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Abstract: The purpose of this study is to introduce a Noor-type random iterative scheme

and prove the convergence of this kind of random iterative scheme for certain φ-weakly con-

tractive type random operators. The Bochner integrability of random fixed points for this kind

of random operators and the almost sure T -stability and convergence for Noor-type random

iterative scheme are established. Our results are stochastic generalizations of the deterministic

fixed point theorems of Berinde [7, 8] and Rhoades [29]-[32].
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1. Introduction

Probabilistic functional analysis has emerged over the years as one of the mo-
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mentous mathematical disciplines in view of its requirements in dealing with
probabilistic models in applied problems. Random fixed point theorems are
stochastic generalizations of classical or deterministic fixed point theorems and
are required for the theory of random equations, random matrices, random
partial differential equations and various kinds of random operators arising in
physical systems (see, e.g. Joshi and Bose [18], Zhang [36]). The theory of
random fixed point theorems was initiated in 1950s by Prague school of prob-
abilists. After the classical results of Bharucha-Reid [9] in 1976, where He
gave sufficient conditions for a stochastic analogue of Schauder’s fixed point
theorem for random operators, the theory of random fixed points received un-
precedented attention by several researchers and many ineresting results have
appeared in literature (see, e.g., [4], [6], [10], [17], [18], [20], [22], [26], [27],
[33], [35], [37]). Spacek [34] and Hans [14] established stochastic analogue of
the Banach fixed point theorem in a separable metric space. Itoh [17] in 1979
generalized and extended Spacek and Han’s theorem to a multi-valued contrac-
tion random operator. Papageorgiou [27] proved several random fixed point
theorems for measurable closed and nonclosed valued multifunctions satisfying
general continuity conditions. His results improves earlier results announced
by Engl [12], Itoh [17] and Reich [28]. Xu [35] in 1990 extended the results
of Itoh to a nonself-random operator T, where T satisfies either weakly in-
ward or the Leray-Schauder conditon (see Xu [35]). Shahzad and Latif [33]
in 1999 proved a general random fixed point theorem for continuous random
operators. As applications, they derived a number of random fixed points the-
orems for various classes of 1-set and 1-ball contractive random operators (e.g.,
operators of contractive type with compact or completely continuous pertur-
bations, operators of semicontractive type, etc.). Arunchai and Plubtieng [4]
established some random fixed point theorem for the sum of a weakly-strongly
continuous random operator and a nonexpansive random operator in Banach
spaces. Their results are the random versions of some deterministic fixed point
theorems of Edmunds [11] and O’Regan [26]. Chang et al. [10] and Beg and
Abbas [6] proved some convergence theorems of random Ishikawa schemes and
random Mann iterative schemes for strongly pseudo-contractive operators and
contraction operatos respectively, in separable reflexive Banach spaces. Re-
cently, Zhang et al. [37] studied the almost sure T -stability and convergence of
Ishikawa-type and Mann-type random algotithms for certain φ-weakly contrac-
tive type random operators in a separable Banach space. They established the
Bochner integrability of random fixed point for this kind of random operators
and the almost sure T -stability and convergence for these two kinds of random
iterative algorithms under suitable conditions. Their classical results extends
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several known related results in literature (see, e.g. Berinde [7], Olatinwo [25],
Rhoades [30, 31], Olaleru and Mogbademu [24], Akewe and Okeke [1], Akewe
et al. [2], Akewe and Okeke [3] among others).

In 1953, Mann [19] introduced the Mann iterative scheme and used it to
prove the convergence of the sequence to the fixed points for which the Banach
principle is not applicable. Later in 1974, Ishikawa [16] introduced an iterative
process to obtain the convergence of a Lipschitzian pseudocontractive operator
when Mann iterative scheme failed to converge. In 2000 Noor [21] gave the
following three-step iterative scheme (or Noor iteration) for solving nonlinear
operator equations in uniformly smooth Banach spaces.

Let D be a nonempty convex subset of a Banach space E and let T : D → D

be a mapping. For a given x0 ∈ D, compute the sequence {xn}
∞
n=0 by the

iterative schemes






xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 0
(1.1)

where {αn}
∞
n=0, {βn}

∞
n=0 and {γn}

∞
n=0 are three real sequences in [0, 1] satisfying

some conditions.
If γn = 0 and βn = 0, for each n ∈ Z, n ≥ 0, then (1.1) reduces to the

iterative scheme

xn+1 = (1− αn)xn + αnTxn, n ∈ Z, n ≥ 0, (1.2)

which is called the one-step (or Mann iterative scheme), introduced by Mann
[19].

For γn = 0, (1.1) reduces to:

{

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 0
(1.3)

where {αn}
∞
n=0 and {βn}

∞
n=0 are two real sequences in [0, 1] satisfying some

conditions. Equation (1.3) is called the two-step (or Ishikawa iterative process)
introduced by Ishikawa [16].

In 1989, Glowinski and Le-Tallec [13] used a three-step iterative process to
solve elastoviscoplasticity, liquid crystal and eigenvalue problems. They estab-
lished that three-step iterative scheme performs better than one-step (Mann)
and two-step (Ishikawa) iterative schemes. Haubruge et al. [15] studied the
convergence analysis of the three-step iterative processes of Glowinski and Le-
Tallec [13] and used the three-step iteration to obtain some new splitting type
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algorithms for solving variational inequalities, separable convex programming
and minimization of a sum of convex functions. They also proved that three-step
iteration also lead to highly parallelized algorithms under certain conditions.
Hence, we can conclude by observing that three-step iterative scheme play an
important role in solving various problems in pure and applied sciences.

The purpose of this study is to introduce Noor-type random iterative scheme
and study the almost sure T -stability and convergence of our newly introduced
Noor-type random iterative scheme for certain φ-weakly contractive type ran-
dom operators in a separable Banach space. We shall prove the Bochner inte-
grability of random fixed points for this kind of random operators and establish
the almost sure T -stability and convergence for our newly introduced Noor-type
random algorithms. Our results are stochastic generalizations of the determin-
istic fixed point theorems of Berinde [7, 8], Rhoades [29]-[32] among others.

2. Preliminaries

Throughout this study, we assume that (Ω, ξ, µ) is a complete probability mea-
sure space and E is a nonempty subset of a separable Banach space X.

The following definitions will be needed in this study.

Definition 2.1. (see [18]) A random variable x(ω) is Bochner integrable if
‖x(ω)‖ ∈ L1(Ω; ξ;µ), i.e.,

∫

Ω
‖x(ω)‖dµ(ω) < ∞. (2.1)

Proposition 2.2. (see [18]) A random variable x(ω) is Bochner integrable
if and only if there exists a sequence of random variables {xn(ω)}

∞
n=1 converging

strongly to x(ω) almost surely (a.s.) such that

lim
n→∞

∫

Ω
‖xn(ω)− x(ω)‖dµ(ω) = 0. (2.2)

Definition 2.3. (see [37]) Let (Ω, ζ, µ) be a complete probability measure
space and E be a nonempty subset of a separable Banach space X. Let T : Ω×
E → E be a random operator. Denote by F (T ) = {x∗(ω) ∈ E : T (ω, x∗(ω)) =
x∗(ω), ω ∈ Ω} the random fixed point set of T. For any given random variable
x0(ω) ∈ E, define an iterative scheme {xn(ω)}

∞
n=0 ⊂ E by

xn+1(ω) = f(T ;xn(ω)), n = 0, 1, 2, · · · , (2.3)
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where f is some function measurable in the second variable.
Let x∗(ω) be a random fixed point of T and Bochner integrable with respect

to {xn}
∞
n=0. Let {yn(ω)}

∞
n=0 ⊂ E be an arbitrary sequence of a random variable.

Denote
εn(ω) = ‖yn+1(ω)− f(T ; yn(ω))‖, (2.4)

and assume that ‖εn(ω)‖ ∈ L1(Ω(ξ, µ) (n = 0, 1, · · · ). Then, the iterative
scheme (2.3) is T -stable almost surely (a.s.) (or the iterative scheme (2.3) is
stable with respect to T almost surely) if and only if

lim
n→∞

∫

Ω
‖εn(ω)‖dµ(ω) = 0 (2.5)

implies that x∗(ω) is Bochner integrable with respect to {yn(ω)}
∞
n=0.

Definition 2.4. (see [37]) Let (Ω, ξ, µ) be a complete probability measure
space and E be a nonempty subset of a separable Banach space X. A random
operator T : Ω × E → E is the φ-weakly contractive type if there exists a
continuous and nondecreasing function φ : R

+ → R
+ with φ(t) > 0 (∀t ∈

(0,∞)) and φ(0) = 0 such that ∀x, y ∈ E, ω ∈ Ω,

∫

Ω
‖T (ω, x)−T (ω, y)‖dµ(ω) ≤

∫

Ω
‖x−y‖dµ(ω)−φ

(
∫

Ω
‖x− y‖dµ(ω)

)

. (2.6)

The purpose of this study is to introduce the Noor-type random iterative
scheme for certain random operators T : Ω×E → E of the φ-weakly contractive
type in separable Banach space (E, ‖.‖).

Let (Ω, ξ, µ) be a complete probability measure space and E is a nonempty
subset of a separable Banach space X and let T : Ω × E → E be a random
operator. For a given x0(ω) ∈ E, compute the sequence {xn(ω)}

∞
n=0 by the

iterative schemes






xn+1(ω) = (1− αn)xn(ω) + αnT (ω, yn(ω)),
yn(ω) = (1− βn)xn(ω) + βnT (ω, zn(ω)),
zn(ω) = (1− γn)xn(ω) + γnT (ω, xn(ω)), n ≥ 0

(2.7)

where {αn}, {βn} and {γn} are real sequences in (0, 1).
Observe that if γn ≡ 0 for each n ∈ N in (2.7), then we have the Ishikawa-

type random iterative scheme, introduced by Zhang et al. [37].

{

xn+1(ω) = (1− αn)xn(ω) + αnT (ω, yn(ω)),
yn(ω) = (1− βn)xn(ω) + βnT (ω, xn(ω)), n ≥ 0

(2.8)



6 G.A. Okeke, K.S. Eke

where {αn} and {βn} are real sequences in (0, 1).
If βn = γn ≡ 0 for each n ∈ N in (2.7), then we obtain the Mann-type random
iterative scheme, introduced by Zhang et al. [33].

{

xn+1(ω) = (1− αn)xn(ω) + αnT (ω, xn(ω)), n ≥ 0 (2.9)

where {αn} is real sequences in (0, 1).

We shall establish that under suitable conditions that the random fixed
point of φ-weakly contractive type random operators is Bochner integrable.
Our results are the random versions of some deterministic fixed point theorems
of Berinde [7], [8] and Rhoades [29]-[32]. Hence, it generalizes and improves the
results of these authors and several other known results in literature (see, e.g,
Akewe and Okeke [1], Olatinwo [25], Rhoades [30, 31], Olaleru and Mogbademu
[24], Zhang et al. [37]).

The following lemma will be needed in this study.

Lemma 2.5. (see [5]) Let {ζn} and {λn} be two sequences of nonnega-
tive real numbers. Let {σn} be a sequence of positive numbers satisfying the
conditions:

∑∞
n=1 σn = ∞ and limn→∞

ζn
σn

= 0. If the following condition is
satisfied:

λn+1 ≤ λn − σnφ(λn) + ζn, ∀n ≥ 1,

where φ : R
+ → R

+ is a continuous and strictly increasing function with
φ(0) = 0, then {λn} converges to 0 as n → ∞.

3. Main Results

Theorem 3.1. Let (E, ‖.‖) be a separable Banach space, T : Ω × E → E

be a random operator of the φ-weakly contractive type with F (T ) 6= ∅, x∗(ω)
be a random fixed point of T, and {xn(ω)} be a Noor-type random iterative
sequence as defined in (2.7) where {αn}, {βn} and {γn} are real sequences in
(0, 1) such that

∑∞
n=1 αnβnγn = ∞. Then, the random fixed point x∗(ω) of T

is Bochner integrable.

Proof. It suffices to show that

lim
n→∞

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω) = 0. (3.1)
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Using (2.6) and (2.7), we have:

∫

Ω
‖xn+1(ω)− x∗(ω)‖dµ(ω) ≤(1− αn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ αn

∫

Ω
‖T (ω, yn(ω))− x∗(ω)‖dµ(ω)

≤(1− αn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ αn[

∫

Ω
‖yn(ω)− x∗(ω)‖dµ(ω)

− φ(

∫

Ω
‖yn(ω)− x∗(ω)‖dµ(ω))]

≤(1− αn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ αn

∫

Ω
‖yn(ω)− x∗(ω)‖dµ(ω).

(3.2)

Similarly,

∫

Ω
‖yn(ω)− x∗(ω)‖dµ(ω) ≤(1− βn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ βn

∫

Ω
‖T (ω, zn(ω))− x∗(ω)‖dµ(ω)

≤(1− βn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ βn[

∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω)

− φ(

∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω))]

≤(1− βn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ βn

∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω).

(3.3)

Also,
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∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω) ≤(1− γn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ γn

∫

Ω
‖T (ω, xn(ω))− x∗(ω)‖dµ(ω)

≤(1− γn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ γn[

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

− φ(

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω))]

=

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

− γnφ(

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)).

(3.4)

Using (3.4) in (3.3), we obtain:
∫

Ω
‖yn(ω)− x∗(ω)‖dµ(ω) ≤(1− βn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ βn[

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

− γnφ(

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω))]

=

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

− βnγnφ(

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)).

(3.5)

Using (3.5) in (3.2), we have
∫

Ω
‖xn+1(ω)− x∗(ω)‖dµ(ω) ≤(1− αn)

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

+ αn[

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

− βnγnφ(

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω))]

=

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)

− αnβnγnφ(

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω)).

(3.6)
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If we take λn =
∫

Ω ‖xn(ω)− x∗(ω)‖dµ(ω), σn = αnβnγn and ζn = 0 in Lemma
2.5. By the conditions of Theorem 3.1, we see that the conditions of Lemma
2.5 are satisfied. Hence, we have

lim
n→∞

∫

Ω
‖xn(ω)− x∗(ω)‖dµ(ω) = 0. (3.7)

The proof of Theorem 3.1 is completed. �

We now obtain the following corollary which are the results of Zhang et al.
[37] as a consequence of Theorem 3.1.

Corollary 3.2. Let (E, ‖.‖) be a separable Banach space, T : Ω × E → E

be a random operator of the φ-weakly contractive type with F (T ) 6= ∅, x∗(ω) be
a random fixed point of T, and {xn(ω)} be an Ishikawa-type random iterative
sequence as defined in (2.8) where {αn} and {βn} are real sequences in (0, 1)
such that

∑∞
n=1 αnβn = ∞. Then, the random fixed point x∗(ω) of T is Bochner

integrable.

Corollary 3.3. Let (E, ‖.‖) be a separable Banach space, T : Ω × E → E

be a random operator of the φ-weakly contractive type with F (T ) 6= ∅, x∗(ω)
be a random fixed point of T, and {xn(ω)} be a Mann-type random iterative
sequence as defined in (2.9) where {αn} is a real sequence in (0, 1) such that
∑∞

n=1 αn = ∞. Then, the random fixed point x∗(ω) of T is Bochner integrable.

Theorem 3.4. Let (E, ‖.‖) be a separable Banach space and T : Ω×E → E

be a random operator of the φ-weakly contractive type with F (T ) 6= ∅. Let
x∗(ω) be a random fixed point of T. Let {xn(ω)}

∞
n=0 be a Noor-type random

iterative sequence as defined in (2.7) converging strongly to x∗(ω) almost surely,
where {αn}, {βn} and {γn} are real sequences in (0,1) such that 0 < α ≤ αn,

0 < β ≤ βn and 0 < γ ≤ γn. Then, {xn}
∞
n=0 is T-stable almost surely.

Proof. Let {mn(ω)}
∞
n=0 be an arbitrary sequence of random variables in E

and

‖εn(ω)‖ = ‖mn+1 − (1− αn)mn(ω)− αnT (ω, kn(ω))‖, n = 0, 1, · · · (3.8)

where kn(ω) = (1−βn)mn(ω)+βnT (ω, zn(ω)) and limn→∞

∫

Ω ‖ε(ω)‖dµ(ω) = 0.
Next, we prove that x∗(ω) is Bochner integrable with respect to the sequence
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{mn(ω)}
∞
n=0. Using (3.8), we have

∫

Ω
‖mn+1(ω)− x∗(ω)‖dµ(ω) ≤

∫

Ω
‖mn+1(ω)− (1− αn)mn(ω)

− αnT (ω, kn(ω))‖dµ(ω)

+ (1− αn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

+ αn

∫

Ω
‖T (ω, kn(ω))− x∗(ω)‖dµ(ω)

=

∫

Ω
‖εn(ω)‖dµ(ω)

+ (1− αn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

+ αn

∫

Ω
‖T (ω, kn(ω))− x∗(ω)‖dµ(ω).

(3.9)

Using (2.6), we have

∫

Ω
‖T (ω, kn(ω))− x∗(ω)‖dµ(ω) ≤

∫

Ω
‖kn(ω)− x∗(ω)‖dµ(ω)

− φ(

∫

Ω
‖kn(ω)− x∗(ω)‖dµ(ω))

≤

∫

Ω
‖kn(ω)− x∗(ω)‖dµ(ω)

≤(1− βn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) + βn[

∫

Ω
‖T (ω, zn(ω))− x∗(ω)‖dµ(ω)]

≤(1− βn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) + βn[

∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω)

− φ(

∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω))]

≤(1− βn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) + βn

∫

Ω
‖zn(ω)− x∗(ω)‖dµ(ω)

(3.10)
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≤(1− βn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

+ βn[(1− γn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) + γn

∫

Ω
‖T (ω,mn(ω))− x∗(ω)‖dµ(ω)]

≤(1− βn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) + βn[(1− γn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

+ γn{

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) − φ(

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω))}]

=

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) − βnγnφ(

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)).

Using (3.10) in (3.9), we have
∫

Ω
‖mn+1(ω)− x∗(ω)‖dµ(ω) ≤

∫

Ω
‖εn(ω)‖dµ(ω)

+ (1− αn)

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

+ αn[

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

− βnγnφ(

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω))]

=

∫

Ω
‖εn(ω)‖dµ(ω)

+

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)

− αnβnγnφ(

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω)).

(3.11)

Using the assumptions that limn→∞

∫

Ω ‖ε(ω)‖dµ(ω) = 0 and 0 < α ≤ αn,

0 < β ≤ βn, 0 < γ ≤ γn (∀n ≥ 1), we obtain

lim
n→∞

∫

Ω ‖εn(ω)‖dµ(ω)

αnβnγn
≤

∫

Ω ‖εn(ω)‖dµ(ω)

αβγ
= 0. (3.12)

By Lemma 2.5, we take λn =
∫

Ω ‖mn(ω) − x∗(ω)‖dµ(ω), σn = αnβnγn and
ζn =

∫

Ω ‖εn(ω)‖dµ(ω). Clearly, all the conditions of Lemma 2.5 are satisfied.
Hence, we obtain

lim
n→∞

∫

Ω
‖mn(ω)− x∗(ω)‖dµ(ω) = 0. (3.13)
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Conversely, if x∗(ω) is Bochner integrable with respect to the sequence {mn(ω)}
∞
n=1,

we obtain:
∫

Ω
‖εn(ω)‖dµ(ω) =

∫

Ω
‖mn+1(ω)− (1− αn)mn(ω)− αnT (ω, kn(ω))‖dµ(ω)

≤

∫

Ω
‖mn+1(ω)− x∗(ω)‖dµ(ω)

+ (1− αn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ αn

∫

Ω
‖x∗(ω)− T (ω, kn(ω))‖dµ(ω).

(3.14)

Using (2.6), we have:
∫

Ω
‖x∗(ω)− T (ω, kn(ω))‖dµ(ω) =

∫

Ω
‖T (ω, x∗(ω))− T (ω, kn(ω))‖dµ(ω)

≤

∫

Ω
‖x∗(ω)− kn(ω))‖dµ(ω)

− φ(

∫

Ω
‖x∗(ω)− kn(ω)‖dµ(ω))

≤

∫

Ω
‖x∗(ω)− kn(ω)‖dµ(ω)

≤(1− βn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ βn

∫

Ω
‖T (ω, x∗(ω))− T (ω, zn(ω))‖dµ(ω)

≤(1− βn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ βn[

∫

Ω
‖x∗(ω)− zn(ω)‖dµ(ω)

− φ(

∫

Ω
‖x∗(ω)− zn(ω)‖dµ(ω))]

≤(1− βn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ βn[(1− γn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ γn

∫

Ω
‖T (ω, x∗(ω))− T (ω,mn(ω))‖dµ(ω)]

(3.15)
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≤(1− βn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ βn[(1− γn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ γn{

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

− φ(

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω))}]

=

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

− βnγnφ(

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω).

Using (3.15) in (3.14), we have
∫

Ω
‖εn(ω)‖dµ(ω) ≤

∫

Ω
‖mn+1(ω)− x∗(ω)‖dµ(ω)

+ (1− αn)

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

+ αn[

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

− βnγnφ(

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω))]

≤

∫

Ω
‖mn+1(ω)− x∗(ω)‖dµ(ω)

+

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)

− αnβnγnφ(

∫

Ω
‖x∗(ω)−mn(ω)‖dµ(ω)).

(3.16)

Hence, we have

lim
n→∞

∫

Ω
‖εn(ω)‖dµ(ω) = 0. (3.17)

This implies that the Noor-type random iterative scheme {xn(ω)}
∞
n=0 is T -stable

almost surely. The proof of Theorem 3.4 is completed.

Remark 3.5. Theorem 3.4 is a stochastic generalization of the determinis-
tic results of Berinde [7, 8] and Rhoades [30, 31]. Moreover, it is an improvement
on the results of Zhang et al. [37].
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Next, we obtain the following corollary which is the results of Zhang et al.
[37] as a consequence of Theorem 3.4.

Corollary 3.6. Let (E, ‖.‖) be a separable Banach space and T : Ω×E →
E be a random operator of the φ-weakly contractive type with F (T ) 6= ∅. Let
x∗(ω) be a random fixed point of T. Let {xn(ω)}

∞
n=0 be an Ishikawa-type random

iterative sequence as defined in (2.8) converging strongly to x∗(ω) almost surely,
where {αn} and {βn} are real sequences in (0,1) such that 0 < α ≤ αn and
0 < β ≤ βn. Then, {xn}

∞
n=0 is T-stable almost surely.

Corollary 3.7. Let (E, ‖.‖) be a separable Banach space and T : Ω×E →
E be a random operator of the φ-weakly contractive type with F (T ) 6= ∅. Let
x∗(ω) be a random fixed point of T. Let {xn(ω)}

∞
n=0 be a Mann-type random

iterative sequence as defined in (2.9) converging strongly to x∗(ω) almost surely,
where {αn} is a real sequence in (0,1) such that 0 < α ≤ αn. Then, {xn}

∞
n=0 is

T-stable almost surely.
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