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Abstract  

Five trace metals in Leptodius exarata, epipellic sediments and surface water from an 

intertidal ecosystem in Niger Delta (Nigeria) were investigated to evaluate their spatial 

distribution, degree of contamination, ecological and health risks. Results show Cd 

(cadmium), Cr (chromium), Ni (nickel), Pb (lead) and Zn (zinc) concentrations in sediment 

ranged between 0.550 – 1.142, 9.57 – 15.95, 9.15 – 13.96, 2.00 – 8.90 and 91.5 – 121.6 

mg/kg dw, respectively; while L. exarata tissue metal content vary from 0.162 – 0.931, 3.81 

– 8.62, 4.45 – 17.15, 1.90 – 7.35, and 125.55 – 269.75 mg/kg, dw, respectively. The 

bioconcentration factor ranking for trace metals followed the sequence Zn>Ni>Pb >Cr>Cd. 

High biota to sediment accumulation factor (BSAF) in L. exarata reveals a sentinel metal 

bioindicator. Sediments from most sites were uncontaminated to moderately contaminated 

(geoaccumulation, Igeo > 0) with Cd and Zn associated with anthropogenic intrusions. Low 

mean-ERM (effect range-median) and mean-PEL (probable effect level) quotients of 

sediments are observed, indicating low–medium degree of contamination with 30% and 21% 

probability of being toxic. The multi-metal potential ecological risk index (RI) for the 

intertidal ecosystem indicates low–moderate risk. Health risks associated with crabs (L. 

exarata) consumption are significant in children than adults.  
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1. Introduction 

The ecological integrity of most intertidal coastal aquatic ecosystems in the world has 

been widely threatened and degraded by unprecedented levels of trace metals and metalloids 

pollution arising mainly from human activities. Varying quantities of trace metals and 

organic pollutants have been discharged directly into coastal systems as by products of many 

commercial and industrial processes, land and municipal sewage runoff, agricultural and 

domestic wastewater, effluents, and atmospheric deposition [1-3]. Previous investigations on 

intertidal estuarine and associated aquatic ecosystems in this part of the world have revealed 

that different human-mediated activities arising from crude oil spillage [4-6] can adversely 

alter the ecological integrity of these fragile aquatic ecosystems, leading to bioaccumulation 

of pollutants by biota [5-9], and heavy metals enrichment in sediment [10, 11]. However, the 

transport, mobilization and pollution of trace metals in aquatic ecosystems especially 

intertidal coastal water bodies have become an important problem due to their toxic effects, 

accumulation and bioconcentration through the food chain [12, 13].  

Metal toxicity mainly depends on the metal speciation and bioavailability, as well as 

the means of uptake, accumulation and excretion rates of the organisms [12,14-16]. Body 

levels of some crustacean (crab) are capable of regulating essential trace metals such as Zn, 

Cu, Mn, Fe and Cr at concentrations below threshold level. These metals play a vital role in 

many physiological processes, but have a toxic effect when present at high concentrations in 

the surrounding medium. On the contrary, body levels of nonessential metals such as Cd and 

Pb are not regulated by crustacean and are toxic even at trace concentrations [17]. This could 

result in adverse effects such as disruption of reproductive potential, and endocrine disruption 

for higher trophic level organisms [18-21].            

        The bioavailability/remobilisation of trace metals onto aquatic substrates such as 

sediment, surface water, aquatic organisms and microorganisms is dependent on their 
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physicochemical forms [15]. Several studies have indicated that phytoplankton and other 

aquatic organisms can remove, bioaccumulate and transfer bioconcentrated trace metals from 

lower to higher trophic levels in food webs [22-23]. These biological systems could be used 

in environmental studies as bioindicators or biomonitors [24-26]. To date, there are scarce 

data pertaining to bioaccumulation and integrated risk assessment of trace metals in aquatic 

substrates of this important estuary. Despite the increasing environmental and health 

concerns posed crude oil pollution to aquatic ecosystems in Niger Delta, the state or degree 

of contamination by heavy metals and associated human health risk through dietary exposure 

have not been duly assessed to date. Most previous studies on the occurrence of trace metals 

were mainly focused on quantifying hydrocarbons and heavy metals levels in water, 

zoobenthos, and sediment [4, 5, 6, 7]. Studies have indicated enhanced levels of trace metals 

in soil, surface water, sediments and biota from aquatic ecosystems in the area [5, 6, 7, 10, 

67]. Many tropical ecosystems in the Niger Delta serve as primary recipients of petroleum 

exploration-exploitation wastes, domestic and industrial wastes generated by multinational 

oil companies that are found in the region. Little information is available outlining the 

utilization of multivariable pollution and risk assessment tools to evaluate the pollution status 

and potential ecological and human health risks of heavy metals in this region.  Hence, the 

present study has been initiated with the following objectives: (1) to determine the levels of 

trace metals accumulation and distribution in surface water, intertidal sediment and crab (L. 

exarata) from Douglas Creek, (2) to assess its potential ecological environmental and health 

risks, thus contributing to the knowledge and management of this region in future. (3) to 

evaluate the sediment quality and environmental risks of investigated trace metals by 

comparison with sediment quality guidelines (SQGs); and (4) to identify the possible sources 

of trace metal pollution and assess their ecotoxicological  significance. Our results would 

provide a baseline against which future anthropogenic effects can be evaluated.    
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2. Materials and methods 

2.1 Study area  

           Douglas Creek is a major tributary of Qua Iboe Estuary (Fig. 1). The estuary is 

characterized by shallow intertidal mudflats that are surrounded by mangroves and is 

perennially subjected to sediment deposition from Qua Iboe River and marine sand from the 

Atlantic Ocean. It is located close to several coastline settlements within an oil producing 

area in Southeastern Nigeria. The Qua Iboe Estuary and Douglas Creek lie within latitude 4
o 

30’ to 4
o 

45’N and longitude 7
o 

30’ to 8
o
 00’E. It serves as the receiving water body for 

residential, agricultural and petrochemical wastes generated from multinational oil companies 

located in the oil producing communities. Fine sandy beaches fringed with mangrove 

swamps and tidal mud flats on which Nypa palm vegetation dominates are distinctive 

features of the marginal shore of the Estuary. The area is characterized by a humid tropical 

climate with an annual rainfall of about 4021 mm, average humidity of 80% and means 

minimum and maximum temperatures of 22
o
C and 30

o
C respectively. Tidal currents are 

strong especially during the wet seasons along estuary upper reaches and creek, and this 

plays an important role in biota distribution, trace metal laden, waste transportation, 

industrial and domestic waste transportation.  

 

2.2 Sampling  

           Five sampling stations (DC-A, DC-B, DC-C, DC-D, and DC-E) were established 

along the upstream, midstream and downstream stretch of Douglas Creek extending into Qua 

Iboe estuary for the collection of surface water samples. Similarly, locations DC-V, DC-W, 

DC-X, DC-Y and DC-Z were also mapped out as sampling locations for collection of 

intertidal (epipellic) sediments and crabs samples. At each sampling station, one (1) surface 
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water sample and three (3) each of the intertidal sediments and crab samples were obtained 

from different locations, and were carefully transferred into clean polyethylene glass 

containers, polythene bags and preserved in ice-cooled boxes. All water samples were 

collected from the surface (10–25 cm) in sterile polyethylene glass bottles fitted with airtight 

stoppers. The containers were opened to fill and closed below the water. All containers were 

prewashed with 20% analytical grade nitric acid and rigorously rinsed with distilled 

deionized water. Prior to sampling, the containers were further rinsed at least three times with 

the water being sampled before collection. Preservation of collected water samples was done 

by acidifying with 5 mL of analytical grade nitric acid to give pH < 2, in order to minimize 

precipitation and sorption losses to the container walls. A short core sampler was used to 

collect the intertidal sediment with undisturbed sediment-water interfaces and intertidal 

sediment samples were collected from the top layer 1 to 5 cm, homogenized and the 

subsamples were stored in a black polythene bag with proper labelling. The crab (Leptodius 

exarata) was also handpicked along the tidal shores of Douglas Creek and thoroughly 

cleaned with fresh water followed by distilled water in order to get rid of soil and sediment 

before transferring them into labelled aluminium foil. Therefore, a total of 35 samples, 

comprising 5 samples of surface water and 15 each of intertidal sediment and crab samples 

were collected from the study area. After collection, all the samples were stored in ice-packed 

boxes and transported to the laboratory. They were further refrigerated in the laboratory at 

4
o
C to inactivate microbes and preserve the integrity of the samples prior to analysis.    

 

2.3 Analytical procedures for sample pre-treatment and chemical analysis   

The surface water samples collected were preconcentrated following a standard 

procedure as described by Ramesh et al. [27] and Essien et al. [6]. Five polyethylene bottles 

with snap caps were first treated with dilute HNO3 and subsequently washed with a warm 
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organic detergent dissolved in distilled water. Thereafter, about 100 mL of water samples 

from each location ((DC-A, DC-B, DC-C, DC-D, and DC-E) were filtered using a 0.2 μm 

filter to remove any suspended matter and stored in prepared polyethylene bottles. After 

filtration, the filtrates were treated separately with concentrated HNO3 to adjust their pH 

value to 4.00±0.05 before they were buffered with 2 mL of 0.1M potassium hydrogen 

phthalate solution (pH 4). Precisely, 2 mL of 1% (w/v) methanolic solution of sodium 

dibenzyl dithiocarbamate was later added to each filtrate and the solutions were stirred 

intermittently for about 18 - 20 minutes. Each solution was thereafter filtered under vacuum 

through a 0.45 μm pore membrane filter. The sorbed trace metals on the filters were 

subsequently eluted with 4M HNO3 and the acid eluates were kept for metal analysis.  

         The intertidal sediment samples collected were air-dried by exposure to ambient air for 

48 hours. Stones, sticks, organic matter and shells were manually removed from air-dried 

samples, while sediments with large aggregate grains were further pulverized using porcelain 

pestle and mortar, and sieved through a 2 mm mesh, which was hand shaken for 5-10 minutes. 

The sieved samples were subsequently transferred into labelled polythene bags and stored for 

subsequent treatment. Care was taken to avoid mixing and cross contamination of samples. 

Later, sieved intertidal sediment samples were separately placed in a pre-combusted glass jar, 

freeze dried, homogenized and sieved to collect less than 63 μm grain sizes and stored at -

20
o
C until further analysis. Thereafter, each intertidal sediment sample was digested as 

described by Ho et al. [28]. About 2.0 g of each sample was digested with a solution of 

concentrated HCl (6.0 mL) and HNO3 (0.3 mL) to near dryness and allowed to cool before 20 

mL of 5.0 M (1 M = 1 mol dm
-3

) HNO3 solution was added. Each digested intertidal 

sediment sample solution was allowed to stay for about 12 hours before they were filtered. 

The filtrates were subsequently transferred into 100 mL volumetric flask and made up to the 

mark with 0.5M HNO3 prior to elemental analysis. A reagent blank was also prepared using a 
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mixture of HCl and HNO3 following the stepwise analytical procedure described for the 

sample preparation.  

           Samples of Leptodius exarata were dissected with sterilized scissors to collect tissue 

samples. Each tissue samples were oven dried at 105ºC for 1 hour and allowed to cool at 

room temperature, and then ground to powder using porcelain pestle and mortar. Precisely, 

2.0 g of each sample was digested with a combination of concentrated HNO3 (2.5 mL) and 

H2SO4 (2.5 mL) as described by Hosseini et al. [29]. The digested sediment and crab sample 

solution, acid eluates desorbed from the filter, and the blank were analyzed for the 

concentrations of trace metals (cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), Zinc 

(Zn)) using an Atomic Absorption Spectrophotometer (S Series S4 AA System – Thermo 

Electron Corporation). Blanks were used for zeroing the instrument before each analysis to 

avoid matrix interference. The analysis was duplicated to verify the precision of the method 

of digestion.   

2.4 Quality assurance / quality control 

Buffalo River Sediment Reference Material (SRM 8704), sourced from National 

Institute of Standards and Technology (US), intended primarily for use in the analysis of 

sediments, soils, or materials of a similar matrix was analysed with the sediment samples for 

quality assurance purposes. Reference values and the analytical results for the concentrations 

of five trace metals are given in Table 1. The recoveries of the AAS analytical results for Cd, 

Cr, Ni, Pb and Zn ranged between 97.67 – 104.23%. The concentrations of certified materials 

SRM 8704 indicated results within the range of the reference values. Therefore, the method 

employed for this work is reliable and reproducible. Blanks were also monitored throughout 

the analyses and blank subtractions were employed to correct metal concentrations obtained. 

2.5 Statistical analysis  
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           The data were analysed using the XLSTAT-Pro software (AddinSoft, Inc., NY, USA). 

Pearson’s correlation analysis, Factors analysis (FA) and Principal component analysis (PCA) 

were employed to explore the interrelationships among trace metals in epipellic sediment 

samples and identify their probable origin. The various statistical methods were performed 

with a 95% confidence interval (significance p<0.05).   

2.6  Assessment of bioaccumulation factors  

         Bioaccumulation factors (BAFs) are multipliers used to estimate concentrations of 

chemicals that can accumulate in tissues through any route of exposure [30]. It is refereed to 

as bioconcentration factor (BCF) for aquatic invertebrates. The BCF and biota to sediment 

accumulation factor (BSAF) of trace metals from sediment or surface water to animal tissues 

can be determined in different samples using the following equations:   

)2(
dim

)1(

sampleentseinmetalheavyofionconcentrat

tissueanimalinmetalheavyofionconcentrat
BSAF

samplewaterinmetalheavyofionconcentrat

tissueanimalinmetalheavyofionconcentrat
BCF





 

 

2.7 Contamination factor (CF) and Pollution load index (PLI)   

The integrity of this intertidal ecosystem vis-à-vis the degree of anthropogenic trace 

metal accumulation in aquatic sediments was evaluated using Tomlinson’s pollution load 

index (PLI) [31,32]. Generally, the PLI presents a generic signature of the trace metal 

toxicity status of a specific sediment sample of interest while expressing the number of times 

by which the trace metal level could actually exceeds the average natural background 

concentration. Thus, PLI can be employed to determine and evaluate the integrated pollution 

status of combined trace metals at sampling sites [3]. This parameter is expressed as a 

contamination factor (CF) of individual trace metal with reference to the natural background 
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concentrations of each metal in sediment. The PLI is usually expressed as the nth root of the 

product of the n CF as:   

CF =
Cmetal

Cbackground
(3)  

PLI = CF1 x CF2 x CF3 x........... CFn
n (4)  

    where, CF is the contamination factor,  n = number of metals (five in the present study)                 

                          metalC   =   the mean metal concentration in polluted sample,  

                          backgroundC  =  the mean natural background value of that metal 

For this work, the “background concentration” simply refers to predetermined concentrations 

of trace metals in pristine sediment devoid of any anthropogenic contamination. However, 

considering the unprecedented contamination of marine and coastal ecosystems in the Niger 

Delta region of Nigeria associated with crude oil spillages, industrial effluents, municipal 

sewage runoff, untreated waste dumping, urbanization and deforestation, the attribution of 

“background  concentration” to sediment from these aquatic systems could be misleading and 

inappropriate. Thus, the concept of “background concentration” used here refers to the pre-

anthropogenic  (preindustrial) concentrations of trace elements in shale sediments as reported 

by Loska et al. [33] and Turekian and Wedepohl [34].   

 

2.8 Modified degree of contamination (mCd) and Geoaccumulation index (Igeo)  

        The modified degree of contamination commonly denoted as mCd is an empirical and 

generalized form of the Håkanson [35] equation introduced by Abrahim [36] for the 

calculation of the overall degree of contamination at a given sampling site. It is expressed as 

follows: 

)5(
1

n

CF

mCd

n

i

i


  
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The following gradations was proposed for the classification and description of the modified 

degree of contamination in sediments: mCd < 1.5 refers to nil to very low degree of 

contamination; 1.5 ≤ mCd < 2 indicates low degree of contamination; 2 ≤ mCd < 4 implies  

moderate degree of contamination; 4 ≤ mCd < 8 indicates high degree of contamination; 8 ≤ 

mCd< 16 means very high degree of contamination; 16 ≤ mCd < 32 implies extremely high 

degree of contamination and mCd ≥ 32 refers to ultra high degree of contamination.   

        The Igeo values for the studied trace metals were calculated using the following 

equation developed by Müller [37,38]: 

)6(
5.1

log 2 









n

n
geo

B

C
I  

where, Cn is the measured concentration of selected element (n) in the sediment sample and 

Bn is the natural background concentration of metal n. The Igeo consists of seven grades 

along with associated sediment quality according to the degree of metal pollution (Table 5). 

 

3. Results and discussion   

3.1 Trace metal content   

         Trace metal levels (mg/L) in water samples were generally low with mean 

concentrations of Cd (0.0018±4.5×10
-1

), Zn (0.0022±1.3×10
-3

), Pb (0.0024±8.9×10
-4

), Ni 

(0.0024±1.9×10
-3

), and Cr (0.020±6.0×10
-3

) (Table 2). The values were within the WHO 

limit (mg/L) for these trace metals (Table 2), except at locations DC-Z where Cd and Pb 

levels exceeded the WHO water quality criteria [39]. As can be seen from Table 2, the 

concentrations of trace metals studied in the surface water were relatively low when 

compared with those obtained from the sediment and Leptodius exarata tissues.  

          Sediments are important host for toxic metals. Due to their static nature, they tend to 

accumulate more toxicant than water, which may undergo relatively rapid self-purification.  
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Results (Table 2) revealed that the three sampling locations recorded the highest mean levels 

of trace metals, i.e, DC-X: Zn (161.4 mg/kg) and Ni (13.96 mg/kg), DC-Z: Pb (8.90 mg/kg) 

and Cd  (1.142 mg/kg) and DC-V: Cr (15.95 mg/kg). A comparison with USEPA sediment 

quality guideline indicated that epipellic sediment of the investigated ecosystem was 

moderately polluted by Zn (Fig. 2). However, the enhanced levels of Cd, Cr, Ni, Pb and Zn in 

the coastal sediments indicated possible human-induced pollution such oil spillage, 

agricultural runoff  (fertilizers, herbicides, pesticides), discharge of untreated industrial 

effluents and sewage containing metals into water bodies [21], and less of natural enrichment 

through geological weathering in the study area.  

         Of all trace metals examined in Leptodius exarata tissues (Table 2), Zn was found to be 

the most abundant metal. However, Cd levels observed at DC-Y (0.550 mg/kg) and DC-Z 

(0.931 mg/kg) and Pb levels (1.90 to 7.35 mg/kg) at all sampling locations exceeded the 

FAO/WHO permissible level of Cd (0.5 mg/kg) and Pb (0.3 mg/kg) (FAO/WHO [40], 

indicating that Leptodius exarata is unsuitable for human consumption. This finding 

emphasises the need for enforcement of stricter methods of wastes/effluents disposal, regular 

monitoring of metal status in this fragile ecosystem for effective management and 

conservation of the estuary to ensure the safety of the environment and safeguard public 

health. The order of trace metals accumulation potential in L. exarata tissues followed the 

sequence: Zn > Ni  > Cr > Pb > Cd.   

 

3.2  Trace metal accumulation using bioaccumulation factors  

          The bioaccumulation factors (BAFs), bioconcentration factor (BCF) and biota to 

sediment accumulation factor (BSAF) computed for Leptodius exarata are presented in Table 

3. Results revealed a significant increase in levels of all the trace metals in L. exarata than in 

the surface water samples. The BCF values for trace metals in L. exarata followed the order: 
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Zn>Ni>Pb >Cr>Cd. Relatively high concentration factors were observed for Zn (269,750) at 

DC-Y; Ni (11,650) and Pb  (3300) at DC-W; Cr (478.89) and Cd (465.5) at DC-Z. The 

enhanced bioconcentration factors for these trace metals in tissues of L. exarata showed that 

the organism might serve as a good bioindicator for monitoring metals in polluted aquatic 

ecosystems. However, the BCF values for Cr and Cd were comparatively lower than Zn, Ni 

and Pb factors. This might suggest that Leptodius exarata has low retention of Cr and Cd 

when compared with other aquatic organisms such as oyster and mussels, which had been 

reported to accumulate Cd in their tissues at levels up to 100,000 times the levels observed in 

background water where they live [41-43]. The trend of trace metal accumulation in 

organisms used in the present study agrees with reports by other authors on different species 

of freshwater organisms [44-46]. Therefore our results indicate that L. exarata is a sentinel 

organism for biomonitoring of Zn, Ni and Pb in freshwater ecosystem.  

        BSAF explores the rate of metal uptake from sediment and accumulation by the crabs  

(Leptodius exarata). In the present study, high BSAF values for trace metals were recorded 

for Zn (2.95), Pb (1.56) and Ni (1.42) at DC-Y; Cd (0.82) at DC-Z and Cr (0.74) at DC-X; 

while low BSAF values were calculated for Pb (0.21) at DC-Z; Cd (0.27) at DC-W; Cr (0.32) 

and Ni (0.49) at DC-V; and Zn (0.98) at DC-X. From the result obtained, the metal 

enrichment sequence in tissues of L. exarata followed the order: Zn>Pb>Ni>Cd>Cr. Zinc 

and lead contamination levels were found to be higher in the crabs than in the sediments, 

suggesting a higher rate of accumulation of Zn and Pb by Leptodius exarata. Also our results 

showed higher contamination levels in the crabs than sediments in the following trace metals: 

Zn (DC-V, DC-W and DC-Z), Ni (DC-Y and DC-Z) and Pb (DC-V, DC-W, DC-X and DC-

Y). However, Cd and Cr concentrations were generally lower in the crab tissues than in the 

sediments, suggesting that the levels of contamination of these metals in the estuary were 

within the capacity of the crabs to regulate. The observed differences in tissue metal 
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concentration in crabs is similar to reports by other authors [24, 29] and this might be 

attributed to variations in body size, age, growth, weight, feeding habit, reproductive 

condition, and metabolic rate.    

 

3.3 Sediment pollution indices   

Pollution indices are used to assess and classify metal contamination in sediment. In 

this study, pollution load index (PLI), contamination factor (CF), modified contamination 

degree (mCd), and geoaccumulation index (Igeo) have been applied to assess trace metals 

(Zn, Pb, Cd, Ni and Cr) contamination in the sediment samples of the study area (Table 4, 5).       

3.3.1 Contamination factor (CF) and Pollution load index (PLI)   

         In order to understand the contamination state of epipelagic sediment and surface water 

of the investigated ecosystem, Tomlinson’s contamination factors and pollution load index 

were calculated.  Results of CF and PLI computed for Douglas Creek of Qua Iboe estuary are 

given in Tables 5. According to Håkanson classification [35] (Table 4), there are locational 

differences to the degree of sediment metal contamination of the studied ecosystem. The 

status of integrated sediment contamination based on the CF values indicated that the 

epipelagic sediments showed low contamination (CF<1) for Pb, Ni and Cr (at all locations) 

and Zn (DC-Y only); moderate degree of contamination (1 ≤ CF < 3) for Cd (DC-V, DC-W 

and DC-X) and Zn (DC-V, DC-W, DC-X and DC-Z); and considerable degree of 

contamination (3 ≤ CF < 6) for Cd at DC-Y and DC-Z locations. It is imperative that regular 

monitoring and assessment should be carried out at the sampling locations, where Zn and Cd 

indicated categories of moderate and considerable contamination. This is necessary since 

sediments are major repositories of metals, and long term environmental inputs of these toxic 

trace metals could eventually lead to enhanced degree of ecosystem sedimentary 
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contamination as well as attendant biotransfer and bioaccumulation in plants and animals of 

economic importance, which may ultimately get biomagnified up the food web [47-50].  

          PLI was also used to further probe the degree of pollution of the intertidal sediments 

collected from our study area. Based on our results, the PLI values ranged between 0.42 and 

0.56 (Table 4). The generally low values of PLI (< 1) at all studied locations implied that the 

intertidal ecosystem might not have been critically impacted by anthropogenic contamination. 

However, the bioavailability of anthropogenic trace metals load into similar ecosystem has 

been reported as remarkably enhanced in concentrations compared to their natural 

background sources [29,51,52].    

3.3.2 Assessment of modified degree of contamination and geoaccumulation index  

       The range of mCd values (0.74 – 1.17) for the analysed metals in this study suggests a 

very low degree of contamination in all sites. Based on the Igeo data and Müller 

geoaccumulation index, the contamination level with respect to each metal is shown in Table 

5 (Igeo class). The geoaccumulation index values (Igeo) showed very low values (<0) for Pb, 

Ni and Cr and Zn (except at DC-X), implying that there is no contamination by these trace 

metals in the Douglas creek sediments. The Igeo values (> 0) for Cd at DC-V, DC-W and 

DC-X sites and Zn (DC-X only) indicated that sediments from investigated locations are 

uncontaminated to moderately contaminated with Cd and Zn as a result of anthropogenic 

activities. However, the Igeo values (> 1) for Cd at DC-Y and DC-Z  indicated that the 

epipellic sediments from these two locations were moderately contaminated with Cd.  

 

3.4 Potential ecological risks   

       In order to assess the characteristics and the extent of potential ecological hazards posed 

by metals in sediments, a quantitative method proposed by Håkanson [35] was adopted. The 

potential ecological risk index (PERI) primarily assesses the probable degree of trace metal 
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contamination in coastal sediments, taking into perspective the relative toxicity of the overall 

metals and the short- to long-term response of the environment. The risk index (RI) is 

calculated based on the equation:    

RI = E f
iå (7)

E f
i = Tr

iå
Cs
i

Cn
i

æ

èç
ö

ø÷
(8)

 

where 
IR  is calculated as the sum of individual risk factors for all trace metals in sediments, 

i

fE is the monomial PERI for a single metal, i

sC  is the observed concentrations of metals in 

sediment samples, and i

nC  is the background values of trace metals, and Tr
i  is the toxic 

response factor for a selected metal. The Tr
i for Cd, Cr, Ni, Pb and Zn are 30, 2, 5, 5 and 1 

respectively [8, 35, 53].   

           Table 6 shows the potential ecological risk index of each trace metal at their respective 

studied sites as well as the integrated ecological risk index, 
IR . The mean PERIs for 

individual metal stressors showed that the degree of trace metal pollution in the intertidal 

sediments was sequenced as Cd>Pb>Zn>Ni>Cr. The DC-V ( i

fE  = 54.9) and DC-W ( i

fE  = 

59.40) sampling sites indicated moderate degree of potential ecological risk for Cd, while 

DC-X ( i

fE  = 90.0), DC-Y ( i

fE =110.10) and DC-Z ( i

fE  =114.3) exhibited considerable 

ecological risk. Nevertheless, the coastal ecosystem under investigation generally showed 

low potential ecological risk that was associated with Cr, Pb, Ni and Zn. Results of the multi-

elemental potential ecological risk index (RI) computed for DC-Y and DC-Z sites indicated 

moderate potential ecological risk, while DC-V, DC-W and DC-X showed low ecological 

risk. However, the mean RI for the entire intertidal estuarine ecosystem indicated the 

existence of low degree of potential ecological risk ( IR  < 95).     
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3.5 Ecotoxicological assessment of trace metals levels in sediments   

To evaluate the sediment contamination and potential ecotoxicological effects 

associated with the observed concentration of contaminants, two sets of SQGs developed for 

marine and estuarine ecosystems [54,55] were applied in this study to assess the 

ecotoxicological potential of trace metal concentrations in sediments (a) the effect range-low 

(ERL)/effect range-median (ERM); and (b) the threshold effect level (TEL)/probable effect 

level (PEL) values (Table 7). Low range values (ERLs/TELs) are concentrations below 

which adverse effects upon sediment dwelling fauna would infrequently be expected. In 

contrast, the ERMs and PELs represent chemical concentrations above which adverse effects 

are likely to occur [55].  

       Two different ways of comparison that have been included in this study are: the number 

of single-species limits values exceeded and the mean quotient calculable from the two 

empirically derived sets of SQGs using PEL and ERM values. Table 7 gives the number of 

all samples in three ranges of chemical concentrations where adverse biological effects are 

expected rarely (<TEL/ERL), occasionally (≥TEL/ ERL and <PEL/ERM) and frequently 

(≥PEL/ERM). For Pb, Ni, Zn and Cr in all the sediment samples were in the minimal effect-

range (<TEL/ERL); while for Cd at DC-X, DC-Y and DC-Z sampling locations were above 

the threshold effect level (> TEL). For all the metals studied, none of the sediments were in 

the probable effect-range and effect range median (≥PELs/ERMs).  

           In order to determine the possible biological effect of combined toxicant groups, one 

can calculate the mean quotient for a large range of contaminants. This mean ERM quotient 

(m-ERM-Q) has been calculated according to [56] as follows: 

)9(

)/(
1

n

ERMC

QERMm

n

i

ii
  
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where Ci is the sediment concentration of compound i, ERMi is the ERM for compound i and 

n is the number of compound i. Similarly, the mean PEL quotient (m- PEL- Q) can be 

calculated according to the equation: 

)10(

)/(
1

n

PELC

QPELm

n

i

ii
  

where, PELi is the PEL for compound i. 

 

Mean ERM quotients have been related to probability of toxicity [55, 57, 58] based 

on the analysis of matching chemical and toxicity data from 1068 samples from the USA 

estuaries. The mean ERM quotient of <0.1 has a 12% probability of being toxic; a mean 

ERM quotient of 0.11- 0.5 has a 30% probability of toxicity; a mean ERM quotient of 0.51- 

1.5 has a 40% of being toxic and a mean ERM quotient of >1.50 has a 74% of toxicity. 

According to this classification, all the sediment samples studied can be classified as 

“medium–low priority” sites with 30% probability of toxicity (m-ERM-Q = 0.12 – 0.16). 

Similarly, the mean PEL quotient ranged from 0.19 for DC-V to 0.25 for DC-X and DC-Z. 

The mean PEL quotients have been classified into four grades as follows: low degree of 

contamination (≤0.1), medium-low degree of contamination (0.11–1.5), high-medium degree 

of contamination (1.51–2.3), and high degree of contamination (>2.3), respectively having a 

8%, 21%, 49% and 73% probability of being toxic [57]. The values of mean PEL quotients 

obtained for these sediments are low (0.19-0.25), and as such will be expected to have 

medium-low degree of contamination with 21% probability of being toxic.  

3.6  Health risk assessment of trace metals   

        The health risk assessment associated with trace metal pollution was evaluated using the 

edible muscle tissues of Leptodius exarata by calculating the estimated dietary intake (EDI) 

and target hazard quotients (THQ).    
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 3.6.1 Estimated daily intake (EDI)  

         The daily intake (DI) of contaminants is a primary function of its concentration in food 

matrix, the daily consumption of food and the body weight of the food consumer [46, 59, 60]. 

In view of these factors, the estimated daily intake (EDI) of trace metals by adults and 

children that consumes crabs was evaluated using the following equation: 

)11(
Bw

CxDNIxC
EDI

fmetal
  

where metalC  is the concentration (mg kg
-1

) of the trace metals in the muscle tissue of L. 

exarata, DNI is the daily nutritional intake in (g day
-1

), and fC  is the factor for conversion of 

fresh crab tissues to dry constant weight. The average moisture content in L. exarata was 

74.25% and the fC (0.2250) was calculated using the equation as reported by Abubakar et al. 

[61]. The average body weight for adults and children (age range 6–18 years), in Nigeria 

were 70 kg and 48 kg, respectively. The daily nutritional intake of crabs was evaluated by 

adopting the ingestion rate for Nigeria based on 2011 estimate by FAO. The DNI for adults 

and children were 62.60 g capita
−1

 day
−1

 and 60.0 g day
-1

, respectively [62]. 

 

3.6.2 Target hazard quotients (THQ)  

             Health risk assessment associated with non-carcinogenic contaminants is typically 

expressed in terms of the ratio of the determined dose of a contaminant to the reference dose 

(RfD) below which such contaminants might likely pose any appreciable health risk. This 

noncancer risk assessment method is the target hazard quotient (THQ) and was determined in 

this study as described by US EPA [63]. 

THQ =
EF x ED x FIR x Cmetal

i

RfD x Bw x ATn
x 10-3 (12) 
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THQtot = THQi
i=1

i=5

å (13)  

where EF is exposure frequency (365 d/year); ED is the exposure duration (52.5 years) 

(World Bank 2013 estimate for average life expectancy in Nigeria) [64]; FIR is the seafood 

ingestion rate (62.6 and 60 g capita
−1

day
−1

 for adults and children, respectively); Cmetal is the 

concentration of trace metal in (mg kg
-1

); BW is the average body weight (70 and 48 kg for 

adults and children, respectively), and ATn is the averaging exposure time for non-

carcinogens (365 d year
-1

 × ED); RfD is the oral reference dose (mg kg
-1

 day
-1

). The RfDs for 

Cd, Cr, Ni, Pb and Zn are 0.001, 1.5, 0.02, 0.035 and 0.3 mg kg
−1

 d
−1

, respectively [65]. The 

total THQ (THQtot) was used to evaluate the overall exposure to the metal toxicants under 

consideration in order to assess their combined health effects. The total THQ was treated as 

the arithmetic sum of the individual metal THQ values [46,66].  

        Results indicated that the estimated dietary intakes (EDIs) for Cd, Cr, Ni, Pb and Zn 

through possible consumption of crabs harvested from the mangrove ecosystem were 0.10, 

1.36, 2.70, 1.12 and 42.02 mg kg
-1

 day
-1

 for adults, and 0.36, 4.81, 9.54, 3.95 and 148.39 mg 

kg
-1

 day
-1

 for children aged between 6–18 years. The EDIs of trace metals investigated were 

relatively higher for children than those obtained for adults. Results showed that the average 

EDIs exceeded the RfDs for adults (except Cr) and children indicating that the consumption 

of crabs harvested from the studied ecosystem would likely result in noncancer health risks. 

The daily nutritional intake (DNI) of Cr did not exceed the RfD in adults. However, the 

excessive consumption of crabs may possibly result in eventual bioaccumulation and 

bioconcentration of Cr in adults leading to serious deleterious effects. Fig. 3 shows the 

THQtot for adults and children associated with consumption of crabs. The THQs of each trace 

metal obtained for adults were 0.39, 0.03, 0.52, 1.24 and 0.54 for Cd, Cr, Ni, Pb and Zn, 

respectively. Also, the THQs calculated for children were 1.38, 0.01, 1.85, 4.39 and 1.93 for 
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Cd, Cr, Ni, Pb and Zn, respectively. In the adults, the THQ value for Pb was greater than 1 

through the consumption of crabs. This implies that there could be possible health risks 

associated with Pb.   

           For the children, there are greater health risks that would be linked to consumption of 

crabs since the THQs of Cd, Ni, Pb and Zn were greater than 1. Obviously, the children are 

more vulnerable to health risks associated with trace metals contamination than adults. In 

general, the THQtot for children (THQtot = 9.58) was higher compared to the THQtot for the 

adults (THQtot = 2.70).   

3.7  Factor analysis   

           Factor analysis (FA) was applied to interpret relationships between variables and we 

have used the technique of correlation analysis and Principal Component Analysis (PCA) to 

extract significant principal components (PCs) and further reduce the contribution of 

variables with minor significance. The XLSTAT software (version 2015.1.03) was used for 

the PCA. Pearson correlation analysis indicated that a significant correlation (r = 0.799, 

p<0.05) was found between Pb and Cr indicating that these trace metals might have 

originated from same pollution source(s) [9, 10, 49, 67]. Correlation coefficients derived 

from interrelationships among investigated trace metals were either negative or positive but 

not significant. Results of n-Pearson PCA conducted, primarily elucidated the 

interrelationships among the five studied trace metals and also identify their possible sources 

(Table 8). The factors loading presented in Table 9 indicated that the concentrations of trace 

metals for the intertidal sediments of the studied ecosystem were grouped into a two principal 

component model. The loading plot and the biplot of the PCs are presented in Fig. 4. The 

Eigen values of the PCs are greater than 1 and in general accounted for 74.12% of the 

variability in concentrations of trace metals found in the intertidal sediments. The PC1 

indicated that 44.31% of the total variance was positively related to Cd, Cr, Pb and Ni, with 
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Cr and Pb showing relatively strong relationships. Zn was moderately negatively related to 

PC1. However, the loading of Ni and Cd with PC1 suggested possible contamination could 

be influenced by anthropogenic pollution sources into the sediment in addition to background 

contributions. PC2, which explained 29.81% of the total variance indicated positive 

interrelationships with Cd, Ni and Zn, while Pb and Cr were negatively related to PC2.  

 

 

 

4. Conclusion 

Trace metals (Cd, Cr, Pb, Ni, and Zn) were detected in Leptodius exarata epipellic 

sediment and surface water collected from Douglas Creek, Qua Iboe estuary. The 

concentrations of the metals exhibited significant variability between sampling sites and 

environmental matrices. The mean concentration of some trace metals exceeded the 

recommended guideline values in most matrices, implying that the aquatic ecosystem and its 

biota may be exposed to short- and long-term metals pollution. Cd levels in L. exarata 

obtained at DC-Y and DC-Z, and Pb in all locations exceeded the FAO/WHO permissible 

level of 0.5 mg/kg. Trace metal enrichment in the tissues of L. exarata ranked in the 

following order: Zn > Pb >Ni > Cd > Cr. However, the modified degree of contamination 

(mCd) and pollution load index (PLI) for all analysed metals indicated very low degree of 

contamination at all sites. On the contrary, the contamination factor (CF) values showed that 

sediments were moderately contaminated with Cd and Zn, and considerably contaminated 

with Cd at DC-Y and DC-Z. Most of the calculated Igeo values for Zn showed that the 

sediments were practically uncontaminated at all sites (Igeo < 0) except at DC-X site. The 

sediments from DC-V, DC-W and DC-X were uncontaminated to moderately contaminated 

(Igeo > 0) with Cd and Zn (only at DC-X) as a result of anthropogenic activities. However, 
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epipellic sediments from DC-Y and DC-Z sites were moderately contaminated (Igeo > 1) 

with Cd.   

            The mean-ERM quotient and mean-PEL quotient of all the sediment samples were 

low, and as such will be expected to have medium-low degree of contamination with 30% 

and 21% probability of being toxic, respectively. The mean RI for the entire intertidal 

estuarine system indicated the existence of low degree of potential ecological risk (RI < 150). 

PCA has proved to be an effective tool for investigating the source(s) metal pollution. The 

results of our analysis revealed underlying relationships among the trace metal data, which 

had physical meanings. More specifically, PCA applied on trace metal pollution data resulted 

in components attributed to possible contamination, which could be influenced by 

anthropogenic pollution sources into the sediment in addition to background contributions. 

Health risks (EDI and THQ) associated with trace metals contamination in L. exarata were 

significant in children than adults.   
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       Table 1: Reference (SRM 8704) concentration values, analytical results and percentage recovery 

Metals RM 8704 reference values AAS results Accuracy (%Recovery) 

 
      (mg/kg)                              (mg/kg) (n=3) 

Cadmium 2.94±0.29 3.03±0.04 102.96 

Chromium 121.90±3.80 119.47±1.64 98.01 

Nickel 42.90±3.70 40.86±0.18 95.23 

Lead 150.00±17.00 156.04±6.95 104.23 

Zinc 408.00±15.00 398.60±10.54 97.67 

 

 

Table 2. Trace metal levels (means, ±SD, n = 3) in sediment, crab (mg/kg dw) and   

               surface water (mg/L) from Douglas Creek (DC) 
Sample 

Type  

Sample site Zn Pb Cd Ni Cr 

Sediment DC-V 

DC-W 

DC-X 

DC-Y 

DC-Z 

120.8±7.9 

112.6±9.4 

161.4±12.8 

91.5±6.4 

121.6±10.6 

5.75±0.84 

6.01±0.52 

2.00±0.22 

3.45±0.28 

8.90±0.93 

0.550±0.033 

0.595±0.054 

0.900±0.086 

1.100±0.098 

1.142±0.090 

9.15±0.82 

13.15±1.19 

13.96±1.42 

10.45±0.96 

12.67±1.06 

15.95±1.47 

10.63±0.81 

9.57±0.92 

13.28±0.88 

13.78±1.34 

Crab DC-V 

DC-W 

DC-X 

DC-Y 

DC-Z 

184.45±9.56 

175.20±8.93 

157.50±13.83 

269.75±12.35 

125.55±8.54 

7.35±0.78 

6.60±0.44 

3.05±0.54 

5.40±0.43 

1.90±0.22 

0.250±0.025 

0.162±0.032 

0.291±0.018 

0.550±0.059 

0.931±0.075 

4.45±0.38 

11.65±1.46 

11.20±0.79 

14.80±1.53 

17.15±1.47 

5.13±0.46 

3.81±0.39 

7.11±0.74 

4.95±0.40 

8.62±0.88 

Surface 

water 

(x 10
–3

) 

DC-A 

DC-B 

DC-C 

DC-D 

DC-E 

4.0±3.5x0
–1

 

1.0±5.2x10
–2

 

3.0±2.8x10
–1

 

1.0±9.2x10
–2

 

2.0±1.7x10
–1

 

4.0±2.4x10
–1

 

2.0±1.6x10
–1

 

2.0±1.6x10
–1

 

2.0±2.1x10
–1

 

2.0±1.9x10
–1

 

1.0±7.3x10
–2

 

1.0±4.6x10
–2

 

2.0±8.2x10
–2

 

3.0±1.4x10
–1 

2.0±1.2x10
–1

 

1.0±6.7x10
–2

 

1.0±4.0x10
–2

 

1.0±8.9x10
–2

 

4.0±3.4x10
–1

 

5.0±4.2x10
–1

 

16.0±1.3 

18.0±1.6 

17.0±8.5x10
–1

 

31.0±2.4 

18.0±2.8 

Water 

quality 

criteria 

WHO limit
a
 

US EPA
b
 

USA Protection 

3000 

n.i 

180 

10 
0 
10 

3.0 

n.i 

n,i 

20 

100 

50 

50 

100 

50 
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)/( Lg  of aquatic life 
 

aWorld Health Organization[68]; bUSEPA [69], cFrits [70].    

 

 

 

Table 3: Trace metal accumulation levels in tissue of crab (loptodius exarata) using     

               biota to sediment accumulation and bioconcentration  factors. 

 
Bioaccumulation  

           Factors 
Sample 

code 

 

Zn Pb Cd Ni  Cr 

                BSAF               DC-V 

DC-W 

DC-X 

DC-Y 

DC-Z 

1.53 

1.56 

0.98 

2.95 

1.03 

1.28 

1.10 

1.52 

1.56 

0.21 

0.45 

0.27 

0.32 

0.50 

0.82 

0.49 

0.88 

0.80 

1.42 

1.35 

0.32 

0.36 

0.74 

0.37 

0.62 

                BCF DC-V 

DC-W 

DC-X 

DC-Y 

DC-Z 

46112.5 

175,200 

52,500 

269,750 

62,775 

1837.5 

3300 

1525 

2700 

950 

250 

0.162 

145.5 

183.33 

465.5 

4450 

11650 

11200 

3700 

3430 

320.62 

211.67 

418.24 

159.68 

478.89 

 

 

Table 4. Trace metal concentrations (mg/kg) of sediments, SQG by US EPA, and      

             Pollution Load index (PLI) of metals in sediment types from Douglas Creek 
Trace 

metals 

                 Sediment codes 

DC-V   DC-W  DC-X    DC-Y    DC-Z          

Natural 

background 

concentration 

SQG 

Non-polluted  Moderately polluted   Heavily polluted 

Zn 

 

Pb 

 

Cd 

 

Ni 

 

Cr 

 

mCd 

PLIb 

120.8    112.6    161.4     91.5      121.6 

(1.27)   (1.18)    (1.7)     (0.96)    (1.28) 

5.75       6.01      2.00      3.45       8.90 

(0.29)    (0.3)     (0.1)     (0.17)    (0.44) 

 0.55     0.595    0.900     1.10      1.142 

(1.83)   (1.98)      (3)      (3.67)    (3.81) 

 9.15     13.15    13.96     10.45    12.67 

(0.13)    (0.19)   (0.21)    (0.15)   (0.19) 

15.95     10.63    9.57     13.28     13.78 

(0.18)   (0.11)   (0.15)    (0.15)    (0.13) 

0.74       0.75     1.03      1.02        1.17  

0.44       0.43      0.44      0.42       0.56      

95.16±0.20a 

 

20.08±0.18 

 

0.30±0.00 

 

68.48±1.79 

 

88.72±15.67 

       <90                90–200        > 200 

 

       <40                 40–60                              > 60 

 

      –                         –                                   > 6 

 

         <20                 20–50                            > 50  

 

        <25                   25–75                            > 75 

Values in parenthesis are the contamination factors; 
a
Average natural background concentration (±SD, n=3), 

 

b
Gong et al.[71]. 

 

 

Table 5. Igeo classes
a
 of trace metals in sediments from Douglas Creek of Qua Iboe   

              estuary 

 

Trace 

metals 

                                  Igeo
b
 

DC-V        DC-W     DC-X      DC-Y         DC-Z 

Zn 

Pb 

Cd 

Ni 

Cr 

0                  0               1              0                0 

0                  0               0              0                0 

1                  1               1              2                2 

0                  0               0              0                0 

0                  0               0              0                0 
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a
 >5, extremely contaminated; 4–5, strongly to extremely strongly contaminated; 3–4, strongly contaminated; 

2–3, moderately to strongly contaminated; 1–2, moderately contaminated; 0–1, uncontaminated to moderately 

contaminated; <0, uncontaminated, 
b
Buccolieri et al. [72], 

 

 

Table 6: The potential ecological risk assessment
a
 for investigated trace metals in   

               epipellic  sediments from Douglas creek, Qua Iboe Estuary 

 
Sampling 

sites 

Calculated E
i
f of individual trace metals

a
  

Zn         Pb             Cd              Ni             Cr 
RI

b
 

DC-V 

DC-W 

DC-X 

DC-Y 

DC-Z 

Min. 

Max. 

Mean 

1.27      1.45         54.90          0.65          0.36 

1.18      1.50         59.40          0.95          0.22 

1.70      0.50         90.00          1.05          0.30 

0.96      0.85        110.10         0.75          0.20 

1.28      2.20        114.30         0.95          0.01 

0.96      0.50          54.90         0.65          0.01 

1.28      2.20        114.30         1.05          0.36       

1.27     1.30          85.74          0.87          0.24 

58.63 

63.25 

93.55 

112.96 

118.74 

58.63 

118.74 

89.43 
                              a

E
i
f <40, Low risk; 40 ≤  E

i
f  < 80, Moderate risk; 80 ≤  E

i
f  < 160, Considerable risk;  

                        160 ≤  E
i
f  < 320, High risk; E

i
f  ≥ 320, Very high risk; 

b
RI < 150, Low risk;  

                        150 ≤  RI  < 300, Moderate risk; 300 ≤  RI  < 600, High risk; RI  ≥ 600, Very high risk. 
 

 

 

 

 

Table 7. TEL, PEL, ERL and ERM guideline values for trace elements
a,b 

and mean    

            quotients using the PEL and ERM values 
Trace metals                        Sediments 

DC-V        DC-W      DC-X       DC-Y         DC-Z 

TEL        PEL         ERL            ERM 

Zn 

Pb 

Cd 

Ni 

Cr 

m-PEL-Q 

m-ERM-Q 

120.8          112.6       161.4         91.5          121.6    

5.75             6.01         2.00          3.45           8.90 

0.55             0.595       0.90          1.10          1.142 

9.15             13.15       13.96        10.45        12.67 

12.95           10.63       9.57          13.28        13.78 

0.19              0.20         0.25          0.20           0.25 

0.12              0.13        0.16           0.12           0.15 

124.0       271.0        150.0          410.0 

30.2          112.2        46.9            218.0 

0.6             3.53          1.2               9.6           

15.9           42.8          20.9            51.6 

52.3           160.4        81.0           370.0 

aLong et al. [56], bConcentrations are in mg/kg dry weight 

 

 

 

 

 

 

Table 8: Pearson correlation coefficients (p<0.05) between different trace metals in   

              epipellic sediment samples. 

 Zn Pb Cd Ni Cr 

Zn 1     

Pb -0.308 1    

Cd -0.107 0.038 1   

Ni 0.385 0.419 0.493 1  

Cr -0.309 0.799 0.332 0.199 1 
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Table 9: Loadings of variables on significant principal components for trace metals in 

sediment 

  PC1 PC2 

Zn -0.314 0.793 

Pb 0.868 -0.207 

Cd 0.522 0.417 

Ni 0.557 0.766 

Cr 0.884 -0.243 

Eigenvalue 2.215 1.490 

Variability (%) 44.310 29.805 

Cumulative % 44.310 74.115 
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Fig. 1: Qua Iboe Estuary mangrove ecosystem showing the sampling location   

           along  Douglas Creek. Insert: Map of Nigeria showing the location of   

            the study area. 
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Fig. 2 Trace metal concentrations in sediments from Douglas Creek of Qua Iboe   

           estuary. Straight horizontal line represents a moderately polluted level (except Cd,   

              representing heavily polluted) as per SQG by USEPA 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Page 33 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

 33 

 

 
Fig. 3. Total target hazard quotients due to consumption of Leptodius exarata 

 

 

 

 

 

 

  

Fig. 4: Loading plot and biplot of the principal components obtained for trace metals   

           at all investigated sites 
 

 

 

 




