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ABSTRACT 
 

A simple experimental set-up is used to validate capillary-tube models of flow in porous media for (non-) spherical particles 

and coarse grains of particular/specific mesh sizes. Of the two models used, one model characterizes the structure of the 

media apart from particle diameter or equivalent particle diameter for non-spherical objects compared to the other model. The 

magnitude of computed tortuosity for particles/grains studied is in order, however, that of the spherical particles was slightly 

higher than published values for spheres. Likewise, the ratio of dynamic to static specific surface area was below anticipated 

and known results in literature. For the non-spherical particle that was approximated as a half-oblate spheroid, the possible 

error in computed volume and surface area may be the reason for the deviation of computed equivalent diameter from the 

effective diameter obtained by fitting Ergun correlation to experimental result. The deviation of computed results based on 

the conducted experiment may in fact be due to error in appropriately fitting straight line to plotted data and precision error of 

gauges, and possible hysteresis at low flow velocity due to experimental procedure. 
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1. INTRODUCTION 

 

Fluid flow in different media and conduits has gained 

ground in research over the years by pioneer researchers, 

and analytical solutions developed. The fundamentals for 

modeling flow are hinged on the continuity equation, 

fluid’s equation of state and the law governing the 

dynamics of fluid flow. For flow in a porous media, the 

constraint in applying a theoretical flow model are 

characterizing the geometry of the systems of pores, the 

irregularity of the pore walls that creates fluid converging 

and diverging, and the interconnected pore system being 

designated as a bundle of cylindrical tubes. This has 

necessitated the use of assumptions to simplify the pore 

system by various researchers in the form of known 

shape/geometry to obtain analytical and numerical 

solutions.  

 

Through experimental study, Henri Darcy (1956) 

established the link between flow rate and pressure 

gradient in a porous media by a constant of 

proportionality that is widely referred to as Darcy law. 

This constant sums up the geometric properties of the 

porous media. The properties constitute porosity, shape of 

grains (sphericity and angularity), size of grains, sorting 

and the degree of cementation (as in subsurface sand 

grains). That is why correlation for hydraulic conductivity 

has been established from the first three properties by 

Sperry and Peirce (1995) and others. A major assumption 

that is inherent in the development of Darcy’s empirical 

equation is laminar or viscous flow, thereby ignoring 

inertia forces in the fluid as inherent in the classical 

Navier-Stokes equation. There exists deviation from the 

linear relation that is depicted by Darcy’s empirical 

equation (Eqn 1) at high flow rate. This scenario is called 

non-Darcy flow which occurs at flow rates that is outside 

the confines of laminar flow regime. For petroleum 

reservoirs, this phenomenon occurs near the well bore 

region at the perforation face, gravel pack completions, 

hydraulic fractured wells (Wu, 2002; Barree and Conway, 

2004), and gas reservoirs (Kadi, 1980). 

 

k dP
v

dL
        (1) 

 

where v is superficial velocity; k, permeability; µ, 

viscosity; L, length of bed or porous media and P, 

pressure. 

 

Forchheimer (1901) modified the Darcy equation to 

capture the additional pressure drop observed for high 

flow rate. However, inertia effects caused by the 

acceleration and deceleration of flow through the tortuous 

flow path and not turbulence flow have been attributed to 

non-Darcy flow. The Forchheimer equation is, 
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v v
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       (2) 

 

where ρ is density. The variable “β” in Eqn 2 is called the 

beta or inertial factor. Other names are non-Darcy and 

inertial flow coefficient, and turbulence factor. The factor 

is determined from laboratory test result and multi-rate 

well tests, and known to be a property of the porous 

media. By comparing theoretical derivations from 

different flow models with the Forchheimer equation, 
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expressions for β (Li and Engler, 2001) had been derived 

and further extended by empirical correlations to capture 

pore geometry and the complexity of the pore model. 

Flow through porous media are commonly modeled by 

capillary tube (including hydraulic radius models), 

Navier-Stokes equation, submerged object, statistical, 

particulate and resistance to flow models for Darcy and 

non-Darcy flow regimes. The first three models are 

applicable to non-Darcy flow and the capillary tube 

models are further subdivided into parallel and serial type 

models as summarized in Li and Engler (2001). In 

addition, Barree and Conway (2004) has extended the 

Forchheimer equation to cover the range beyond which 

the equation is applicable. 

Nonetheless the Forchheimer equation can be used to 

determine permeability of a medium based on 

experimental data, empirical correlations like that of the 

commonly applied Ergun equation (1952) which is widely 

used for spherical particles and irregular particles with 

readily obtainable equivalent pore diameter or not. The 

Ergun equation and other empirical equations are capable 

of characterizing the porous media with properties such as 

particle diameter and porosity for Ergun equation and that 

of Comiti and Renard (1989) for porosity, tortuosity, and 

dynamic specific surface area. For spherical object, the 

dynamic specific surface area collapses to a form of the 

hydraulic radius. While Ergun equation former correlation 

focuses on particle characterization, the other adds on the 

flow medium. 
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where ϕ is porosity; d, diameter; τ, tortuosity; fD, Darcy-

Weisbach friction factor; γ, shape factor; avd, ratio of 

dynamic surface area to volume (dynamic specific surface 

area) , all other variables as defined in Eqns 1 and 2. 

 

Of particular interest to petroleum engineers on the issue 

of non-Darcy flow is pressure drop near the well bore 

region and sand production mitigation with gravel 

packing or screens with particle entrapment (necessitating 

anisotropic medium) and its consequences on productivity 

index as regards to quantifying flow resistance parameters 

and characterizing the medium with less experimental test 

and production downtime for multi-rate test. 

Consequently, the efficacy of the model development 

from capillary tube having tortuosity and dynamic 

specific surface area as primary and unknown parameters 

is verified as a porous media characterizing tool based on 

a simple experimental setup. Irregular shaped grains of 

unknown geometric size in terms of surface area and 

equivalent diameter are tested. In addition, solid sphere 

and particle of low aspect ratio are also tested. 

 

2. EMPIRICAL MODELS AND 

APPLICATION 

 

The application of Ergun equation to irregular shaped or 

non-spherical particles had been based on the replacement 

of the diameter in the equation by the product of 

sphericity, a shape factor (Eqn 5) and volume surface 

mean diameter “dvs” (Eqn 6). This diameter is referred to 

as Sauter mean diameter in Li and Ma (2011). These 

authors further compared the use of the commonly 

applied Sauter mean diameter (Eqn 7) and a product of 

this diameter with shape factor to hollow spheres and 

cylinders. Fitting of experimental results gave a better 

match with the latter (Eqn 8) than that of Sauter mean 

diameter with the Ergun equation 
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where Ap is surface area of particle; Asp, surface area of 

the equivalent-volume sphere; deq, equivalent diameter of 

non-spherical particles; dsd, Sauer mean diameter; dvs, 

volume-surface mean diameter; and ψ, Wadell’s 

sphericity. 

 

For Eqn 4, the Comiti and Renaud equation, dynamic 

specific surface area “avd” is equal to the term in brackets 

of Eqn 7 for spherical particles. However, for other shapes 

the ratio is less than 1.0. “M” and “N” (Eqns 4, 9 and 10) 

are the gradient and intercept of the straight line plot from 

experimental data to compute constants that characterize 

the porous media. Darcy-Weisbach friction factor (fD) is 

the popular correlation used for pressure drop 

computation due to flow resistance from the pipe walls. 

Use of friction factor equation for laminar flow reduces 
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Eqn 4 to 11 which is related to the Darcy equation, and 

adapts the use of turbulent flow friction, in particular, 

Nikuradse’s friction factor correlation (Eqn 12) for 

turbulent flow in rough pipes. Solutions of Eqns 9 and 10 

give expressions for tortuosity and dynamic specific 

surface area, Eqn 13 and Eqn 14, while Eqn 15 and 16 are 

based on the modification of Eqn 4 for wall effect and can 

be solved by optimization of the respective equations. 
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3. DESCRIPTION OF EXPERIMENT 
 

3.1 Sieve Analysis of Aggregates/Gravel 
 

In order to obtain an unconsolidated porous media, sieve 

analysis is carried out. Sieve analysis helps to determine 

the particle size distribution of the coarse and fine 

aggregates. This is done by sieving the aggregate based 

on the standard of the IS code. The aggregates pass 

through the different layers of sieves with respect to the 

mesh size in order to obtain the corresponding size 

particles. 

 

3.2 Porous Media Particles 

 

Particles (Table 1) that make up the porous media for 

investigation in this study are presented in Fig 1a-f. 

Figures 1c-f which are the outcomes of sieving described 

in the previous subsection for gravel. The Non-Spherical 

beads of Fig. 1b are disked-shaped beads called sequins 

whose volume and surface area are computed based on 

the half oblate spheroid shape of 2.3×2.65mm. Table 2 

shows the measured data and computed parameters of the 

spheroid. Volume and surface area of the sequin is 

calculated by Eqns 17 and 18. 
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where all the parameters are as defined in Table 2 and 

below. 
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(d) (e) (f) 

   

 

Fig. 1. (a) Ballotini - 1mm spherical glass beads (b) Non-Spherical beads – Oblate Spheroid of 2.3×2.65mm (c) 4.75mm US standard 

mesh size gravel (d) 6.3mm US standard mesh size gravel (e) 9.5mm US standard mesh size gravel and (f) 4.75 + 6.3mm US 

standard mesh size gravel mixture representing highly anisotropic porous media. 

 
Table 1: Particles for experiment 

 

Particle ε Diameter 

(mm) 

   

Spherical Bead (Ballotini) 0.380 1.0 

Non-Spherical Bead 

(Sequin) 

0.401 - 

Gravel 4.75mm  0.495 - 

Gravel 6.3mm 0.523 - 

Gravel 9.5mm 0.594 - 

Gravel 4.75+6.3mm 0.520 - 
 

Table 2: Computed and measured data of 

non-Spherical Bead 
 

Parameter Value 

a, semi-major axis 2.65mm 

b, semi-minor axis 2.3mm 

V, particle volume 3.38281e
-8

 m
3
 

Ap, particle surface area 6.23559e
-5

 m
2
 

Asp, surface area of 

equivalent-volume sphere 

5.05828e
-5

m
2
 

dvs, volume-surface mean 

diameter 

4.013mm 

ψ, Wadell’s sphericity 0.811 

dsd, Sauter mean diameter 3.255mm 

deq, equivalent diameter of 

non-spherical particle 

2.640mm 

f, oblatness or flattening 0.132 

3.3 Flow Equipment 
 

The equipment line-up is made up of a vertical Perspex 

column 38mm internal diameter and 500mm long with 

inlet and outlet connections for water flow in both 

directions (Fig. 2). Granular media is retained within the 

column by a 0.5mm gauze mesh (B.S. 30 sieve mesh) at 

the base. Water source is through a constant head tank of 

8.3 liters capacity at 2.5m above the column that is fitted 

with an overflow weir for constant water level. Flow rate 

range is 50-800 cm
3
/min by the aid of a variable flow 

device as given by the top edge of a float. The top and 

bottom of the column is connected to the top and bottom 

of a manifold block. Water from the top and bottom of the 

column are isolated in the manifold whose ends are 

connected to a U-tube water and mercury manometer. The 

water manometer is used in the experiment for this study 

for safety. The ends of the water manometer are linked at 

the top and which allows air pressure to be adjusted. The 

setup enables easy removal of trapped air through drain 

valves, bleed screw at the connecting end of the water 

manometer and top of the column. The commissioning 

process ensures this. 
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Fig. 2: Experimental setup 

 

3.4 Quality of Measurement 
 

For each porous media, water head is measured at 

increase of flow from 100-800cm
3
/min and flow decrease 

back to 100cm
3
/min and eventually to zero to establish 

consistency in readings. However, significant difference 

occurred (was observed) at low flow rate. At each flow 

rate, steady state was ensured by allowing flow for a few 

minutes. The laid down commissioning process of the 

equipment was carried out and air bubbles in the flow 

tubes and porous media that could affect reading was 

avoided. The accuracy of the test shall be tested for a 

solid sphere (Ballotini) as the porous medium with the 

established Ergun equation. 

 

Systematic and random errors are possible. The former is 

on the precision of the water U-tube manometer, and to a 

lesser extent on flow measuring device. Other errors are 

systematic in obtaining flow rate from the scale by 

observing the float level and water manometer height. 

 

Porosity for each test bed particle was obtained by bulk 

volume measurement in the graduated test bed column 

and particle volume through water displacement in a 

graduated measuring cylinder. The particles were 

removed from the test bed to obtain the volume. 

Measurement of bulk volume in the test bed was for 

accuracy due to possible change in sorting and orientation 

of particles for non-spherical particles and grains with 

respect to angularity and sphericity, and structure for the 

disk like particle. 

 

4. RESULTS AND DISCUSSION 

 

Figure 3.1 shows the superiority of the correlation 

obtained from the regression as shown in Figure 3.2. The 

regression equation clearly shows a higher 

representation/model for the experimental data, however, 

Figure 3.3 depicts the fact the Ergun correlation is quite a 

reasonable fit for the experiment. In addition, the MSE 

and RMSE for the Ergun Equation and obtained 

correlation are 0.025 and 0.01 for MSE, 0.159 and 0.098 

for RMSE respectively. Reasons for the deviation from 

Ergun correlation lie in the fact that as stated by Cheng 

(2011), the equation is applicable for no wall effect on 

flow with respect to the ratio of flow tube diameter to 

sphere diameter being greater than 40. However, Ergun 

(1952) had alluded to the fact that the ratio being less than 

10 showed scatter from the trend by the Ergun equation. 
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(a) (b) (c) 

   
   

(d) (e) (f) 

   
 

Fig. 4: Forchhheimer’s experimental linear plot fitting of –dP/[dL×(Vsµ)-1] against ρVs/µ(a) Ballotini - 1mm spherical glass beads 

(b) Non-Spherical beads – Oblate Spheroid of 2.3×2.65mm (c) 4.75mm US standard mesh size gravel (d) 6.3mm US standard mesh 

size gravel (e) 9.5mm US standard mesh size gravel and (f) 4.75 + 6.3mm US standard mesh size gravel mixture representing highly 

anisotropic porous media. 

 

Flow regime in porous media has been classified based on 

a function of pressure gradient into Pre-Darcy, Darcy and 

Non-Darcy flow by plotting superficial velocity against 

pressure gradient and observing the linear trend that 

passes through the origin of the graph when extended as it 

denotes the Darcy flow region. While the Pre-Darcy starts 

before Darcy flow, and that of Non-Darcy is after the 

Darcy flow regime. This is the first step at analyzing the 

experimental data obtained for different porous media 

(packing) in a constant diameter column. The Perspex 

column filled with 1mm spherical glass beads had about 

75% of data points within the Darcy flow region and the 

others, non-Darcy flow region, while the other packing 

materials from non-Spherical Beads (≈oblate spheroid) to 

different sized gravels from US standard mesh dimension 

of 4.7mm, 6.3mm and 9.5mm all have about 90% of data 

points within the Non-Darcy flow region. 

 

At low flow rate or superficial velocity, the deviation of 

data points from the obvious straight trend seems uniform 

from the spherical bead to non-spherical bead packing and 

to the gravel packing (this differences hovers around 

Fig 3.1. Plot of experimental data 

against estimation by Ergun’s 

equation and developed 

correlation for Spherical Bead 

Fig 3.2. Plot of friction factor 

against pore Reynolds number, 

for Spherical Bead 

Fig 3.3. Plot of pressure drop 

against superficial velocity based 

on Ergun’s equation and 

experimental data, for Spherical 

Bead. 
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0.5×10
8
 inverse apparent permeability units). The logical 

deviation of data point either from the straight line trend 

or between that of decreasing and increasing flow rate 

may be explained logically from the effect of initial 

unsteady state flow that is brought about by the 

dominance of viscous flow. Or the trend may be 

explained by uniform velocity distribution at higher 

velocity than low velocity as flow is not subjected to only 

larger pores as in low velocity (Barree and Conway 

(2004)). This trend is not observed in the previous plot of 

superficial velocity against pressure gradient. In similar 

manner, the match of experimental results for laminar 

flow (low velocity) was less than that for higher velocity 

as observed by Li and Ma (2011). It is worth mentioning 

that the Ergun-equation is a superimposition of laminar 

and turbulent flow in tubes as related to flow in porous 

(Bird et a.l, 2002), hence, the equation reduces to laminar 

flow at low velocity and so would not be like a 

correlation/equation developed for only laminar flow. 

 
Table 3: Sauter diameter and equivalent diameter modification due to uncertainty of volume and total surface area. 

 

  Ap 0% Ap-10% Ap-20% Ap-30% 

V 0% 
dsd (mm) 3.255 3.374 3.503 3.642 

deq (mm) 2.640 2.836 3.058 3.331 

V -10% 
dsd (mm) 2.930 3.037 3.153 3.277 

deq (mm) 2.215 2.381 2.565 2.773 

V -20% 
dsd (mm) 2.604 2.270 2.802 2.913 

deq (mm) 1.820 1.960 2.108 2.278 

V -30% 
dsd (mm) 2.279 2.362 2.452 2.549 

deq (mm) 1.457 1.566 1.688 1.824 

 

 
 

Fig. 5: Pressure gradient correlation by Ergun’s equation 

for experimental data fitted to Ergun’s equation, computed 

equivalent diameter and diameter modified with respect to 

uncertainty of non-spherical particle’s volume and surface 

area. 

 

For the non-spherical object of Fig 1b, the object shape is 

approximated to a half-oblate spheroid. This of course 

should have some implications on computing volume and 

surface area, which is the reason for the approximation. 

Measured data/readings and computed values are 

tabulated as seen in Table 2.  

 

Sauter and equivalent diameter obtained from 

approximation of the non-spherical particle by half-oblate 

spheroid is used to compute pressure gradient based on 

the Ergun’s equation. Other computation is based on 

fitting the Ergun’s equation to the experimental data and 

uncertainty associated with the particle’s volume and total 

surface area. Table 3 shows the range of uncertainty and 

Figure 5 shows the deviation of the computed values from 

the experimental result. The uncertainty in volume and 

surface area indicated by decrease of (20%, 0%), (30%, 

20%) and (30%, 30%) in volume and surface area gave a 

closer fit to the experimental result. An effective diameter 

for the experimental set-up is 1.75mm. Whatever error 

that may lie in the volume and surface area as represented 

by the oblate spheroid and can be as high as 20-30% by 

inference from the shape of the particle. Hence, irregular 

shaped objects may be faced with the issue of computing 

volume and surface area, as such, reliance on fitting 

experimental results. However, the orientation of the 

particles being random and layer-like in some spots may 

contribute to deviation from Ergun-equation, another 

equally possibility is the ratio of the column to equivalent 

particle diameter. 

 

The equation Eqn 4 was developed to model fluid (liquid) 

flow in a porous media based on the media being 

represented by a bundle of tubes, or better expressed as 

being equivalent to a single tube with a diameter (Comiti 

and Renaud, 1989). The model entails the sum of creeping 

(laminar) and turbulent (inertial) flow regimes that 

signifies viscous resistance at pore walls and inertial 

resistance of kinetic energy loss by change in flow 

direction. Pressure drop due to friction was applied to 

compute kinetic energy loss. In particular, Nikuradse’s 

friction factor correlation was applied. Though not 

explained, this carefully avoids the use of velocity and its 

application avoided the direct use of diameter and 

absolute roughness. In applying the computed equivalent 
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diameter and velocity of pipe flow, the flow regime is a 

laminar flow. On using the theoretical expression for 

computation of friction factor in the equation for non-

Darcy flow in a porous media as represented by the 

kinetic energy loss of inertia and viscous flow, the 

equation reduces to a Darcy flow expression thereby not 

capturing non-Darcy flow. The reduced equation is shown 

in Eqn 11. However, Ma and Ruth (1997) argue that for 

straight tube model, non-Darcy flow effects will not 

become existent until true turbulence sets in at Re≈2000, 

while in a bent tube model, microscopic inertial effects 

will become important when Re≈1. So the importance of 

tortuosity and the likely and unexplained reason for the 

use of turbulent flow friction factor correlation by Comiti 

and Renaud, (1989). In contradiction, Li and Engler 

(2001) reported that Bear (1972), Scheidegger (1974), 

Barak (1987) and Ruth and Ma(1992) agreed that 

nonlinearity between pressure gradient and velocity is not 

due to turbulent flow in porous media but to inertial 

effects. 

 

(a) (b) (c) 

   

   

(d) (e) (f) 

   

Fig. 6: Comiti and Renard experimental linear plot fitting of –dP/[dL×(Vs)
-1] against Vs (a) Ballotini - 1mm spherical glass beads 

(b) Non-Spherical beads – Oblate Spheroid of 2.3×2.65mm (c) 4.75mm US standard mesh size gravel (d) 6.3mm US standard mesh 

size gravel (e) 9.5mm US standard mesh size gravel and (f) 4.75 + 6.3mm US standard mesh size gravel mixture representing highly 

anisotropic porous media. 

 

Forchheimer  and Comiti and Renaud (1989) plots (Fig. 4 

and 6) are similar, the former plot is [–ΔP/(ΔL∙v∙µ)] 

against [ρ∙v/µ] to obtain permeability as is commonly 

applied while the later authors plot [–ΔP/(ΔL∙v)] against 

[v]. The difference arises in the constants of viscosity and 

density which for an incompressible flow is 

inconsequential. However, for compressible flow, it is 

not. In relation to Ergun’s equation (Ergun and Orning, 

1949), this equation and that of Comiti and Renaud were 

shown as been derived from the Poiseuille equation for 

the viscous term and kinetic energy loss in pipe flow for 

the inertial term for the pressure gradient in a porous 

media. The difference of the former is the capability to 

capture and model flow of packed media of 

parallelepipedal particles, or particles having very low 

height to side ratio by the introduction of a parameter that 

considers the dynamic surface area in contact with the 

fluid during flow which is also linked or connected to the 

orientation of the particles. In addition, the equation is 

applicable in considering wall effect while the higher 

difference in plotted data at low flow velocity between 

readings taken at increasing and decreasing flow may be 

attributed to hysteresis. 
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Table 4: Intercept, slope and structure parameters of Equation 4 for all media 
 

Particle ε M×10
9
 N×10

6
 deq τ avd avs X 

  Pa∙s
2
∙m

-3
 Pa∙s∙m

-2
 mm  m

-1
 m

-1
  

Spherical Bead 0.380 0.028311 0.83990 1.00 1.789 4627 6000 0.77 

Non-Spherical Bead 0.401 0.019553 0.15330 1.84 2.364 1670 3260 0.51 

4.75mm Gravel 0.495 0.021323 0.14905 1.27 2.440 2521 4720 0.53 

6.3mm Gravel 0.523 0.014423 0.13923 1.09 2.762 2427 5510 0.44 

9.5mm Gravel 0.594 0.016507 0.12880 0.89 3.150 2903 6750 0.43 

4.75+6.3mm Gravel 0.520 0.016616 0.11500 1.00 3.030 2383 5999 0.40 

 

Equation 4 gives expressions for tortuosity, “τ” and avd 

(dynamic specific surface area or ration of surface area 

presented by the particles to the flow to volume of solid) 

of the porous media in the form of Eqns 13 and 14. The 

corresponding parameters of M, N, τ, avd, avs and X for the 

porous media as shown in Fig 1 are presented in Table 4. 

Apart from the spherical beads, the avs of the other porous 

media were calculated from equivalent diameter based on 

Ergun’s correlation (as in Ergun-Fit in Fig. 5 for the 

sequin bead) due to the irregular shape. It is obvious that 

the spherical bead has the largest dynamic contact surface 

area. The low contact area and high tortuosity for the 

gravels of various mesh size with respect to the spherical 

bead may be largely due to sphericity, angularity and 

heterogeneity. Equation 4 consists of parameters that are 

defined and accounts for the structure of the porous media 

for characterizing it unlike numerical constants in Erguns’ 

equation without a physical meaning. Verification of 

parameters in the form of tortuosity and dynamic surface 

area had been shown in literature; however, Kozeny and 

Carmen equation had shown the value of tortuosity and its 

relevance for the porous media.  

 

The study of wall effect on flow and pressure gradient 

may not be properly defined for irregular objects. 

Equivalent diameter based on fitting of experimental data 

should distort the application of the modified Eqn 4 

gradient and intercept to Eqns 15 and 16 for wall effect. 

Wall effect accounts for computation of friction on the 

wall face and inertia contribution to pressure gradient. 

 

5. CONCLUSIONS 
 

 The effective particle diameter obtained by fitting 

experimental data with the Ergun equation is 

different from that of the computed equivalent 

diameter for the non-spherical bead (disk-like 

sequin). With the approximation of the sequin as a 

semi-oblate spheroid, equivalent diameter was 

computed. However, based on the assumption of 

error in calculated volume and surface area due to 

this approximation, the percentage error was 

obtained. 

 

 For spherical shaped particles, static specific surface 

area ‘avs’ is equal to dynamic specific surface area 

‘avd’. This was not achieved for the Ballotini 

(spherical) beads. As such, the ratio of ‘avd’ to ‘avs’ 

was less than 1.0. A value of 0.77 was computed, 

however, that of the non-spherical particles were 

much less than that of the spherical bead as expected. 

This indicates less fluid contact area with the 

particles. 

 

 Tortuosity for spheres had being noted to have a 

value of about 1.44 according to various studies. The 

value computed for the spherical bead in this study 

was 1.789, while that of the non-spherical particles 

was higher as expected. 

 

 Attempt was made to apply the published model of 

Comiti and Renard that was modified for wall effects. 

The application of the model required the 

optimization of the derived equations to obtain 

tortuosity and dynamic specific surface area. Non-

unique solutions were obtained. 
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