these findings

on the interpretation of the structure and functioning of the criminal network

are discussed.
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1. Introduction

Academics and law enforcement agencies are increasingly applying network

analysis to organized crime networks. While the current applications mainly

focus on the identification of the key criminals through centrality measures

(Varese, 2006b; Morselli, 2009; Calderoni, 2014) and other individual attributes5

(Carley et al., 2002; Morselli and Roy, 2008; Malm and Bichler, 2011; Bright

et al., 2015), the analysis of the subgroups and their influence on the criminal

activities received very limited attention so far.

Subgroups are a natural occurrence in criminal networks. Criminal organiza-

tions may structure themselves in functional, ethnic, or hierarchical units. Fur-10

thermore, the constraints of illegality limit information sharing to prevent leaks

and detection, as criminal groups face a specific efficiency vs. security trade-off

(Morselli et al., 2007). This makes criminal organizations globally sparse but

locally clustered networks, often showing both scale-free and small-world prop-

erties (Malm and Bichler, 2011). Also, the larger the criminal organization,15

the most likely and relevant is the presence of subgroups. These considerations

suggest that the analysis of subgroups in criminal networks may provide insight

on both the internal structure of large organized crime groups and on the best

preventing and repressive strategies against them.

The mafias are a clear example of large organized crime groups, often com-20

prising several families or clans with a specific hierarchy and a strong cohesion.

These units may show different interactions among them, ranging from open

conflict to pacific cooperation. Each mafia family is a subgroup within a larger

criminal network, and inter-family dynamics are determinant for the activities

of the mafias. Nevertheless, possibly due to the difficulties in gathering reliable25

data, the literature has so far neglected the role of the family in the structure

and the activities of the mafias.
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In the literature of network analysis (e.g., Boccaletti et al., 2006; Barrat

et al., 2008; Newman, 2010), one of the most challenging areas of investiga-

tion in recent years is community analysis, which is aimed at revealing possible30

subnetworks (i.e., groups of nodes called communities, or clusters, or modules)

characterized by comparatively large internal connectivity, namely whose nodes

tend to connect much more with the other nodes of the group than with the

rest of the network. A large number of contributions have explored the theo-

retical aspects of community analysis and proposed a broad set of algorithms35

for community detection (Fortunato, 2010). Most notably, community analysis

has revealed to be a powerful tool for deeply understanding the properties of a

number of real-world complex systems in virtually any field of science, including

biology (Jonsson et al., 2006), ecology (Krause et al., 2003), economics (Piccardi

et al., 2010), information (Flake et al., 2002; Fortuna et al., 2011) and social40

sciences (Girvan and Newman, 2002; Arenas et al., 2004).

This paper aims to apply the methods of community analysis to criminal

networks analyzing the co-participation in the meetings of a large mafia orga-

nization. The exercise aims to explore the relevance of subgroups in criminal

networks, with a specific focus on the characterization of mafia clans and families45

and the identification of bosses. The case study draws data from a large law en-

forcement operation in Italy (“Operazione Infinito”), which arrested more than

150 people and concerned the establishment of several ’Ndrangheta (a mafia

from Calabria, a southern Italian region) groups in the area around Milan, the

capital city of the Lombardy region and Italy’s “economic capital” and second50

largest city. The exploration has a double relevance. First, it improves the un-

derstanding of the internal functioning of criminal organizations, demonstrating

that the Infinito network is clustered in subgroups, and showing that the sub-

groups identified by community analysis overlap with the internal organization

of the ’Ndrangheta. Second, it may contribute in the development of law en-55

forcement intelligence capacities, providing tools for early identification of the

internal structure of a criminal group.

The internal organization of the ’Ndrangheta provides an interesting oppor-
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tunity to explore the relevance of subgroups in criminal networks. Indeed, this

mafia revolves around the blood family (Paoli, 2003; Varese, 2006a). One or60

several ’Ndrangheta families, frequently connected by marriages, godfathering

and similar social ties, form a “’ndrina”. The “’ndrine” from the same area may

form a “locale”, which controls a specific territory (Paoli, 2007). The “locale”

is the main structural unit of the ’Ndrangheta. Each “locale” has a number of

formal charges, tasked with specific functions: the boss of the “locale” is the65

“capobastone” or “capolocale”, the “contabile” (accountant) is responsible for

the common fund of the locale, the “crimine” (crime) oversees violent actions,

and the “mastro di giornata” (literally “master of the day”) takes care of the

communication flows within the “locale”.

Since the organization in “locali” plays such an important role in the struc-70

ture of the ’Ndrangheta, our investigation is specifically oriented to assess their

significance in the sense of community analysis. Therefore, after illustrating

some details on the network data (Sec. 2), we first quantify the cohesiveness

of each “locale” in the Infinito network, discovering a quite diversified picture

where very cohesive “locali” coexist with others apparently not so significant.75

The results of community analysis (Sec. 3) show that the Infinito network is

significantly clustered, suggesting that subgroups play an important role in its

internal organization. If we try and match the clusters obtained by community

analysis with the “locali” composition, we interestingly discover that in most

cases clusters correspond either to “locali” or to unions of them. In the last80

two sections, we use the results from community analysis to identify the bosses

and the locale membership of each network participant. Section 4 shows that

community analysis can effectively identify the bosses in the Infinito network,

yielding up to approximately 93% of correct predictions (nearly 60% for bosses

only). Section 5 demonstrates the utility of community analysis in identifying85

the “locale” membership of the nodes. The best method correctly attributes

the “locale” of up to 65% of a random sample of nodes.
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2. The Infinito network

“Operazione Infinito” was aimed at disentangling the organizational struc-

ture of the ’Ndrangheta in Lombardy, with a special care in charting the hier-90

archical structure and the different “locali” existing in the region. The docu-

mentation2 provides information on a large number of meetings among mem-

bers. Indeed, most of the investigation focused on meetings occurring in private

(e.g., houses, cars) or public places (e.g. bars, restaurants or parks). The two

sets, namely meetings and participants, define a standard bipartite (two-mode)95

network. The projection of the bipartite network onto the set of 256 partici-

pants leads to a (one-mode) weighted, undirected network, whose largest con-

nected component – which we will denote hereafter as the Infinito network – has

N = 254 nodes and L = 2132 links (the density is ρ = 2L/(N(N −1)) = 0.066).

The weight wij is the number of meetings co-participation between nodes i and100

j, and it ranges from 1 to 115. However, the mean value of the (nonzero) weights

is 〈wij〉 = 1.88 and about 70% of them is 1, denoting that only very few pairs

of individuals co-attended a large number of meetings. Similarly, the distribu-

tions of the nodes degree ki and strength si =
∑

j wij display a quite strong

heterogeneity: indeed, their average values are, respectively, 〈ki〉 = 16.8 and105

〈si〉 = 31.5, but the most represented individual in the sample has both degree

and strength equal to 1.

The affiliation of an individual to the “locale”, namely the group controlling

the criminal activities in a specific territory, is formal and follows strict tradi-

tional rules. Each “locale” has a boss who is responsible of all the activities in110

front of the higher hierarchical levels (see Calderoni (2014) for further details).

The investigation activity of “Operazione Infinito” was able to associate 177

individuals (out of 254) to one of the 17 “locali” identified in Milan area, the

region under investigation. Of the remaining ones, 35 were known to belong to

2Pretrial detention order issued by the preliminary investigation judge upon request by the

prosecution (Tribunale di Milano, 2011).
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Pajek

Figure 1: The Infinito network: nodes are grouped and colored according to the “locali”

partition (Table 1).

“locali” based in Calabria (the region of Southern Italy where the ’Ndrangheta115

had origin and still has its headquarters), 3 came from a Lombardy “locale” not

in the area of investigation (Brescia), and 8 were known to be non affiliated to

’Ndrangheta, whereas the correct classification of the remaining 31 individuals

remained undefined. The Infinito network is displayed in Fig. 1. The figure3

puts in evidence the 17 “locali” and the other groups above described.120

As a first analysis, we assess whether the partition defined by the “locale”

membership is significant in the sense of community analysis, namely whether

the intensity of intra-“locale” meetings is significantly larger than that of the

contacts among members of different “locali”. If so, this would confirm, on one

hand, the actual modular structure of the crime organization; on the other hand,125

it would provide a tool for investigations, as the composition of the “locali” could

3All network figures in the paper were produced with Pajek (Batagelj and Mrvar, 2004).
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endogenously be derived by mining meetings data.

We denote by Ck the subgraph induced by the nodes belonging to “locale” k.

We quantify the cohesiveness of Ck by the persistence probability αk, namely the

probability that a random walker, which is in one of the nodes of Ck, remains130

in Ck at the next step. This quantity, which proved to be an effective tool for

mesoscale network analysis (Piccardi, 2011; Della Rossa et al., 2013), reduces

in an undirected network to:

αk =

∑
i∈Ck

∑
j∈Ck

wij∑
i∈Ck

∑
j∈{1,2,...,N} wij

, (1)

namely to the fraction of the strength of the nodes of Ck that remains within Ck

(the same quantity is referred to as embeddedness by some authors (e.g., Hric135

et al., 2014)). Radicchi et al. (2004) defined community a subnetwork which

has αk > 0.5. Obviously, the larger αk, the larger is the internal cohesiveness of

Ck. Notice that, since αk tends to grow with the size Nk of Ck (trivially, αk = 1

for the entire network), large αk values must be checked for their statistical

significance. We derive the empirical distribution of the persistence probabilities140

ᾱk of the connected subgraphs of size Nk (we do that by randomly extracting

1000 samples), and we quantify the significance of αk by the z-score:

zk =
αk − µ(ᾱk)

σ(ᾱk)
. (2)

A large value of αk (i.e., αk > 0.5) reveals the strong cohesiveness of the sub-

graph Ck, while a large value of zk (i.e., zk > 3) denotes that such a cohesiveness

is not trivially due to the size of the subgraph, but it is anomalously large with145

respect to the subgraphs of the same size.

Table 1 summarizes the values of αk and zk computed on the subgraphs

corresponding to the “locali” (see Fig. 1). Notice that L2 to L18 actually refer

to the 17 “locali” under investigation, all based in Milan area (Milan itself plus

16 small-medium towns); L19 collects the individuals, participating in some150

of the meetings, belonging to any of the Calabria “locali”, and L20 contains

those affiliated to Brescia, not subject to investigation and whose members

participated in the meetings only occasionally; L0 are the individuals with non
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“locale” Nk αk zk
L0 not specified 31 0.08 -3.15
L1 not affiliated 8 0.03 -0.84

L2 Bollate 13 0.25 1.31
L3 Bresso 15 0.39 2.72
L4 Canzo 2 0.10 0.47
L5 Cormano 22 0.41 3.96
L6 Corsico 4 0.12 0.21
L7 Desio 19 0.63 6.40
L8 Erba 9 0.37 2.44
L9 Giussano 10 0.63 5.26
L10 Legnano 10 0.20 0.77
L11 Limbiate 1 0 -
L12 Mariano Comense 9 0.27 1.40
L13 Milano 16 0.62 5.78
L14 Pavia 5 0.13 0.25
L15 Pioltello 20 0.43 3.83
L16 Rho 5 0.18 0.78
L17 Seregno 12 0.93 8.73
L18 Solaro 5 0.06 -0.42

L19 Calabria locali 35 0.19 -0.97
L20 Brescia 3 0.17 0.98

Table 1: Testing the “locali” partition. In bold, the four “locali” with significant cohesiveness

(αk > 0.5).

specified affiliation, L1 those who are not affiliated. Overall, only 4 “locali”

out of 17 reveal strong – and statistically significant – cohesiveness, proving155

to actually behave as communities in the sense of network analysis. Most of

the other ones, however, display very mild cohesiveness. It cannot be claimed,

therefore, that the “locali” partition as a whole is significant in functional terms.

In the next section, we analyze whether the network is actually organized around

a different clusterization.160

3. Community analysis

Given a partition C1, C2, . . . , CK of the nodes of a weighted, undirected

network into K subgraphs, the modularity Q (Newman, 2006; Arenas et al.,

2007) is given by

Q =
1

2s

∑
k=1,2,...,K

∑
i,j∈Ck

(
wij −

sisj
2s

)
, (3)
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Nk αk zk
C1 12 0.93 9.07
C2 18 0.72 7.79
C3 25 0.66 9.85
C4 25 0.63 9.11
C5 45 0.68 8.20
C6 62 0.78 8.30
C7 67 0.67 5.72

Table 2: Results of max-modularity community analysis

where s =
∑

i si/2 is the total link weight of the network. Modularity Q is165

the (normalized) difference between the total weight of links internal to the

subgraphs Ck, and the expected value of such a total weight in a randomized

“null network model” suitably defined (Newman, 2006). Community analysis

seeks the partition with the largest Q: large values (Q → 1) typically reveal

a high network clusterization. Although the exact max-Q solution cannot be170

obtained because computationally unfeasible even for small-size networks (For-

tunato, 2010), many reliable sub-optimal algorithms are available: here we use

the so-called “Louvain method” (Blondel et al., 2008).

The result is a partition with 7 clusters (Q = 0.48), whose data are reported

in Table 2. All clusters are strongly cohesive (αk much larger than 0.5, with175

large zk). Overall, the Infinito network is therefore strongly clusterized, with

community size from small (12) to medium-large (67, about 26% of the network

size).

The max-modularity partition of the Infinito network is displayed in Fig.

2. The patterns of node colors – which refer to the “locali”, see Fig. 1 –180

denote a non trivial relationship between the “locali” partition and the max-

modularity partition. To disentangle this aspect, we pairwise compare the “lo-

cali” L0, L1, . . . , L20 (Table 1) and the communities C1, C2, . . . , C7 obtained by

max-modularity (Table 2), quantifying similarities by precision and recall (e.g.,

Baeza-Yates and Ribeiro-Neto, 1999). Let mhk be the number of nodes classi-185

fied both in Lh and in Ck. Then the precision phk = mhk/|Ck| is the fraction of

the nodes of Ck that belongs to Lh whereas, dually, the recall rhk = mhk/|Lh|

is the fraction of the nodes of Lh that belongs to Ck. If we interpret Lh as the
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Figure 2: The Infinito network: nodes are grouped according to the max-modularity partition

(Table 2) and colored according to the “locali” partition (Table 1).

“true” set and Ck as its “prediction”, then the precision quantifies how many

of the predicted nodes are true, and the recall how many of the true nodes are190

predicted. Then phk = rhk = 1 if and only if the sets Lh and Ck coincide, while

phk → 1 if most of the nodes of Ck belong to Lh, and rhk → 1 if most of the

nodes of Lh are included in Ck.

Figure 3 (upper panels) summarizes the results of this analysis by a graphical

representation of the precision and recall matrices. We firstly note that “locale”195

L17 perfectly matches community C1 (it is the community in the upper-left

corner of Fig. 2). Moreover, “locale” L13 can be approximately identified with

C3, whereas C2 corresponds to a large extent to the union of L3 and L20, and

C4 to the union of L9 and L12. But also the last three columns of the recall

matrix clearly put in evidence that C5, C6 and C7 actually behave, to a large200

extent, as unions of “locali”. This clearly emerges from the lower panels of

Fig. 3, where the precision/recall analysis is performed again but after “locali”

have been partially aggregated in 7 supersets: the diagonal dominance of the

matrices phk, rhk highlights that, overall, the Infinito network is quite strongly

compartmentalized (see again Table 2), and the compartments coincide to a205
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Figure 3: Precision/recall matrices of the comparison between the “locali” and the max-

modularity communities. Above: the “locali” L0, L1, . . . , L20 are compared with the com-

munities C1, C2, . . . , C7. Below: after “locali” have been partially aggregated, the diagonal

dominance of the precision/recall matrices evidences that communities coincide to a large

extent with unions of “locali”.

large extent with single “locali” or unions of them.

These findings support the intuition that subgroups are important elements

in the internal organizations of the mafias. The clusterization of unions of

“locali” may suggest that clans or families may have closer connections with a

few others. Several investigations showed that “locali” may raise and decline,210

compete or collaborate, merge or separate. Based on meeting co-participation

patterns, community analysis methods can effectively reveal a clusterization

closely connected with the formal structure of the mafia. The next two sections

will explore whether community analysis techniques can further contribute to

identifying the bosses and the “locale” membership.215
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4. Identifying bosses

In this section we focus on the relation between the hierarchical role of indi-

viduals within the ’Ndrangheta organization, and the pattern of their meeting

attendance, as modeled by the Infinito network. The aim is to explore whether

the results from community analysis can provide tools to identify individuals220

with leading roles, who will be referred to as bosses from now on. As already

pointed out in Sec. 1, the ’Ndrangheta relies on a formal hierarchy with multi-

ple ranks and offices. In particular, each locale normally appoints a few major

officers: the capobastone or capolocale is the head of the locale; the contabile

is the accountant who manages the common fund of the group; the crimine225

(crime) oversees violent actions; the mastro di giornata (master of the day) en-

sures the flow of information within the locale (Calderoni, 2014). Information

on the actual number and roles of the offices in the ’Ndrangheta is incomplete.

Yet, in some investigations the suspects discuss about the different offices: these

conversations are sometimes tapped by the police, as in the Infinito case.230

The judicial documentation classifies 34 of the 254 nodes of the Infinito

network as bosses. Calderoni (2014), working on the unweighed network, in-

vestigated the correlation between a set of node centrality measures (including

degree, strength, betweenness, closeness, and eigenvector centrality) and the

boss role of the node, finding that betweenness is by far the most effective pre-235

dictor. Indeed, the average betweenness of bosses turns out to be about 15 times

larger than that of non-bosses, testifying a brokering role of bosses within the

criminal network.

Here we want to further improve the predictive performance by exploiting the

information provided by community analysis. As a matter of fact, the partition240

induced by max-modularity has the effect of placing each node in a specific

position in terms of intra-/inter-community connectivity, an information that

can potentially be useful in assessing its functional role.
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4.1. z-P analysis

We follow the z-P analysis approach proposed by Guimera and Amaral245

(2005) (see also Guimera et al. (2005)) where, after community analysis has

identified a partition into K modules, the intra- vs inter-community role of

each node i is quantified by a pair of indexes (zi, Pi). We denote by c(i) ∈

{1, 2, . . . ,K} the community node i belongs to, and by s
c(i)
i =

∑
j∈c(i) wij the

internal strength of i, i.e., the strength directed towards nodes of c(i). By250

straightforwardly extending the definitions of Guimera and Amaral (2005) to

the case of weighted networks, we define the within-community strength as

zi =
s
c(i)
i − µ(s

c(i)
i )

σ(s
c(i)
i )

, (4)

where µ(s
c(i)
i ) and σ(s

c(i)
i ) are the mean and standard deviation of s

c(i)
i over all

nodes i ∈ c(i), and the participation coefficient as

Pi = 1−
K∑
c=1

(
sci
si

)2

, (5)

where sci =
∑

j∈c wij is the strength of node i directed towards nodes of com-255

munity c. The normalized internal strength zi measures how strongly a node is

connected within its own community. On the other hand, Pi quantifies to what

extent a node tends to be uniformly connected to all communities (Pi → 1)

rather than only to its own community (Pi → 0).

Figure 4 shows the results of the z-P analysis of the Infinito network (no-260

tice that we normalize zi to take values in the [0, 1] interval, i.e., zi → (zi −

min zi)/(max zi − min zi)). The figure highlights that bosses tend to concen-

trate on the upper-right part of the plot, namely they have both within-module

strength zi and participation coefficient Pi larger than average. As a matter of

fact, the ratio between the values of the two indicators for bosses and non-bosses265

is 2.51 for zi, and 2.30 for Pi. It seems, therefore, that leading individuals have a

twofold characterization, namely a connectivity larger than average within their

own community, and at the same time the capability of connecting to a large

number of the other communities. In order to get the most effective prediction,
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Figure 4: z-P analysis of the Infinito network. Each node is identified by a cross corresponding

to the (zi, Pi) coordinates: bosses are highlighted by red circles. The magenta lines correspond

to the average value of zi, Pi, and Wi, over all nodes.

we can combine the role of zi and Pi in a unique indicator defined as the product270

Wi = ziPi. The ratio between the Wi value for bosses and non-bosses is 5.46:

as evidenced in Fig. 4, only 2 bosses out of 34 have Wi lower than average.

We now want to explicitly quantify the predictive ability of the z-P analysis

in identifying the leading roles within the criminal network, and compare it

with a non community-based indicator such as the betweenness bi. For that,275

first notice that all the indicators bi, zi, Pi, and Wi induce a ranking in the set of

254 nodes. Table 3 summarizes the performance of the above indicators in terms

of their predictive precision, assuming to know the exact number of bosses to be

guessed (i.e., 34). In other words, we count how many of the top-34 nodes in the

relevant indicator’s ranking are actually bosses. While the P-score alone seems280

unable to effectively capture the leading nodes, the z-score and the betweenness

both identify 23 bosses (although the two sets are slightly different), but the

zP-score outperforms all the methods identifying 25 bosses over 34.

One may wonder to what extent the above performances are influenced by

the assumption of knowing exactly the number of bosses, an information not285

available in reality. For these reasons, we refine our analysis and compute the
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method precision

zP-score Wi 0.735
z-score zi 0.677
betweenness bi 0.677
P-score Pi 0.294

Table 3: Identifying bosses: for each method, the precision is computed as the fraction of true

bosses among the top 34 nodes ranked by the related indicator.
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Figure 5: Identifying bosses: for a given number of predicted boss m, the precision is computed

as the fraction of true bosses among the top m nodes ranked by the related indicator.

precision p for all methods as a function of the number m = 1, 2, . . . , 34 of

guessed bosses, i.e., we take the top-m nodes for each index and we compute

how many of them actually correspond to bosses:

p =
# of nodes correctly guessed among m nodes

m
. (6)

The precision p as a function of m is depicted, for all methods, in Fig. 5. Overall,290

the zP-score has the best performance, with 100% precision up to m = 12

and a good performance even for the largest m values. Betweenness is a valid

alternative, displaying comparable performances except for large m.

4.2. Integrating network-based measures

We complement the previous analysis through a set of multiple logistic re-295

gressions estimating the influence of different factors on the probability of being
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variable min max mean st.dev. 2 3 4 5 6

1 boss 0 1 0.134 0.341
2 betweenness 0 100 4.23 11.7 2 - .77 .73 .76 .83
3 strength 1 361 31.6 48.2 3 - .81 .84 .88
4 z-score 0 1 0.228 0.158 4 - .82 .67
5 zP-score 0 100 12.5 17.2 5 - .70
6 n. of meetings 1 179 7.29 16.7 6 -
7 mafia charge 0 1 0.5 0.5

Table 4: Descriptive statistics (left) and Pearson’s correlation coefficients (right) of the vari-

ables used in the regression (all correlations are statistically significant at p < 0.001 level). To

improve the readability of the results, betweenness and zP-score have been normalized to the

[0, 100] range.

a boss. This integrates and expands the analyses of Calderoni (2014, 2015),

which were restricted to the individual centrality measures on the subset of

meetings with more than 3 participants (215 nodes).

The dependent dichotomous variable is derived from the judicial documents300

(1 for bosses, and 0 for non-bosses). Independent variables include two of the

network centrality measures retained in Calderoni (2014), namely the between-

ness and the strength, and the z-score and zP-score from the previous subsec-

tion. The models also include two control variables: the first is the number of

meetings attended by each individual, the second (mafia charge) is a dummy305

one describing whether an individual was charged with the offence of mafia-type

association in the court order, a possible bias in the network (Table 4).

Given the low number of bosses in the sample (34 out of 254), in the logistic

regressions we adopt the penalized maximum likelihood estimation proposed by

Firth (1993). This method compensates for low numbers in one of the cate-310

gories of the dependent variable, making it a good approach for the Infinito

network. As for the standard logistic regressions, it models a dichotomous de-

pendent variable y (in this case, the boss attribute) as a linear combination of

independent variables xi (y = a + b1x2 + b2x2 + . . .). The outcomes can be

expressed as odds ratio (OR), where OR = exp(bi). In the present application,315

OR expresses the change in the probability that a node is a boss per unitary

increase in any independent variable, all other variables equal. For OR = 1 the
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probability is the same, for OR > 1 it increases, and for OR < 1 it decreases.

For example, OR = 1.1 means that a unitary increase in the independent vari-

able implies a +10% increase in the probability of a node being a boss. Since320

the logistic regression predicts the value of the dependent variable based on the

values of the independent variables, comparison between predicted and observed

values enables to assess its predictive power (percentage of correct predictions)

(Hosmer et al., 2013).

The results are summarized in Table 5. Model I replicates the best model325

from Calderoni (2014) on a wider sample, yielding very similar results. A unit

increase in betweenness centrality provides +11% increase in the probability of

being a boss, all other variables equal. The strength contributes with a +3.5%

increase in probability. The model correctly classifies 94.1% of the population

and 61.8% of bosses (compare with a random probability of 13.3%). Model330

II relies only on the control variables, mafia charge and number of meetings.

Both are significant and positive. Yet the overall capacity of the model is lower

than the first one (90.9%), with a remarkable decrease in the identification of

bosses (41.2%). Model III includes both individual centrality measures and the

controls. Both strength and betweenness maintain their significant and posi-335

tive effect, whereas the controls are non-significant. The prediction success are

similar to model I, especially for bosses. Models IV to VI test the community

measures identified in the previous section. Model IV shows that z-score has

no significant impact on the probability of being a boss, once tested along with

the control variables. Conversely, in Model V the zP-score has a statistically340

significant and positive influence (+9.8% per unitary increase of zP-score) de-

spite the presence of the controls. The last model (VI) includes the controls

and both betweenness and zP-score. The latter results as the only significant

variable with an impact of +8.6% on the probability of being a boss, all other

variables equal. Overall, the share of correct predictions is slightly lower than345

models I and III, with the best results in model VI (92.9% and 58.8% for total

correct predictions and correct boss predictions, respectively).

The regressions corroborate the results of the previous section. Network
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I II III IV V VI

strength 1.035*** - 1.032** - - -
betweenness 1.111** - 1.108* - - 1.035
mafia charge - 12.87* 4.501 8.400* 5.444 5.172
n. of meetings - 1.167*** 0.982 1.116** 1.057 1.046
z-score - - - 33.34 - -
zP-score - - - - 1.098*** 1.086**

true non-bosses 218 217 217 217 216 216
false non-bosses 13 20 13 16 15 14
true bosses 21 14 21 18 19 20
false bosses 2 3 3 3 4 4
precision (total) [%] 94.1 90.9 93.7 92.5 92.5 92.9
precision (bosses) [%] 61.8 41.2 61.8 52.9 55.9 58.8

Table 5: Results of Firth’s logistic regressions on bosses. The upper part of the table reports

the odds ratio with the statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001), the bot-

tom part summarizes the predictive capabilities (percentage of correct predictions) of Models

I-VI described in the text.

analysis measures can effectively predict the leadership roles of individuals in a

criminal network. All network measures perform better than naturally observ-350

able variables such as the two controls. Centrality measures are effective and

yield the highest share of correct predictions. Among community measures,

zP-score has a significant capacity to predict bosses. In a model with central-

ity measures and controls, zP-score is the only statistically significant variable,

indicating a strong capacity to capture the behavior of leaders in criminal net-355

works.

These findings expand the literature on leadership in criminal networks, as

previous studies mainly relied on centrality measures only, often finding that

betweenness centrality identified leadership roles within crime groups (Morselli,

2009; Calderoni, 2014). Whereas the previous studies pointed out the role of360

brokering positions, they neglected the analysis of subgroups and its implications

for leadership. The application of community analysis measures shows that

criminal leaders not only have a notable brokering capacity, but also manage to

balance the connection within and outside their group. These results advocate

for expanding the concept of brokerage beyond individuals measures. In fact,365

bosses not only meet unconnected individuals, but also have a crucial function

in bridging their group with other groups.
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5. Identifying the “locale” membership

In this section we consider the problem of identifying the “locale” mem-

bership of those individuals for which such an information is unknown. In the370

Infinito network (254 nodes), this problem arises for 31 nodes (see Table 1, row

L0).

The problem can be set in the general framework of label prediction (Zhang

et al., 2010): we are given a set of network nodes X = {x1, x2, . . . , x254} and a

set of labels L = {L1, L2, . . . , L20} which, in our case, code the “locali” of the375

criminal organization (Table 1). The majority of the nodes have a label: Lh is

assigned to node xi (and we write L(xi) = Lh) if xi is affiliated to “locale” Lh.

The correspondence nodes/labels is, however, partially unknown, since there

are 31 nodes of X whose labeling is unknown and must be predicted based on

the network structure and on the known labels.380

A very general approach to the above problem relies on the notion of node

similarity, based on the assumption that the more two nodes are similar (in a

sense to be defined – see below), the more likely their label is the same. There-

fore, once defined a similarity score sij between nodes (xi, xj), the probability

that the unlabeled node xi has label Lh is assumed equal to385

p(L(xi) = Lh) =

∑
{xj |j 6=i,L(xj)=Lh} sij∑
{xj |j 6=i,L(xj)∈L} sij

, h = 1, 2, . . . , 20. (7)

In words, p(L(xi) = Lh) counts the relative abundance of nodes labeled Lh in

the network, and weights each of these nodes by its similarity to xi. The label

predicted for node xi is the one attaining the largest p(L(xi) = Lh).

5.1. Node similarities390

We consider and test four definitions of the similarity score sij : (i) and (ii)

are very popular and find many applications in social network analysis (e.g., Lü

and Zhou (2011)), (iii) and (iv) exploit the partition found by max-modularity

community analysis (Sec. 3).
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(i) Common Neighbors (CN): denoting by Γ(xi) the set of nodes neighbors to395

xi, we let

sij = |Γ(xi) ∩ Γ(xj)|, (8)

where |Q| denotes the number of elements of the set Q.

(ii) Weighted Common Neighbors (wCN): it generalizes the above definition

by exploiting the information on link weights (Lü and Zhou, 2010):

sij =
∑

k∈{Γ(xi)∩Γ(xj)}

wik + wkj

2
. (9)

(iii) Common Community (CC): a binary indicator, stating that similarity is400

equivalent to the membership to the same community:

sij =

1, if c(i) = c(j),

0, otherwise,

(10)

where c(i) denotes the community node i belongs to.

(iv) Weighted Common Neighbors - Common Community (wCN-CC): it com-

bines (ii) and (iii). It is equal to the Weighted Common Neighbors sim-

ilarity, but it is nonzero only when (xi, xj) are in the same community:405

sij =


∑

k∈{Γ(xi)∩Γ(xj)}
wik+wkj

2 , if c(i) = c(j),

0, otherwise.

(11)

5.2. Results

The label identification procedure, with the different node similarities above

defined, has been tested on the Infinito network. Unfortunately, the specificity

of the case does not allow one to validate the method on the 31 nodes which are410

actually unlabeled – their “locale” is unknown by definition. Thus the procedure

has been applied to the 177 nodes with known label L2, L3, . . . , L18 (the “locali”

in Milan area, the region under investigation – see Table 1), assuming their label

is unknown and trying to recover it.
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In order to mimic the real situation, in which an entire pool of labels have to415

be simultaneously identified, in our experiments we assume that the labels of m

nodes have to be reconstructed at the same time, and we test the effectiveness

of the procedure by letting m increasing from 1 to 30. For each m, we randomly

extract 5 × 103 samples of m nodes in “locali” L2, L3, . . . , L18, and predict

simultaneously their labels via equation (7). For each sample, we compute the420

precision as the fraction of correct guesses. More in detail, for each node under

test we increment a success counter s by 1 if the label which maximizes the

probability (7) is the correct node label, while if the probability of r > 1 labels

is equally maximal in (7) we increment the counter by 1/r if the correct node

label is one of them. For the m-node sample, the precision of the reconstruction425

is eventually given by s/m.

Figure 6 summarizes the results, in terms of mean and standard deviation

of the precision over the samples, for all m = 1, 2, . . . , 30 and for the four

similarity measures above defined. In principle, we expect that the larger m,

the more difficult the prediction task, since the latter is based on a smaller430

set of known labels. In this respect, the results are rather counterintuitive.

Firstly, the average precision is largely insensitive to m, and ranges from about

45% to 65% according to the similarity measure adopted. Notably, the best

performing method (wCN-CC) exploits the analysis of the community structure

of the network. Secondly, the variability of the precision rate displays a clear435

decreasing trend as m increases. This behaviour is due to a sort of “large

numbers” effect: when very few labels are to be guessed, the success depends

very much on the specific nodes under scrutiny. When a large pool of nodes

are instead investigated, successes and failures tend to balance in a proportion

which mildly depends on the specific set of nodes. Overall, this latter analysis440

confirms that, on the Infinito network, the precision of the label reconstruction

procedure can reach a proportion of about two thirds, even for sets of the same

order of magnitude of the real unlabeled set L0.
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Figure 6: Precision of the label identification methods with respect to the number m of

unlabeled nodes. The curves represent the average precision (circles) plus/minus standard

deviation (crosses) over 5 × 103 random samples of m nodes (CN: Common Neighbors;

wCN: Weighted Common Neighbors; CC: Common Community; wCN-CC: Weighted Com-

mon Neighbors - Common Community).
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6. Concluding remarks

This paper applied community analysis methods to investigate the struc-445

ture of a mafia organization. Focusing on meeting participation as a proxy for

the relationships among criminals, community analysis assessed the clusterized

structure of the mafia and showed that it often mirrors the internal subdivision

of the mafia among several clans or “locali”, or unions of them. This supports

the intuition that subgroups matter in this type of organizations.450

In the light of these findings, the study tested the capacity of community

analysis techniques to identify relevant characteristics of the criminal organi-

zation, namely leadership roles and “locali” membership. The results show

that the zP-score, which captures the interplay between a node connectivity

within its community and to the other communities, can effectively single out455

the bosses of the mafia. Furthermore, the most effective method for identifying

the “locale” membership of the nodes focuses again on the connectivity within

the same community.

Overall, these findings reinforce the idea that the tools of network analysis

can be fruitfully adopted to enhance the understanding of the structure and460

function of organized crime, albeit their use as a support for law enforcement

intelligence still needs further exploration.

The research can be extended in many directions. First of all, a deeper

structural analysis on a pool of criminal networks would be needed, aimed at

assessing whether peculiar structural attributes turn out to be recurrent in such465

networks. Then, coming back to the problem of community detection, other

methods might prove to be more effective – including those specifically devoted

to bipartite networks, as it is our data structure before projection (see Sec.

2). Finally, once the structure has been thoroughly understood, the challenge

is clearly that of linking it with the function of the network, namely to fully470

understand how structural properties relate to criminal activities.

23



Acknowledgements

The authors would like to thank Giulia Berlusconi, Vera Ferluga, Nicola

Parolini, Samuele Poy, and Marco Verani for many useful discussions.

References475

Arenas, A., Danon, L., Diaz-Guilera, A., Gleiser, P., Guimera, R., 2004. Com-

munity analysis in social networks. European Physical Journal B 38, 373–380.

doi:10.1140/epjb/e2004-00130-1.

Arenas, A., Duch, J., Fernandez, A., Gomez, S., 2007. Size reduction of complex

networks preserving modularity. New Journal of Physics 9, 176. doi:10.1088/480

1367-2630/9/6/176.

Baeza-Yates, R., Ribeiro-Neto, B., 1999. Modern Information Retrieval. Addi-

son Wesley.
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