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Abstract.

We study the dynamics of a growth model formulated in the tradition of Kaldor and Pasinetti where
the accumulation of the ratio capital/workers is regulated by a two-dimensional discontinuous map with
triangular structure. We determine analytically the border collision bifurcation boundaries of periodicity
regions related to attracting cycles, showing that in a two-dimensional parameter plane these regions are
organized in the period adding structure. We show that the cascade of �ip bifurcations in the base one-
dimensional map corresponds for the two-dimensional map to a sequence of pitchfork and �ip bifurcations
for cycles of even and odd periods, respectively.
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1 Introduction

An important limitation of neoclassical models of economic growth consists in exclusively predicting for
the long run a monotonic convergence to a steady state for both output and capital per capita. A lot of
e¤orts have been made by economists to conceive the possibility of endogenous growth cycles. If we only
focus on the so-called Solow-Swan growth model, it has been proved, for instance, that complicated growth
paths may arise by considering two sectors instead of one, combined with certain levels of discounting (see
[1],[2]). Other researchers have introduced economically founded nonlinearities into the models in order to
make unstable the steady state or even increase the number of stationary states, with the possibility of
complicated dynamics. A pioneer in this strand of research is Richard Day, who in a pair of seminal papers
[3],[4] improved the Solow model introducing some nonlinearities leading to irregular growth cycles. One of
these possibilities consists in replacing the unrealistic hypothesis of exponential growth of the labor force
with a more realistic bounded growth such as the logistic one. This alternative formalization of the labor
force growth rate has been successfully implemented into the classical Ramsey growth model [5]-[10], the
Solow-Swan framework [11] and the Kaldor-Pasinetti model with di¤erential savings [12].
Endogenous �uctuations of the growth path can also be generated by the introduction of discontinuities

in an otherwise classical framework. From a mathematical point of view a discontinuity, like a nonlinearity,
may cause the emergence of complex dynamics (cycles and chaos), however routes to such dynamics are
quite di¤erent. To our knowledge only Böhm and Kaas [13] and Tramontana et al. [14] give examples of
investigations of the role of a discontinuity in a classical growth model2 . They move from a Kaldor-Pasinetti
model with di¤erential savings and introduce a discontinuity through a Leontief production function, showing
that growth cycles are a typical outcome under these assumptions.
Recently, in [17] a growth model is built which combines the nonlinearity of the logistic growth of the

labor force with the discontinuity arising from the assumption of Leontief technology (as in [13] and [14]).

1Corresponding Author: University of Pavia, Department of Economics and Management, Via S.Felice 5, 27100 Pavia (PV),
Italy. email: fabio.tramontana@unipv.it . Tel. (+39)0382 986224.

2 In fact we should also mention the growth model studied by Matsuyama [15] and Gardini et al. [16] where combining Solow
and Romer models a piecewise smooth map is obtained. However, the map is continuous, and this leads to dynamics quite
di¤erent from those occurring in a discontinuous one.
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The authors explain the economic meaning of these assumptions and show some numerical simulations with
interesting dynamic outcomes.
The aim of the present paper is to investigate the bifurcations occurring in the model proposed in [17],

which is described by a two-dimensional (2D henceforth in short) discontinuous triangular map base of
which is the well known logistic map. We show that quite complicated growth paths may emerge and some
of the observed phenomena are qualitatively di¤erent from those arising in models with nonlinearities and
discontinuities taken separately. In particular, bistability is proved to occur in the present 2D map. Moreover,
we show that the periodicity regions related to stable cycles are organized in the period adding structure.
Note that such a structure is characteristic for a class of one-dimensional (1D for short) discontinuous
piecewise monotone maps (see, among others, [18], [19], [20], [14]). It has been shown that the period adding
structure can be observed also in 1D maps with two discontinuities [21], and in continuous 1D maps with
two border points [22]. A �rst example of the period adding structure in 2D discontinuous maps is provided
in [23]. In the present paper we explain how to obtain analytically the equations of the border collision
bifurcation3 (BCB for short) boundaries of the periodicity regions in the parameter space.
The paper is organized as follows. In Sec. 2 we introduce the economic assumptions that permit to obtain

a 2D discontinuous map governing the dynamics of the capital accumulation. Some preliminary results are
presented in Sec. 3. Di¤erent bifurcation scenarios originating by the map are studied in the subsequent
three sections. In particular, in Sec. 4 we describe the asymptotic dynamics occurring in a 1D piecewise
linear map with one discontinuity, which is a restriction of the 2D map to an invariant straight line (layer)
associated with the �xed point of the base map. A �rst period doubling bifurcation of this �xed point
leads to two cyclic layers (associated with the 2-cycle of the logistic map) on which the restriction of the
2D map is a 1D piecewise linear map with at most three discontinuity points. The asymptotic dynamics of
this map is studied in Sec.5. These 1D maps allow us to explain the existence of a period adding structure
in the parameter space of the 2D map, and to determine analytically the equations of the border collision
bifurcations boundaries of the periodicity regions presented in Appendix. In Sec.6 we prove the occurrence of
bistability associated with �ip bifurcations in the base map, which for the 2D map are pitchfork bifurcations
(leading thus to bistability) for the cycles of even periods or �ip bifurcations for the cycles of odd periods.
In Sec.7 we propose some �nal observations.

2 The model

We consider a classic discrete time one sector Solow-Swan growth model enriched by the following additional
assumptions:

� two groups of agents, workers and shareholders (see [24]-[26]) are characterized by constant but di¤erent
saving propensities, usually denoted as sw and sr in the cited literature, and here denoted in a concise
form as w and r, with 0 � w � r � 1;

� technology is characterized by a Leontief production function (see [13]):

f(k) = min(ak; b) + c (1)

where k denotes capital per worker, and a; b; c are positive technical parameters;

� a logistic labor force growth rate (n).

The usual way of determining the wage rate W is:

W (k) = f(k)� kf 0(k); (2)

where the marginal product f 0(k) is what shareholders gather while kf 0(k) is the capital income per worker.
Considering a one-period production lag and a capital depreciation rate 0 < � � 1 we get the following

equation that regulates the growth path of the capital accumulation:

kt+1 =
1

1 + nt
[(1� �) kt + wW (kt) + rktf 0(kt)] : (3)

3Recall that in discontinuous maps the BCB of a cycle occurs when one of its periodic points collides with the border of the
existence region of the cycle, causing its appearance or disappearance.
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Substituting the wage rate equation (2), using the Leontief production function (1) and the assumption
of logistic capital force growth rate, we �nally obtain the following 2D discontinuous map:

k0 =

� 1
1+n [(1� � + sra) k + swc] if k � b

a
1

1+n [(1� � + sra) k + swc] if k > b
a

;

n0 = �n(1� n);
(4)

where � is the parameter regulating the dynamic of the logistic function.
Let us rewrite the map (4) it in a more convenient form. We set the state variables as a vector (x; y) =

(k; n) 2 R2+ and consider the family of 2D discontinuous piecewise smooth maps T : R2+ ! R2+ de�ned as

T :

�
x
y

�
7!
�
G(x; y)
f(y)

�
; (5)

where

G(x; y) =

8><>:
GL(x; y) =

(1� � + ra)x+ wc
1 + y

if x � b

a

GR(x; y) =
(1� �)x+ w(b+ c)

1 + y
if x >

b

a

; (6)

f(y) = �y(1� y);

and we recall that the parameters introduced above, that is, a; b; c; �; r; w and �; are considered satisfying
the following restrictions:

a; b; c > 0; 0 < � � 1; 0 < w < r < 1; 1 < � < 4: (7)

3 Preliminaries

First we note that map T belongs to the class of triangular maps4 given that the function which governs the
dynamics of the variable y does not depend on the variable x: In fact, the so-called base map y 7! f(y) is the
well-known logistic map whose dynamic properties can be used to describe the dynamics of T: As already
remarked, one more peculiarity of map T is that it is a discontinuous piecewise smooth map. The line

C�1 =
�
(x; y) 2 R2+ : x = b=a

	
;

on which map T is discontinuous separates the phase plane of T in two partitions, denoted by DL and DR;
in which smooth maps TL and TR, respectively, are de�ned:

TL :

�
x
y

�
7!
�
GL(x; y)
f(y)

�
; (x; y) 2 DL =

�
(x; y) 2 R2+ : x � b=a

	
;

TR :

�
x
y

�
7!
�
GR(x; y)
f(y)

�
; (x; y) 2 DR =

�
(x; y) 2 R2+ : x > b=a

	
:

Following [35] and [36], the discontinuity line C�1 as well as its images CL = TL(C�1) and CR = TR(C�1)
are called critical lines. The images and preimages of C�1 play an important role in the description of the
dynamics of map T; similar to the role of critical lines for smooth noninvertible 2D maps and the role of
critical (folding) points for smooth noninvertible 1D maps.
It is easy to see that map T can have at most two feasible �xed points, denoted L and R; and de�ned,

respectively, as

L : (x; y) = (x�L; y
�) 2 DL; (8)

R : (x; y) = (x�R; y
�) 2 DR;

4A trangular map has the following structure: (x0; y0) = (f(x; y); g(y)).
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where

x�L =
wc

y� + � � ra ; x�R =
w(b+ c)

y� + �
; y� = 1� 1

�
: (9)

In fact, from f(y) = y we get two solutions, y = 0 and y = y�: Given that only positive values of the variables
are feasible, the �rst solution is not considered here (it leads to saddle �xed points on the boundary of the
feasible region). Substituting y = y� �rst to GL(x; y) = x and then to GR(x; y) = x; we get x�L and x

�
R;

respectively, so that the points L and R are the �xed points of maps TL and TR: Obviously, L and R are
really existing �xed points of T only if they belong to their de�nition regions, that is, if 0 < x�L � b=a and
x�R > b=a, that holds for the following parameter regions:

PL =

�
p : w � b (y� + � � ra)

ac
; y� + � � ra > 0

�
;

PR =

�
p : w >

b (y� + �)

a(b+ c)

�
;

respectively, where p denotes a point in the parameter space satisfying (7). The boundaries

�L =

�
p : w =

b (y� + � � ra)
ac

�
; (10)

�R =

�
p : w =

b (y� + �)

a(b+ c)

�
; (11)

at which x�L = b=a and x�R = b=a, respectively, are related to the BCB of the �xed points L and R.
It is easy to see that for p 2 PL (p 2 PR) the �xed point L (resp., R) is an attracting node if � 2 I1

where I1 = (1; 3); and a saddle if � > 3. In fact, except for the points of the discontinuity line C�1 on which
Jacobian is not de�ned, that is, x0 6= b=a; the eigenvalues of the Jacobian matrix of map T evaluated at any
point (x0; y0) are

�h(x0; y0) =

8><>:
sL =

1� � + ra
1 + y0

; x0 <
b

a
;

sR =
1� �
1 + y0

; x0 >
b

a
;

and
�v(x0; y0) = f 0(y0) = �(1� 2y0);

related to the horizontal and vertical eigendirections (typical for triangular 2D maps), respectively. For the
�xed points L and R we have

�h(L) =
1� � + ra
1 + y�

; �v(L) = 2� �;

�h(R) =
1� �
1 + y�

; �v(R) = 2� �:

For parameters p 2 PL the inequality 0 < �h(L) < 1 holds, and if p 2 PR then 0 < �h(R) < 1; while
j�v(L)j = j�v(R)j < 1 for � 2 I1: That is, the existing �xed point, L or R, of map T is always attracting
in the horizontal direction, while in the vertical direction it is attracting for � 2 I1 and repelling for � > 3:
This implies that the asymptotic dynamics of the 2D map T for � 2 I1 is governed by the 1D discontinuous
piecewise linear map already studied in detail in [14]. In the next section we recall some results related to
this map and describe the bifurcation structure of the (r; w)-parameter plane for � 2 I1.

4 Reduction to a 1D piecewise linear map with one discontinuity

From the remarks of the previous section we can state the following
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Proposition 1. For � 2 I1 where I1 = (1; 3); any orbit of map T with initial condition (x0; y0) 2 R2+ is
attracted to the invariant line

L� =
�
(x; y) 2 R2+ : y = y�

	
; (12)

where y� = 1� 1=�; on which T is reduced to a 1D discontinuous piecewise linear map g : R+ ! R+ de�ned
as follows:

g : x 7! g(x) =

8><>:
gL(x) =

(1� � + ra)x+ wc
1 + y�

if x � b

a
;

gR(x) =
(1� �)x+ w(b+ c)

1 + y�
if x <

b

a
:

(13)

For � 2 I1 the logistic map f has a repelling �xed point y = 0, an attracting �xed point y = y� and no other

invariant set. Thus, any orbit of T with an initial point (x0; y0) 2 R2+ is attracted to the invariant line L�
(called layer) associated with the attracting �xed point y = y�.
Obviously, for the 2D map T the layer L� remains invariant also for � > 3; and the restriction of T to

the layer is always the map g de�ned in (13), but in such a case L� is transversely repelling.
The map g belongs to the class of 1D discontinuous piecewise increasing maps studied by many researchers

(see, e.g., [29], [30], [31], [32], [20]). One of the characteristic features of such maps, when they are invertible
on the absorbing interval, is the period adding structure observed in the parameter space. It is formed by
periodicity regions which are ordered according to the following rule (also called Farey summation rule):
between any two periodicity regions related to attracting cycles with rotation numbers m1=n1 and m2=n2
there is a region related to attracting cycles with rotation number m3=n3 = (m1 +m2)=(n1 + n2). In the
piecewise linear case all the boundaries of these periodicity regions can be obtained analytically (see [29],
[18], [19]).
In [14] the period adding structure of map g is described in the (r; w)-parameters plane. In the �gures

of the present paper we �x the parameters a; b; c and � as in [14], that is,

a = 1:5; b = c = 2:9; � = 0:45 (14)

and study dynamics of T depending on the parameters r; w and � (as y� = 1 � 1=�; y� can take values in
the range (0; 2=3) while in [14] it was considered y� = 0:45 �xed).
Let fxigni=1 be the points of an n-cycle of map g; then its symbolic representation can be written as

� = s1s2:::sn where each symbol si 2 fL;Rg is associated with the point xi depending on whether xi is on
the left or on the right of the border point x = b=a: That is, si is set equal to L if xi < b=a and to R if
x > b=a: To denote an n-cycle of map g we use its symbolic representation. Cycles LRn and RLn; n � 1,
are called basic cycles. They belong to two families of complexity level one according to [29]. In Appendix
we recall how to get cycles of higher complexity levels forming the period adding structure, as well as how to
determine the equations of the related BCBs. An example of the graph of map g is shown in Fig.1, together
with its absorbing interval

I = [gR(b=a); gL(b=a)] (15)

and an attracting 3-cycle RL2 which is the unique attractor at the given parameter values.
In Fig.2 we show a 2D bifurcation diagram of map T in the (r; w)-parameter plane for � = 2: In this

diagram the periodicity regions corresponding to attracting cycles of di¤erent periods are shown by di¤erent
colors, where the correspondence between the color and the period is given in the color bar (some periods
are indicated also by numbers).
According to Proposition 1 this bifurcation structure can be explained by means of map g where y� = 0:5.

Note that map g is invertible on the absorbing interval I if gR(gL(b=a)) < gL(gR(b=a)) and noninvertible
otherwise, so that the transition between invertible and noninvertible occurs at the boundary de�ned by the
equation gR(gL(b=a)) = gL(gR(b=a)); that holds for

� = fp : w(ra(c+ b)� b(y� + �)) = 0g : (16)

The set � is de�ned by two subsets, �1 = fp : w = 0g and �2 ={p : ra(c+ b)� b(y�+ �) = 0}. Given that we
consider w > 0; map g is invertible on I for ra(c+ b)� b(y�+ �) > 0: In the (r; w)-parameter plane shown in
Fig.2 the set �2 (de�ned by r = b(y� + �)=a(c+ b) � 0:3167) is the vertical line through the point �L \ �R.
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Figure 1: Graph of map g given in (13), its absorbing interval I = [gR(b=a); gL(b=a)] and its attracting
3-cycle RL2. Here y� = 0:5 (� = 2); r = 0:7; w = 0:15 and the other parameters �xed as in (14).

Figure 2: 2D bifurcation diagram of the map T in the (r; w)-parameter plane for � = 2: The other parameters
are �xed as in (14).

As discussed in [20], an intersection point of two BCB curves of di¤erent attracting �xed points (or cycles)
of a 1D piecewise increasing discontinuous map, when the map is invertible on the absorbing interval, is an
issue point of a full period adding structure. In Fig.2 we see this structure issuing from the intersection
point of the curves �L and �R; de�ned in (10) and (11), which are the BCB curves of the �xed points L and
R of map T; as well as the BCB curves of the �xed points x�L and x

�
R of map g: In Appendix, following

[14], we recall how all the cycles associated with the period adding structure are grouped according to their
complexity levels, as well as how to get analytically the boundaries of the related parameter regions.

5 Dynamics of T on two cyclic layers

As we have seen (Proposition 1), for � 2 I1 the asymptotic dynamics of T belong to the layer L�; and it is
known that at � = 3 the �xed point y� of the logistic map f undergoes a �ip bifurcation, leading to a 2-cycle
fy1; y2g where

y1;2 =
�+ 1�

p
�2 � 2�� 3
2�

; (17)
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which is attracting for � 2 I2 where I2 = (3; 1 +
p
6). In this section we consider the dynamics of T when �

belongs to this interval.
In Fig.3 we show the bifurcation structure of the (w; �)-parameter plane at r = 0:53 and other parameters

�xed as in (14). In the parameter region with � 2 I1 one can seen the period adding bifurcation structure
that can be completely described by means of map g considered in the previous section. In the present one
we describe how this structure is modi�ed in the parameter region with � 2 I2 (while the description of the
bifurcation occurring for T at � = 3 is presented after).

Figure 3: 2D bifurcation diagram of map T in the (w; �)-parameter plane at r = 0:53: The other parameters
are �xed as in (14). An enlargement of window indicated by white lines is shown in Fig.7.

So, for � 2 I2 the logistic map f has an attracting 2-cycle, and for 2D map T this leads to the existence,
for � > 3, of two straight lines (layers):

L1 =
�
(x; y) 2 R2+ : y = y1

	
and L2 =

�
(x; y) 2 R2+ : y = y2

	
; (18)

which are cyclical for T and invariant for the second iterate of the map, T 2: Moreover, these layers are
transversely attracting for � 2 I2: So, the following proposition holds:
Proposition 2. For � 2 I2 where I2 = (3; 1+

p
6); any orbit of map T with an initial point (x0; y0) 2 R2+

(except for the points belonging to the layer L�; given in (12), and all its preimages by T ) is attracted to
the 2-cyclical layers fL1; L2g given in (18). On L1 the map T 2 is reduced to a 1D discontinuous piecewise
linear map g1 : R+ ! R+ de�ned as follows:

g1 : x 7! g1(x) =

8>>>>>>>>><>>>>>>>>>:

gLL(x) = GL(GL(x; y1); y2); x � min
�
b

a
; x1

�
;

gLR(x) = GR(GL(x; y1); y2); x1 < x � b

a
;

gRL(x) = GL(GR(x; y1); y2);
b

a
< x � x2;

gRR(x) = GR(GR(x; y1); y2); x > max

�
b

a
; x2

�
;

(19)

where GL(x; y1) =
(1� � + ra)x+ wc

1 + y1
; GR(x; y1) =

(1� �)x+ w(b+ c)
1 + y1

;

x1 =
b(1 + y1)� awc
a(1� � + ra) ; x2 =

b(1 + y1)� aw(b+ c)
a(1� �) ;
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and y1; y2 are given in (17). Similarly, on the layer L2 the map T 2 is reduced to a 1D discontinuous
piecewise linear map g2 : R+ ! R+ given by function g2(x) which is de�ned replacing y1 by y2 and vice
versa in (19).

The map g1 can have at most four linear branches (with positive slopes) and at most three discontinuity
points. The �rst discontinuity point is the same as in map g, that is, x = b=a; and from GL(x; y1) = b=a and
GR(x; y1) = b=a we obtain two more discontinuity points, x1 and x2. Two examples of map g1 are shown in
Fig.4, namely, in Fig.4a map g1 is de�ned by three branches and has an attracting 2-cycle, while in Fig.4b
map g1 is given by four branches and has two coexisting �xed points.

Figure 4: The map g1 given in (19) and its (a) attracting 2-cycle for � = 3:2, r = 0:55; w = 0:25; (b) two
coexisting �xed points for � = 3:2, r = 0:8; w = 0:25.

It is clear that the overall bifurcation structure of a 1D discontinuous piecewise linear map with more
than one discontinuity point is more complicated than the one of the map with one discontinuity. In fact,
the description of such a structure in the generic case it is still an open problem (see e.g. [21], [33], [34] where
some particular cases are studied). Clearly, as a starting point of investigation of the bifurcation structure
one can search for a parameter region corresponding to only two linear branches involved in asymptotic
dynamics (or, in other words, in the absorbing interval). That is, only one discontinuity point belongs to the
absorbing interval of the map, as it occurs in Fig.4a,b. In such a region we can expect to observe the period
adding structure already discussed in the previous section. In fact, in Fig.5 we present the 2D bifurcation
diagram of map g1 in the (r; w)-parameter plane for � = 3:2; where one can see two period adding structures
issuing from the points indicated by black circles. We can explain why the period adding structures are
issuing from these points.
As we show below, the black circles in Fig.5 are the intersection points of BCB curves of di¤erent �xed

points of map g1: To get these curves we �rst obtain the possible �xed points of map g1, denoted x�LL; x
�
LR,

x�RL and x
�
RR; solving the equations gLL(x) = x; gLR(x) = x; gRL(x) = x and gRR(x) = x, respectively.

These points are true �xed points of g1 only if they belong to the de�nition intervals of the related linear
branches. The collision of a �xed point with a border of the related interval leads to the condition of its
appearance/disappearance, that is, the condition of its BCB. In Fig.5 the following BCB curves are shown:

�
b=a
LL = fp : x

�
LL = b=ag ; �x2RR = fp : x

�
RR = x2g ; (20)

�
b=a
RL = fp : x

�
RL = b=ag ; �x2RL = fp : x

�
RL = x2g ; (21)

�x1LR = fp : x
�
LR = x1g ; �

b=a
LR = fp : x

�
LR = b=ag : (22)

The attracting �xed point x�LL exists below the curve �
b=a
LL related to its BCB with the border point x = b=a;

the attracting �xed point x�RR exists above the curve �x2RR related to its BCB with x = x2; the attracting

�xed point x�RL exists above the curve �
b=a
RL (BCB with x = b=a) and below �x2RL (BCB with x = x2), and,

�nally, the attracting �xed point x�LR exists above the curve �
x1
LR (BCB with x = x1) and below �

b=a
LR (BCB

with x = b=a). Note that the existence regions of x�RL and x
�
LR are overlapped, so that in the dashed region

x�LR coexists with x
�
RL; as in the example shown in Fig.4b.
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Figure 5: 2D bifurcation diagram of the map g1 in the (r; w)-parameter plane for � = 3:2 and the other
parameters as in (14).

It is easy to check that for the parameter values related to the point p1 = �
b=a
LL \ �

b=a
RL the map g1 is

continuous at the border point x = b=a, and thus we can state (see [20]) that this point is an issue point of
the period adding structures associated with the branches gLL(x) and gRL(x) of map g1: Similarly, we can
state that one more period adding structures is associated with the branches gRL(x) and gRR(x); issuing
from the point p2 = �x2RL\ �

x2
RR at which map g1 is continuous at x = x2. These two period adding structures

are observed in Fig.5, and the formulas of the boundaries of the related periodicity regions can be obtained
following the approach described in Appendix.

Coming back to the 2D map T; we recall that map g1 represents a reduction of T 2 on the layer L1. Thus,
an n-cycle of map g1 leads to the existence of a 2n-cycle of map T (with periodic points which alternate
on the two layers L1 and L2 given in (18)). That is, with regards to map T all the periodicity regions of
n-cycles in Fig.5 are related to attracting cycles of T of doubled periods 2n. For example, for parameter
values related to two coexisting �xed points of map g1 presented in Fig.4b, map T has two coexisting 2-cycles
indicated in Fig.6 by black and gray circles. It is also shown by white circles a saddle 2-cycle belonging to
the layer L� given in (12) associated with a 2-cycle of map g de�ned in (13).
The basins of the coexisting attracting 2-cycles, shown in red and white in Fig.6, are separated by

the discontinuity line C�1 (x = b=a) and all its preimages (not horizontal basin boundaries), as well as
by the layer L� and all its preimages which are horizontal lines accumulating towards f(x; y) : y = 0g and
f(x; y) : y = 1g ; associated with the repelling �xed point y = 0 of the logistic map f and its preimage y = 1.
That is, the values of y at which we have these horizontal lines are given by all the preimages of the �xed
point y = y� = 1� 1=� of the logistic map f .

6 Bifurcation of cycles of T at � = 3

As already remarked, for � 2 I1 the map T on the layer L� (when a �xed point does not exist) can have
an attracting cycle of any symbolic sequence according to the period adding structure, as well as aperiodic
trajectories, depending on the dynamics of the 1D discontinuous map g. More precisely, in the generic case
the (unique) attractor of T is either the �xed point L(x�L; y

�), or the �xed point R(x�R; y
�); or an n-cycle

n = f(xi; y�)gn�1i=0 , n � 2: In a nongeneric case the attractor of T is a quasiperiodic orbit on L� (it occurs
for a zero-measure set of parameter values, see [19]). Now we turn to describe which bifurcation occurs for
T at � = 3; that is, if � increases through � = 3:
Let us �rst consider an enlargement of Fig.3, presented in Fig.7. It can be seen that if � passes through
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Figure 6: Two coexisting attracting 2-cycles (black and gray circles) of the map T and their basins of
attraction for � = 3:2; r = 0:8; w = 0:25:

� = 3 then cycles of even periods lead to cycles of the same period (but, as we show, not unique), while cycles
of odd periods lead to (unique) cycles of double periods. In Fig.7 we show also the BCB curves de�ned in
(20), (21) and (22), which are related to BCBs of the attracting �xed points of map g1 which correspond, for
map T; to BCBs of the related attracting 2-cycles. In particular, one can see that for the parameter values
belonging to the dashed region, map T has two coexisting attracting 2-cycles. In fact, as we see below, for
� in a right neighborhood of � = 3 two cycles of even period must coexist.
Proposition 3. Let n be an n-cycle of map T existing on the layer L� for � < 3: Then, at � = 3 the

cycle n undergoes:

� a �ip bifurcation leading to a unique cycle of double period if n is odd,

� a pitchfork bifurcation leading to a pair of n-cycles if n is even,

with periodic points belonging to the layers L1 and L2 given in (18).

In fact, if we consider an n-cycle n of map T related to the cycle fxign�1i=0 of map g with symbolic
sequence �; then the eigenvalues of n are

�h(n) = smL s
n�m
R =

�
1� � + ra
1 + y�

�m�
1� �
1 + y�

�n�m
(23)

where m is the number of symbols L in �, and

�v(n) = (f
0(y�))n = (2� �)n: (24)

For � 2 I1 the cycle n is attracting with 0 < �h(n) < 1; and j�v(n)j < 1. At � = 3 we have �v(n) = 1
if n is even, so that the n-cycle n undergoes pitchfork bifurcation leading to two attracting n-cycles, while
�v(�) = �1 if n is odd, so that � undergoes period-doubling bifurcation leading to an attracting 2n-cycle.
As it can be seen also from Fig.7, increasing � one of the coexisting n-cycles appearing when n is even

can disappear due to a BCB. This can be clearly seen to occur with the 2-cycle of map T in the same �gure,
where the BCB curves are shown and the region of coexistence is evidenced. If the parameter point crosses
the boundary �x1LR or �

b=a
LR of the dashed region in Fig.7 then one of the attracting 2-cycles disappears. A

similar behavior occurs inside all the periodicity regions associated with a pair of cycles of even periods.
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Figure 7: An enlargement of the window indicated in Fig.3.

It is easy to see that a similar reasoning can be used to describe the bifurcation occurring at � = 1+
p
6 �

3:449499; which is the �ip bifurcation value of the 2-cycle of the logistic map f , leading to an attracting
4-cycle, say, with periodic points yi, i = 1; 2; 3; 4. Thus, for the 2D map T all the periodic points and
asymptotic dynamics belong to four cyclic invariant layers de�ned by y = yi, i = 1; 2; 3; 4. For � in a left
neighborhood of � = 1+

p
6 all the cycles have even periods, some are multiple of 4 and some are not. Thus

at the bifurcation occurring for � = 1 +
p
6 � 3:449499 any cycle having period multiple of 4 undergoes a

pitchfork bifurcation and leads to coexistence of cycles of the same period, while the cycle whose period is not
multiple of 4 undergoes a �ip bifurcation leading to a cycle of double period. Thus in a right neighborhood
of � = 1 +

p
6 all the cycles have a period which is multiple of 4.

Figure 8: In (a): an enlarged part of the 2D bifurcation diagram of map T shown in Fig.3; in (b): an
enlargement of the window indicated in (a).

The attracting 4-cycle of map f undergoes a period-doubling bifurcation at � � 3:544090; and so on. It
is well known that in the logistic map f the �rst period-doubling cascade is observed for 3 < � < ��, where
�� � 3:569946 is Feigenbaum accumulation point, and for each bifurcation value we can reason similarly for
the 2D map T . In correspondence to this cascade we see in Fig.3 and in its enlargement shown in Fig.8a
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a sequence of windows of decreasing width, related to attracting cycles whose periods are either doubled (a
period-doubling bifurcation occurs), or remain the same (a pitchfork bifurcation occurs).
It is well known that for � > �� the logistic map is chaotic (an invariant set with chaotic dynamics exists),

although periodic windows of any period also exist (see [35]). In particular, map f has a chaotic attractor
(in one interval or in cyclical intervals) for a completely disconnected set (of positive Lebesgue measure) of
values of � from the interval �� < � � 4, while for almost all other values of � map f has an attracting cycle
coexisting with a chaotic repellor. These results can be applied to map T accordingly, in particular, one can
state that for � > �� the map T is chaotic.

7 Conclusion

The quest for growth models endogenously generating business cycles is a long standing one. In the early
years of economic growth theory economists obtained endogenous �uctuations by adding more structure to
the simpler base models, for instance by considering more than one sector.
In this paper we have studied the dynamic behavior occurring in a model recently proposed in [17],

where both discontinuity and nonlinearity are present. The system is described by a 2D discontinuous map
characterized by a piecewise linear function and a smooth one. We have shown that also in such a 2D
maps the period adding structure can occur, leading to attracting cycles of speci�c periods. The border
collision bifurcation boundaries of periodicity regions related to attracting cycles can also be determined
analytically, by using the formulas presented in Appendix. Moreover, we have found the new interesting
scenarios of bistability which may occur in parameters�regions that are not negligible, and in correspondence
of particular bifurcation values.
Given that the sources of nonlinearities and switching regimes in economics (as well as in other disciplines)

are quite numerous, we hope that the study of this kind of dynamical systems will proceed in order to better
understand all the implications of such structures.
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Appendix (Period adding structure)
Consider a generic family of 1D discontinuous piecewise linear maps q : R ! R with one border point

x = d, de�ned as

q : x 7! q(x) =

�
qL(x) = aLx+ �L if x < d;
qR(x) = aRx+ �R if x > d:

(25)

It is known (see, e.g., [18], [19], [21], [22]) that period adding structure is observed in the parameter space
of map q if aL > 0; aR > 0; qR(d) < d < qL(d) and map q is invertible on the absorbing interval I =
[qR(d); qL(d)] ; that holds for qR(qL(d)) < qL(qR(d)):
Following [29], all the cycles associated with the period adding structure are grouped into families ac-

cording to complexity levels. The complexity level one includes two families, denoted �1;1 and �2;1; to which
the so-called basic cycles belong:

�1;1 = fLRn1g1n1=1 ; �2;1 = fRLn1g1n1=1 : (26)

To get the symbolic sequences of the cycles of families of complexity level two we apply to the families �1;1
and �2;1 the following symbolic replacements:

�Lm :=

�
L! LRm

R! RLRm
; �Rm :=

�
L! LRLm

R! RLm
(27)

(see [18], [19]). Namely, at �rst we substitute in �1;1 each symbol L by LRm and each symbol R by RLRm

(replacement �Lm), and then we substitute in �1;1 each symbol L by LRL
m and each symbol R by RLm

(replacement �Rm). Then setting the index m = n2 we get the two families of complexity level two:

�1;2 = fLRn2 (RLRn2)n1g
1
n1;n2=1

; �2;2 = fLRLn2 (RLn2)n1g
1
n1;n2=1

: (28)

Similarly, applying the replacements �Lm and �
R
m to �2;1 we get the symbolic sequences of two more families:

�3;2 = fRLRn2 (LRn2)n1g
1
n1;n2=1

; �4;2 = fRLn2 (LRLn2)n1g
1
n1;n2=1

: (29)

In short, this procedure can be written as �1;2 = �Ln2(�1;1); �2;2 = �Rn2(�1;1); �3;2 = �Ln2(�2;1) and
�4;2 = �Rn2(�2;1). So, we get 4 families of complexity level two

5 . Further, applying the replacements (27)

5One more way to construct the families of the complexity level two consists in consequtive concatenation of the �neighbor�
symbolic sequences of the �rst complexity level. As shown in [18], the symbolic sequences obtained in such a way are shift
invariant to those obtained by the symbolic replacements (27).
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with m = n3 to the families of complexity level two we obtain 23 families �j;3, j = 1; : : : ; 23, of complexity
level three, and so on. In this way all the symbolic sequences of cycles associated with the period adding
structure are obtained.
To determine the analytic expressions of the BCB boundaries of the periodicity regions forming the period

adding structure, consider �rst the basic cycles LRn1 and RLn1 belonging to the families �1;1 and �2;1 of
complexity level one de�ned in (26). As shown in ([21]) and ([22]), the periodicity regions denoted PLRn1

and PRLn1 of map q are de�ned as

PLRn1 = fp : 	1;1(aL; aR; �R; d; n1) < �L < �1;1(aL; aR; �R; d; n1)g ; (30)

PRLn1 = fp : 	1;1(aL; aR; �L; d; n1) > �R > �1;1(aL; aR; �L; d; n1)g ; (31)

where

�1;1(aL; aR; �; d; n1) = � (aR; n1)�+ '(aR; aL; n1)d;
	1;1(aL; aR; �; d; n1) = � (aL +  (aR; n1 � 1))�+ aR'(aR; aL; n1)d;

with

'(a; b; n) =
1� anb
an

;  (a; n) =
1� an
(1� a)an :

The equations of the BCB boundaries are the boundaries of the existence regions, that is:

�L = � (aR; n1)�R + '(aR; aL; n1)d; �L = � (aL +  (aR; n1 � 1))�R + aR'(aR; aL; n1)d;
�R = � (aR; n1)�L + '(aR; aL; n1)d; �R = � (aL +  (aR; n1 � 1))�L + aR'(aR; aL; n1)d:

The formulas for the periodicity regions of the second and higher complexity levels are obtained by using
the replacements (27) as explained in [22].
The expressions in (30) and (31), as well as the formulas for the other complexity levels, are valid for the

map g given in (13) substituting

aL =
1� � + ra
1 + y�

; aR =
1� �
1 + y�

;

�L =
wc

1 + y�
; �R =

w(b+ c)

1 + y�
; d =

b

a
:

For map g1 given in (19), to describe the period adding structure associated with the branches gLL(x)
and gRL(x); the following substitutions are to be performed in (30), (31):

aL =
(1� � + ra)2
(1 + y1)(1 + y2)

; �L =
(2� � + ra+ y1)wc
(1 + y1)(1 + y2)

; d =
b

a
;

aR =
(1� �)(1� � + ra)
(1 + y1)(1 + y2)

; �R =
(1� � + ra)w(b+ c) + (1 + y1)wc

(1 + y1)(1 + y2)
;

where y1; y2 are given in (17). In Fig.5 this period adding structure structure issues from the point p1 =
�
b=a
LL \ �

b=a
RL .

To get the boundaries of the periodicity regions related to the period adding structure of map g1 (issuing
from the point p2 = �x2RL \ �

x2
RR in Fig.5) associated with the branches gRL(x) and gRR(x) the following

substitutions are to be used:

aL =
(1� �)(1� � + ra)
(1 + y1)(1 + y2)

; �L =
(1� � + ra)w(b+ c) + (1 + y1)wc

(1 + y1)(1 + y2)
;

aR =
(1� �)2

(1 + y1)(1 + y2)
; �R =

(2� � + y1)w(b+ c)
(1 + y1)(1 + y2)

; d = x2;

where x2 is de�ned in (19).

15


