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Abstract

The numerical solutions of initial value problems of general second order ordinary
differential equations have been studied in this work. A new class of continuous
implicit hybrid one step methods capable of solving initial value problems of general
second order ordinary differential equations has been developed using the collocation
and interpolation technique on the power series approximate solution. The one step
method was augmented by the introduction of offstep points in order to circumvent
Dahlquist zero stability barrier and upgrade the order of consistency of the methods.
The new class of continuous implicit hybrid one step methods has the advantage of
easy change of step length and evaluation of functions at offstep points. The Block
method used to implement the main method guarantees that each discrete method
obtained from the simultaneous solution of the block has the same order of accuracy
as the main method. Hence, the new class of one step methods gives high order of
accuracy with very low error constants, gives large intervals of absolute stability, are
zero stable and converge. Sample examples of linear, nonlinear and stiff problems have
been used to test the performance of the methods as well as to compare computed
results and the associated errors with the exact solutions and errors of results obtained
from existing methods, respectively, in terms of step number and order of accuracy,

using written efficient computer codes.
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Chapter 1

Introduction

1.1 Preambles

In science and engineering, usually mathematical models are developed to help in
the understanding of physical phenomena. These models often yield equations that
contain some derivatives of an unknown function of one or several variables. Such
equations are called differential equations. Differential equations do not only arise
in the physical sciences but also in diverse fields as economics, medicine, psychology,
operation research and even in areas such as biology and anthropology.

Interestingly, differential equations arising from the modeling of physical phe-
nomena, often do not have analytic solutions. Hence, the development of numerical
methods to obtain approximate solutions becomes necessary. To that extent, several
numerical methods such as finite difference methods, finite element methods and fi-
nite volume methods, among others, have been developed based on the nature and
type of the differential equation to be solved.

A differential equation in which the unknown function is a function of two or
more independent variable is called partial differential equation. Those in which the
unknown function is a function of only one independent variable are called ordinary
differential equations. This work concerns the study of numerical solutions of the
latter.

In particular, finite difference methods have excelled for the numerical treatment



of ordinary differential equations especially since the advent of digital computers.
The development of algorithms has been largely guided by convergence theorems of
Dahlquist (1956, 1959, 1963, 1978) as well as the treatises of Henrici (1962) and
Stetter (1973), (Fatunla, 1988).

The development of numerical methods for the solution of Initial Value Problems

(IVPs) of Ordinary Differential Equations (ODEs) of the form

Y = flzy, 9",y ) a) = no, v (@) = my -y (@) = g (1101)

on the interval [a, b] has given rise to two major discrete variable methods namely; one
step (or single step) methods and multistep methods especially the Linear Multistep
Methods (LMMs).

One step methods include the Euler’s methods, the Runge-Kutta methods, the
theta methods, etc. These methods are only suitable for the solutions of first order
IVPs of ODEs because of their very low order of accuracy. In order to develop
higher order one step methods such as Runge-Kutta methods, the efficiency of Euler
methods, in terms of the number of function evaluations per step, is sacrificed since
more function evaluations is required. Hence, solving (1.1.1) using any one step
method means reducing it to an equivalent system of first order IVPs of ODEs which
increases the dimension of the problem thus increasing its scale. The result is that
one step methods become time-consuming for large scale problems and give results
of low accuracy.

Linear multistep methods on the other hand, include methods such as Adam-
Bashforth method, Adam-Moulton method, and Numerov method. These methods
give high order of accuracy and are suitable for the direct solution of (1.1.1) without
necessarily reducing it to an equivalent system of first order IVPs of ODEs. Linear
multistep methods are not as efficient, in terms of function evaluations, as the one
step method and also require some values to start the integration process.

This research work is concerned with the development of continuous implicit hy-

2



brid one step methods. These methods combine the efficiency of one step methods
and the high order of accuracy of multistep methods to solve the particular case of
(1.1.1) when n = 2.

Basically, the thesis consists of six chapters. Chapter one contains the intro-
duction, basic features of ordinary differential equations, basic concept of numerical
methods, justification of the study, aims and objectives of the study, the methodology
of the study, expected contributions to knowledge and limitations to the study. In
Chapter two, relevant and related literature are reviewed. Chapter three contains
detailed discussions on the methodology and derivation of the methods. Chapter
four contains analysis of basic properties of the methods developed as well as an in-
vestigation of their weak stability properties. In Chapter five, sample problems are
used to test the performance of the one step methods developed and the computed
solutions are compared with the exact solutions of the sample problems and the re-
sults from existing linear multistep methods. The results are also discussed in this
chapter. Finally, Chapter six contains summary, conclusion, recommendations and
contributions to the body of knowledge. Open problems have also been suggested,
followed by references and appendices.

In what follows, the existence and uniqueness of the solutions of higher order

ordinary differential equations is discussed.

1.2 Existence and Uniqueness of Solutions of Ini-
tial Value Problems of Ordinary Differential
Equations

In this section, existence and uniqueness theorem by Wend (1967) is adopted to es-
tablish the existence and uniqueness of solutions of (1.1.1). The proof of the theorem

can be found in Wend (1967 and 1969).



Theorem 1.2.1

Let R be a region defined by the inequalities 0 < = — 29 < a, |sr — Y| < bg,
k=0,1,...,n—1, where y, > 0 for £ > 0. Suppose the function f(z, sg, s1,-..,Sn_1)
in (1.1.1) is nonnegative, continuous and nondecreasing in x, and continuous and
nondecreasing in s, for each k = 0,1,...,n — 1 in the region R. If in addition
f(z,yo, .- Yn—1) # 0 in R for x > x¢ then, the initial value problem (1.1.1) has at

most one solution in R. (Wend, 1967)

1.3 Basic Features of Numerical Methods

In this section, basic concepts encountered in this work are defined.

Definition 1.3.1
Consider the sequence of points {z,} in the interval I = [a,b] defined by a = xy <
T < <Xy < Tpyy <--- < xy=bsuchthat h; =241 —2;,:=0,1,2,... ., N — 1.

The parameter h; is called the step size (or Mesh size).

1.3.1 One Step Methods

One step methods are methods that use data at a single point, say point n, to advance
the solution to point n + 1. Conventionally, one step numerical integrators for initial

value problems are described as

Yn+1 = YUn + h¢($n7 Yn; h) (131)

where ¢(x,,yn; h) is the increment function and h is the step size adopted in the
subinterval [z, Z,11].

The methods can be formulated in explicit form, in which case the increment function
is defined as in (1.5.1) or in implicit form where the increment function is defined in

terms of the independent variable as ¢(x,,, Yn, Yni1; h).



Some examples of one step methods include the backward and forward Euler’s
methods; the midpoint method; the modified midpoint method; the trapezoid and
modified trapezoid methods (otherwise called the modified Euler’s method;) and the
Runge-Kutta methods. Of all the single step methods, the fourth-order Runge-Kutta
method is the most popular.

Implicit one step methods, (Morisson and Stoller (1958), Ceschino and Kuntzmann
(1963) and Butcher (1964)), are of much interest in the development of the methods

proposed in this work .

1.3.2 Linear Multistep Methods (LMMs)

Unlike the one step methods considered in the previous section where only a single
value y,, was required to compute the next approximation ¥,,1, LMM need two or
more preceding values to be able to calculate 1, 1.

Given a sequence of equally spaced grid points x,4;,j = 0,1,2,...,k — 1 with
step size h, let y,,4; be an approximation to the theoretical solution of (1.1.1) at x,,;,

) ~ —1
that 18, y(xn+j) and fn+j = f(xn+j7yn+j7y;z+j7 s >y£;jrj ))

Definition 1.3.2

A general k-step linear multistep method is defined as

k k
Zajyn+j = th@‘fnﬂ’ (1.3.2)
§=0 §=0
where the coefficients ay, ..., ax and By, . .., By are real constants and vy, +; = y(@p4;)

and foej = f(Tnsjor Ynrjs Yorjs - - y0"). (Lambert 1991)

Remark

(1) In order to avoid degenerate cases, we shall assume that a; # 0 and that «q

and [y are not both equal to zero.



(2) If B, = 0 then y,4 is obtained explicitly from previous values of y,,4; and f,,;,
and the k-step method is said to be explicit.
On the other hand, if gy # 0 then y, ., appears not only on the left-hand side
of (1.3.2) but also on the right within f,,,; due to this implicit dependence on

Yn+k, the method is then called implicit.

(3) The k-step LMM (1.3.2) is called linear because it involves only linear combi-

nations of the y,; and the f, ;.

(4) For the purpose of this work, the coefficients a;’s and ;s in (1.3.2) are consid-
ered as real and continuous. In this case, (1.3.2) is referred to as Continuous

Linear Multistep Methods,(CLMMs), (Awoyemi, 1992).

1.3.3 Hybrid Methods

Continuous Linear Multistep Methods (CLMMs) when compared to Runge-Kutta
methods have the advantage of being more efficient in terms of accuracy and weak
stability properties for a given number of function evaluations per step, but have
the disadvantage of requiring starting values and special procedures for changing step
sizes. The difficulties could be addressed if the step number of the CLMMs is reduced,
the only obstacle to this is in satisfying the “zero stability barrier” of Dahlquist (1959
and 1963). This barrier implies that a zero stable CLMMs is at best of order p = k+1
for k odd and of order p = k + 2 for even k. Incorporating function evaluation at
offstep points affords the opportunity of circumventing the “zero stability barrier”.
According to Lambert (1973), this technique was used independently by Gragg and
Stetter (1964), Gear (1964) and later by Butcher (1965). The beauty of this method,
which was named “Hybrid methods” by Gear (1964), is that while retaining certain
characteristics of CLMMs, hybrid methods share with Runge-Kutta methods the

property of utilizing data at off step points and the flexibility of changing step length.



Definition 1.3.3
A k-step hybrid formula is defined as
k k
Z AjlYntj = hz ijn-i-j + h/ﬁufn—f—l/ (133)
=0 j=0
where o, = +1, o and fy are both not zero, v ¢ {0,1,...,k}, ynt; = y(z, +jh) and

forw = [(Tniv, Ynsw). (Lambert, 1973)

Remark
For the purpose of this work, the coefficients «;,3;, 8, and «, will be real and

continuous functions and fu1; = f(Tnijs Yntss Ynsj)-

1.3.4 Block Methods

A block method is formulated in terms of linear multistep methods. It preserves the
traditional advantage of one step methods, of being self-starting and permitting easy
change of step length (Lambert, 1973). Their advantage over Runge-Kutta methods
lies in the fact that they are less expensive in terms of the number of functions
evaluation for a given order. The method generates simultaneous solutions at all grid
points.

According to Chu and Hamilton (1987) a block method can be defined as follows:

Definition 1.3.4
Let Y,, and F, be defined by Y,, = (Yn, Yni1s - - s Unar—1) " Fon = (frs frtts s fror1) L.
Then a general k-block, r-point block method is a matrix of finite difference equation

of the form

k k
Yo=Y AV i+h> BiFn_; (1.3.4)
j=1

=0

where all the A;’s and B;’s are properly chosen r x r matrix coefficients and m =

0,1,2,... represents the block number, n = mr is the first step number of the mth



block and r is the proposed block size.

Remark
In the sequel, (1.3.4) will be redefined to suit the purpose of this research later in

Chapter three.

1.4 Statement of the Problem

Conventional methods of solving higher order IVPs of general ODEs by reduction
order method has been reported to have setbacks such as computational burden,
complication in writing computer programs and resultant wastage of computer time
(Awoyemi, 1992) and the inability of the method to utilize additional information
associated with a specific ODEs such as the oscillatory nature of the solution (Vigo-
Aguiar and Ramos, 2006) occasioned by the increased dimension of the problem and
the low order of accuracy of the methods employed to solve the system of first-order
IVPs of ODEs.

Equivalently, linear multistep methods implemented by the predictor-corrector
mode have been found to be very expensive to implement in terms of the number of
function evaluations per step, the predictors often have lower order of accuracy than
the correctors especially when all the step and offstep points are used for collocation
and interpolation.

The application of hybrid methods in the linear multistep methods, to achieve
reduction in the step number, in the predictor corrector mode is compounded by the
need to develop predictors for the evaluation of the corrector at offstep points making
the approach even more tedious and time consuming (Lambert, 1991).

The introduction of block methods to cushion the challenges associated with linear
multistep methods implemented in the predictor-corrector mode has largely been

concentrated in solving IVPs of special ODEs.



In view of the foregoing, this research is motivated by the need to address the set
backs associated with the existing methods, by developing a method that harnesses
the beautiful properties of these existing methods. Such a method would be less
expensive, in terms of the number of functions evaluation per step; highly efficient in
terms of accuracy and error term; flexible in change of step size; possess better rate
of convergence and weak stability properties; and very easy to program resulting in

economy of computer time.

1.5 Aims and Objectives

The aim of this research is to develop continuous implicit hybrid one step meth-
ods for the direct solution of initial value problems of general second order ordinary

differential equations. To achieve this aim, the following objectives were outlined:

(i) to develop continuous implicit one step methods by collocating and interpolating

at both the step and offstep points;
(ii) to implement the methods without the rigor of developing predictors separately;

(iii) to analyse basic properties of the method developed which include order, con-

sistency, zero stability, convergence and region of absolute stability;
(iv) to write computer programs, that are easy to implement; and

(v) to test the performance of the new methods for accuracy and efficiency.

1.6 Research Methodology

Power series polynomial of the form

y(z) = Zajrxj (1.7.1)



is used as a basis function to approximate the solution of the initial value problems

of general second order ordinary differential equation of the form

y' = f(x,9.9), y(a) =yo, y'(a) = (1.7.2)

on the interval [a,b], (Awoyemi, 1995). Equation (1.8.2) was collocated at all grid
points and interpolated at selected grid points after offstep points are introduced to
allow the application of continuous linear multistep procedure. The resulting system
of equations are then solved by Gaussian elimination method to obtain the unknown
parameters. By substituting these parameters back into (1.8.1), a continuous implicit
hybrid one step method is obtained in the form of a continuous linear multistep
method. A modified Block method is then employed to implement the new method.
Computer programs were written using FORTRAN 95/2003 programming language
to test the performance of the methods. The basic properties such as consistency and

zero stability are analyzed to determine the convergence of the methods.

1.7 Contribution to Knowledge

The following contributions are made to the body of knowledge:

(i) anew class of continuous implicit hybrid one step method for the direct solutions
of initial value problems of general second order ordinary differential equations

has been developed;

(ii) a new formula for block hybrid methods for the direct solution of initial value

problems of second order ordinary differential equations is introduced; and

(iii) very accurate and highly efficient computer codes have been written for the

implementation of the new methods.

1.8 Limitations of the Study

The research is limited to the following:
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(i) only continuously differentiable functions in the interval of integration were

considered;

(ii) the basis function considered in this work is the power series polynomial in view

of its smoothness;

(iii) the research work adopted only continuous hybrid linear multistep methods

where the step number k = 1;
(iv) only implicit block methods were adopted in this research work.

In the next chapter, some literatures on existing numerical methods for solving

IVPs of higher order ordinary ordinary differential equations were reviewed.
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Chapter 2

Literature Review

2.1 Introduction

The desire to obtain more accurate approximate solutions to mathematical models,
arising from science, engineering and even social sciences, in the form of ordinary
differential equations which do not have analytical solutions, has led many scholars
to propose several different numerical methods.

In this chapter, some of the many contributions available in the literature are
reviewed. Specifically, those numerical methods for the solution of (1.1.1) and in

particular the special case (1.8.2), when n = 2 is considered.

2.2 Review of Existing Methods

In most applications, (1.1.1) is solved by reduction to an equivalent system of first

order ordinary differential equations of the form
y = f(z,y), yla)=pa<z<bzyecR" and fecCa,D] (2:2.1)

for any appropriate numerical method to be employed to solve the resultant system.
The approach is extensively discussed by some prominent authors such as Lambert
(1973, 1991), Goult, Hoskins,and Pratt (1973), Lambert and Watson (1976), Do-
des (1978), Jain, Kambo and Rakesh (1984), Ixaru (1984), Kadalbajoo and Raman
(1986), Jacques and Judd (1987), Fatunla (1988), Sarafyan (1990), Bun and Vasil'Yer

12



(1992), Awoyemi (1992), Onumanyi, Awoyemi, Jator, and Sirisena (1994), Brugnano
and Trigiante (1998), Jator (2001), Juan (2001), among others. In spite of the suc-
cess of this approach, there are setbacks. For example, writing computer programs
for these methods is often cumbersome especially when subroutines are incorporated
to supply starting values required for the methods. The consequences are in longer
computer time and more human effort, (Awoyemi,1992). In addition, this method
does not utilize additional information associated with specific ordinary differential
equations, such as the oscillatory nature of the solution, (Vigo-Aguilar and Ramos,
2006). Furthermore, according to Bun and Vasil’Yer (1992), a more serious disad-
vantage of the method is the fact that the given system of equations to be solved
cannot be solved explicitly with respect to the derivatives of the highest order, (Kay-
ode, 2004). For these reasons, this method is inefficient and not suitbale for general
purpose applications.

Rutishauser (1960), examined the direct solution of (1.1.1) and its equivalent first
order initial value problems and concluded that the choice of approach depends on the
particular problem under consideration. Many other Scholars such as Henrici (1962),
Gear (1971), Hairer and Wanner (1976), Jeltsch (1976), Twizel and Khaliq (1984),
Chawla and Sharma (1985), Fatunla (1988), Taiwo and Onumanyi (1991), Awoyemi
(1995, 1998, 1999,2001, 2003, 2005), Simos (2002), Onumanyi Sirisena and Chollom
(2001), Awoyemi and Kayode (2005), Kayode (2004, 2005 and 2009), and Yusuph
and Onumanyi (2005), Vigo-Aguiar and Ramos (2006), Adesanya, Anake and Udoh
(2008), Adesanya, Anake and Oghoyon (2009), etc, suggested in the literature that a
better alternative is to solve (1.1.1) directly without first reducing it to a system of
first order ordinary differential equations.

In particular, this work is concerned only with the direct solutions of (1.1.1) for
n = 2 without reducing it to an equivalent system of first order equations. However,

many Scholars such as Henrici (1962), Jeltsch (1976), Twizel and Khaliq (1984),
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Awoyemi (1998), Simos (2002), and Yusuph and Onumanyi (2005), have devoted a
lot of attention to the development of various methods for solving directly the special

second order initial value problems of the form

y' = f(z,y), y(a)=po, y'(a)=pu, (2.2.2)

which is the mathematical formulation for systems without dissipation. Nystrom
for instance, considered a step-by-step method based on the classical Runge-Kutta
methods, (Fatunla, 1988). Later, Hairer and Wanner (1976) developed Nystrom-type
methods for (2.2.2) in which they listed order conditions for the determination of the
parameters of the method. Gear (1971), Hairer (1979), Chawla and Sharma (1981),
independently developed explicit and implicit Runge-Kutta Nystrom type methods.
Dormand and Prince (1987) also developed two classes of embedded Runge-Kutta-
Nystrom methods for the direct solution of (2.2.2). First step methods were also
discussed by Gonzalez and Thompson (1997) as starting values required to implement
the Numerov method for the direct solution of (2.2.2).

In the literature also, Henrici (1962) and later Lambert (1973) postulated the
derivation of linear multistep methods with constant coefficients for solving (2.2.2).
Fatunla (1984, 1985, 1988) developed P-stable one-leg constant coefficients linear
multistep method in which Pade approximation was used to realize his methods for
the solution of (2.2.2). Vigo-Aguilar and Ramos (2006) in their contribution dis-
cussed variable step size multistep schemes based on the Falkner method and directly
applied it to eqn.(2.2.2) in predictor-corrector mode. More on LMM can be found
in Lie and Norsett (1989), Enright (1974), Dahlquist (1978), Enright and Addison
(1984), Chawla and Rao (1985), Chawla and McKee (1986), to mention a few. The
procedure they adopted for this class of methods is such that the resultant methods
are not continuous, and therefore it is impossible to find the first and higher order
derivatives of y with respect to x; and so the scope of this class of methods is limited

in application, (Awoyemi, 2001).
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Onumanyi, Awoyemi, Jator and Sirisena (1994), Awoyemi (1992, 1995, 1999,
2001). Onumanyi, Sirisena and Jator (1999), Awoyemi and Kayode (2005), Kay-
ode (2004 and 2005), proposed linear multistep methods with continuous coefficient
for initial value problems of the form (1.8.2) in the predictor corrector mode based
on collocation method using power series polynomial as the basis function and Taylor
series algorithm to supply starting values. According to Awoyemi (1992), continuous
linear multistep methods have greater advantages over the discrete methods in that
they give better error estimates, provide a simplified form of coefficients for further
analytical work at different points and guarantee easy approximation of solutions at
all interior points of the integration interval.

In spite of these advantages, the continuous linear multistep methods, like the
constant coefficients linear multistep methods, are usually applied to the initial value
problems as a single formula and this has some inherent disadvantages. For instance,
they require the use of known pivotal points generated through the use of a set of
so-called pivot formulas which are known as predictors, (Sarafyan, 1965). Implemen-
tation of the method in predictor-corrector mode is very costly as subroutines are
very complicated to write because of the special techniques required to supply start-
ing values and for varying the step size which leads to longer computer time and more
human effort.

Another method that has been proposed in the literature is the hybrid method.
This method while retaining certain characteristics of the continuous linear multistep
methods, share with the Runge-Kutta methods the property of utilizing data at other
points other than the step points {x;;Tny; = @, + jh}. The method is useful in
reducing the step number of a method and still remains zero stable. According to
Lambert (1973), hybrid method was first introduced independently by Gragg and
Stetter (1964), Gear (1964) and Butcher (1965). Hairer (1979) later used Pade ap-

proximation to develop a fourth-order P-stable hybrid method for solving eqn.(2.2.2)
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using one offpoint. In the same spirit as Hairer, Chawla (1981) and Cash (1981)
independently showed that the zero stability barrier imposed by Lambert (1973) and
Dahlquist (1978) could indeed be circumvented by considering two step hybrid meth-
ods. The result of their exposition was the development of fourth and sixth order
P-stable methods. Fatunla (1984) also used Pade approximation to develop one-leg
hybrid multistep method. However, Jain et al. (1984) in developing their sixth-order
symmetric multistep method for period IVP of type (2.2.2), observed that the cost of
implementing the method by Cash (1981) was high due to many function evaluations
per iteration. Awoyemi (1995) adopted the method and proposed a two-step hybrid
multistep method with continuous coefficients for the solution of (2.2.2) based on
collocation at selected grid points and using off-grid points to upgrade the order of
the method and to provide one additional interpolation point and implemented on
the hybrid predictor-corrector mode. Later, Adee, Onumanyi, Sirisena and Yahaya
(2005) in solving (2.2.2) used hybrid formula of order four to generate starting values
for Numerov method. D’Ambrosio, Ferro and Paternoster (2009) on the other hand
proposed a two step hybrid collocation method based on Butcher’s general linear
methods (GLM) to solve (2.2.2). Other Scholars who have studied hybrid methods
include; Onumanyi et al. (2001), Yahaya and Badmus (2009), etc. According to Lam-
bert (1973), hybrid method is not a method in its own right since special predictors
were required to estimate the solution at the offstep point and the derivative function
as well.

In view of all the disadvantages mentioned above, many researchers concentrated
efforts on advancing the numerical solution of initial value problems of ordinary dif-
ferential equations. Omne of the outcomes is the development of a class of methods
called Block method. The method simultaneously generates approximations at dif-
ferent grid points in the interval of integration and is less expensive in terms of the

number of function evaluations compared to the linear multistep methods or Runge-

16



Kutta methods. This method was first proposed by Milne (1953), who advocated
their use only as a means of obtaining starting values for predictor-corrector algo-
rithm. This was considered in the same light by Sarafyan (1965) however, Rosser
(1967) later developed Milne’s proposal to algorithms suitable for general use. Using
Rosser’s approach, Lambert (1973), developed a two-step fourth-order explicit block
method. Earlier on, implicit block methods had been proposed. For instance, an ex-
ample due to Clippinger and Dimsdale in Grabbe, Ramo and Woolridge (1958) was
analyzed by Shampine and Watts (1969) as implicit one step block method. Since
then, many contributions on block methods with different approaches have been pro-
posed in the literatures in recent years. For instance, Chu and Hamilton (1987)
suggested a generalization of the linear multistep method to a class of multi-block
methods where step values are all obtained together in a single block advance ac-
complished by allocating the parallel tasks on separate processors. Fatunla (1991
and 1994) proposed block method for the solutions of special second order ordinary
differential equations which was later developed by Omar and Suleiman (1999, 2003
and 2005) to obtain explicit and implicit parallel block methods for solving higher
order ordinary differential equations where the derivative function is approximated
by a suitable interpolating polynomial within a specified interval of integration. This
method was adopted by Ismail, Ken and Othman (2009) to develop explicit-implicit
three-point block method for the direct solution of special second order ordinary dif-
ferential equations. Many other scholars such as Majid, Suleiman and Omar (2006),
Majid and Suleiman (2007), Majid, Azimi and Suleiman (2009), Ibrahim, Suleiman
and Othman (2009), etc. have adopted block methods where the derivative func-
tion was interpolated using Lagrange interpolation. In another approach adopted to
implement implicit block methods however, the need to generate predictors is still
required. For example Yahaya (2007), Awoyemi, Adesanya and Ogunyebi (2009) and

Adesanya, et al. (2008) and Adesanya at al. (2009) used the forward difference
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method, the Newton’s forward difference method and Newton’s polynomials, respec-
tively, to generate predictors for Fatunla’s block method in order to solve (1.8.2).
These methods have largely focused on solving only special type ordinary differential
equations with very few attempts in favour of (1.8.2).

Recently, Jator (2007) and Jator and Li (2009) have proposed five-step and four-
step self-starting methods which adopt continuous linear multistep method to obtain
finite difference methods applied respectively as a block for the direct solution of
(1.8.2).

These different methods have their very desirable qualities. Thus, the method
proposed in this research is one that combines these desirable qualities for the direct
solution of (1.8.2).

In the next chapter, the methodology of our work is presented and the derived

methods are specified.
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Chapter 3

Methodology

3.1 Introduction

This chapter describes the development of continuous implicit hybrid one step meth-
ods for the solutions of IVPs of higher order ODE. The idea is to approximate the
exact solution y(x) of (1.8.2) in the partition 7y = [a = o < 21 < --- < x,, = b] of

the integration interval [a, b] by a power series polynomial of the form;

o0

p(z) = Z a;z’ (3.1.1)

j=0
where a; € R, y € C*(a, b).

The method is derived by the introduction of offstep points in the conventional
one step scheme following the method of Gragg and Stetter (1964), Gear (1964),
Butcher (1965), Kohfield (1967), Brush, Kohfield and Thompson (1967) and recently
Awoyemi and Idowu (2005). Then, (3.1.1) is interpolated at selected grid points
chosen according to the Stormer-Cowell method. The second derivative of (3.1.1) is
substituted into (1.8.2) to obtain a differential system which is evaluated, respectively,
at the step and offstep points. Using this technique, in the form of linear multistep
methods, accurate continuous implicit hybrid one step methods are obtained. Finally,
methods obtained are implemented by the application of a modification of the implicit
one step block method proposed by Shampine and Watts (1969). This modification

caters for the offstep points and /.
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In the sections that follow, the derivation of five different continuous implicit one

step methods with varying number of ‘offstep’ points are outlined.

3.2 Derivation of Methods

Let the approximate solution be given as a power series of a single variable x in the

form
r+s—1
y(x) = Z a;x’ (3.2.1)
5=0
with the second derivative given by
r+s—1
y'(x) = > (i — Daja’™ (32.2)
=0

where x € [a, b], the a’s are real unknown parameters to be determined and r + s is
the sum of the number of collocation and interpolation points. Let the solution of

(1.8.2) be sought on the partition
TN :Q0=T9g < Ty <Xy < <Tp <Tpp1 <---<axy=0
of the integration interval [a, b] with a constant step size h, given by
h=xp:1—x, n=0,1,...,N.

Then, substituting (3.2.2) in (1.8.2) gives

r+s—1
> i = Dae’? = f(w,y,y) (3.2.3)

§=0
Now interpolating (3.2.1) at .5, s = 0,1; and collocating (3.2.3) at x,, 1,7 = 0,1, k,
where r, s and ¢ represent the number of collocation, interpolation and offstep points

respectively and k is the step number, leads to the following system of equations

r+s—1

> 30— Ve’ = fugrr = 0,05k, i=1,2,....m (3.2.4)
j=0
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r4+s—1

Z ajxfwrs = Ynis, S=0,15, 1=1,...,m (3.2.5)
=0

(3.2.4) and (3.2.5) can be combined to form a matrix as follows

9 xh x? x3 N
0 1 2 3 N — -
xn—&—ul xn—l—m "En—s—yl xn—s—ul "En—s—yl _ _ yn
Qo
Yn+un
aq .
0 1 2 3 N .
Lotvem  Tntvm  Tndve,  Tontum, Lntv, ) Yn+vm
0 1 N—2 ’ .
0 0 220 6zl - NN -1V =
0 1 N-2 :
0 0 2xn+1/1 6xn+l/1 N(N - 1)xn+l/1 : fn—l—yl
f’l’b"‘Vm
Qrys—1
0 1 N—-2 - -
0 0 2$n+1/m 6‘rn+1/m N(N - 1)xn+um L fn+1 _
0 1 N-2
.0 0 200y 6rny oo N(N =1y i
where v; € (29, Tpi1),0=1,-++,m.

Using Gaussian elimination method, (3.2.6) is solved for the a;’s. The values of the
a;’s obtained are then substituted into (3.2.1) to give, after some manipulations, a
continuous hybrid one step method in the form of the continuous linear multistep

method

k

()i + D (@) Ynrw, + 1D Bi(@) furg + D Bu@) fatn |

J=0

WE

y(r) =

=0

(3.2.7)

where yni; = Y(Tniy) and fur; = f(Tnij, Yntj, Ynyy) and p, is the order of the
problem.

In what follows, let us express a;(x) and f;(x) as continuous functions of ¢ by

letting

T — Tpty,
t=——-—— 3.2.8
. (3:28)
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and noting that
dt
dz

=

The derivative of (3.2.7) is given by

k—
1 1
y/(.T) = E Z ‘(x)yn+j+ﬁ Z Qy, (x)yn+1/i+h

k
> Bl fn+3+25% fW] (3.2.9)
=0

To implement (3.2.7), we use a modified block method defined as follows;

q q q q
j=1 §=0 j=1 j=1
where A is the power of the derivative of the continuous method and p is the order

of the problem to be solved; ¢ = r + s.

In vector notation, (3.2.10) can be written as

haY,, = heym, + W' [df (ym) + bF (V)] (3.2.11)

The matrices a = (a;;), b = (b;j), € = (e;j), d = (d;;) are constant coefficient matri-

ces and Ym = (yn-&—l/i?yn-&-l;yr:z-yyiayil-yl)T; Ym = (ynf(rfl)aynf(rf@a s 7yn)Ta F(Ym) =
(Frtvis foe)t and f(ym) = (fa—ir-- -, fn), i =1,...,q. The normalized version of
(3.2.11) is given by

AY,, = B Eyp, + WD f(ym) + BF (V)] (3.2.12)

The methods obtained are specified in the next section.
Note that since we are developing a one step method, throughout this thesis the step

number k will always be one (i.e. k= 1).

3.3 Specification of the Methods

3.3.1 One Step Method with One Offstep Point

To derive this method, one ‘offstep’ point is introduced. This offstep point is carefully

selected to guarantee zero stability condition. For this method, the offstep point is
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v = % Using (3.2.1) with » = 3 and s = 2, we have a polynomial of degree r 4+ s — 1

as follows:
4

y(x) = Zajmj (3.3.1)

J=0

with second derivative given by

y'() =Y i — a2’ (3.3.2)

Substituting (3.3.2) into (1.8.2) gives

4

Y i = Daa? 7 = f(z,y,y) (3.3.3)

=0
Now collocating (3.3.3) at Zn4,, 7 = 0,3 and 1, and interpolating (3.3.1) at 45,5 =

0, % leads to a system of equations written in the matrix form AX = B as

r 2 3 4 7 - - _ -
1 Tn xn xn xn Qo yn
2 3 4
1 T+l xn—i—% xn—i—% xn—i—% ax Yntl
0 0 2 62, 1222 as | = fn (3.3.4)

0 0 2 bz, 12foJrl as for1
2

0 O 2 621 12xi+1 | G4 L fo+1

Equation (3.3.4) is solved by Gaussian elimination method to obtain the value of the

unknown parameters a;, (j = 0,1,---,4) as follows:

2 3 4
ag = Yn — 1Ty, — A2, — A3T,, — Q4T

Yntl — Un
ap = —i_QT - a2(xn+% - ‘r”) - CL3(IZ+% + anr%xn T I‘Z)
2
1 2
.fn—‘,—l
_ 2 p—
as = 3N 2&4($n+% + xn)
%fn:l - fnJr% + %f"
ay =

3h?
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Substituting (3.3.5) into (3.3.1) yields a continuous implicit hybrid one step method

in the form of a continuous linear multistep method described by the formula

k
y( ) Z yn-‘r] +Z alll yn-i—uz +h' Z ﬁ fn-i—j + Z /BI/L yn-i—uz (336)
j=0

]_

where, for k =1,7=1and 1, = %, yields the parameters «; and 3;, j = 0,v4,1 as

the following continuous functions of ¢

Oé()(t) = —2t
i (t)=2t+1
h? o 3
t 8t — 8t° + 3t
folt) = 75 ) (3.3.7)
2
Bi(t) = 24( 8th + 1212 + 5t)
h2
Bi(t) = 48(8t4 + 87 — 1)
Using (3.3.7) for = 2,41 and i = 1 so that ¢ = 1, (3.3.6) reduces to
h2
Ynt1 = 2Upit +Un = = | far1 +10f, 010 + /i (3.3.8)
2 48 2
Differentiating (3.3.7) yields
—2
ag(t) = "
2
ay(t) = 7
/ h 3 2
By(t) = 4—8(3225 — 24t + 3) (3.3.9)
/ h 3
5%@) @( 32t° + 24t + 5)

h
") = — (3262 + 2412 — 1
(1) = g (326 + 2467 — 1)
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On evaluating (3.3.9) at = = TnyTpy1 and apy respectively, using (3.2.8) so that

_ 1 1
t'_‘_§70757

the following discrete methods are obtained

AShY, = 96y, + 96y = 1 [ fuss = 6,y = 7o

4Ww;g—9®m5+9®nzﬁﬂ—hﬂ+4wg%+3h]

%m@H—9@m%+9®M:m[wm4+%mwé+ﬁ]

(3.3.10)

The modified block formulae (3.2.11) and (3.2.12) are employed to simultaneously

obtain values for v, 1, yni1, ¥, I and vy, needed to implement (3.3.8). Now,

combining (3.3.8) and (3.3.10) in the form of (3.2.11) and (3.2.12) yield the block

method

—96

—96

—96

—96

Using (3.2.12), we obtain the block solution

48 0
0 0
0 48h
0 O

(1 0 0 0]

0100

0010

000 1]

yn+%

Yn+1

yn-{-%

Yn+1

[ 10

25

—48 0

—96 48h {

=96 0

-9 0
[ 10h?
—6h%  h?
10n*  —h?

9h?

| 2612

h?

|

fn—‘,—l
jh+1

h2

—Th?

|

3h?

h2

(3.3.11)



16 96
1
+ f”+5 (3.3.12)

%h _ih n+1

2 1

| 3h §h ]
Equation (3.3.12) can be written explicitly as
1 7 h?
yn+% = Un + éhy; + %thn + % [_fn+1 + 6fn+%]

1 1
Yntl = Yn + hy; + 6h2fn + §h2fn+%
(3.3.13)
/ / 5 h
yn+% =Y, + ﬂhfn + ﬂ [_fn—i-l + 8]%-1-%}
/ / 1 h
Ynt1 = Yn t+ éhfn T35 [fn—H + 4fn+%}

3.3.2 One step method with Two Offstep Points

In this case, two offstep points are introduced. Similarly these points are carefully

selected to guarantee the zero stability of the method. Here, i = 2 so that, v, = %,

ng%,r:élands:Z.

From (3.2.1) for r = 4 and s = 2, we obtain the polynomial of degree r + s — 1 as

follows;
5

y(x) = Zajmj (3.3.14)

§=0
with second derivative given by
5
' =) (i — Dajal? (3.3.15)
=0
Substituting (3.3.15) into (1.8.2) gives
5
> i = Daa’? = f(z,y.y) (3.3.16)

=0
Collocating (3.3.16) at x4, 7 = 0, %, % and 1 and interpolating (3.3.14) at z,, 44, s = %

and % leads to a system of equations written in matrix form AX = B as follows
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2 3 4 5 7 _ _
1 xn+% T T

n+i n+i n+3 n+3 [ ag ] Ynti
2 3 4 5
1 ‘T”‘F% xn—i—% xn—i—% xn—i—% xn—i—% a1 yn—&-%
0 0 2 6z, 1222 2023 as fn
= (3.3.17)
2 x 1222 2023 a
0 0 62,1 ho1 2020, 3 for1
2 3 a
0 0 2 6xn+§ 12xn+§ 20a:n+% 4 fn+%
2 3 as
0 0 2 6wy 1222, 2023, | VL L farn
Solving (3.3.17) by Gaussian elimination method yields the a;’s as follows
Ay = Y1 — 1T, 1 — AT’ 1 — a3’ 4 — auxrt 4 — asz’
yn+2 - Z/n+l
— 3 3 _ 2 2
3
_ 3 2 2 3
7 (l’mg TP 2 Png ) ¥ Vg 2@ 1 F mn+%>
_ 4 3 2 2 3 4
as (anr% R S S P E I R o AL OO a:nJr%) (3.3.18)
ay = —=f,— 3asx, — 6asx> — 10asx>
2 2 n 34n 4Ly 540
fnJr% - fn 9 9 9
as = T— a4(xn+%+xn)—§a5 $n+%+$n+%$n+l‘n
1 2 1
3/n+z T 3 n+é+§fn 5
ay = §h2 - §a5 Tnt1 + Tpyl + Tn
2 2 2 2
yrfnt1 =3 n+2 T 5Jnel — 57
a5 = 80 1,3
243

Substituting the a;s, j = 0(1)5 into (3.3.14) yields the continuous implicit hybrid one
step method in the form of a continuous linear multistep method described by the

formula

k
y(@) = (@)t YA | D Bi@) fari + > B (@) ok |, i=1,2,  (3.3.19)

Vi Jj=0

S,
Il =
o
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For k=1, 1, = % and vy = % and writing the «;’s and §;’s as continuous functions

of t, where t = x_x; +4 , we obtain the parameters
Oé%(t) = -3t
O%(t) = 3t+1
h2 5 3
= - 243t° —
Bo(t) g (24317 — 90t + 7t)
12 (3.3.20)
Bi(t) = %(243755 + 135t* — 180¢° 4 22t)
h2
2(t) = ——— (243> + 270t* — 90t® — 180t* — 43t
Bz 260 243t° + 270t* — 90t> — 180t* — 43
h2 5 4 3
t) = 243t> + 405t* + 180> — 8t
Bu(t) 1080( 3t° + 405¢* + 180t — 8t)

Evaluating (3.3.19) at © = x,, and x4, using (3.2.8) gives values of ¢ to be —2 and

5. Thus, we obtain the discrete methods from (3.3.20) as follows

h2
Y1 = 2Ypy2 FYpi1 = 103 |:fn+1 +10f,12 + fn+%} (3.3.21a)
2
Yurz = Wrd + Vo = 1oz vz 10 s + o] (3.3.21b)
Differentiating (3.3.20) gives
3
/ f— —_——
o = -
3
/ — —
%0 =5
/ h 4 2
(3.3.22)
h
Bi(t) = ——(1215t° + 540> — 540t* + 22)
3 360
/ h 4 3 2
Bh(t) = ———=(1215¢t" +1080¢° — 270t* — 360t — 43)
3 360
/ h 4 3 2
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Evaluating (3.3.22) at = x,, Tpyls Tpy2 USING (3.2.8) implies t = —%, —3%, 0 and 3

Hence, the following discrete derivative methods are obtained.

10805y, — 3240y,,. 2 + 3240y, 1 = h’ [—8fn+1 +9f, 2 — 414f, 1 — 127 fn]
1080hy, ., — 3240y,.,2 + 3240y, = h? [7fn+1 66/, 2 —120f,,1 + 8fn} (3.3.23)
1080hy), 5 — 3240y,,.2 + 3240y, = h? [—8 furr +120f, 2 + 66,1 — 7 fn}

1080y, — 3240y, 2 + 3240y, 1 = h? [127 Fai +414f, 0 —9f, 2 +38 fn}

Combining (3.3.21) and (3.3.23) using the block formulae (3.2.11) and (3.2.12) we

have, respectively,

[ —216 108 0 0 0 07 | Yn+3 (108 0 ]
108 —216 108 0 0 0 Ynt2 0 0 -
3240 —3240 0 0 0 0 Un+1 0  1080h y
3240 —3240 0 1080h 0 0 Y1 0 0 .
5 Un
3240 —3240 0 0 1080h 0 v 0 0 L
n+§
3240 —3240 0 0 0 1080h , 0 0
- - L yn+1 . - -
0 ] [ B2 10h2 A2
h? 10h2 h? 0
fn—‘,—%
—127h2 414h2  9h2  —8h2
+ [fa] + foiz (3.3.24)
Sh?2 —129h%2 —66h2  Th2
fnJrl
—7h? 66h2  129h2 —8h2
| 8n? | | —9h%  414R* 127h% |
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and

B 1 41 T B 7] r 7
10000 07] Y+ 1 ih I h?2
2 2 28
010000 Yn+2 1 2h 28 2
001000 Ynt1 1 h Un 22h?
= +
000100/ /|Y 0 1 Y, Lh
1
0000710 v, 0 1 h
1
(00000 1], ] L0 1] L
[ 56"~ WP ]
22 2 2
2p2 —2hr AR
5 . fn—i—%
2 2 172
W T &l
* 19 5 1 fn+%
=t wmh b
fn+1
4 1
h ih 0
- U
Equationn (3.3.25) can be written explicitly as
1., K
Yntl = Yn + ghyn + 3940 [anJrl - 39fn+§ + 114fn+§ + 97fni|
2 h?
sz = Un+ Sh0+ 7= [2Fast = 6Fg + 66,43 + 28]

h2
Yot = Yo + hyl, + — [2fn+1 + 902 +36f,1 + 13fn}

120
h
y;H-% - y7’1 + ﬁ [fnJrl o 5fn+% + 19fn+% + 9fn:|

h
y;“L+1 = y;z + g [fn—l-l + 3fn+§ + 3fn+% + f”}
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3.3.3 One Step Method with Three Offstep Points

Here, three offstep points have been introduced. Similarly, these points are carefully

chosen to guarantee the zero stability of the method. Here, i = 1,2, 3, which implies

that we have v| = }L, Vo = % and v3 = i—i.
Thus, from (3.2.1) for » = 5 and s = 2, we obtain a polynomial of degree r + s — 1 of

the form
6
y(x) = Zajxj (3.3.27)
=0

with second derivative given by

y'(@) =i = Daja’™ (3.3.28)

Substituting (3.3.28) into (1.8.2) gives

6

> i = Vaga? 7 = f(a,y,y) (3.3.29)

=0
Collocating (3.3.29) at x4, 7 = 0, i, z, %, 1 and interpolating (3.3.27) at @,4s, 8 = 3

and %, leads to a system of equations written in the matrix form AX = B as follows:

| 2 3 4 5 6 ]

ro1 T x x x x _ . - .
R T T TS N I R
2 3 4 5 6
1 x"""% xn—f—% xn-i—% xn-i—% :L‘n-i-% xn-‘r% ay yn—l—%
2 3 4
0 0 2 6z, 12z; 20x;, 30z, sy fn
2 3 4
2 3 4 a
0 0 2 6z, 123:%% 20$n+% 30xn+% 4 Joy1
2 3 4 as 3
0 0 2 Gr,ys 1207, 2003, 30z, furs
0 0 2 6 1222, 2043, 3024, | 1“0 fr
L Tn+1 Lnt1 Lnt1 Tpt1 - -
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Solving (3.3.30) by Gaussian elimination yield the a;’s as follows:

_ 2 3 . 4 o 5 .
ag = yn—l—% —alxn+% —aganr% —a3$n+% a4xn+% CL5I’n 1

Ynt3 = Ypyl
_ 4 2 o 2 2
ap = —lh as (mn+%+mn+%) as (azn+%+xn+%xn+%+xn+%)

3 3
_a4< n+3 +xn+3mn+1 +asn+3x 1 +x > —as (:anr% —|—xn+%xn+%

2 o2 5 4 3 2
+$n +1 + $n+3$ 1 + ili’ ) — e (xn—i-% + xn—i—%wnJr% + xn-i—% n-‘r%
2
+$n +1 +$n+5x 1+Z’ nt+l )
_ 2 3 4
as = §fn — 3azx, — 6asx; — 10z, — 15z,
fn-{-% - fn 2 10 2 2
as = T— Qy xn%—l—xn +§a5 xnﬁ—l—xn%xn—kmn
3 2 2 3
—bag (:L’nﬁ F 1Tt T 1Ty + l’n) (3.3.31)
1 1 1
ifort —afupr+3fn 5
as = 572 —§a5 xn%—l—xnﬁ—l—xn
8
—éa 2 4z, ar, 12w, ax, T, 11, 2
970 \n+g n+3n+g n+1i n+itn n+idn n
1 3 3 1
. 3_2n+%_3_2n+1+§n+%_3_2f" 3
as = T5 43 —5(16 n+3+x 1—|—£Bn+1—|—ZEn
256
3 9 3 3
o 1024f"+1 256 n+32 + 512 n+i  256J/n+7 + 1024fn
ag = 135 1
16384

Substituting (3.3.31) into (3.3.27) yields the continuous implicit hybrid one step
method in the form of a continuous linear multistep method described by the for-

mula

k k
y(x) = Z yn+J+Zaul i+ |3 By(a fnﬂ+26m Voro |+ i=1,2,3 (3.3.32)
7=0
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For k=1, 1 = 4, 1n = 5 and v3 = 2 and writing o;(x) and B;(z), j =0,1,2, as
T, 3

h

continuous functions of ¢, where t = , we obtain the parameters

ai(t) = —4t

[NIES

s(t) =4t +1

2

Bo(t) = 5760(2048756 + 1536t° — 320t* — 320> + 11t)
h2 6 5 4 3
1 (1) = ———(1024¢° 4 1152t° — 160" — 240> + 9t
B1(t) = =55 (10242° + 115 60 0"+ 9t) (3.3.33)
h2
Bi(t) = %(2048156 + 3072t° + 320t* — 960t + 55¢)
h2
Ba(t) = —%(1024#3 + 1320t° + 800t* — 400t* — 360t> — 59t)
2
Bi(t) = o0 (2048t° 4 4608t> 4 7920t* 4 960t — 21¢)
Evaluating (3.3.32) at Tp, Tyt and Ty implies in (3.2.8) that t = —2, — and ;

respectively, which yields the following discrete methods

2

3840 [_3fn+1 +52f, 3 +402f, 1 +252f, 1 +17 fn} (3.3.34a)

2
3840
2

h
Yot = s + Yy = 50 [19 faer +204f, 0 — 14f, 1 +4f, 1 fn} (3.3.34¢)

Vst = ys T Yys = [fuor = 24f,0s = 194f,03 = 24f, + ] (3:3.340)
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Differentiating (3.3.33) gives

—4
, —
a0 =7
4
! _ —
=7
Bo(t) = =60 ——(12288t> + 7680t* — 1280t> — 960t* + 11)
h
Bi(t) = —ﬁ(6144t5 — 5760t* — 640t% — 720t* + 9) (3.3.35)
4
h
Bi(t) = 560 ——(12288t° + 15360t* + 1280t — 2880t> + 55)
2
B (t) = —ﬁo(6144t5 + 11520t* + 3200¢° — 1200t* — 720t — 59)
4
Bi(t) = ———(12288¢> 4 23040t* + 14080¢> + 2880t — 21)

2760

Evaluating (3.3.35) for t = —%, —%, —%‘, 0, %, respectively, yields the following discrete

derivative methods

2

o (331 — 284f, g — 96,3 — 1908,y — 475 fn}

hyp =AYy + 4y, 1 =

Py ps = Wi + Ay = 5?;0 ~5fusr = T2 ypa — 1494f, 1 — 616/, 1 +27 fn]
h2 _
By = 4t + 4oy = sos [Tt = 220f,03 — 582, 1 +T6f,, 1 — 11fn}
h2 _
Mpss = Wyt + 4yt = s | =2 fasn FAT2, 8 380S0y —T2f0 s + 11fn}
2
Wy = Ws + 4y = coes [48Lfua + 17641, 5 — 198,43 + 140f,, 3 — 27 fn]
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Combining (3.3.34) and (3.3.36), and using the modified block formulae (3.2.11) and

(3.2.12) respectively, we have

0

3840

0

—11520

—7680

3840

23040

23040

23040

23040

23040

7680

3840

0 0

0 0

—7680 3840 0

—23040

—23040

—23040

—23040

—23040

0 0
0  5760h0

0 0

17h?
—h2
—h?
—475h?
27h?
—11h%

11h?

| —27h? |
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0

0

5760h

0

0

5760h

0

0

5760h |

y”+i
yn+%
ynJr%
Yn+1

/
Y1




and

[ 252h2

24h?

4h?
1908h*
—616h*

76h?
—T2h?

14042

402h? 52h?
194h2 24h?
204h> 204h2
—966h> —284h?
—1494h%  —T72h?
—582h%  —220h?
330h2 472h?
—198h%  1764h>
yn+i '1 %h
Ynts 1 ih
yn+% 1 %h
Yn+1 1 h
/ pu—
Z/,H% 0 1
y;H_% 0 1
v 0 1
n+yg
, | 0 1
L yn+1 .

36

—3h? ]
—h?
19n?
33h?
—5h?
17h?

—21h?

fn+%
fn+%

fn—‘,—%

48102 |

L Yn+1

- _367 12 ]
23040h

53 1,2
1440 h

147 12
2560 h

732
507

251
2880 h

(/]

(3.3.37)



-3 72 47 72 29 32 7 727
Tos w0 S0l 7250
132 132  1p2 132
o/ s 56/ 150
172 2022 332 9 32 | [ -
sa0/ To50 1t gl 5560 f n+jg
412 172 472
5h 57 5h 0 fn+%

+ (3.3.38)

325 11 53 19
1440 h - 120 h 1440 h 2880 h f n+3
oh sh wh —weh | | s |
51 9 21 3
To0 1 ik T60 1 520/
16 2 16 T

| Bl i5h nh 56

Equation (3.3.38) is written explicitly as

1 h?

L= Yo + By
Ynd = U M 3000
2

1440

[—21 furr #1161, 2 — 282f, 1 + 540, 1 + 367 fn]

1

2

2560

3
Yups = Yn + Thyl + [—3 fuer +20f, 0+ 18f,,1 + 156, 1 +49 fn}

4

h2
s = o+ Iy, + o [8fn+% 61+ 24 0 + 7fn} (3.3.39)

h
Yooy = U 5t |~19fe1 + 106, g — 264f,, 1 + 646,y +251f, ]

h
Yooy = Ut o [— Fusr FAfyps +24f, 0 + 124, 1+ 20 fn}

h
Virs = Vi + 530 [—zafn+1 £ A2f, 8 T2 0 102f, 1 + 27fn}

h
Vit =Yt o5 (7 32 s + 12y + 52001 + 715
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3.3.4 One Step Method with Four Offstep Points

Four offstep points have been introduced to derive this method. Like the previous
cases, the points are carefully chosen to guarantee the zero stability of the method.
Here, ©: = 1,2, 3,4, thus we have v, = %, Vo = %, and v3 = % and vy = %.

Thus, from (3.2.1) for r = 6 and s = 2 we obtain the basis polynomial of degree

r+ s — 1 of the form
7
y(x) = Z a;z’ (3.3.40)
§=0

with second derivative given by

7
' =Y j(j - Dajai? (3.3.41)

=0
Substituting (3.3.41) into (1.8.2) gives the differential system

7
> i = Daa’? = f(,y,9) (3.3.42)
=0
Collocating (3.3.42) at x4, 7 = 0, %, %, %, %, 1 and interpolating (3.3.40) at x4, s =

% and % leads to a system of equations written in the matrix form AX = B as follows

—1333[E2 3 4 5 6 7 . _ -

ntg Vpgd n+2 xn-i—% xn+g xn+§ xn+% [ ao ] Yy

1 =z 22 a3 zl x° 20 x’
et Topt Tt T T T T 1 Ynt

2 3 4 5
0 0 2 6x, 12z 20x 30x 42x as fn
n+ n+tz n+tz n+tz n+ts as n+g
0 0 2 6x,.2 1222 2023 30 4220 a f .2
n+z n+2 n+2 n+2 n+2 4 n+3
2 3 4 5 a,5 3
0 0 2 Gmy,y 1207, 2023, 307, 4207, Fras
2 3 4 5 Qg foa
0 0 2 6xn+% 12xn+% 20xn+% 30xn+% 42xn+% n+3
2 3 4 4 L a7 fot1
|0 0 2 6rpy 1225, 20x;,,., 30z, 42x,,, | Ll ]
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Solving (3.3.43) by Gaussian elimination method, the a;’s are obtained as follows

_ . - 2 3 4 5 6 7
apg = yn—l—% a1$n+% a2xn+% a3xn+% a4xn+% a5mn+% aGanr% a7xn+%
yn—i—% - yn-‘r% 2
ay = l—h—ag xm%—ira:,ﬁ; —az (T, 4 +xn+%xn+%+xn+%
5
—ay (23 4+ 2% ax +a ax? s+ ad N I Y
4\ P+l ntdtnt n+5 " n43 n+3 5 +4 nt4 " n+3 n+3 +§

3 3 4 5 6
+$n+4$n+3 + +3 +xn+4$ +3 +
1
ag = §fn — 3asx, — 6a4xi — 10asz® — 15ax2 — 21aa?
fn-‘r% _fn 9 10 2 9
asy = T— ay I’n_i_%‘i‘l’n —§a5 xn+%+xn+%xn+xn

3 2 2 3 4 3 2 3 4
—bag (anr% +9€n+él’n+%+éxn+xn) — Tay (:L'M% +xn+%xn+xn+% +xn+%xn—|—xn>

1 2 1
5Jn+2 T 5 n+é+5fn >

as = 3o - §a5 (:UM% + Tpyl + xn>
125
—éa w2 o dax, e, 12w, a1, T
970 \"n+i n+Zintl n+i nt+Z4n nt+idn n
—za 3 +x2 T +x x +m +x2 Ty + 2 x T
507 (Tnsz F Ty 2Tt F Tns 2000 F 00 F T 2T Ty 2 Ty L0
2 2 2 3
+$n+%xn + T2y + Tyl + :Bn> (3.3.44)
2 6 6 2
_125dn+E T 125 0+ + 12 n+i 15 /n
as = I8 13 — 506 | Tpys T2 2 +2,,1 + 2y
3125
21 2 2
——ay 43 +x ndTny2 + 22 2 +x n42%nyl T T 2T L T X1 T 3T
10 5 5 5 5 5
2
+xn+%xn + Ty 1Tn + g:n>
12 48 , 72 48 12
15625 n+3E T 15625fn+§ + 563 n+2 T 15625/ n+i + 15625fn
ag = 17814
1943125
7
T \ Tt +xn+§ T oz + T T
_288 ¢ L4 DT6 o _BT6 g 4 288 ¢ 288
9765625/t T 1953125 n+3 T 1953125/ n+2 T 1953125/ n+2 T 1953125/ n+i T 9765625/ ™
ar = 290301 15
6103515625
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Substituting (3.3.44) into (3.3.40) with some manipulation leads to the continuous

implicit hybrid one step method in the form of a CLMMs described by the formula

k
y(r) = Z yn+]+2am i 02 |3 By (a fn+J+Zﬁyz D) i | i =1,2,3,4 (3.3.45)
7=0

For k = 1, 1y = %,I/Q = %,I/g = %,V4 = % and writing «o;(z) and B(z), j =
0, % % g % 1, as continuous functions of ¢, where t = x,: i , we obtain the following
parameters
a% (t) = —bt
Oz%( )=5t+1
2
Bo(t) = 5030 (6250t7 4 8755 + 2625t° — 875t — 420t 4 8t)
2
Bi(t) = 1562507 + 2625005 + 91875¢° — 26250t* — 14000¢® + 277t
5 50400
(3.3.46)
K2
2(t) = t7+ 0 + 5 — th— 3 + 452t
Bz 55200 156250t7 4+ 306250t% + 144375t5 — 30625t — 21000t> + 452
2
B (t) = 31250t" 4+ 70000t 4 44625t° — 1750t* — 8400t> + 271t
5 5040
2
Ba(t) = =100 (156250t" + 39375015 + 328125t° 4 65625t — 45500t> — 25200t% — 3104t)
2
Bi(t) = =000 (31250t" + 87500t° + 91875¢> + 43750t + 8400t> — 107t)
Evaluating (3.3.45) at x,,x ntls Tppz and @41 and using (3.2.8) gives t = —3, =2,

—%, % Thus, from (3.3.46), the following discrete methods are obtained;

2

3000 [

2

—h
6000

3y s~y 3y = —furr £ 32 0 +322f, 0 +232f, 2 + 127, 1 +8 fn] (3.3.47a)

s 4=y 2+ 1 = [2 fosr = ATfyys —412f, 0 — 242f, 2 — 22f, 1 + fn] (3.3.47D)

6000 [fn+1 24f, s —194f, 5 —24f, 2 + fn+%} (3.3.47¢)

2
— 18fu1 +200f, s +4f, 3+ MUfops —6fis + 1| (33470)

Ynt 2yn+ 3 +yn+— =

Yni1=2Ypy 4T Yy 8 =
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Differentiating (3.3.46), gives the following:

5
! = ——
Gt ==y
5
! _ —
) =7
(1) = ~ 10080 —— (43750t 4 52500t + 13125t* — 3500t> — 1260t> + 8)
Bi(t) = =100 ———(1093750t° 4 1575000¢> + 459375t* — 105000* — 42000¢* + 277)
5
(3.3.48)
h
By (t) = ~ 55200 ———(1093750t° 4 1837500¢> + 721875t* — 122500¢> — 63000t> + 452)
5
B(t) = =010 ——(218750t° + 420000£° + 223125¢t* — 7000t* — 25200¢% + 271)
/ h 6 5 4 3 2
Bi(t) = 50400(109375075 + 236250067 + 1640625t* 4 262500t — 136500t — 50400t — 3104)
5
Bi(t) = =340 ————(218750t° + 525000t 4 459375t + 175000t + 25200t* — 107)

41



Evaluating (3.3.48) at Ly Ty 13 Ly 25 Ty 3, Ly 4 AN Ty using (3.2.8) gives t =

,0,

. Thus, the following discrete derivative methods are obtained;

(S
Cﬂlw
Cﬂlw

Cﬂl»—l

Y

— oo [107fus + 32, + 11626f, 5 +6250f,,»
+14059f,,. 1 + 3176 fn]

h
B0d00 |52t — 12434 — 82524 — 118667,
4070,y + 149, |

hy7/1+ 5yn+ 4 + 5yn+,

~h
R I R 7T | =5fus1 + T04f, 5 + 10058, 5 + 4712, 5

(3.3.49)
5010 (82w — 1855, 3 — 4444, 3 + 9025

5 [L07Fesr = BLO4T, 4 — 27107, 4 + 904, 2
—277f, 1 +40 fn}

hy:1+% - 5yn+% + 5yn+% -

P = SYoss + 5ls = st | 3218 st + 13093, — 2876, .3 + 2470, ,2
—934f,,1 + 149 fn}
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Combining (3.3.47) and (3.3.49) using (3.2.11) and (3.2.12) respectively gives

0 0 —12000 9000 0 0 0 0 0 0
6000 0 —18000 12000 0 0 0 0 0 0
0 6000 —12000 6000 O 0 0 0 0 0
0 0 6000 —12000 6000 0 0 0 0 0
0 0 252000 —252000 O 0 0 0 0 0
0 0 252000 —252000 O 50400h O 0 0 0
0 0 252000 —252000 O 0 50400h 0 0 0
0 0 252000 —25200 O 0 0 50400h O 0
0 0 25200 —252000 O 0 0 0  50400h 0
0 0 252000 —252000 O 0 0 0 0 50400h |
Y ] [ =3000 0 ] e -
Ynt2 0 0 B2
Ynsi 0 0 0
Yoy 0 0 2
- 0 50400 | 1762
Y1 B 0 0 Y " 149h2 o
y;Jr% 0 0 —40h?
y;w% 0 0 37h?
J o 0 0 —40n?
0 0 14952
L 3/;+1 i - - i
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—14059h2

—4070h?

—262h?

—934h?

22h?

24h?

127h?

—6h?

389h*

277h?

232h*
242h*
24h*
14h?
—6280h*
—11866h>
—4712h%
902h?
—904h*

2470h?

and simplify to obtain

0

0

1

0

1

0

0

0

0

0

0

(100000000

000

000

322h*
412h*
194h?
4h?
—11626h2
—8252h?
—10058h2
—4444h*
2710h?

—2876h*

T Yni
Yn+2
yn+%
yn+%

Yn+1

32h?
47h?
24h?
209h?
—32h?
—1243h?
—T704h*
—1355h?
3104h*

13093h?

44

—h?
—2h?
—h?
18h?
—107h?
82h?
5h?
82h?

—107h?

3218h? |

ol o ol
= = =

(ST
=

r 1231 1
12600

71
3150

123
3500

376
7875

61
1008

19
288

14
225

51
800

14
225

19

L 288

(3.3.50)



- 863 72 761 32 941 72 341 72 107 p2
50400 &3000"  Ta000 T56000/" 752000
544 12 37 72 136 22 100 72 8 12
7875 1 575 Al T5750 " a7
350 72 9 12 87 12 9 32 9 12
58000 " 3500 580071 g5 55007 i -
n—l—%
142412 176 7,2 608 7,2 _ 16 _p2 _16 3,2
Al AL AL T575 1 AL F
n—l—%
475 1.2 25 12 125 7.2 25 12 11 72
50162 5017 1608/ To0s 50167 ; ( )
n " 3.3.51
+3
427, 133 p 21 p 173 3 5
7200 1200 3600 7200 800
.fn+é
43 7 7 1 1 5
150 h 225 h 225 h 75 h 450 h
Jns1
219 57 57 21 3 Lt
8007 2007 2007 500/ 5007
64 8 64 14
235 75 235 3351 0
25 25 25 25 19
L 5h il ik a6 ash
Equation (3.3.51) is written explicitly as
1 h?
/
1= —h 107 — 682 4 + 1882 3 — 3044 2 + 4315 1
ym-g Yn + 5 Yn T+ 952000 [ fn+1 fm—g + fn-|-3 fn-s-g + fn+g
+2462f,]

2 2
Uns2 = Un + ShU + oo [mfn+1 —101f, s +272f,,5 — 370, 2 + 1088,
+3551,]

3 2
3501,y + 9841, |

(3.3.52)

4 h
Yot =+ Wt [16fn+1 —80f,4 4 +608f, s +176,,2 + 1424f,
+3761,]

h
Yot = Y+ + oo [11 fursr +50fpi s +250f,, 5 + 100, 2 +475f,, 1 + 122 fn}

h
Vs = Vot 30 (27 fr1 = 173, +482f,.,3 = T98f,.,2 + 1427f,.,1 + 475,
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h -
Yoz = Vot g5 | ot = 6fups + fes + 145,03 + 129, ) +281,]

h -
y;+% =y + 00 _3fn+1 —21f, s + 114, s + 114f, 2 +219f, 1 + 51fn]

h -
Virs =Y+ gz [Wfues + 640,03 + 240,00 +64f,) + 14 fn]

h
Varr = o+ 555 [19fn+1 +T5fpss +50fups +50f, 2 +T5f, 1 + 19fn]

3.3.5 One Step Method with Five Offstep Points

This method is derived by the addition of five offstep points between x, and 1.
The offstep points are chosen carefully to guarantee zero stability of the method. In
particular, ¢ = 1,2,3,4,5 which implies that v; = %, Uy = %, vy = %, vy = % and
vy = 3.

Thus, (3.2.1) for r = 7 and s = 2 becomes a polynomial of degree r + s — 1 of the

form
8
y(x) = Zajxj (3.3.53)
5=0
with second derivative given by
8
' =) (i — Dagal? (3.3.54)
=0

Substituting (3.3.54) into (1.8.2) gives the differential system

8

Y i = Daa? ™ = f(z,y,y) (3.3.55)

J=0
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Collocating (3.3.55) at Zp4r,7 =0, ¢, 3, 5, 3, 2, 1 and interpolating (3.3.53) at 2,45, s =
%, % leads to a system of equations written in the matrix form AX = B as follows:
- 2 3 4 5 6 7 8 -
1 Ttz Tz Tz Ty s T2 T2 T2 T2 .
0
2 3 4 5 6 7 8
1 Tnpd Tpys Tops Tps Tops Tt Tps Tps o
0 0 2 6z, 1222 2023 30zt 422> 5628 s
1942 3 4 4945 6
0 0 2 6xn+é 2xn+% 20xn+% 30:%+é 2xn+% 56xn+% as

"ty nt3 nt3 nt3 nt3 nt3

nt3 nty nts ntj n+3 n+3
0 0 2 6w,z 12x2+% 20xi+% 3Ox4+% 42x2+% 56$2+% 6
0 0 2 6xn+% 12xi+% 20xi+% 30xi+% 42x2+% 56m2+% “
as
| 0 0 2 6rpi1 1222, 2023, 30xi+1 4225 56x2+1 I
- s -
Yn+3
Jn
Jor1
= | fusi (3.3.56)
for1
for2
fors
| fat1
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Solving (3.3.56) by Gaussian elimination method, the following parameters were ob-

tained:

CLSLEB

7
arx n+3

6
agl n+3

_ 2 3 4 5
ag = ’ynJr% — G1In+% — CLQI‘TH_% — CL3In+% — a4xn+§ — a5xn+§ n—i—%

yn+§ _yn+2
— 6 3 _ 2 2
a; = a9 <$n+%+azn+§> as <xn+%+xn+%xn+%+xn+§)

3
n+%

>

=

|
Q
S

|
Q
=
/\/\?/\/\
3 o>
+
oot

8

+xn+5xn+2+xn+sx g—l—a: >

3 2 2
Tl 53 Tng 2 T 5T, 0 T xn+%a: +2 T z, )

4 302 2 .3
+xn+%mn+%+xn+%xn+%+xn+%xn+§ +:17n+5x 2 + 2° 2 )

2+$n+5$ 2+x 3)

I
=)
)

5 4 2 3 .3
+xn+%xn+% +xn+2xn+§ +xn+%xn+ + 2 +5ar

n+

2
n—&—%

4
n+%

|
=
o0

6 5
‘+xn+%xn+%~l—x x

4 3
n—&-% +xn+%x

3
n+§ + xn—i—%x

2
T 8T 2+$n+533 2+x )

as = §fn — 3asx, — 6a4xi - 10a5x2 - 15a6:1:fl + 21a7x2 + 28a8x2

f += fn 10
n 2 2
az = GT — 2a4 (xn+% + xn) - §a5 <xn+% t Ty ot x”)

3 2 2 3 4 3 2 2 3 4
—Hag (anr% +xn+%xn + Ty 1, +xn> — Tay (IM% +xn+%xn + T 10 + Ty 1T, +xn>
5 4
——asg <[En+% +£Un 1$n+x

l n 1 — l n 1 + _fn 5
4y = 6Jn+3 3J/n+3 6 —§a5 ($n+%+$n+é+xn> (3357)

—i—anrlx 1xn+a: 1xn+x 1xn+xn+%xn+éxn+x
3

n+g

1
68 nti % n+l + 3 ntl ~ Tosfn 3

g’ 2

2
1 +£L‘n+1ilj'n+1 —|—£Ij'n+1il,'n+1 +x

2L
_an n—l—l +£Cn+1l'n+1 —|—.§U ntl i 1 1 1 ntl

2
0,00 + 22
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14
3 2 2
——asg xn—i—l +Q?n+ll’n+; +xn+;xn+l—|—x 1—|—.I‘n+ n+1 —|—{En+1$n+1.§€n+1 +xn+1xn+
5 2 2 3 2 3 2 6

2 3 2 2
—l—:z:n 1 n+; + X, n—i—é —|—xn+% +xn+%xn+xn+%xn+%xn+xn+%xn+xn+%xn+éxn

2 2 2 2 3
+xn+%xn+éxn+xn+%$n+xn+%xn+xn+%xn+xn+%xn+xn>

1 1 1 1
3888/ n+2 — 972/n+3 + 648 nt+s = 972/n+3 + 3888f”

h4

34992

7 28
2 2
_Sa7 <$n+§ +xn+% +In+§ —|—mn+% —i—xn) — —5a8 <xn+% +xn+%xn+% +$n+% +xn+§x

wl=

2 2
+xn+%xn+% + In+% + xn-&—%xn-l—% + xn—i—%xn—i-é + xn-l—%xn-l—é + xn+é + In-&-%‘rn + xn-&-%‘r”

2
+xn+%xn+xn+%xn+xn>

o B fo, B fo 5 _po 4 5 g o _1_g
2099527/ n+2 ~ 200952/ n+2 T 104976/ n+3 T 1049767/ n+3 T 200952 /n+5 T 20095277

35 h5

11337408

4
_§a8< n+5 —|—$n+2 + X, L +x,, L —l—l‘n+1 —{—l‘n>

__5 frs1 — _5 5
68024448/ 7+1 T 11337408/ n+32

+ i 25 I T )
22674816 n+* 1700611279 n+3 22674816 n+3
5

T 11337408 /n+ ¢ + 68024448 s0omaas

175 h6
2754990144

ag =

Substituting (3.3.57) into (3.3.53) with some manipulations leads to the continuous

implicit hybrid one step method in the form of a CLMM described by the formula

k
y<x>=Z yn+]+2aul (@)Yt +h° | Bl fn+]+26yl )fotw |+ 1=1,2,3,4,5 (3.3.58)
j=0
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Now, for k = 1,01 = $,vp = 3,03 = 3, vs = 2 and v5 = 2, let a(z) and () be written

W=

as continuous functions of ¢ then, we obtain the following coefficients of (3.3.58) as:

as(t) = —6t

ulw

as(t) =6t +1

5
6

2
Bo(t) = 560 (839808t + 1679616t" 4 1088640t° + 163296t° — 78624t* — 24192t + 289¢)

2

Bi(t) = (93312t% 4+ 207360t" + 145152t + 24192¢° — 10416t* — 3360t + 41t)

13440

2
Bi(t) = 0610 (1399680t° + 3421440t" 4 2685312t° + 526176t° — 191520t* — 67200t* + 851¢)

2

Bi(t) = - R0 40(419904%8 + 11197440t™ + 10015488t° + 2612736t> — 710640t
—302400t° + 4157t) (3.3.59)
2
Bz (t) = 960 (155520t® + 449280t" + 459648t° 4 167328t> — 19040t* — 22400t* + 455¢)

2

7 10320

(279936t% 4 8709127 4+ 1016064t° + 508032t + 49392¢* — 51744¢°

—20160t* — 1973t)

2
Bi(t) = 560 (839808t" 4 2799360t" + 3701376t° 4- 2449440t + 828576t + 120960t> — 995t)

)

Evaluating (3.3.58) at z,, Tpy s Ly Ly Tyl Tngt using (3.2.8) gives t = —%, —%,—

N[ =

1
’ 6

W=

and yields the following discrete methods from (3.3.59);

2
Yoy =By 2t = 5omoe [—95 Fair +2334f,, 5 + 21255, 2 + 18532, .1 + 11679f, 1

+6366,,,1 + 409 fn] (3.3.60a)

h2

B s~ W5 Hns ) = —geoees [95 fat1 = 2754f, 5 — 26883, 2 — 19708, 1 — 10503,

~T38f 41 + 11 fn] (3.3.600)
2

Wnss = M2 + Yoy} = s [—137 Fat1+ 3762, 5 +35073f, > + 19708, + 2313f, 1
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~270f,,1 + 31 fn] (3.3.60¢)

h2
Yoss = Ward + Vsl = Jrmses [—221fn+1 +5862f,,5 + 49353/, 2 + 5428,,1

+213f,.43 — 186f,,3 + 311, | (3.3.60d)

2

2177280
+4827f, 1 — 15781, 1 + 221 fn} (3.3.60¢)

Ynit = iy + Yoy2 = [—4315 fusr — 53994f,, 5 +2307f,,2 — T948f, 1

Differentiating (3.3.59) yields the following:

(1) =~

G0 =7

Bo(t) = 560 (6718464t" + 11757312t + 6531840t° + 816480t* — 314496t> — 7257t + 289)
Bi(t) = —m(746469t7 + 1451520t° + 870912t° + 120960t* — 41664¢> — 10080¢* + 41)

h
/3’% (t) = M(nwmoﬂ + 23950080t + 16111872t° + 2630880t* — 766080t

—201600¢* + 851)
(3.3.61)

6’% (t) =— 131440 (33592320t" 4 78382080t° 4- 60092928t> 4 13063680t* — 2842560t

—907200¢* + 4157)

h
5’% (t) = m(2239488757 + 60963841° 4 6096384t° 4 2540160t* + 197568t> — 155232t>

—40320t — 1973)

h
Bi(t) = 560 (6718464¢" + 19595520t° + 22208256t° + 12247200t* + 3314304¢°

+362880t% — 995)
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Evaluating (3.3.61) for t = —g, —%, —%, —%, —%, 0 and % the following derivative meth-

ods were obtained:

2

241920

Wy, = 645 + 6y, 2 = [—585 Fair + 6962, 5 + 26465, 2 + 58876, 1

+18697f,, 1 + 58738, .1 + 12287 fn}

h2
hy;+% = OYns3 + sz = momes [29 fot1 —8262f,, 5 — 119817f,, 2 — 101620f,,1

149013, , 1 — 45990, 1 + 1313 fn}

2

= o | 57U i + 124381, 5 + 105219, .5 + 134132,

hy;H_% - 6yn+% + 6yn+%

+55035f,,,1 — 42661 + 413fn}

h2
By = O + 60z = 5775 [63 fuer = 307Af, 2 — 39587, 2 — 19708, 1
+2201f, 1 — 418/, 1 + 43 fn] (3.3.62)
2
/
B2 = Oy + 69z =~z [—731 fupr + 14742f, 5 + 57123, 2 — 15884, 1

+6930,,5 — 1962/, .+ + 253 fn]

2

h
hylys = 6tys + 002 = s [—995 Fasr 4 35514f,, 5 + 36855, 2 — 166281, 1

7659, 1 — 2214, 1 + 289 fn]

2

241920

W1 = OYpys + 6y,,2 = [—12393 Fat1 — 55246 f,,, 5 + 18689f, 2 — 19460, 1

+10021f,,1 — 3470, , 1 +479 fn}

Combining (3.3.60) and (3.3.62) using (3.1.11) and (3.2.12) respectively gives
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[ 402611¢

0

H09L4¢L

0

H09L4CL

0

0

H0C61VC

Y09L4¢L

H09LGCL

0

0CaTayI—

09474EY—

094¥49EY —

0CSTaVI—

094749€EY —

094¥4€EY —

0CSTSYT—

08¢LLTC 099VSEY—

o

)

)

08CLLIC

rasRsigl

0798801

¢160.8

0Cat1avl

09474EY

094¥4EY

rasRsigl

094¥4EY

09474EY

0CSTSYT

08CLLIC

09974€Y—

08CLLTC—

0CaTSy1I—

0798801 —

08CLLTC

0

0

0

09.G¢L

0

088¢9¢
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yn—‘r% | _ - -
—217728 0 409
Ynti
+3 0 0 —11
Ynyl 0 0 31
Yny2 0 0 31
Yny 3 0 0 —221
Yn+1 0 —241920h Yn —12287
/ - +
Yny1 0 0 y 1313
y:w% 0 0 —413
! 0 0 43
Lo
/ 0 0 —253
Ytz
. 0 0 289
Yis
i 0 0 ] | —479
Yni1 |

o4




63662
738h*
—270h?
—186h*
—1578h?
—58738h?
—45990h2
4266h?
—418h?
1962h>
—2214h?

3470h?

11679h?
10503h?
2313h*
213h*
—4827h?
—18697h?
—149013h2
—55035h2
2201h*
—6939h*
7659h*

—10921h%

18532h*
19708h*
19708h2
5428h*
7948h?2
—58876h?
—101620Ah2
—134132h?
—19708h2
15884h?
—16628h*

19460h*

21255h2
26883 1>
35073h2
49353h2
—2307h?
—26465h?
—119817h?
—105219h2
—39587h?
—57123h2
36855h?

—18689h2

25

2334h?
275402
3762h*
5862h?
53994h?
—6962h?
—8262h*
—12438h?
—3074h*
—14742h*
35514h?

55246h>

—95h2 ]

95h?
—137h?
—221h2
4315h?
585h?
29h?
571h?
63h?
731h?

—995h2

1239312 |

(3.3.63)



and

26

>=

N |—= W= [N
> =

SN
=

ot
=

28549 h2
4354560

1027 3,2
68040 h

253 1.2
10752 h

272 1,2
8505 h

35225 h2
870912

41 p2
840h

19087
362880

1139
22680 h

137
2688 h

143
2835 h

3715
7257h

41
10




275 p2 5717 p2 10621 g2
20736 483840 1088640
osh? —Zh? Lh?
Tl —Temht TRl
2Oh? —g=h? SR
488337854 h? 2333(5)4 h? 22157672258 h?
ah’ o
125710230 h - 11250498670 h % h
Wl wel sl
tzh  dme 1P
sl et st
w1 st sl
=zt el st

- 14757105320 h? 244109320 h? 8;33 ? 2 h?
ol mwtt ~aml
o %hQ %hQ o %hZ
o 8%h2 9%5 h2 o %hQ
B 92?28 h? 23?26 h? - 8%;?2 h?
%hz %h2 0
~Too" Tl ozl
—Hoo 9 " mosl
—am? el " mml
a5l et Tmmh
snos oAl sl
el 3h il

57
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Equation (3.3.64) can be written explicitly as

yn—‘,—%

yn+ 1

3

yn+%

yn—&—%

yn—‘,—%

2

2l hy
Yn T 5 T 354560

5145341 + 577501 + 28549,

995 fus + 72541,y — 23100f,.,3 +42484f, )

1, 2
4 =h
Yn 3 ¥ 55010

16801, 1 +3492f,, 1 + 1027 fn}

[—38 Juer + 276, 5 —873f,, 2 + 1576, ,

T :
Yn T 50 T 53760

801,y + 49501, 1 + 1265,
2

[—47 Fusr + 342, 5 — 1089f, 2 +2100f, 1

2
Yo+ Shil+ oz [—10fn+1 + 725 — 210f,,2 +656f, 1 — 18f,,1

+1128f,,1 + 272 fn}

2

5
Yn + ~hy!, + [—1375fn+1 +11550,,,5 — 5625,,,2 + 1025001

6 870912

+9375 .1 + 150750, 1 + 35225 fn]

2

h
o+ i+ [36fn+% +0f, 2+ 1361 +18f,,1 +180f, 1 +41f,

| 86341+ 6312f,.,5 — 20211f,.,2 + 37504,

!
Un ¥ 362880

46461/, 1 + 65112, ,1 + 19087 fn}
h -

v, + 39680 =37 fut1 +264f, 5 —807f, 2 +1328f, .1 +33f, .1

+5640,, 1 + 1139fn]

h -
Yot Tagg |20 + 2160, 5 —T29f, 2 + 21761 + 1161, .

+3240f,,,1 + 685,

h
Yn + 5335 [—4fn+1 t 24 s + 87 s + 752101

$192f,.,3 + 6961 +143f,]

+ e | <275 st + 56401, 5 + 116253 + 160001, )

FO375,.0y + 174001,y + 3715,

Yr,

h
Vot op [41fn+1 +216f,,5 + 2Tfuy2 + 2726, 1 + 2Tf00

+216f,,1 + 41fn}

o8

(3.3.65)



Chapter 4

Analysis of the Methods

4.1 Introduction

Basic properties of the main methods and their associated block method, are analysed
to establish their validity. These properties, namely: order, error constant, consis-
tency and zero stability reveal the nature of convergence of the methods. The regions
of absolute stability of the methods have also been obtained in this chapter. In what
follows, a brief introduction of these properties is made for a better comprehension

of the chapter.

4.1.1 Order and Error Constant
4.1.1.1 Order of the method

Let the linear difference operator £ associated with the continuous implicit one step

hybrid method (3.2.7) be defined as

k
Lly(z);h] = Z {ajy(z, + jh) — any(x, + vih) — B*B;y" (z, + jh)

J=0

—1?By (zn+jh)}; i=1,2,....m (4.1.1)

where y(z) is an arbitrary test function that is continuously differentiable in the
interval [a, b]. Expanding y(z, + jh) and y"(z, + jh), j =0,v;,1; i=1,2,....,m in

Taylor series about x,, and collecting like terms in h and y gives;
Lly(x); h] = Coy(a) + CrhyV(2) + Coh®y® (@) + -+ + CphPyP(z) + -+ (4.1.2)
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Definition 4.1.1

The difference operator £ and the associated continuous implicit hybrid one step
method (3.2.7) are said to be of order p if in (4.1.2) Cp = C, = Cy = -+ = C, =
Cpr1 = 0,Cpp0 # 0.

Definition 4.1.2

The term Cp4o is called the error constant and it implies that the local truncation

error is given by

tnsk = Chioh?2y@ ) (2,) + O(hPT?)

4.1.1.2 Order of the Block

The order of the block will be defined following the method of Chollom et.al. (2007)
however, with some modification to accommodate general higher order ordinary dif-
ferential equations and offstep points.

Let the implicit block hybrid one step method be defined by
> ol Oynrs = h2Y B ) farss 5= 001, vk (4.1.3)
J J

where p is the degree of the derivative of the continuous coefficients «;;(t) and 3;;(t)

and m is the number of offstep points used.
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In matrix form,(4.1.3) is equivalent to

Qoo
api0
Oé,jmo

ko

/
&%)

/

aul()

aum 0

L ko

Let

Similarly,

Qo1
i1
Qy,1

(6731

Qoy,,

Ofl/ll’m

&y v
Ay,

/
OéOI/m

Oé/

ViVm

YmVm

/
Qg

Vm

= [aoo, 00,

= [0401, ayi1,

= [a()l? aVlly

= [OéOk,Oélk,-

= [Boo; Buro;
= [Bo1, Bt - - -

= [Bor, Bt -

Qo

Qi k

Qy, k

973

!
Qo

/

aul k

vmk

Ay

= [Boks Biks - - -

Yn

yn+l/1

yn“’l/m

Yn+1

/

Yn
/
yn—H/l

/
yn+um

/
. yn-‘,-k; -

/ /
s aaumlya/kl,a()l,al,ll, c.

7/8le7 5k17/861, /8,//11, e
7ﬁ1/mk7 ﬂkka ﬂék, B,ljlk, Ce

[ Boo
Buro
o
Bro
Boo

!
10

/
Um0

/
L kO

/ /
P 7aym(), ako, Ofoo, (1/1/107 e

/ !/
PP ’an17ak1’a017aV117 e

/ /
s QL ky Ok, Qg amk? ..

s Bomos Bros Bogs B - - -
7ﬁum1a /Bklyﬁ(l)la 6;11, e

Bor Bowv,,
Bt Borvm
Bv.ml 5w;wm
Br1 Brewn,
Bon Bovmm
n .
e B
B Bk
O 00 Aol
ST )"
) az//m 1 a;cl]T
) O e )

T
7/8’//m0’ 6//{:0]

T
Bty B

T
7/87//771175]/{)1]

T

Bor ]
ﬁlllk

Bumk
Bk
Bor

/

vk

/
Umk

B

Then, the linear difference operator, £, associated with the implicit block hybrid one
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fn+1/1

fn—‘rl/m
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step method (4.1.3) is described by the formula

Lly(x);h) = [ay(en + jh) = By (wn +5h)], G =0, vm, b, (4.14)
J
where y(x) is an arbitrary test function continuously differentiable on [a, b]. Expand-

ing y(x, + jh) and y"(z, + jh), j = 0,v1,...,Vm, k in Taylor series and collecting

terms in (4.1.4) gives
Lly(e); 1) = coy(x) + @by V(@) + a2y@ (@) + -+ e hyP (@) (4.15)

where the ¢;, t =0,1,...,p are vectors.

Definition 4.1.3
The one-step implicit hybrid block linear method (4.1.3) and the associated linear
difference operator (4.1.4) are said to have order ¢ if ¢g =¢ = -+ =¢, = G41 =0

and Ep+2 7£ 0.

Definition 4.1.4
The term ¢y is called the error constant and implies that the local truncation error

for the implicit block hybrid formula is given by
buk = Cpr2h 27D (2,) + O () (4.1.6)
4.1.2 Consistency

Definition 4.1.5
Given a continuous implicit one step hybrid method (3.2.7), the first and second

characteristic polynomials are defined as

k
p(z) = Zajzj (4.1.7)

o(z) = Zﬁjzj (4.1.8)
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where z is the principal root, ay # 0 and a2 + 32 # 0.

Definition 4.1.6
The continuous implicit one step hybrid method (3.2.7) is said to be consistent if it

satisfies the following conditions:

(i) the order p > 1

Remark
Condition (i) is a sufficient condition for the associated block method to be consistent

i.e, p>1 (Jator, 2007).

4.1.3 Zero Stability

Definition 4.1.7

The continuous implicit one step hybrid method (3.2.7) is said to be zero-stable if no
root of the first characteristic polynomial p(z) has modulus greater than one, and if
every root of modulus one has multiplicity not greater than one.

Definition 4.1.8

The implicit hybrid block method (3.2.12) is said to be zero stable if the roots z;, s =

1,...,n of the first characteristic polynomial p(z), defined by
p(z) = det[zA — E] (4.1.9)

satisfies |z5] < 1 and every root with |z5| = 1 has multiplicity not exceeding two in

the limit as h — 0.
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4.1.4 Convergence

The convergence of the continuous implicit hybrid one step method (3.2.7) is con-
sidered in the light of the basic properties discussed earlier in conjunction with the
fundamental theorem of Dahlquist (Henrici,1962) for linear multistep methods. In

what follows, we state Dahlquist’s theorem without proof.

Theorem 4.1.1
The necessary and sufficient condition for a linear multistep method to be convergent

is for it to be consistent and zero stable.

Remark
The numerical methods derived here are considered to be convergent in the limit as

h — 0 by Theorem 4.1.1.

4.1.5 Region of Absolute Stability
4.1.5.1 Region of absolute stability of the main methods

Consider the stability polynomial
II(z,h) = p(z) — ho(z) =0 (4.1.10)

- d,
where h = h?)? and \ = d_f are assumed constant.
Y
The polynomial equation (4.1.10) is obtained by applying the continuous implicit

hybrid one step method (3.2.7) to the scalar test problem;
Y= =Ny (4.1.11)

Definition 4.1.9
The method (3.2.7) is said to be absolutely stable if for a given h all the roots z, of

(4.1.10) satisfy |zs] < 1, s =1,2,...,n, where h = \h.

64



Remark

The interval of absolute stability is determined by the coefficient of the method (3.2.7).

Definition 4.1.10

The set Q = h(0) of points in the h-plane for which the global error

entk = |Yntk — Y(Tnin)| (4.1.12)

remains bounded is called the interval of absolutely stability.

Remark

Since the roots of the stability polynomial (4.1.10) are complex numbers, we regard
h as a complex number and define also a region of absolute stability.

To determine the region of absolute stability in this work, a method that requires
neither the computation of roots of a polynomial nor the solving of simultaneous
inequalities was adopted. This method according to Lambert (1973) is called the
Boundary Locus Method (BLM).

Definition 4.1.11
The region R of the complex h-plane such that the roots of II(r, h) = 0 lie within the
unit circle whenever h lies in the interior of the region is called the region of absolute

stability.

Remark
Let 0R be the boundary of the region R. Since the roots of the stability polynomial
are continuous functions of h, h will lie on R when one of the roots of I1(z, k) = 0

lies on the boundary of the unit circle. Thus, we redefine (4.1.10) in terms of Euler’s
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number, exp i6, as follows
m(exp(i0), h) = plexp(if)) — ho(exp(if)) = 0 (4.1.13)

So that, the locus of the boundary éR is given by

= e (4.1.14)

In the next section, the basic properties of the methods are discussed.

4.2 Analysis of the One Step Method with One
Offstep Point

In this section, the order, error constant, consistency and zero stability of the main
method, equation (3.3.8) and the associated block method (3.3.12) are obtained. The

region of absolute stability of the method (3.3.8) is also obtained.

4.2.1 Order and error constant

4.2.1.1 Order and error constant of the main method (3.3.8)

Writing (3.3.8) in the form

1 5 1
Yn+1 — 2yn+% + Yn — h2 |:£fn + ﬂfn+% + Efn+1:| =0 (421)

and expanding y(z,, + jh) and y"(z, + jh), j = 1,1 yields

B N (I W AU s (1Y 1| R
V@9 ) B0y, ST G | 2 (2 —|——=yP =0 (4.2.2
;j!yn ;(2) 1 ; TR b (2) TR (4.2.2)
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Collecting terms in powers of h and y gives the following constants

o = 1-2+1=
cT = 1—-1=0
11 w11
R R R TR TRTS
1115
“ T 6 24 48 48
1 1 1 )
C4 = _———_— — — — — =
24 192 96 192
1 1 1 5)
g = —————— — —— =0
120 1920 288 1152
1 23040 1 1 401609
6 = — — — = = —4.7291 x 10~*
720 — 1152 221184 849231360
Hence, the main method is of order p = 4 with error constant ¢, = —4.7291 x 10™*.
4.2.1.2 Order of the block method (3.3.12)
Let (3.3.12) be expressed in the form
r 1T 1 1 R - Th? T roh2 R 1
0100 || Y L | [ & oo Fos
' N | o il h h
/ 5
00 10|y, 01|y sh b
h 2h  h
oo o 1]y, ] Lo RN
Expand (4.2.3) in Taylor series about z,, in the form
[ oo (VR G) B () 2 (2) oo w2 (42) [1 1y 1] T
2 j—o T Yi’ = Yo — Y’ — G5 Yn — 2 i 7! Y 1_6(5) _%} -
o R 1 2 (2 0o it (j+2 j
ijo ’;.—!yﬁf) — Yy — hyg) . %yé) . ijo hj! y£L]+ ) [% (%)J _ O} 0
o (30 Gy _ () _ oo witL (142) j 0
S Lyt — ) — gy e e G4 [ ()7 L]
0
oo w, G+ (1) (2) oo Tl (j42) j i
| 5 S k) gl - T T [3 () - |
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(4.2.4)



1-1 0 1-1 0
1-1 0 1-1 0
cy = = , C = =
0 0 1-1 0
0 | 0] 11| 0]
_(5)2%_%_[%6_916}_ [ 0]
) x5 50 0
Cy = =
(3) =21 =5 — 2l 0
[ 1-5-[5+4] Lo
- 3 - — -
() & = 56 (3) — 5l 0
5~ [5(3) - 0] 0
53 = =
2
) 2 -1 G) - 0
Lo = [5(G) + 4l Lol
G- H@ %] -
-5 33" -0 0
¢y = _
B3 -3[50)" - 4] 0
1_1[1(1)2+1} L0
_3' 2! 13 \2 6 i
W a-a5W -5 | - . -
11520
__1[1(1)3_0] !
B ! b3 \2 720
Cy = =
1
B -5 50 - 4] i
;_;[2(1)3+1} L0
_4' 3113 \2 6 i
Hence, the block method has order p = (3,3,3,3)" with error constant c¢,,» =
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(Ll 1O)T.

11520 720 384

4.2.2 Consistency
4.2.2.1 Consistency of the main method (3.3.8)

The first and second characteristic polynomials of method (3.3.8) are given by
p(z) =2z—222+1

and
24+ 10172 41
48

o(2) =
By definition (4.1.6), the method (3.3.8) is consistent since it satisfies the following:
(i) the order of the method is p =4 > 1.

1
=—2and aq = 1. Thus,Zajzl—Q—l—l:O, j=0,51
j

(11) ap = 1,0[%

(iii) p(1)=1-2-1=0

NI

plz)=1—-r"

Forr=1

o1 =4

0.(1) — 1+leg+1 — %
20(1) =2(3) =3

L (1) =2lo(1)
Similarly, the block method (3.3.12) is consistent by condition (i) of definition (4.1.6).
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4.2.3 Zero Stability of One Step Method with One Offstep
Point

4.2.3.1 Zero stability of the block method (3.3.12)

From (3.3.12) using the definitions in (3.2.12) as h — 0

1 000 0100
0100 0100

p(z) = det |z —
0010 0000
looo1] |ooo0o0]]

= det =2z 1)

thus solving for z in

2(z—1)=0 (4.2.5)
gives z = 0 or z = 1. Hence the block method is stable.
4.2.3.2 Zero stability of main method (3.3.8)
The first characteristic polynomial of (3.3.8) is given by
p(z) =2 —2212 41 (4.2.6)
equating (4.2.6) to zero and solving for z gives
(Vz—=1?=0

= z=1

The root z of (4.2.6) for which |z| = 1 is simple, hence the method is zero stable
as h — 0 in the limit by definition (4.1.7) and by the stability of the block method

(3.3.12).
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4.2.4 Convergence

Following Theorem 4.1.1, the method (3.3.8) is convergent since it satisfies the nec-

essary and sufficient conditions of consistency and zero stability.

4.2.5 Region of Absolute Stability of the one step Method
with One Offstep Point

From (3.3.8), the first and second characteristic polynomial are as follows

p(z) =z — 2212 +1. (4.2.7)
1 10 1
o(z) = 18° + @21/2 + Y (4.2.8)

so that the boundary of the region of absolute stability is
p(z)  48(z—2z'/%2+1)

h(z) = = 4.2.
(2) o(z2) z+1021/2 41 (4.2.9)
Let z = ¢?| therefore (4.2.9) becomes
B 4 0 2 it0 1
h(o) = BleT— 2+ 1) (4.2.10)
e +10e'2% + 1
for € = cosf + isin @, (4.2.10)reduces after some manipulation to
. 768 cos 56 + 96 cos 6 — 864
h(0) = b o (4.2.11)

40 cos %0 4+ 2cosf + 102

Evaluating (4.2.11) at intervals of 30° gives the following results;

Table 1. The boundaries of the region of absolute stability of the one step 1 offstep point

method.

0 0] 30° | 60° | 90° | 120° | 150Y | 180V
h(f) | 0| -0.27 | -1.10 | -2.46 | -4.36 | -6.77 | -9.60

Thus, the interval of absolute stability from table 1 is (-9.6,0). The region of
absolute stability is shown in figure 4.1
Remark

The locus is symmetric about the z-axis that is, x(—0) = z(6).
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Figure 4.1: Region of Absolute stability of the One-Step Method with One offstep
point

4.3 Analysis of the One Step Method with Two
Offstep Points

In this section, the order, error constant, consistency and zero stability of the method
(3.3.21a) and its associated block method (3.3.25) are obtained. The region of abso-

lute stability of the method (3.3.21a) is also obtained.

4.3.1 Order and Error Constant
4.3.1.1 Order and error constant of the main method (3.3.21a)
Let (3.3.21a) be written in the form

1 1

5)
Ynit = W2 + Ynyy —H° [r.gfmr; topfez mfnﬂ} =0 (4.3.1)

Expanding (4.3.1) in Taylor series in the form

iﬂfyg)_gim
J

j=0 /" j=0 J
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and collecting terms in powers of h and y leads to the following:

o = 1-2+1=0, 01—1—2<§>+%:O
1 2\° 1 1\’ 1 1 5 1
€ = 5—2(5) 5*(5) a—{mm*m]:o
1 2\° 1 1\*1 1 /2 5 (1 1
G = 5—2(5) 5*(5) 5‘[@(5)*@(5)‘@}:
1 N'1 /1V'1 1|1 /1N 5 /2)\?
“ = 5—2(5) 7*(5) TR 1—8(5) +5—4(§>
1 N°1  /1N°1 11 /1 5 /2)\°
¢ = a”(g) a*(g) 53 1—8(5) +5—4(§>
1 N1 /1N\1 11 /1y 5 /2\!
‘= a—Q(g) a*(g) o 1 1—08(5) +5—4(§)

Hence, the main method (3.3.21a) is of order p =
—5.7158 x 1075,

4.3.1.2 Order of the block method

Let (3.3.25) be expressed in the form

(10000 07| Y+ (1 4] [
01000 0] ¥Y+: 1 2
001000/ Y% 1 h | [
0001004 0 1 | Ly
000010]]|y., 0 1
n+3
000001 / 0 1
L '-yn+1-' h L
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97 1,2 7]
3240h

28 12
405h

13 72
120h

>

ool

>

Ol

>

00|
L

1




r 19 —-13 1 .
540 L 1080 Toso 1V 405 h?
22 -2 2
135h2 135h2 4_05h2

fn—}—%

3 3 1
EhQ EhQ @hQ

-1 . 5 1 forz (4.3.3)
=l wh wHh
4 1 fn—i—l
§h §h 0
3 3 1

L sh sh 5h

Expanding (4.3.3) in Taylor series leads to the equation of the form

ZQOO (%) y(J) . 1hy’ 97 h2 (2) |
Jj= J! n n "~ 3240
oo Rpit2 (5+2) (j+2) | 19 (1\J 13 (1\J 1
—Z] o 5y Py [m (3)" — 1w (3) +m]
2900@)] y(J) _th/ 28 h2
j= n n 405
oo RIt2(§+2) | 22 (1)J 2 (2)J 2 0
—Z] o e | B (5) - & (3 + &] 0
S5m0 S50 = on = b, — il "
oo AIt2 (5+2) | 3 (1\J ;| 3 (2)\J 1
— X R 6 (3) 5 (3) +6_0} 0
= (4.3.4)
oo (3)W Gt 17, (2) 0
Sy iy Y =yt — Lhyl
oo It (54+2) [ 19 (1)J 5 (2\J 1
=205 u [7—2 (5 -=%(3) +ﬁ] 0
o (2VH (i1 1 2 0
Zj:o(33~1 ygﬂ_y()_lhg)_ | 0]
0o +1 (j+2) J J
— e B[S (5 + 5 (2]
o) j +1
ijo %y’r(lj-‘r) yn _1hyn _
ooh]+1'2)31]' 302\ |1
Yoy 3G +56) +§} |
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and collecting terms in powers of h and y leads to the following:

[1—1] [ 0] KA
1-1 0 573
) _ 0 _ 1-1
v 0| 0| "t 1-1 B
0 0 1-1
L 0 0 11
[ (33— 9~ [ — o ws) [ 0
(3) 5 — 4 — [& — 5 + 105 0
IEREEE BIEAE AT E
-8 -4+3) 0
-yl 0
REE R EE R ] Lo
[ (3) a5~ [35 (5) — a0 (B) + 8] |
35— [HG) 5 6) + s
i 3~ L1 (3) + 35 (3) + 50
, = -

5




4 _
B -5 0 - 35 @+ &
o
3 2 2
a5 B -H@ & | |,
l_i[i(l)2+i(2)2+L]
27 20|10 \3 20 \3 60 0
54 - -
3 2 2
B4 -5 BE -3@)"+3] 0
0
3 2 2
A ORTION
0
;_;[5(1)2+§(2)2+1] o
_3! 2! |8 \3 8 \3 8 i
B 5 3 3 7
B a5 [5G - @'+ |
-
5 2 3
B -5 20 -%®"+&] ;
L_L[i(l)3+i(2)3+L]
51 7 31|10 \3 10 \3 60 0
Cs = =
B -5 BE -5@"+3] 0
2\4 1 14 1)3 1 2)3 0
(3) 4! 3! 9(3) 9(3)
0
ERiHOR 10 _
r 6 4 4 T _ -
B -5 |G - 35 @+ ] ——
4 4 __1
B -3 [BO ' -Z@" + &
4 4
- EG) 5@+ 3] L
56 - -
D)5k -5 [B ) -5 34+ ~ 7790
__1
B H-3[33)'+5®)
4 4 __1
EREIHORIIORS] | L e

Thus the block method (3.3.25) has order p = (4,4, 4,4)T with the error constant

5_(—7_1_1_19_1_1)T
p+2 7 \349920° ~ 21870’ = 21960’ 174960  21870° 6480
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4.3.2 Consistency of the Method

The block method (3.3.25) has order p = (4,4,4,4)” > 1, therefore it is consistent by

condition (i) of definition (4.1.6).

Following the consistency of the block method (3.3.25), the consistency of the

main method (3.3.21a) is shown by conditions (i) - (iv) of definition (4.1.6) below.

However, consider the first and second characteristic polynomials of method (3.3.21a)

given by

p(2) = 2z — 2223 4 13

and
2+ 10223 4 /3
108

o(z) =

Now by definition (4.1.6),
Condition (i)

The main method (3.3.21a) has been shown to have order

p=4>1
Condition (ii)
a3 =1, agz=-2 and a; =1
1 2
=1 —2+41=1, j==,-.1
Z Oé] + y J 37 37
Condition (iii)
1
pz) = 5272/3 (32%% — 421 1)

p/(l):%(3—4+1)=0

p(1)=1-2+1=0

(4.3.5)

(4.3.6)



Condition (iv)
2
p”<2) — _2—5/3 (221/3 . 1)

9
9 2
= S =2e-=2
(1)_1+10+1_12_3_1
ST T8 T 108 27 9

2o (1) = 2 (%) -2

= p'(1) =2lo(1)
Therefore the method (3.3.21a) is consistent.

4.3.3 Zero Stability of the Method
4.3.3.1 Zero stability of the Block Method (3.3.25)

From (3.3.25) using definitions in (3.2.12) as h — 0 we have

[1 0 0 0 0 0] 0010
01 00O0O 0010

001000 0010
p(z) = det |z -

= det =2°(z—1)
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Solving for z in

P(z—1)=

gives z =0 or z = 1.
Therefore, the block method (3.3.25) is stable since |z| = 1 is simple.

Next, the zero stability of the method (3.3.21a) is considered.
4.3.3.2 Zero stability of the main method (3.3.21a)

The first characteristic polynomial of equation (3.3.21a) is given by (4.3.5) as
p(r)=z— 22213 4 112
equating to zero and solving for r
/3 (z1/2 — 1) =0

= 2z=0 or z=1

Since |z| = 1 is simple hence, the method is zero stable in the limit as h — 0 by

definition (4.1.7) and by the stability of the block method (3.3.25).

4.3.4 Convergence

Applying Theorem 4.1.1, the method (3.3.21a) is convergent since it satisfies the

necessary and sufficient conditions of zero stability and consistency.

4.3.5 Region of Absolute Stability of the One Step Method
with Two Offstep Points

The first and second characteristic polynomial of the method (3.3.21a) is given by

equations (4.3.5) and (4.3.6) respectively. Therefore, the boundary of the region of

absolute stability is given as follows:

_ p(Z) . 108(2’ — 222/3 +Zl/3)
o(z)  z+102%3 4 21/3

(4.3.7)
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Let z = €', therefore, (4.3.7) becomes

_ B 108(610 o 261%9 + 61%0)

h(0 : ~ 4.3.8
®) e +10¢'3% + ei3? ( )
Since e = cosf + isinf, (4.3.8) reduces after some manipulations to
_ 1728 cos 30 + 216 cos 26 — 1944
h(6) = 2 2 (4.3.9)

40 cos %9 + 2 cos %9 4102

Evaluating (4.3.9) at intervals of 30° gives the following results;

Table 2. The boundaries of the region of absolute stability of the one step 2 offstep points

method.

6 |0] 30° 60° 90" 120 | 150° | 180°
h(0) | 0| —0.27 | —=1.10 | —2.47 | —4.38 | —6.84 | —9.82

From table 2, the interval of absolute stability is (—9.82,0). The region of absolute

stability is shown in figure 4.2.

Remark The locus is symmetric about the x-axis as x(—6) = x(6)

Ls

Figure 4.2: Region of Absolute Stability of the Continuous One-Step Method with
Two Offstep Points
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4.4 Analysis of the One Step Method with Three
Offstep Points

In this section, order, error constant, consistency and zero stability of the main
method (3.3.34c) and the associated block method (3.3.38) are obtained. The re-

gion of absolute stability of the method (3.3.34c) is also obtained.

4.4.1 Order and Error Constant
4.4.1.1 Order and error constant of the main method (3.3.34c)

Let (3.3.34c) be written in the form:

19 17 7
Yt = Wy s + Yoy1 — 1 {—3840 T T T
1 1
——foir—=——fu| =0 4.4.1
+960f i 3840f } (44.1)

Expanding (4.4.1) in Taylor series in the form

B =) )Y 0 pit2 1 /1\7
() (7) D~ p2,_ N1 0+ | = (2
) e e S e T ) T 60 <4>

|
j=0 J: §=0 J: j=0 J: j=0

7 /1N 17 /3\’ 19
— (= i e - 4.4.2
1920 (2) * 390 <4) +3840] (4.4.2)
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and collecting terms in powers of h and y leads to the following:

c = 1-2-1=0

3
T = 1_2(Z)+

I
o

Cy = — =2

11 171 19
2! 3840 960 1920 320 3840|

(

}< ) 5[ ()~ om (3) . (7)
.- LQ]GM;YL;[géoc)ﬂmzo(;)l;;(zf

(

|

+

C3 — — =2

~
[\&]
R—= D= o=
+
T~ N

=W W

1
2
1
2

I
o

5l+15l_l 1 13+7 13+17 3\°
5! 9] 51 311960 \ 4 1920 \ 2 320 \ 4

12361+1611114+7 14+1734
C = _— — —_ —_ _—— — _— —_ _— — —_— —
6 6! 4/ 6! 2/ 6! 411960 \ 4 1920 \ 2 320 \ 4
19
=0
+38 0}
12371+1711115+7 15+1735
C = _— — —_ —_ _— — _— —_ _— — —_— —
! 7! 4/ 7 2/ 7 511960 \ 4 1920 \ 2 320 \ 4
19 1
+—| =
3840} 3932160
Hence, the method (3.3.34c¢) is of order p = 5 with error constant ¢, = 2.5431x107".

82



4.4.1.2 Order of the block method (3.3.38)

Let (3.3.38) be expressed in the form

0

0

1

0

1

0

0

0

0

(1.0 00000 0]

0

0

S_p2

128

1752

640

323 h

1440

31
90h

160

Lp

45

[ 1
yn+ 7
yn—&—%
yn+g

Yn+1

!
L yn+1

47 h?

T 3840

—L1p2
el

27 h2

1280

L p2

29 12
5760 h

172
507

B p2

128

A p2

45

53h

1440

1
90h

21h

160

1

45

83

]

1

3

h Yn

1 Yn

1

1

1 .

_%80]12 T

_ﬁhZ

—%%fﬂ
0

_#goh
sl
wh
wh

367 1,2 7]
23040h

53 1,2
1440 h

147 7.2
2560 h

752
507

251
2880 h

29 12
360h

320

)

90 _

(/]

(4.4.3)



Expanding (4.4.3) in

) oo

oo pit2
_ijo Y

G Gy
> T
7=0
— T
i (%)J' b yﬁbﬂl) _
= 7
oo pIitl
e
< (3P
Z 4" yU+h
— !
- — Y B
J=0 " j!

Taylor series in the form

5 (%);!' Mooy Ly - %h%)
5=0
- SR S [ () - 5 ()

i (%; Py — g - %hyﬁf) - %hzyff)
=0

R e IO
i (%; P9 — g zhyﬁf) - % 2y
>

B At A

hy® — Lpzy®

90

(j+2) J J
FRIE A + 5 @)+
251
(1) _ 291, @)
(j+2) [ﬁ (l)j_ﬁ(l)j
yn 1440 \ 4 120 \2
29
) _ 222
Y=~ 360"n
(G42) |31 /1\J 1 (1\J
yi [% (1) +56)+
27
W _ 0@
Yn" = 390"n

o [ (B () s () -
> %yff“) g = Lpy®

oo RpItL
L _ijo Y

90

A EICRE O

84

+ 570 (1) — 7w

w (3) -

L
480

+ % (3 - ]

|

(4.4.4)



and collecting terms in powers of h and y leads to the following results:

1 1
1-1 0 44 0
1 1
1-1 0 22 0
3 3
1-1 0 41 0
: _ 0 : 1—1 0
0o — == 9 1 — ==
0 0 1—1 0
0 0 1—1 0
0 0 1—1 0
L 0 0 11 | | 0
[ /1\2 1 367 3 a7 29 7 T -
(1) 21— 3301 — L19s — 3810 T 5765 — 780 0
1\2 1 53 1 1 1 1
(5) i_m_[ﬁ_48+90 480] 0
3\2 1 147 117 27 3 9
(3) 21— 2560 — L6io + 1os0 T 198 — 360 0
1 7 4 1 4
_ 7o~ 515+ B 0
Co = =
1 251 323 11 53 19
T 3es0 — Liao 130 T Tido — 7880 0
1 29 31 1 1 1
3~ 365~ Lso T 15 T 56— 360) 0
3 27 51 9 21 3
S~ 356 — L1 T a6 T 160 — 390 0
7 16 2 16 7
| 1—g5 — o8 + 15 + 2 + 50) ] Lo

85




B3 -[HG -0+ G) - &)
B 3-[H@) 5@+ @) -
B3 - G+ 20+ 3 Q) - o)

) W@+ Q)

C3 =
35— [0 -3 () + 2% (3) — %]
B F-BO+50)+5G) -]
B 3-[ED+5EH+ &) - )
-G+ EG+EG + 4] _
D -3 H W -+ &) -
B -5 5@ 5@ +5 ) - &)
B -3GO+ G + &) - 2%
O TR CON

Cy = ]
B3 -3[B O -HE + ) -2
B3 -3[B3G +5 D) +5 () - o)
'3 -3[HW +5G + G - &)
ERLIEIORE 1ORE IO
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- [RWHER) A EQ) + ]

41287680000

26561 T

_1
645120

_9
3670016

1
322560

123
819200

_1
368640

_3
655360

T
1350

Hence the block method (3.3.38) is of order p = (5,5,5,5,5,5,5,5)7 and error con-

26561 1 9 1 123 1 3

stant ¢,19 = (

4.4.2 Consistency

41287680000 645120 3670016 322560 819200 368640’ 655360 1350

)

The block method (3.3.38) has order p = (5,5,5,5,5,5,5,5)7 > 1 therefore by condi-

tion (i) of definition (4.1.6) it is consistent.

Following the consistency of the block method (3.3.38), the consistency of the

method (3.3.34c) is shown as follows by conditions (i) - (iv) of definition (4.1.6).

Consider the first and second characteristic p olynomials of the method (3.3.34c) are

given by
p(z) = 2z — 225/% 4 12

and
192+ 204234 + 14212 4214 — 1

o(2) 3840

The conditions in definition (4.1.6) are satisfied as follows;
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Condition (i)
This condition is satisfied since the method (3.3.34¢) has orderp =5 > 1

Condition (ii)

a1 =1, az =—-2 and a; =1
2 4
Sy =1-241=0 L3
i : ] - Y% 3_27 47
J
Condition (iii)
J2) = ——(2VF-3¢7+1)
2V
2—-3+1
Py = =5 =0

Now by (4.4.5)

Condition (iv)

Thus

Also, by (4.4.6)

1) - l9Fdrlaeda-n
S 3840 ~ 16

20(1) = 2 (1—16) :%

S (1) = 2e(1).

Therefore by definition (4.1.6), the method (3.3.34c) is consistent.
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4.4.3 Zero Stability

4.4.3.1 Zero stability of the block method (3.3.38)

From (3.3.38) and using definition in (3.2.12) in the limit as h — 0. The first char-

acteristic polynomial of the block method is given by

(1.0 000000
01 0000O0O0O
0010O00O0O0O
0001O00O0O0O

p(z) =det |z _
000O01O0O0O
000O0O0OT1TO0@O
000O0O0O0OT1F@ O

L looooooo01]] |

(2 00 -1 00

020 -1 00

00z =1 00

000 2—-12020

p(r) = det

000 0 =20

000 0 0 =z

000 0 0O

(000 0 00

ie. p(z) =2"(z—1)

Equating (4.4.7) to zero and solving for r gives

z=0 or r=1
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Since no root has modulus greater than one and |r| = 1 is simple, the block method

is zero stable in the limit as A — 0 by definition (4.1.7).
4.4.3.2 Zero stability of the main method (3.3.34c)

From (3.3.34c), the first characteristic polynomial is given by
p(z) S 223/4 + 21/2

Equating the above equation to zero and solving for z gives z =0 or z = 1.
Since no root of the polynomial has modulus greater than 1 and |z| = 1 is simple, it

follows from definition (4.1.7) that the method (3.3.34c) is zero stable.

4.4.4 Convergence

Following Theorem 4.1.1, the method (3.3.34¢) is convergent since it is consistent and

zero stable.

4.4.5 Region of Absolute stability of the One Step Method
with Three Offstep Points

The first and second characteristic polynomials of the method (3.3.34c) have been
given as (4.4.5) and (4.4.6) respectively. Now, by the boundary locus method, the

boundary of the region of absolute stability is given by (4.1.14) as

3 ; i3 it
h(6) p(e?) _ 3840(e% — 2¢1? + ¢'29) (4.48)
o(e?)  19¢i0 + 20419 + 14¢120 + 4eit? — 1

0

where e = r is the value of the root of the stability polynomial (4.1.10).

Since e = cosf + isinf, (4.4.8) reduces after some manipulations to

78) — 92160 cos %9 + 1328640 cos ;119 4+ 23040 cos %9 — 3840 cos 8 — 1440000

4.4.9
2136 cos %6 4+ 13568 cos %19 — 256 cos %9 — 38cosf + 42190 ( )

Evaluating (4.4.9) at intervals of 30° gives the following results in table 3
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Table 3. The boundaries of the region of absolute stability of the one step 3 offstep points

method.

z(0) 0] 30 60" 90" 120° | 150° | 180°
h(#) | 0| —0.28 | —=1.10 | —2.54 | —4.39 | —6.85 | —9.86

From table 3, the interval of absolute stability is (-9.86,0). The region of absolute
stability is figure 4.3.
Remark

The locus is symmetric about the z-axis as z(—0) = x(0).

L

Figure 4.3: Region of Absolute Stability of the Continuous One Step Method with
Three Offstep Points
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4.5 Analysis of the One Step Method with Four
Offstep Points

In this section, the basic properties such as order, error constant, consistency and
zero stability are obtained for the method (3.3.47d) and the associated block method

(3.3.51). The region of absolute stability of the method (3.3.47d) is also obtained.

4.5.1 Order and Error Constant
4.5.1.1 Order and Error Constant of the Main Method (3.3.47d)

Let (3.3.57d) be written in the form

2

h
Yot 1= 23 U3~ zooc [18fwt + 200 s+ 4fs + 14f0z = 6,1+ fu] (45.1)

6000

Expanding (4.5.1) in Taylor series in the form

Jj=0 J=
702\ 1 3\ 209 [4\' 3
— | = — | = — | = — 4.5.2
+3000 (5) - 1500 (5) + 6000 (5) + 1000] ( )
and collecting terms in powers of h and y leads to

o = 1-2+1=0

3
cT = 1———|—g
1 4

— —_9ofZ
T (5
4

5

C3—§—

21+321_1__1+7+1+209+3
2 2! 6000 1000 ' 3000 ' 1500 ' 6000 ' 1000

31 11+72+13
3! 1000 \ 5 3000 \ 5 1500 \ 5
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B | Ny YAEI -1 /1Y’
)= p2,@_N"_ G+ |~ (2
G0 9 6000 U 2; G [1000 (5)

| -0



12441+3411 112+7 22+1 32+
C = _— — _ — _— — —_— — _ —_ _— —
! 4! 5) 41 \5/) 4 20| 1000 \ 5 3000 \ 5 1500 \ 5
209 (4 2+ 3 | _y
6000 \ 5 1000 |
12451+3511 113+7 23+1 33+
C = _ — —_ — _— — —_— — _ —_ _— —
° 5! 5) 51 \5/) 51 31| 1000 \5 3000 \ 5 1500 \ 5
209 (4 3+ 3 | _y
6000 \ 5 1000 |
_12461+3611 114+7 24+1 34+
“ = & 5) 6 \5/) 6 4| 1000 \5 3000 \ 5 1500 \ 5
209 (4 4+ L
6000 \ 5 1000 |
_12471+3711 115+7 25+1 35+
T 5) 7 \5) 7 5| 1000 \5 3000 \ 5 1500 \ 5
209 (4 5+ L
6000 \ 5 1000 |
12481+3811 116+7 26+1 36+
C e _— — _ — _— — —_— — _ —_ _— —
: 8! 5) 8 " \5/) 8 6| 1000 \5 3000 \ 5 1500 \ 5
209 (4 6+ 3| 221
6000 \ 5 1000 | 2362500000

Hence, the method (3.3.47d) is of order p = 6 with error constant

Cpra = —9.3545 x 1079,
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4.5.1.2 Order of the block method (3.3.51)

Let (3.3.51) be expressed in the form

r 863 32
50400 h

544 1.2
7875 h

3501 7.2
28000 h

1424 12
7875 h

475 1.2
2016 h

1427
7200 h

43
150 h

219
800 h

64h

225

By

L 96

(1.0 0000000

000 1]

_ 761 po

63000

37 12
T575 10

—_9 p2
3500

176 7,2
7875 h

25 12
504h

133
1200 h

Th

225

126000

- Yni
Yn+2
yn+%
yn+%

Yn+1

/
L yn+1
941

136 7.2
7875 h

87 12
2800 h

608 7.2
7875 h

125
1008 h

241
3600 h

h* —

- 1 %h -
1 2h
1 2n
1 zh
1 h Yn
oo Yn
0 1
0 1
0 1
_0 1 -
123§)100 h? 251200700 h? ]
—%hQ %hQ
_8;35h2 ﬁhQ
_%}ﬁ %fﬂ
s’ @l
—most st
—=h el
—s6l  wooh
3l 0
50l wsh

95

1231
126000

h? ]

71 12
3150 h

123 7.2
3500 h

376 1,2
7875 h

61 7.2
1008 h

19 p

288

15 p

225

51
800 h

14
225

1 p

288 -

(4.5.3)



Expanding (4.47) in Taylor series in the form

By GRNG

jOJy"

3 &)yw )

j=0" 4 In
e

ZOO (5) (4)

j=0" 4 Yn
9 [(2\J
—m(g) +
ZQOO (*) yﬁf)
]:

Z;)OO };f ygj) —Yn —

0 1 jhj :
Z (3) y(Hl)

7=0 4! n
241 (;)j .
+3600 \5

S, (%)]h y(2+1)
Jj= J!

g (é)jhj y(jH)

j=0 j! n

. Zoo h]+1

j=0 "4

4

Z;OO( 21 y1(1]+1)
. Zoo hit1

=0 j!
1 1
ZJOOO I;f (G+1) _ ;L)
+1

- Z;OO hjju

~ 53000 (%)j +

7875

— Yn —

25 (2 25
+504 (5) + 1008
(1

n

oo pitl
_ijo 3 Y

+% &) +% (3’

96

— Lyl — B RyD — 3 s (L)
12930100 (%) - 1236%100 %)J + 251200700]
= 2hyll) — HnyD - 5 I [ 2 (1))
156 (3)7 — J0L(4)7 + 7875}
Syl — A2 p2y?) — S By | 0L (1))
() - & (3 + 2]
— dhylt) — B ptyP — Yoo MRy | L2 (1))
- 28 () + ]
hyhl) = goash® = S M [ ()
122 (3! +%<§>+%}
— ) — By — S By [ (1)) s (2
(4 + %}
yfl u 225hyn . X X
7g]+2) 14530 (é)j + 575 (%)] + 2;5 (g)] - % (%)] + 4;0]
y — soohyn ' .
g B () 4 () () - B () + ]
g %hyp
WS+ 5+ 5 ) + 5 (]
— wshyi | | |
W IBW + EE@ +BQ B + 2]

(4.5.4)



and collecting terms in h and y leads to the following

1-1 0 F—1 0
1-1 0 22 0
1—1 0 $_1¢ 0
1-1 0 g2 0
1-1 0 1-1 0
EO = = y (_jl = =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
R N 0 | 0]
B (1>2 1 1231 [ 863 _ 761 , 941 341 . _107 ]
5 2! 126000 50400 63000 126000 126000 252000
(g)2l s [544 37 136 101 8 }
5 2! 3150 7875 1575 7875 15750 7875
(§)QL 123 [3501 9 87 9 4 9 }
5 2! 3500 28000 3500 2800 875 5600
<4)2l 376 [1424 4+ 76 608 16 16}
5 2! 7875 7875 7875 7875 1575 7875
1 61 475 125
z o 2! 1008 [2016 + 504 504 1008 + 1008 1008 + 2016]
, =
119 [1427 133 241 173 i]
5 288 7200 1200 3600 7200 800
2 14 743 7 4 7 1., 1
5 225 [15 + 225 225 75 + 450}
3 _ 5L [_9 5_ 57 21 L}
5 800 800 400 400 800 800
4 14 14
S_ﬁ_[225+75+225 %}
_ 19 (2
= 1 288 [96 + 4 144 + 9 144 + + 288} E
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[ ()3 — [0855 () — aisto (B) + meoo (2) — e (3) + ] |
(35— [ (5) -85 () + 2 (B) — 5% (8) + o)
(3”5 - [ (3) — w0 (B) + 2005 (2) — %5 (3) + 50
B 3-EO -+ @+ @) - 3% (@) + %]
5~ Los (5) = 501 (8) + 1005 (3) — 1068 (5) + ao16)
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+352000)

5 I 3 3 3 3
() h -4 |2 () - A+ () - % () + =]
5 I 3 3 3 3
() h -4 [ () - 55 (B + 55 () - a5 () + 3]
4\5 1 1 [1424 (1\3 | 176
(5) 5! 31 | 7879 (5) +7875(
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(SN
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SN—
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7 5 5
) 7-= L% ()" = @ooo (5)” + T60m (
+352000)

7 [ 5 5
B) a2 () () + @)
7 [ 5
() 5 =3 |2 (8)” — 50 () + 285 (3)” -
(é)7i_i [ 1424 (1)5+&(
5 7 5! _7879 5 7875

bW B B+

S
SN—"
at
a‘g
e
ot
—~
utlw
SN—
ot
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6 6
LB+ &R +E

2)’

+ 126000

941 (

(3 + o

[S[eY]
~—
o]
5
2|E
[
=
o
—~
(S
~—
o]

)

199
9450000000

19
369140625

141
1750000000

o 8
73828125

1
75600000

863

"~ 4725000000

S |
295312500

29
175000000

___8
73828125

1L
37800000

Hence the block method (3.3.51) is of order p = (6,6,6,6,6,6,6,6,6,6)” with error

199 19

141

8

11

863

constant ¢,p = (_4950000000’ T 369140625 17500000007 738281257  75600000° 4725000000’

37 29 8 11

72953125007 1750000007 ~ 738281257 37800000

4.5.2 Consistency

)

The block method (3.3.51) has order p = (6,6,6,6,6,6,6,6,6,6)T > 1, therefore, by

condition (i) in definition (4.1.6) it is consistent. Following the consistency of the

block method (3.3.51), the consistency of method (3.3.47d) is shown as follows by

conditions (i) - (iv) in definition (4.1.6).

Condition (i)

The main method (3.3.47d) is of order p = 6 > 1, which satisfies condition (i) of
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definition (4.1.6).
Condition (ii)

The first and second characteristic polynomials of method (3.3.47d) are given respec-

tively by
p(z) =z — 225 4 %P (4.5.5)
and
182 + 20924/ + 423/5 4 142%/5 — 621/° + 1
o(z) = e M G (4.5.6)
6000
From (4.5.5), agjs = 1, auys = —2 and oy = 1 therefore
aj=1-2+1=0 =31
- 0 Iy
j
Condition (iii)
From (4.5.5),
/ L _os5e 25 1/5
p(z):gz (52" — 8277 4 3)
(4.5.7)

= p(1)=%(5-8+3)=0
Also by (4.5.5)

Condition (iv)

From (4.5.7),
p"(z) _ 32—7/5(421/5 _ 3)
25
2 2
= Z(4-3) ==
25( 3) 25
From (4.5.6),
184+209+4+14-6+1 1
o(l) = = —

6000 25

1\ 2
2o(1) = 2(—) ==
= 2o(1) (25) 25

L p'(1) = 2lo(1)
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Thus by definition (4.1.6), the main method (3.3.47d) is consistent.

4.5.3 Zero Stability of the One Step Method with Four Off-

step Points

4.5.3.1 Zero stability of the Block Method (3.3.51)

Using (3.3.51) and (3.2.12) in the limit as A — 0 in (4.1.9), the first characteristic

polynomial of the block method is obtained (by equation (4.1.9)) as

10000 0O0O0O0 O]

p(z) =det |z
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1.e.

p(r) = det

0

Equating (4.5.8) to zero and solving for z gives z = 0 or 1.

0

0

0

0000

00000
00000
00000
00000
00000
20000
02000
00200
000 20
0000 2|

10 9

z (4.5.8)

Since no root has modulus greater than one and |z| = 1 is simple, the block method

is zero stable in the limit as h — 0 by definition (4.1.8).

4.5.3.2 Zero Stability of the Main Method (3.3.47d)

Equation (4.5.5) is the first characteristic polynomial of the main method (3.3.47d).

Equating (4.5.5) to zero and solving for z gives z = 0 or z = 1.

We can see that no root has modulus greater than one and |z| = 1 is simple. It

follows from definition (4.1.7) that the method is zero stable.

4.5.4 Convergence

Convergence of the main method (3.3.47d) follows from Theorem 4.1.1.
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4.5.5 Region of absolute stability of the One step method
with four offstep points

The first and second characteristics polynomials of the main method (3.3.47d) were

given as (4.5.5) and (4.5.6) respectively. Hence, by the boundary locus method, the

boundary of the region of absolute stability is given by (4.1.14) where z = €' as

]_1(6) _ p(eiG) _ 6000(610 _ 261'%0 + 61’%9)
o(e)  18¢i 4+ 209¢'50 4 4e59 + 14730 — 6e’s? + 1

(4.5.9)

where ¢ = 2 is the value of the root of the stability polynomial (4.1.10). Recall that

e = cos® +isinf, thus (4.53) reduces to

h(9) = 2328000 cos £0 — 72000 cos 260 4 162000 cos 26 — 48000 cos 36 + 6000 cos 6 — 2376000

9128 cos %6’ + 5976 cos %9 — 1996 cos %9 + 202 cos %0 + 36 cos 0 + 44254
(4.5.10)

Evaluating (4.5.10) at intervals of 30° gives the results in table 4.

Table 4. The boundaries of the region of absolute stability of the one step 4 offstep points

method.

9 0] 30° | 60° | 90° | 120° | 150° | 180°
h(0) [0 =027 —1.10 | —2.47 | —6.04 | —6.85 | —9.87

From table 4, the interval of absolute stability is (—9.87,0). The region of absolute

stability is shown in figure 4.4.

Remark

The locus is symmetric about z-axis that is z(—6) = z(0). Similarly, y(—0) = y(0).
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L

Figure 4.4: Region of Absolute Stability of the Continuous One Step Method with
Four Offstep Points

4.6 Analysis of the One Step Method with Five
Offstep Points

The basic properties of the main method (3.3.60e) such as order, error constant,
consistency and zero stability as well as those of the associated block method (3.3.64)
are obtained in this section. The region of absolute stability of the main method

(3.3.60e) is also obtained here.

4.6.1 Order and Error Constant
4.6.1.1 Order and error constant of the main method (3.3.60e)

Let (3.3.60¢) be written in the form

h
Yot1 = 243~ Yny2 ~ GTemocs [4315 fur + 53994f, s — 2307, 2

+T948f,, 1 — 4827, .1 + 15781 — 221, (4.5.11)
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Expanding in Taylor series in the form

b oYW @)Y 221 X R, (1Y
P ) \6J " () 3 (4) 2,(1) _ R B el
Zﬂyn 2> S+ ) Y T Srrraso” Y ; G (6)

263 1609 (1)’ 1987 1\ 769 /2)’ 8999 (5\’ = 863
—~ =)+ =) - =)+ )+ (4.5.12)
362880 725760 \ 3 544320 \ 2 725760 \ 3 362880 \ 6 435456

and collecting terms in powers of h and y leads to the following:

Ch = 1—2+1:0

5} 2
cT = 1-2 6 +§:0

1 5\*1  [/2\*1 2l 263 1609 1987 769
@ = 362880 725760 = 544320 725760

3/ 21 " 2177280
N 8999 N 863 |
362880 435456 |

1 2531+231 263 /(1 1609 1+1987 1
c3 = — — = = - == - | = - =
3 3! 6/ 3 3/ 31 [362880 \ 6 725760 \ 3 544320 \ 2
769 (2 8999 /5 863
725760 \ 3 362880 \ 6 435456
1 2541+241 1] 263 /1\® 1609 12+ 1987 [1\°
C = _— — _ — _— — — — — —
4 4! 6/ 4l 3/ 41 20 [362880 \ 6 725760 \ 3 544320 \ 2

769 (2 2+ 8999 (5Y 863 |
725760 \3) ' 362880 \6/) ' 435456 |
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1 5\° 1 2N’ 1 1] 263 [/1\* 1609 /1\® 1987 /1\°®
5! 6/ 5 5) 51 31362880 \ 6 725760 \ 3 544320 \ 2
769 /2\° 8999 /5)\° 863
_ — —+ - =+ =0
725760 \ 3 362880 \ 6 435456
1 5\% 1 N1 1| 263 /1\* 1609 /1\* 1987 /1\!
6! 6/ 6 3/ 6! 4362880 \ 6 725760 \ 3 544320 \ 2

769 <2>4 8999 4 863 ]_

T725760 \3) ' 362880 © 435456
c_l_2§7l+27l_l 263 (1\° 1609 15+1987 1\’
T 6) 707 \3) 70 51362880 \6/) 725760 \3) ' 544320 \2

. T69 (2 5+ 8999 (5 5+ 863 | _,

725760 \3) ' 362880 \6/) ' 435456 |
0_1_2§81+281_1 263 (1\° 1609 16+1987 1\°
sl 6) 8" \3) 8 6362880 \6/) 725760 \3/ ' 544320 \2

. T69 (2 6+ 8999 /5 6+ 863 | _,

725760 \3) ' 362880 \6/) ' 435456 |
S S §9l+ 2\°1 1] 263 (1\" 1609 17+ 1987 (1"
ool 6) ol " \3) ol 7 [3628%0 \6/) 725760 \3) 544320 \2

769 2\ 8999 (5\T 863 | -19

725760 \3) ' 362880 \6/) ' 435456 | 60949905408

Hence, the main method (3.3.60e) has order p = 7 with error constant c,;o =

—3.1173 x 10719,
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4.6.1.2 Order of the Block Method (3.3.64)

Let (3.3.64) be expressed in the form

010

0

0

0

0

0

000O0O0O0©O

0

0

0

yn—i—%

yn-‘r%

yn—l—%
ynJr%

yn+%

Yn+1
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Expanding (4.5.13) in Taylor series in the form
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and collecting terms in powers of h and y leads to
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B 6031 T
9142485811200

233
142851340800

1
391910400

455743
127994801356800

10055
519792054272

1
195955200

475
853298675712

1
198404640

1
167215104

1
198404640

275
40633270272

0

Thus, the block method (3.3.64) has order p = (7,7,7,7,7,7,7,7,7,7,7,7)T and error

6031 233 1 455743 10055 1 475
9142485811207 142851340800’ 391910400’ 127994801356800’ 5197920542727 195955200’ 853298675712’

constant ¢, 2 = (

1 1 1 275 O)T
198404640° 167215104’ 108404640 ° 40633270272°

4.6.2 Consistency

The block method (3.3.64) has order p = (7,7,7,7,7,7,7,7,7,7,7,7)F > 1, therefore,
by condition (i) in definition (4.1.6) it is consistent. Following the consistency of
the block method associated with the main method (3.3.60e), the consistency of this
method is shown as follows by conditions (i) - (iv) in definition (4.1.6);

Conditon(i)

The main method (3.3.60¢) has order p = 7 > 1, which it satisfies condition (i) in

definition (4.1.6).
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Condition (ii)

The first and second characteristic polynomials of method (3.3.60e) are given respec-

tively by
p(z) = 2 — 2250 4 /3 (4.5.15)
and
) —43152z — 539942°5/6 4 23072%/3 — 794821/2 4 482721/3 — 157821/6 4+ 221
o(z)=—
2177280
(4.5.16)
From (4.5.15), ag/3 = 1, a56 = —2 and oy = 1 thus
25
;aj:1—2+1:0, j=5 51
Condition (iii)
1
pl(r)= 57‘_1/3(37“1/3 — 56 4 2)
(4.5.17)

= p(1)=3(3-5+2)=0
Also by (4.5.15)

Condition (iv)
From (4.5.17),
1

p”(Z) _ 1_87074/3(57,1/6 o 4)
1 1
/! 1 — . _ 4 —
= p"'(1) B4 =13

Using (4.5.16),
4315 + 53994 — 2307 4 7948 — 4827 4- 1578 — 221 1

2177280 36
| 1 1

(1) = 2lo(1)
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Thus by definition (4.1.6), the main method (3.3.60e) is consistent.

4.6.3 Zero Stability of the one step Method with Five Offstep
Points

4.5.3.1 Zero stability of the Block Method (3.3.64)

Using (3.3.64) and the definitions in (3.2.12) in the limit as & — 0 in (4.1.9), the first

characteristic polynomial of the block method is obtained by (4.1.9) as

1.0 00000O0O0O0TO0O0] 0000O0O1O0O0O0OO0O0OO® 0
01 000O0O0O0O0OO0DQO0 0000O0O1O0O0O0OO0TO 0O
001 00O0O0O0O0O0O0O0 0000O0O1O0O0O0O0OO0O® 0
0001O0O0O0O0O0O0®O0DQO0 0000O0O1O0O0O0OO0®O0OD® O
00001O0O0O0OO0OTO0OO0ODQ 0 0000O0OT1TO0O0OO0OTO0O® 0O
0000O0O1O0O0O0O0O0O® 0 0000O0O1O0O0O0OO0OO0OQ 0
p(z) =det |z _
0000O0OO0OT1O0O0DO0O0O0 0000O0OO0OO0OO0OO0ODO0OTO 0a® 0
000O0O0OO0OO0OT1TO0O0O00®O0 000O0O0OO0OOOOSO0OO0OQ 0
0000O0OO0OO0OO0OT1TTO0O®O0O0 0000O0OO0OO0OO0OO0ODOO0OQ 0
0O0000O0OO0OO0OOGO0ODTO0O0 0000O0OO0OO0OOTO0ODOO OO0
0000O0O0OO0OO0OO0O0OT1F®O0 0000O0O0OO0OO0O0OO0OO0O® 0
' loooo0o00000001] |[00OO0DO0DO0DO0O0O0OO0O0OO]]
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that is,

p(z) = det

Equating (4.5.18) to zero and solving for z gives z = 0 or 1.

0

0

0

0

0

0

0

00000

0

0

0002200

0000 =220

00000 2|

=Mz —1)

(4.5.18)

Clearly, no root has modulus greater than one and |z| = 1 is simple hence, the block

method is zero stable in the limit as h — 0 by definition (4.1.8).

4.5.3.2 Zero stability of the main method (3.3.60e)

Using equation (4.5.15), the roots of the first characteristic polynomial of the main

method (3.3.60e) are obtained as z = 0 or 1. Since no root has modulus greater than

one and |z| = 1 is simple, the method is zero stable by definition (4.1.7) and the zero

stability of the block method (3.3.64)follows.
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4.6.4 Convergence

If follows from Theorem 4.1.1 that the main method (3.3.60e) is convergent having
established the consistency and zero stability of the method in sections (4.6.2) and

(4.6.3)respectively.

4.6.5 Region of Absolute Stability of the One step Method
with Five Offstep Points

The first and second characteristics polynomials of the main method (3.3.60e) have

been given as (4.5.15) and (4.5.16) respectively. By the boundary Locus method, the

boundary of the region of absolute stability is given by (4.1.14) where z = €' as

o RO - 2177280(e" — 26767 + ¢139) (£5.19)
4315¢ + 53994780 — 2307¢730 + 7948¢72% — 48276159 4+ 1578¢is0 — 221

Writing (4.5.19) in terms of cosine and sine it reduces after some manipulations to

the form

4398105600 cos %9 — 17862405120 cos %0 + 41760230400 cos %0 — 40747795200 cos %9
- +243681177600 cos %9 — 481178880 cos  — 230748134400

h(0) =
(6) 887868414 cos %9 — 463460744 cos %8 + 129767748 cos %9 + 87506352 cos %8
—10247208 cos %9 — 1907230 cos 8 + 3028303068

(4.5.20)

Evaluating (4.5.20) at intervals of 30° gives the results in table 5.

Table 5. The boundaries of the region of absolute stability the One Step 5 offstep points

method.

6 |0 30° 60" 90" 120° | 150° | 180"
h(0) 0% | —0.27 | —1.10 | —2.47 | —4.36 | —6.86 | —9.87

From table 5, the interval of absolute stability is (—9.87,0). The region of absolute

stability is shown figure 4.5 .
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Remark

The locus is symmetric about z-axis as z(—60) = x(0).

Figure 4.5: Region of Absolute Stability of the Continuous One-Step Method with

Five Offstep Points

In what follows, a summary of the analysis of the methods is given as

Table 6. Summary of the analysis of the methods

Method Order & Error Constant

Zero Stability Consistency

Interval of
Absolute Stability

ISIHM P =4, ¢p19 = —4.7291 x 107*
1S2HM P =4, cpyp = —5.7158 x 1076
IS3BHM P =5, ¢py9 = —2.5431 x 1077
1S4HM P =6, cpyo = —9.3545 x 107°

1SSHM P =7, ¢4y = —3.1173 x 10710

zero stable

zero stable

zero stable

zero stable

zero stable

consistent

consistent

consistent

consistent

consistent

-9.60, 0
-9.82, 0
-9.86, 0
-9.87, 0

9.87,0
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Chapter 5

Implementation and Numerical
Examples

5.1 Introduction

The implementation strategy for the methods is discussed in this chapter. Further-
more, the performance of the methods is tested on some numerical examples ranging
from nonlinear, linear, to moderately stiff initial value problems of general second
order ordinary differential equations. For each example, absolute error of the ap-
proximate solutions are computed and compared with results from existing methods
particularly those proposed by Awoyemi (1999, 2001), Yahaya and Badmus (2009),
Badmus and Yahaya (2009) and Jator (2007). The results from the methods are also

discussed here.

5.2 Implementation

The strategy adopted for the implementation of the methods is such that all the
discrete methods obtained from the continuous method as well as their derivatives,
which have the same order of accuracy, with very low error constants for fixed h,
are combined as simultaneous integrators. We proceed by explicitly obtaining initial

conditions at x,,1 using values from the independent solutions of the simultaneous
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integrators over non-overlapping subintervals; [0, x1], ..., [xy_1,2x] (Yusuph & On-
umanyi, 2005); to implement the respective methods proposed. The absolute errors

calculated in the code are defined as
Erc = |yc — yex|

where yex is the exact solution, yc is the computed result and Erc is the absolute
error.

All computations were carried out using FORTRAN codes in FORTRAN 95 lan-
guage and executed on Windows XP operating system. The computer codes are
simply written without the use of subroutines and requires no previous knowledge of

programing before it can be used.

5.3 Numerical Examples

In order to study the efficiency of the developed methods, we present some numer-
ical experiments with the following five problems. The Continuous Implicit Hybrid
One Step Methods (CIHOSM): 1S1THM, 1S2HM, 1S3HM, 1S4HM and 1S5HM, were
applied to solve the following test problems:

3
L ay” —az+ 3y — (;) y, o = 1, y(xo) =2, y'(x9) = 10

Exact Solution: y = 32° — 22 + 2*(1 + 2 Inx)
1
p 1
32

Source: Awoyemi (1999)

2. 4" —x(y)? =0, y(0)=1, y(0) =

N N

1 2
Exact solution: y =1+ =in e
2 2—zx
1
po 21
32

Source: Awoyemi (2001)
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3.y =y, y(0)=0, y(0)=-1
Exact solution: y(z) =1 — exp(z)
h=0.1
Source: Yahaya & Badmus (2009)

4. y" +1001y" + 1000y = 0, y(0)=1, %/(0)=—1
Exact solution: y(x) = exp(—=)
h =0.05
Source: Jator (2007)

Vi 6 4 !
5.y +(5>y’+(ﬁ)y=0, y(1)=1, y'(1)=1

Exact solution: — — i
0.1 3z 3zt
h=—
32

Source: Badmus & Yahaya (2009)

The following notations are used in the tables
x Point of Evaluation

Yex Exact solution

1S1IHM one step, One offstep point method
1S2HM one step, Two offstep points method
1S3HM one step, Three offstep points method
1S4HM  one step, Four offstep points method
1S5HM  one step, Five offstep points method
Erc Absolute error

The computed results for the five problems using the five methods proposed are

presented in tables 7 to 16.
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Table 7. Showing the exact solutions and the computed results from the proposed methods for

Problem 1.

X YEX 1S1HM 1S2HM 1S3HM 1S4HM 1S5HM

1.1 0.31298579E401  0.31298580E+01  0.31298579E4-01  0.31298579E+01  0.31298579E4-01  0.31298579E+01
1.2 0.45390517E401  0.45390516E+401  0.45390517E4-01  0.45390517E+01  0.45390517E4-01  0.45390517E+01
1.3 0.62574144E+401 0.62574142E+401 0.62574143E+401  0.62574143E401  0.62574144E+401  0.62574144E+01
1.4  0.83152800E401  0.83152797E+401  0.83152798E4-01  0.83152799E+01  0.83152800E4-01  0.83152799E+01
1.5 0.10743445E4-02  0.10743445E+02  0.10743445E4-02  0.10743445E+02  0.10743445E4-02  0.10743445E+02
1.6 0.13573135E+402  0.13573135E+02  0.13573135E4-02  0.13573135E+02  0.13573135E+4-02  0.13573135E+02
1.7 0.16835977E+02  0.16835976E+02  0.16835977E+402  0.16835977E+02  0.16835977E+02  0.16835977E~+02
1.8  0.20563972E+02  0.20563971E+02  0.20563972E+402  0.20563972E+02  0.20563973E+02  0.20563972E-+02
1.9 0.24789476E402  0.24789475E+02  0.24789476E4-02  0.24789476E+02  0.24789477E+402  0.24789476E+02
2.0 0.29545178E402  0.29545176E+02  0.29545177E402  0.29545178E+02  0.29545179E+02  0.29545178E4-02

Table 8: Comparing the absolute errors in the new methods to errors in Awoyemi(1999) for Problem 1

X

Error in 1ISTHM  Error in 1S2HM  Error in 1IS3HM  Error in 1IS4HM  Error in 1SS HM

p=4, k=1

p=4, k=1

p=5, k=1

Error in

p=6, k=1

p=7, k=1

Awoyemi(1999)
p=4, k=2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.12888106E-07

0.54913644E-07

0.13065430E-06

0.24455343E-06

0.40094191E-06

0.60406071E-06

0.85807786E-06

0.11671012E-05

0.15351888E-05

0.19663562E-05

0.57475482E-08

0.24458675E-07

0.58169761E-07

0.10885790E-06

0.17845020E-06

0.26883387E-06

0.38186365E-06

0.51936759E-06

0.68315154E-06

0.87500259E-06

0.24871327E-08

0.10363642E-07

0.24154704E-07

0.44309187E-07

0.71207941E-07

0.10517184E-06

0.14646803E-06

0.19531497E-06

0.25188674E-06

0.31631626E-06

0.19055255E-08

0.80201747E-08

0.18919443E-07

0.35151302E-07

0.57235781E-07

0.85669157E-07

0.12092716E-06

0.16346750E-06

0.21373182E-06

0.27214757E-06

0.14318067E-08

0.60836944E-08

0.14459401E-07

0.27047847E-07

0.44325446E-07

0.66758535E-07

0.94805369E-07

0.12891749E-06

0.16954080E-06

0.21711659E-06

0.51125591E-07

0.52074859E-06

0.15996662E-05

0.34250638E-05

0.61293258E-05

0.78514782E-05
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Table 9. Showing the exact solutions and the computed results from the proposed methods for

Problem 2

X YEX 1S1HM 1S2HM 1S3HM 1S4HM 1S5HM

0.1  0.10500417E+01  0.10500417E+401  0.10500417E+01  0.10500417E4-01  0.10500417E+01  0.10500417E4-01
0.2 0.11003353E+401  0.11003353E+401  0.11003353E+01  0.11003353E4-01  0.11003354E+01  0.11003354E4-01
0.3 0.11511404E+01  0.11511404E401  0.11511404E+01  0.11511404E4-01  0.11511404E+01  0.11511404E4-01
0.4 0.12027326E+01  0.12027326E401  0.12027326E+01  0.12027326E4-01  0.12027326E+01  0.12027326E4-01
0.5 0.12554128E+01  0.12554128E401  0.12554128E+01  0.12554128E4-01  0.12554128E+01  0.12554128E4-01
0.6  0.13095196E+01  0.13095196E+01  0.13095196E+01  0.13095196E4-01  0.13095196E+01  0.13095196E4-01
0.7  0.13654438E+01  0.13654437E+01  0.13654438E+01  0.13654438E+01  0.13654438E+01  0.13654438E+-01
0.8  0.14236489E+01  0.14236489E+01  0.14236489E+01  0.14236489E4-01  0.14236489E4-01  0.14236489E4-01
0.9 0.14847003E+01  0.14847002E+401  0.14847003E+01  0.14847003E+4-01  0.14847003E+01  0.14847003E4-01
1.0 0.15493062E+01  0.15493060E4-01  0.15493061E+01  0.15493061E4-01  0.15493062E401  0.15493062E4-01

Table 10. Comparing the absolute errors in the new methods to errors in Awoyemi(2001) for Problem

2.

X

Error in 1ISIHM  Error in 1S2HM

p=4, k=1

p=4, k=1

Error in 1S3BHM  Error in 1S4HM

p=5, k=1

p=6, k=1

Error in 1S5HM
p=7, k=1

Error in
Awoyemi(2001)
p="6, k=4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.49827253E-10

0.41043058E-09

0.14285815E-08

0.35242687E-08

0.72435324E-08

0.13335597E-07

0.22872871E-07

0.37447019E-07

0.59503708E-07

0.92940412E-07

0.22413627E-10

0.18330515E-09

0.63686190E-09

0.15698642E-08

0.32251910E-08

0.59361429E-08

0.10179837E-07

0.16664477E-07

0.26478362E-07

0.41356017E-07

0.12381429E-10

0.10142642E-09

0.35245495E-09

0.86895491E-09

0.17857029E-08

0.32879226E-08

0.56411280E-08

0.92399235E-08

0.14691385E-07

0.22964069E-07

0.76769702E-11

0.62873262E-10

0.21852276E-09

0.53898974E-09

0.11083281E-08

0.20423685E-08

0.35075920E-08

0.57519813E-08

0.91578443E-08

0.14336313E-07

0.69253492E-11

0.56260108E-10

0.19460211E-09

0.47769566E-09

0.97695985E-09

0.17889177E-08

0.30497800E-08

0.49590416E-08

0.78195337E-08

0.12108436E-07

0.26075253E-09

0.19816704E-08

0.65074122E-08

0.15592381E-07

0.31504477E-07

0.56374577E-07

0.96164046E-07

0.15686801E-06

0.24869769E-06

0.38798389E-06

131



Table 11. Showing the exact solutions and the computed results from the proposed methods for

Problem 3

X YEX 1S1HM 1S2HM 1S3HM 1S4HM 1S5HM

0.1 -.10517092E+00 -.10517083E+400 -.10517084E4-00 -.10517084E+00 -.10517084E+00 -.10517083E4-00
0.2 -.22140276E+400 -.22140813E+4-00 -.22139976E+400 -.22140100E4-00 -.22140159E400 -.22140192E4-00
0.3  -.34985881E+00 -.34986506E400 -.34985027E4-00 -.34985389E+00  -.34985560E+00 -.34985654E4-00
0.4 -.49182471E+00 -.49182622E400 -.49180748E4-00 -.49181483E+00 -.49181830E+00 -.49182020E4-00
0.5 -.64872128E+00 -.64871127E+400 -.64869162E4-00 -.64870433E+00 -.64871032E+00 -.64871360E4-00
0.6 -.82211882E+00 -.82208911E+400 -.82207227E400 -.82209227E+00 -.82210167E+00 -.82210682E+-00
0.7 -.10137527E+01  -.10136936E+01  -.10136841E+01 -.10137136E+01  -.10137275E+01  -.10137351E+01
0.8 -.12255410E+01  -.12254407E+01  -.12254440E+01  -.12254858E+01  -.12255054E+01  -.12255161E+01
0.9 -.14596031E+01  -.14594482E+01 -.14594708E+401 -.14595279E4-01 -.14595546E+01 -.14595693E+01
1.0 -.17182819E+401 -.17180560E+401 -.17181056E+401 -.17181817E+01 -.17182174E+01 -.17182369E+01

Table 12. Comparing the absolute errors in the new methods to errors in Yahaya & Badmus(2009)
for Problem 3.

X

Error in 1STHM
p=4, k=1

Error in 1IS2HM  Error in 1S3HM  Error in 1S4HM  Error in 1S5HM

p=4, k=1

p=5, k=1

p=6, k=1

p=7, k=1

Error in Yahaya
& Badmus(2009)
p=4, k=2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.84742321E-07

0.53721850E-05

0.62472499E-05

0.15165650E-05

0.10008420E-04

0.29704225E-04

0.59161730E-04

0.10021603E-03

0.15498023E-03

0.22588355E-03

0.81573327E-07

0.29974140E-05

0.85399753E-05

0.17229468E-04

0.29666467E-04

0.46543059E-04

0.68655449E-04

0.96918204E-04

0.13238034E-03

0.17624351E-03

0.84742321E-07

0.17614744E-05

0.49277699E-05

0.98783854E-05

0.16953599E-04

0.26545528E-04

0.39105262E-04

0.55150938E-04

0.75276848E-04

0.10016373E-03

0.84736252E-07

0.11719652E-05

0.32170472E-05

0.64094269E-05

0.10967802E-04

0.17144180E-04

0.25228466E-04

0.35553649E-04

0.48501651E-04

0.64509947E-04

0.84742330E-07

0.84643034E-06

0.22755542E-05

0.45040757E-05

0.76843308E-05

0.11991856E-04

0.17628582E-04

0.24826447E-04

0.33851471E-04

0.45008361E-04

0.87931600E-04

0.32671800E-03

0.22155640E-02

0.48570930E-02

0.90977340E-02

0.14391394E-01

0.21437918E-01

0.29898724E-01

0.40300719E-01

0.52552130E-01
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Table 13. Showing the exact solutions and the computed results from the proposed methods for

Problem 4

X YEX 1S1HM 1S2HM 1S3HM 1S4HM 1S5HM

0.1  0.90483742E+00  0.90483742E+400  0.90483742E+00 0.90483742E4-00  0.90483742E+00  0.90483742E4-00
0.2 0.81873075E+00  0.81873075E+00  0.81873075E+00  0.81873075E+400  0.81873075E+00  0.81873075E+-00
0.3 0.74081822E+00  0.74081822E400  0.74081822E+00 0.74081822E4-00 0.74081822E+00  0.74081822E4-00
0.4 0.67032004E+00 0.67032004E4-00  0.67032004E+00  0.67032004E4-00  0.67032004E+00  0.67032004E4-00
0.5 0.60653066E+00 0.60653065E400 0.60653066E+00 0.60653066E4-00  0.60653066E+00  0.60653066E4-00
0.6  0.54881163E+00  0.54881163E+400  0.54881163E+00 0.54881163E+4-00  0.54881163E+00  0.54881163E4-00
0.7 0.49658530E+00  0.49658530E+00  0.49658530E+00  0.49658530E+400  0.49658530E+00  0.49658530E4-00
0.8  0.44932896E+00  0.44932896E+00  0.44932896E+00  0.44932896E+00  0.44932896E+00  0.44932896E+-00
0.9  0.40656965E+00  0.40656965E+00  0.40656965E+00  0.40656965E400  0.40656965E+00  0.40656965E4-00
1.0 0.36787944E+00 0.36787944E400 0.36787944E400 0.36787944E400 0.36787944E400 0.36787944E+400

Table 14. Comparing the absolute errors in the new methods to errors in Jator(2007) for Problem 4.

X Error in 1ISITHM  Error in 1S2HM  Error in 1S3HM  Error in 1S4HM  Error in 1S5HM Error in
p=4, k=1 p=4, k=1 p=>5, k=1 p=6, k=1 p=7, k=1 Jator(2007)

p=6, k=5
0.1  0.10886170E-09  0.21485147E-10  0.13039125E-10  0.24604763E-11 0.23759883E-11  0.698677E-11
0.2 0.20752355E-09  0.42134740E-10  0.23166580E-10  0.67051920E-11 0.65671912E-11  0.100275E-11
0.3 0.28642155E-09  0.58659744E-10  0.31248448E-10  0.10121015E-10  0.99376063E-11  0.785878E-11
0.4  0.34842440E-09  0.71659456E-10  0.37582271E-10  0.12827850E-10  0.12605583E-10  0.104778E-10
0.5 0.39603265E-09  0.81653351E-10  0.42427728E-10  0.14927615E-10  0.14674928E-10  0.632212E-10
0.6  0.43142434E-09  0.89093510E-10  0.46010196E-10  0.16511903E-10  0.16242563E-10  0.100508E-10
0.7  0.45649384E-09  0.94378005E-10  0.48526738E-10  0.17659374E-10  0.17379265E-10  0.936336E-11
0.8  0.47288495E-09  0.97850172E-10  0.50147830E-10  0.18438973E-10  0.18152535E-10  0.264766E-11
0.9  0.48202237E-09  0.99806885E-10  0.51020632E-10  0.18909985E-10  0.18621049E-10  0.106793E-10
1.0 0.48513832E-09  0.10050460E-09  0.51273152E-10  0.19124535E-10  0.18836210E-10  0.232731E-10

133



Table 15. Showing the exact solutions and the computed results from the proposed methods for

Problem 5.

X YEX 1S1HM 1S2HM 1S3HM 1S4HM 1S5HM
1.0031  0.10030765E+01  0.10030765E+01  0.10030765E+01  0.10030765E+01  0.10030765E+01  0.10030765E+01
1.0063  0.10060575E+01  0.10060575E+01  0.10060575E+01  0.10060575E+01  0.10060575E+401  0.10060575E+01
1.0094 0.10089450E+01  0.10089450E+4-01  0.10089450E4-01  0.10089450E+01  0.10089450E4-01  0.10089450E+01
1.0125 0.10117410E4-01  0.10117410E+01  0.10117410E401  0.10117410E+4-01  0.10117410E+01  0.10117410E+01
1.0156  0.10144475E+4-01  0.10144476E+01  0.10144476E+401  0.10144475E+4-01  0.10144475E+01  0.10144475E+01
1.0188  0.10170665E+01  0.10170665E+01  0.10170665E+01  0.10170665E+01  0.10170665E+01  0.10170665E+01
1.0219  0.10195998E+01  0.10195998E+01  0.10195998E+01  0.10195998E+01  0.10195998E+01  0.10195998E+01
1.0250  0.10220492E+01  0.10220492E+01  0.10220492E+01  0.10220492E+01  0.10220492E+01  0.10220492E+01
1.0281  0.10244165E+01  0.10244166E+401  0.10244166E+401  0.10244165E+401  0.10244165E+401  0.10244165E+01
1.0313  0.10267036E+01  0.10267037E401  0.10267036E401  0.10267036E4+01  0.10267036E4-01  0.10267036E+01

Table 16. Comparing the absolute errors in the new methods to errors in Badmus & Yahaya (2009)
for Problem 5.

X Error in 1ISTHM  Error in 1S2HM  Error in 1S3HM  Error in 1S4HM  Error in 1ISSHM  Error in Badmus
p=4, k=1 p=4, k=1 p=>5, k=1 p=6, k=1 p=7, k=1 & Yahaya(2009)
p=4, k=2
1.0031  0.81807894E-11  0.77022833E-11  0.77009510E-11  0.77586826E-11  0.76998408E-11 0.38354E-04
1.0063  0.27785485E-08  0.12658126E-08  0.71779915E-09  0.45977178E-09  0.41327297E-09 0.75004E-04
1.0094  0.74754114E-08 0.33850827E-08 0.19176578E-08 0.12299799E-08 0.10432657E-08 0.10592E-03
1.0125  0.13997774E-07  0.63126238E-08  0.35708470E-08  0.22894449E-08  0.18729474E-08 0.13548E-03
1.0156  0.22264084E-07  0.10012317E-07  0.56571030E-08  0.36252337E-08  0.28933289E-08 0.15557E-03
1.0188  0.32195759E-07  0.14449356E-07  0.81569016E-08  0.52248852E-08  0.40957480E-08 0.18637E-03
1.0219  0.43717076E-07  0.19590206E-07  0.11051428E-07  0.70763917E-08  0.54718601E-08 0.19606E-03
1.0250  0.56755078E-07  0.25402552E-07  0.14322554E-07  0.91681831E-08  0.70136241E-08 0.22104E-03
1.0281  0.71239469E-07  0.31855260E-07  0.17952815E-07  0.11489112E-07  0.87132936E-08 0.20563E-03
1.0313  0.87102518E-07  0.38918333E-07  0.21925381E-07  0.14028440E-07  0.99304354E-08 0.27791E-03
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5.4 Discussion of the Results

Computer programs written for the implementation of the five Continuous Implicit
Hybrid One Step Methods (CIHOSM) developed namely: 1STHM, 1S2HM, 1S3HM,
1S4HM and 1S5HM; were tested respectively on five numerical examples which are,
respectively, nonlinear, linear and stiff initial value problems of general second order
ordinary differential equations in the last section.

The approximate solutions obtained from these experiments elucidated the effi-
ciency of the computed programs.

It is observed from the tables that the results obtained from the methods con-
verged faster when the number of offstep points were increased. This validates the
consistency and zero stability of the methods and agrees with the fact that, as the
step size h decreases, the methods get more accurate as demonstrated in Table 5.
Even though there are some deviations in what is obtained in Table 12, where the
results obtained at x = 0.3 to 0.7 by 1SIHM are better than those from 1S2HM for
the moderately stiff problem 3.

Generally, the performance of our methods as noticed in tables 7 to 16, are superior
to those from methods implemented on the predictor-corrector codes by Awoyemi
(1999 and 2001) and the block methods proposed by Yahaya and Badmus (2009) and
Badmus and Yahaya (2009) for the same step sizes, even though their method had
higher step numbers.

However, even though the multiple finite difference method of Jator (2007) seemed
to have produced a better result at most of the points of evaluation, it should be
noticed that the method had step number k& = 5 against our methods with step
number k = 1. Indeed, our methods compared favourably with Jator (2007) results

given the obvious differences in their designs.
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It should be noticed that, as the offstep points are decreasing, the step size becomes
smaller and the methods become more accurate for the five problems used to test the
accuracy of the methods just as small steps in the finite elements methods increase
the accuracy of the problems solved.

Also, beyond the reduction in step number which means lesser function evaluations
per iteration, this approach produced higher order discrete methods which give very

low error terms and wider intervals of absolute stability.
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Chapter 6

Summary and Conclusion

6.1 Introduction

In this chapter, a general conclusion on the research work is made. Recommendations

on the proposed class of methods is made while areas of further research are suggested.

6.2 Summary and Conclusion

A class of hybrid collocation methods for the direct solution of initial value problems
of general second-order ordinary differential equations have been developed in this
research. The collocation technique yielded very consistent and zero stable implicit
hybrid one step methods with continuous coefficients. The methods are implemented
without the need for the development of predictors nor requiring any other method
to generate starting values. Furthermore, the inclusion of offstep points allowed the
adoption of linear multistep procedure, circumvent the ‘zero-stability barrier’, up-
graded the order of accuracy of the methods and to obtain very low error constants.

In particular, the performance of the methods improved as the number of off-
step points increased. Adequate stability intervals are obtained for both non-stiff
and stiff problems. Results from the numerical solutions of non-linear, linear and

moderately stiff IVP show that this class of methods are superior to the predictor-
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corrector method proposed by Awoyemi (1999, 2001), the multiple finite difference
methods proposed by Jator (2007) and the hybrid block method proposed by Yahaya
and Badmus (2009) and Badmus and Yahaya (2009).

All computations were carried out by computer programs written in FORTRAN
95 language, compiled and executed using PLATO FORTRAN 95 on the Windows
XP operating system. The computer programs do not contain subroutines which

means lesser computing time.

6.3 Open Problems

The class of continuous Implicit one step hybrid methods proposed in this thesis is
recommended for the direct solution of initial value problems of general second order
ordinary differential equations; of the nonlinear, linear and stiff types for small A, as
demonstrated by the results of this research in terms of efficiency and accuracy and
ease of implementation.

However, further research could extend the methods to the direct solution of higher
order general ODEs in view of the advantages of these methods.

The plausibility of using other basis functions in place of the power series polyno-
mial used in this work is also suggested for further research in this direction.

Systems of special and general higher order ODEs can be considered using the

new methods proposed in this work.
6.4 Contribution to Knowledge
This research has led to the following contributions:

(i) anew class of continuous implicit hybrid one step methods for the direct solution

of general second-order IVPs of ODE has been developed;
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(ii) a new hybrid block formula has been defined; and

(iii) very accurate and highly efficient computer codes have been written for the

implementation of the new methods
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