

Using Constraint Reasoning on Feature Models to

Populate Ecosystem-driven Cloud Services e-

Marketplace
Azubuike Ezenwoke, Olawande Daramola, Matthew Adigun

[azu.ezenwoke; olawande.daramola] @covenantuniversity.edu.ng

madigun@pan.uzulu.ac.za

Abstract

Service providers leverage cloud ecosystems and cloud e-marketplaces to increase the business value

of their services and reach a wider range of service users. A cloud ecosystem enable participating services

to combine with other services, along their QoS properties; while the e-marketplace provides an

environment where atomic services interconnect in unprecedented ways to be traded on the marketplace

platform. Noting the unprofitability, impracticality and error-prone nature of performing ad hoc service

combination of atomic services, the concern addressed in this technical report is how to guide the

combination of atomic services participating in an ecosystem in a seamless manner. In this technical

report, we proposed the use of feature models to model the inter-relationships and constraints among the

atomic services, which is transformed into a constraint satisfaction problem and off-the-shelve constraint

solvers are used to determining valid combinations. The collection of valid combinations become the

blueprint that guides service composition and populates the e-marketplace service directory; users can

then make service selection decisions based on the list. The applicability of the approach proposed in this

report is demonstrated via an example of Customer relationship management as a service ecosystem.

Keywords: Cloud Computing; ecosystem; e-marketplace; feature model; constraint satisfaction

problem

I. INTRODUCTION

Cloud computing is a model of internet-based service provisioning where dynamically scalable

and virtualized resources (such as infrastructure, platform and software) are delivered and

accessed as services over the internet [1; 2]. Cloud computing is technologically enabling new

business models, which may not have existed before [2]. Gartner predicts that from 2013 through

2016, $677 billion will be spent on cloud services worldwide, and $310 billion of which will be

spent on cloud advertising business by 2014
1
, making cloud computing a growing phenomenon in

the IT landscape. Cloud computing has been referred to as the fifth utility along with electricity,

gas, water and telecommunication services [3]. Although basic cloud computing service models

are Infrastructure as a service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS) [2]; however, more complex models evolves into the concept of Anything- or Everything-

as-a-service (XaaS). Because everything and anything can be offered as a service, the maturity of

cloud computing is fast tracked by commoditizing services in an e-marketplace facilitated by

cloud ecosystem [4; 5].

1 http://www.gartner.com/resId=2332215

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/79125252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.gartner.com/resId=2332215

A service ecosystem consists of a platform, a set of internal and external providers and a

community of service brokers providing value-added service offerings to a community of service

users, who consume relevant services [6; 5]. In spite of the current success with the advancement

of cloud computing, some challenges with the current monolithic model require an extension to

the current stack. The monolithic model still imposes vendor lock-in such that services cannot be

dynamically combined with other services from external third party sources to offer more value-

adding functionalities to the users [7]. Papazoglou et al., [7] proposed the blueprinting of the

cloud, a model that allows the syndication, configuration, and deployment of virtual service-based

application in the cloud; thus generating interest in cloud ecosystem. However, the current state of

cloud ecosystem does not support the ultimate vision of offering XaaS via an e-marketplace

platform [8]. Some examples of existing cloud service e-marketplace are Saasmax
2
, oracle e-

marketplace
3
, Google play store

4
, AppExchange

5
 etc. Although, these possess some features of an

e-marketplace like product (service) directory etc., more sophisticated features that maximize the

dynamism of service composition are still lacking.

Akolkar, et al [9] identified six enablers for the realization of the vision of a true electronic

emporium of cloud-based services; one of which includes the possibility of formal or incidental

service composition to derive more complex business solutions. Formal composition refers to the

combination of one or more services into composite services, which are also offered to users on

the marketplace; incidental composition is one time composition based on specific user request.

Apart from the functional capabilities they provide, cloud services possess non-functional or

quality of service (QoS) attributes (e.g. reliability, response time, cost, security, availability etc.),

which are aggregated to determine the overall QoS attribute of the composite service, hence pay

major role in service composition [10; 11; 12].

To this end, we envisage that the e-marketplace of the future provides an environment where

atomic services interconnect in unprecedented ways to form composite services that fulfills

complex business processes; so that cloud service users can then discover these services from the

service directory consume and pay for these services [9; 11]. We hypothesize that an ecosystem-

driven model can be applied to coordinate formal composition of atomic services to populate the

e-marketplace cloud service directory. However, noting the unprofitability, impracticality and

error-prone nature of performing service combination ad hoc, the concern addressed in this

technical report is how to guide the combination of atomic services participating in an ecosystem

in a seamless manner, considering the QoS of individual services and the constraints guiding the

composition.

Meanwhile, some techniques in the domain of product configuration and product line

engineering have emerged to effectively structure a hierarchical inter-relationship among

components and guides the composition or configuration of these components based on specific

2 www.saasmax.com
3 www.oraclemarketpalce.com
4 www.googleplay.com
5 www.appezchange.com

constraints. Since some of these techniques have been applied to configure cloud services (e.g.

[13] and [14]), this report explores how these techniques can be adapted to structure and guide the

derivation of valid combinations of services in a cloud ecosystem. More specifically we proposed

the use of feature models to model the inter-relationships and constraints among the atomic

services, which is transformed into a constraint satisfaction problem and off-the-shelve constraint

solvers are used to determining valid combinations. The collection of valid combinations become

the blueprint that guides service composition and populates the e-marketplace service directory,

from which users make service selection decisions. The applicability of the approach proposed in

this report is demonstrated via an example of Customer relationship management as a service

ecosystem.

The rest of this report is structured as follows: section 2 defines the concept of cloud

ecosystems and cloud service e-marketplace contains. In section 3, the main techniques employed

in the design of the approach (i.e. feature modeling and constraint satisfaction) were discussed;

while the proposed approach was presented in section 4. The illustrative example to demonstrate

the applicability is contained in Section 5. Section 6 reviewed related works and this report

concludes in section 7 with future works.

II. ECOSYSTEM-DRIVEN CLOUD SERVICES E-MARKETPLACE

An electronic e-marketplace is a platform where the demand and supply for certain products or

services are fulfilled using information and communication technologies [5;15; 16]. The cloud e-

marketplace extends the concept of an electronic e-marketplace, and is an online platform that

manages the distribution and trading of cloud-based services. On this platform, service providers

enlist services with the purpose of integration with other services to form composite services;

while users can discover, consume and pay for service offerings [7; 5; 17; 8; 9; 18; 19].

The success of cloud e-marketplace will depend on how effectively it will be able to instantiate

and dynamically maintain computing platforms that meet arbitrarily varying service requirements

of cloud service users, leveraging on integrators enabled by SOA and web services [20]. This is

further enhanced by the e-marketplace providing a unified view of all available services and

becomes a single point of access to composite services that results from participation in the

ecosystem, and hides the complexity of the underlying interconnections among atomic services in

the ecosystem [8]. Merriam-Webster defines an ecosystem as the complex of a community of

organisms and its environment functioning as an ecological unit. In the context of cloud

computing, cloud ecosystem describes the complex system of interdependent components that

work together to enable cloud services. An ecosystem consists of interwoven mixture of

infrastructure, platform and application contributing to increase their value as a collective than the

value of the individual elements on its own. Building upon the traditional cloud computing stack

(i.e. IaaS, PaaS and SaaS), anything/everything can be provisioned and consumed as a service.

The cloud is growing collection of services, and has grown beyond just a platform to execute

workloads, but limitless opportunities for possibilities that can service any aspect of business,

such as compute, content delivery, storage, database management systems, specific SaaS.

The future of cloud computing would be fast-tracked by successful partnerships and

collaborations among multiple service providers to tie services together, and enabling an

environment where anything/everything as services are delivered to meet business needs via a

marketplace environment [21]. In such case, the e-marketplace also provides mechanisms that

support dynamic formal or incidental composition of services, enabling the reuse of services,

pricing models and service level agreements [8; 7].

III. CONSTRAINT-BASED REASONING ON FEATURE MODEL

The multi-provider and multi-service dimension of cloud e-marketplace necessitates a means

to capture the inter-relationships and constraints among the heterogeneous services in a single

model. This model becomes the basis for a structured combinatorial guide that informs what is

and what is not possible in the ecosystem, since all participating services are combined based on

the constraints that underlay the hierarchical inter-relationships of services in delivering CRM

solutions. The set of valid combinations share certain similarities with each other; while

possessing specific differences, as a result of some functional aspects together with varying QoS

values derived from aggregated QoS values of participating services.

In this technical report, we define a cloud service e-marketplace provider is the one who

manages the ecosystem, and decides on the strategies to enhancing the value chain of the

ecosystem. Enhancing the value inherent in the ecosystem entails identifying how and ensuring

that services collaborate to deliver maximum value. However, to determine valid combinations of

service in an ad hoc manner, would undermine the net value characteristic of ecosystems; more

so, such ad hoc processing is error-prone and time consuming [22]. To adequate estimate the

value of the ecosystem, first, there is need for a logical hierarchical arrangement of all the

participating services into a knowledge model based on a specific combinatorial blueprint and,

secondly, a means to automatically derive useful information by analysis of the logical hierarchy

of these services. Furthermore, automating the analysis of the ecosystem knowledge model

reveals a number of useful information about the ecosystem to address some the concerns of the

e-marketplace provider. For example, the e-marketplace provider is interested in knowing how

many valid combinations are available in the ecosystem. This information translates to the

number of potential service offerings that can be provisioned via the e-marketplace. Potentially,

this number can be very high depending on the number of collaborating services and the

constraints on their inter-relationship. Knowing the number of potential solutions provides an

informed basis for the e-marketplace provider to decide the range of products the e-marketplace

would offer. Another concern is that, are there services that will not fully benefit from the value

chain in the ecosystem (partly or fully due to their presence in a few or none of the likely

combinations). Moreover, a structured model and automated analysis also offers some strategic

benefit to service providers; as it were, service providers can analyze this information to estimate

the profitability of their offerings, and position their offerings for better competiveness in the

ecosystem.

Since the structure of cloud ecosystem is analogous to the fundamental principles of software

product line engineering (SPLE) and product configuration (PC) domain [23; 24], variability

modeling techniques, like feature modeling, used in the SPLE and PC is proposed and adopted in

this report to effectively structure the hierarchical inter-relationships among ecosystem services.

The PC domain is concerned with the ability to mass-customize products targeted at specific

requests and/or user segments, which is a crucial determinant of reducing lead time, and increase

business process efficiency in mass-manufacturing [25]. Mass-customization techniques have

been applied to concrete products (e.g., bicycles
6
, and baby strollers

7
) as well as insubstantial

products like software and services (e.g. insurance, tourism etc.). Configuration software is

employed to adapt products or services to suit specific requirements by combining components

characterized by specified attributes, based on the constraints that underlay valid combinations

[26]. The features in this report refer to the participating services being combined in accordance to

a prescribed blueprint. The cornerstone of performing product configuration and deriving

software instance from a SPL are the knowledge representation of product/software features based

on variabilities and commonalities and computer-aided reasoning techniques employed to support

both PC and SPL process. Such representation can be achieved using feature models.

A. Feature Modeling

Feature model is a graphical representation of common aspects and differences in a collection

of products in a product-line and is used to structure and constrain the product options. A feature

is defined as the end-users’ understanding of the capabilities of systems in the domain [24]. A

feature model is a hierarchically arranged collection of features and consists of the inter-

relationships between a parent feature and its child features, and a set of cross–tree constraints

that define the criteria for feature inclusion or exclusion. A feature model represents in a single

model, all possible alternatives that the scope of the feature model covers. Each solution is a valid

instantiation of the feature model. In this report, we define and abstract each participating

ecosystem service as a feature in the feature model, and the range of possible solutions that is

obtainable from the ecosystem is defined by the feature model. Cross-tree constraints provide a

legal basis of how services and their QoS attributes can be legally combined. Benavides, et al.,

[22], identified three main types of feature-based models: basic, cardinality-based and extended

feature models. Basic feature model (also known as the FODA feature model) was introduced by

Kang, et al., [27] and it describes three feature types (Mandatory, Optional, and Alternative) and

two cross-tree constraints (Requires and Excludes). A mandatory feature is a feature that must be

included in a product, while an optional feature is a feature that may or may not be included in a

feature. Given a set of features from which only one feature is selected to be included in a product

is called an alternative feature. Required and Excludes cross–tree constraints in basic feature

model are defined as follows: given features X and Y; X requires Y is defined as if X is included

in a product, then Y should also be included, but not vice-versa. X excludes Y means that if X is

included then Y should not be included, and vice-versa. The inadequacy of alterative relationship

6 http://www.bikeconfig.com/
7 https://www.bugaboo.com

to model situations with multiple child features motivated cardinality-based feature model, in

which numbers are introduced to denote the multiplicities of the set of features of basic feature

model. A cardinality-based feature model is a hierarchal collection of features, with each feature

having cardinality [28]; that is to say; the number of times copies of a feature is included in a

product is determined by its cardinality.

Table 1. CONCEPTS of Extended Feature Model

EFM

Concept
Description

Feature
A functional characteristic of a service or an increment in product functionality. E.g. an SMS

notification cloud service, or an email cloud service

Attribute
Any measurable characteristic of a feature that can be measured. For Example, reliability is a cloud

service QoS attribute.

Attribute

domain

The attribute domain specifies the range of values that an attribute can assume; i.e. qualitative or

quantitative (discrete and continuous) values corresponding to the QoS attributes.

Attribute

value

Attribute values define the actual value that belongs to a particular domain. The attributes values are

usually an aggregation of all the values of corresponding features of the final product. For example,

the cost of a service aggregates all the cost of the features included in a product.

Although basic feature model can be used to provide a basis for automated configuration of

actual products, there is need to sometimes include in the feature model quality information about

features (such as non-functional attributes). In extended feature models, feature model are

annotated with quality information, analysis could use these qualities as basis in specifying valid

combination. In classic SPL domain, the concepts that describe EFM are presented in Table 1.

Extended feature models are desirable for modeling cloud ecosystem, so as to capture cloud

services, their QoS attributes, inter-relationship and constraints, which is vital to the generation of

valid combinations to populate the e-marketplace service directory.

B. Automated Analysis of feature model using Constraint Satisfaction

Deriving useful information from the ecosystem model requires automated mechanism that is

able to reason on and analyze the model upon which the service inter-relationship is built [22; 29;

30]. Some studies on automated analysis on feature models have been conducted (e.g. [22]) and a

number of analysis operations have been proposed. Automated analysis of feature models uses

computer-aided tools to extract important information from feature models [31; 22]. The

automated approach entails transforming the feature models into a specific formal logic-based

representation, which becomes inputs to solvers, and analysis operations are performed to obtain

useful information. A solver is a software package that accepts formal representations as inputs

and determines some satisfiability criteria [22], e.g. Choco [32]. Approaches that can transform

the feature model into formal representations have been classified into: Description Logic,

Propositional Logic, and Constraint Programming (cf. [22]). In this repoet, we have employed

Constraint programming, as a method that uses constraints as a programming method to encode

and solve constraint satisfaction problems. The mapping from a feature model to a particular CSP

solver is less straightforward than with Propositional Logic because the encoding structure is

solver dependent. Formally, CSP is fined as:

Definition1 (CSP): A constraint satisfaction problem (CSP) is defined as a finite set of

variables, each of which is associated with a finite domain, and a set of constraints that restricts

the values the variables can simultaneously take.

Feature models are encoded as CSP model and CSP solvers use constraint programming to

find assignment for each variable that satisfies the constraints [22]. However, the following steps

apply in encoding feature models as CSP [22]:

Step 1: Each feature of the feature model maps to a variable of the CSP with a domain of

 (i.e. true or false), depending on the kind of variable supported by the solver.

Step 2: Each relationship of the Model is mapped into a constraint depending on the type of

relationship.

Step 3: The resulting CSP is the one defined by the variables of step 1 and the corresponding

domains and constraints that is the conjunction of all precedent constraints plus additional

constraint assigning true to the variable that represent the root, depending on the variable’s

domain.

The rules encoding feature model as CSP are presented in Table 2.

1) Automated Analysis Operations on Feature Model

After encoding model into a formal logic-based representation, mathematical operations based

on the semantic of the underlying logic-representation can be performed to derive useful

information about the model. A number of analysis operations exist, but the following analysis

operations are relevant to the objectives set out in this report: Determine the Satisfiability of a

model; solutions count; generate all the valid solutions.

a) Determine the Satisfiability of a model

This operation examines the feature model and determines returns a verdict that determines the

satisfiability of the feature model, by telling if the feature model is void or not. A feature model is

said to be satisfiable, when at least one valid combination, can be derived from it. In other words,

a feature model is not void if it represents at least one solution.

b) Products count

This operation returns the number of valid combinations that can be derived from the feature

model. This also relates to the satisfiability operation, such that if the count is zero, then the

feature model is void. The e-marketplace provider can estimate at every point the number of

services that is offer-able on the e-marketplace.

c) Generate all the valid products

This operation generates all valid combinations in the feature model that satisfies all the

constraints in their inter-relationship. In the context of this research, the set of valid combinations

forms the set of alternatives indexed in the service directory from which the user selects a

composite service that approximates that user’s requirements.

Table 2. Feature Model to Constraint Programming Mapping

Relationships in

CEFM
CSP Mapping

Mandatory

Optional

 ()

OR

 ()
 () ()

Alternative

 ()
 () ()

Requires

 ()

Excludes

 ()

2) QoS Aggregation Functions

At least more than one service are composed in a valid combination as contained in the service

directory, therefore the QoS properties of the constituent services are aggregated to determine the

overall QoS values for the valid combination. Usually, the overall QoS properties of such

composite services, conceptualized into a business process, are determined by the QoS attributes

of constituent services and their composition relationships. There are four basic composition

patterns that inform the arrangement of constituent services in a business process [33; 34; 35; 36].

They include: 1) Sequential: A sequence pattern an activity (or services) in the business process

executes after another activities has concluded execution. In order words, the services are

executed one after the other. 2) Parallel- In a parallel pattern, all the branches are executed at the

same time. 3) Conditional (or branch): Only one branch, with a set of activities is selected for

execution in the branch pattern. 4) Loop: In a loop pattern, an activity in the business process is

executed for () times.

However, the sequential composition pattern is assumed in this report. Sequential pattern is the

fundamental pattern, as the other patterns (i.e. parallel, conditional and loop), can be may be

reduced or converted to the sequential pattern [36; 37]. Based on the nature of QoS attribute,

different aggregation functions can be applied [36]. However, in this report considers two types of

aggregation functions; summation and multiplication (cf. Table 3): 1) Summation: In summation

aggregation function, the values of a QoS attributes are summed up (e.g. cost and response time).

For cost, the overall cost for a valid combination service should be a summative total of the cost

of all constituent services. 2) Multiplication: Multiplication function implies that the aggregate is

a product of all the values of a QoS attribute of all the constituent services (e.g. availability).

Definition (QoS Aggregation): Let a service be a valid combination composed of

number of distinct services () with QoS attributes and acts sequentially. Let () be the

value of the QoS attribute for the distinct service. Such that the aggregated value QoS

attributes for all distinct services composed in is given as:

 () (() () ()) (1)

Where represents the aggregation operator based on the aggregation function employed with

respect to the QoS type, and . Meanwhile, the vector of QoS values for a valid

combination is given as:

 () (() () ()) (2)

The QoS aggregation rules for the four QoS properties considered in this case study (i.e. cost,

response time, availability and security) are given in Table 3. The availability and reliability

aggregate functions are non-linear functions. In order to make all aggregate functions to be linear

ones, we transform them by using the logarithmic function (see Eqn. 3) [38].

 (3)

IV. THE PROPOSED SOLUTION APPROACH

The proposed approach to populating the ecosystem-driven service directory of cloud service

e-marketplace consist of modeling the ecosystem of atomic cloud services using extended feature

models, transforming the model into a constraint programming model and reasoning on the logic-

based model using constraint solver (see Figure 1). Details are presented in subsequently.

Table 3. Summary of Aggregation functions

Aggregation Type QoS Attribute Aggregation Function

Summation
Cost

 () ∑ ()

Response Time

Multiplication
Availability

 () ∏ ()

Reliability

 log (()) = log ∏ (𝑗)

𝑗 =1

 = ∑log(())

𝑗=1

A. Modeling the Cloud service Ecosystem

We modeled the cloud service ecosystem by adopting feature models, which we called Cloud

Ecosystem Feature Model (CEFM). More specifically, an extended feature model was employed

due to its modeling flexibility that captures the QoS attributes, and the constraints that exist

among them.

B. Reasoning Engine

The CEFM was transformed into a formal representation based on CSP, and we employed he

general purpose constraint solver, Choco, to perform automated analysis of the model to derive

useful information that is beneficial to both e-marketplace provider and service providers. The

solver determines the satisfiability of the CSP, and if a CSP is satisfiable, then solutions can be

obtained. The solver searches for a solution in a CSP, using search algorithms to generate all the

possible combinations of values for each variable in the CSP and certifies that they correspond to

a solution of the CSP. Table 2 shows the rule for mapping constructs in the CEFM into CSP. The

corresponding CSP representation of the CSEM is read by the reasoning engine, and performs

automated analysis on the CSP representation to generate all valid service combinations.

Furthermore, we determined the overall quality performance of valid combinations, by

considering the QoS factors of constituent services and their impact of the overall QoS of the

valid combinations. This was performed by aggregated the QoS of each atomic service using QoS

aggregation functions in Table 3.

C. Service Directory

The service directory indexes all the QoS information about the collection of valid

combination services generated by the all products operations on the CEFM. The service directory

is modeled as case base of valid combinations and their QoS information.

Figure 2, depicts the process of organizing ecosystem information into a model for obtaining

useful information pertinent to operationalizing the cloud service e-marketplace.

Fig. 1. Process Architecture of the Proposed Approach

V. ILLUSTRATIVE EXAMPLE

The approach proposed in this report is validated using an hypothetical Customer Relationship

Management as a Service (CRMaaS). CRMaaS is enabled by a cloud ecosystem of CRM

components services for Small and Medium Enterprises (SME) delivered through the cloud e-

marketplace. A SME that requires a complete cloud-based CRM solution for managing its user

relationship processes in a bit to improve business relationship and increase the bottom-line can

find the most appropriate solution via the e-marketplace. An instance of the CRMaaS offering is a

combination of any/all of these services to create a complete CRM solution. On the e-

marketplace, multiple variants of CRMaaS solutions exist and are differentiated by QoS factors.

An SME can then search for and consume CRM solution that aligns with their specific aspiration

and preferences. Therefore, the e-marketplace service directory contains a set of m CRM solutions

that can be evaluated along n decision criteria with respect to an SME’s preferences. Having

expressed requirements, which is converted to a search query, the e-marketplace facilities

generates search results in form ranking of complete CRM solutions that approximates the

requirements expressed.

The components that make up the CRMaaS ecosystem includes: Contact management,

Database, Marketing and Social-media analysis (See Figure 2). The CRMaaS solution is realized

by the participation of various service providers in the ecosystem. One or many providers can

contribute one or more of the following range of services to the ecosystem with differentiated

QoS factors. The description of each module is as follows:

Contact Management Service: tool to manage user contacts and communication; including

appointment management, task management and scheduling, communication (SMS, email),

Cloud Database: cloud-based RDBMS to store user information including user personal data,

purchase history, preferences etc.

Marketing Service: Tools for communicating with users; including email marketing, text

message marketing, social media marketing etc.

Social Media Analytics: Tool that monitors conversations on social media and analyze

feedbacks, capturing user sentiments.

Cloud Platform: The derived valid combinations would require a cloud platform on which to

run.

First we identified all the constituent services that can fulfill each component, together with the

values of the QoS attributes. The QoS attributes considered in this example includes: availability

and reliability, measured in percentages (%); response time measured in milliseconds (ms), while

cost is measured in Dollars/month ($/Month). The number of candidate services for each

CRMaaS component is given as follows (see Table 4): Contact management (CM_1, CM_2,

CM_3,CM_4); Cloud Database (CD_1, CD_2,CD_3); Marketing (M_1, M_2); Social Media

Analysis (SMA_1, SMA_2, SMA_3); Platform (P_1, P_2).

Fig. 2. High-level Structure of the components of a CRMaaS

Table 4. Candidate cloud services to realize CRMaaS Components

CRMaaS

Components

Candidate

Services

QoS Values

Avail. Resp. Time Reliability Cost

Contact

Management

CM1 90 -- 90 30.50

CM2 95 -- 67 29.99

CM3 70 -- 40 25.50

CM4 99 -- 79 34.99

Cloud

Database

CD1 89 100.22 60 13.50

CD2 79 50.54 75 20.50

CD3 97 120.34 80 50.00

Marketing
M1 99 -- 55.50

M2 91 -- 59.99

Social Media

Analysis

SMA1 90 200.45 88 49.99

SMA2 95 138.56 90 50.00

SMA3 85 125.45 79 45.67

Platform
P1 99 300.45 70 199.99

P2 99 423.10 75 149.99

The rules guiding the combination of these candidate services are contained in Table 5, while

the CEFM that models the relationships and constraints is presented in Figure 3. All CRMaaS

components are mandatory; however, each candidate service is an alternative to other candidate

services within the same component group.

Table 5. Require and Exclude Constraints on Candidate service combination

Service1 Constraint Service2

CM1 Requires P1

CM1 Requires CD1

CM2 Excludes M1

SMA1 Requires CD2

CD2 Excludes P2

SMA2 Requires M1

SMA3 Excludes CD2

CRMaaS Contact
Management

Cloud
Database

Marketing

Social Media
Analytics

Platform

The encoding of the CEFM as CSP, together with the aggregation functions were implemented

using Java in NetBeans 8.1 based on the constraints provided in the Choco library; Choco solver

was used as the constraint solver to derive valid combinations from the CEFM. The analysis

operation performed to generate all products from the CEFM yielded a total 38 valid

combinations (See Table 6), including the constituent atomic services, and the aggregated values

for each QoS attributes. The generated composite services are then indexed as the services

contained in the cloud service e-marketplace service directory. The indexed list becomes the

catalogue from which users are served recommendations with respect to their QoS requirements.

Fig. 3. CRMaaS Cloud Ecosystem Feature Model

VI. RELATED WORKS

Previous works have proposed the use of feature models to capture the variabilities of cloud services and

applied automated means generate valid cloud service offerings. A SPL-based approach for cloud service

selection that employs feature models, extended with cardinalities and attributes, to describe the variability in

cloud environments has been proposed in [39]. The approach utilizes a domain model to support the

consistent configuration of complete stack of cloud services that complies with user’s functional and quality

requirements and automates the deployment of such configurations by generating executable deployment

scripts. Feature models provide the template for how artifacts are to be combined to yield a complete

software product that satisfies a set of defined constraints. A tool support was developed based on Constraint

Satisfaction, as part of an earlier SALOON framework [13] to demonstrate plausibility of this approach.

Meanwhile, the limitation imposed by using a given cloud service and the benefit inherent in using several

cloud platforms to deploy multi-cloud applications necessitate approaches that can handle the intrinsic

variabilities among heterogeneous cloud service providers. SALOON [13] is a model-driven Ontology-based

approach founded on feature model, to handle the variability in cloud services while managing the derivation

of specific cloud configurations. Ontology was employed to model the semantics underlying the description

of a variety of cloud systems. SALOON is proposed as a solution that can assist in deploying multi-cloud

application, particularly when one provider is incapable meeting all application requirement rather than doing

so in an ad hoc manner. The SALOON framework is extensible by adding new feature models that conforms

with the originating SALOON-based feature model meta-model. Cloud services are modeled as features, and

selected features are transformed into propositional logic and constraints, and SAT solvers (e.g. Sat4j) are

used to confirm the validity of the configuration.

Table 6. List Valid combinations based on CRMaaS Cloud Ecosystem Model

CRM_ID Constituents Services
Aggregated QoS Values

Availability Response Time Reliability Cost

CRM_1 CM4 ; CD3 ; SMA3 ; M2 ; P2 98.68 668.89 75.73 340.64

CRM_2 CM3 ; CD3 ; SMA3 ; M2 ; P2 97.16 668.89 72.78 331.15

CRM_3 CM4 ; CD3 ; SMA3 ; M2 ; P1 98.67 546.24 75.43 390.64

CRM_4 CM3 ; CD3 ; SMA3 ; M2 ; P1 97.16 546.24 72.48 381.15

CRM_5 CM4 ; CD1 ; SMA3 ; M2 ; P2 98.29 648.77 74.48 304.14

CRM_6 CM3 ; CD1 ; SMA3 ; M2 ; P2 96.79 648.77 71.53 294.65

CRM_7 CM4 ; CD1 ; SMA3 ; M2 ; P1 98.29 526.12 74.19 354.14

CRM_8 CM3 ; CD1 ; SMA3 ; M2 ; P1 96.79 526.12 71.23 344.65

CRM_9 CM2 ; CD3 ; SMA3 ; M2 ; P2 98.49 668.89 75.02 335.64

CRM_10 CM2 ; CD3 ; SMA3 ; M2 ; P1 98.49 546.24 74.72 385.64

CRM_11 CM2 ; CD1 ; SMA3 ; M2 ; P2 98.11 648.77 73.77 299.14

CRM_12 CM2 ; CD1 ; SMA3 ; M2 ; P1 98.11 526.12 73.47 349.14

CRM_13 CM4 ; CD3 ; SMA3 ; M1 ; P2 99.03 668.89 75.73 336.15

CRM_14 CM3 ; CD3 ; SMA3 ; M1 ; P2 97.53 668.89 72.78 326.66

CRM_15 CM4 ; CD3 ; SMA2 ; M1 ; P2 99.51 682 76.3 340.48

CRM_16 CM3 ; CD3 ; SMA2 ; M1 ; P2 98.01 682 73.34 330.99

CRM_17 CM4 ; CD3 ; SMA3 ; M1 ; P1 99.03 546.24 75.43 386.15

CRM_18 CM3 ; CD3 ; SMA3 ; M1 ; P1 97.53 546.24 72.48 376.66

CRM_19 CM4 ; CD3 ; SMA2 ; M1 ; P1 99.51 559.35 76 390.48

CRM_20 CM3 ; CD3 ; SMA2 ; M1 ; P1 98.01 559.35 73.04 380.99

CRM_21 CM4 ; CD1 ; SMA3 ; M1 ; P2 98.66 648.77 74.48 299.65

CRM_22 CM3 ; CD1 ; SMA3 ; M1 ; P2 97.15 648.77 71.53 290.16

CRM_23 CM4 ; CD1 ; SMA2 ; M1 ; P2 99.14 661.88 75.05 303.98

CRM_24 CM3 ; CD1 ; SMA2 ; M1 ; P2 97.63 661.88 72.1 294.49

CRM_25 CM4 ; CD1 ; SMA3 ; M1 ; P1 98.66 526.12 74.19 349.65

CRM_26 CM3 ; CD1 ; SMA3 ; M1 ; P1 97.15 526.12 71.23 340.16

CRM_27 CM4 ; CD1 ; SMA2 ; M1 ; P1 99.14 539.23 74.75 353.98

CRM_28 CM3 ; CD1 ; SMA2 ; M1 ; P1 97.63 539.23 71.8 344.49

CRM_29 CM1 ; CD1 ; SMA3 ; M2 ; P1 97.88 526.12 74.75 349.65

CRM_30 CM1 ; CD1 ; SMA3 ; M1 ; P1 98.24 526.12 74.75 345.16

CRM_31 CM1 ; CD1 ; SMA2 ; M1 ; P1 98.73 539.23 75.32 349.49

CRM_32 CM4 ; CD2 ; SMA1 ; M2 ; P1 98.02 551.35 75.62 360.46

CRM_33 CM3 ; CD2 ; SMA1 ; M2 ; P1 96.52 551.35 72.67 350.97

CRM_34 CM2 ; CD2 ; SMA1 ; M2 ; P1 97.84 551.35 74.91 355.46

CRM_35 CM4 ; CD2 ; SMA2 ; M1 ; P1 98.62 489.46 75.72 360.98

CRM_36 CM3 ; CD2 ; SMA2 ; M1 ; P1 97.12 489.46 72.76 351.49

CRM_37 CM4 ; CD2 ; SMA1 ; M1 ; P1 98.39 551.35 75.62 355.97

CRM_38 CM3 ; CD2 ; SMA1 ; M1 ; P1 96.88 551.35 72.67 346.48

In the same line, Wittern, et al., [14] argues that the increase in cloud services provide the need for a

means to capture the variety of capabilities, and asserts that many cloud service section approaches assume

the underlying representation of the cloud service capabilities which should serve as input to the selection

process. Therefore, authors [14] presented an approach to harness cloud service capabilities using variability

model. The variability models serve as representation mechanisms and are called Cloud Feature Models

(CFMs). CFMs are used to elicit requirements and to perform filtering operation within a process the authors

referred to as cloud service selection process (CSSP). The CSSP prunes the list of likely candidates based on

user’s requirements and these candidates (called Alternative models) are deployable valid cloud

configurations.

Also to manage the variability among cloud-based applications with support for multiple stakeholders,

authors in [40] applied extended feature modeling to configure cloud-based multi-tenant aware applications,

by using the model to express the variability in functionality and QoS attributes. The proposed approach

manages dynamic configuration that involves an adaptive staged configuration process capable of adding and

removing providers or users dynamically from the cloud-platform and that allows for reconfiguration of

variant services as user’s provider’s requirements changes.

In these approaches, users are expected to painstakingly configure cloud services, with the assumption

that all users are full domain experts. However, a cloud service e-marketplace should among others, provide

a real online shopping experience similar to exiting ecommerce platforms [9; 5], where available service

offerings indexed in the e-marketplace service directory, more like a catalogue, and seamlessly updated in a

manner completely transparent to the users. The user is shielded from the underlying complexity of

performing service configuration, and since all possible alternatives is pre-determined (formal service

composition [9]), the users are able to explore other alternatives with respect to their requirements.

Furthermore, the ecosystem model should be scalable to accommodate new services, and that the decision

making process is able to use this service information representation in a manner that is seamless and natural

to an ecommerce platform, with little or no disruption to marketplace operations. The approached proposed

in this report automatically includes scenarios of new entrants and exists of services into and from the

ecosystem. With each case of entrants or exists based on the stated entrance and exit policies of the e-

marketplace, the feature model is altered; and a seamless automated update of the e-marketplace service

directory can be still achieved. This presupposes that service registration and disengagement from the

ecosystem is performed offline, not at request time, giving this approach the scalability advantages in the

event of multiple concurrent users of the e-marketplace.

VII. CONCLUSION

A cloud marketplace is an ecosystem of heterogeneous services from multiple providers. The different

ways in which these services are aggregated creates a plethora of potential offerings with varied QoS factors

that can meet diverse business needs of users. In this technical report, we proposed a constraint-based

reasoning on extended feature models to address the need to explicitly capture the cloud services, their QoS

attributes, and the cross-service relationships and constraints in a logical and structural manner as part of an

ecosystem. We used this model to determine blueprints to consistently generate valid compositions. With the

aid of an example, we demonstrated how the service directory is constantly updated with composite services

from the ecosystem, and those services can then be offered to users via the e-marketplace platform. Since

CSP solvers have the ability to analyze numeric or text-like attributes, the proposed approach will be

improved to cater for qualitative QoS attributes like security, user-friendliness and eco-friendliness whose

values are qualifier tags. Our goal is to improve the user experience of the cloud service e-marketplace

environment in the near future.

REFERENCES

[1] Rimal, B. P., Jukan, A., Katsaros, D., & Goeleven, Y. (2011). Architectural Requirements for Cloud

Computing systems: An Enterprise Cloud Approach. Journal of Grid Computing , 9 (1), 3-26.

DOI: 10.1007/s10723-010-9171-y

[2] Qaisar, E. J. (2012). Introduction to Cloud Computing for Developers-Key concepts, the players and

their offerings. 2012 IEEE TCF Information Technology Professional Conference. IEEE. DOI:

10.1109/TCFProIT.2012.6221131

[3] Al-Shammari, S., & Al-Yasiri, A. (2014). Defining a Metric for Measuring QoE of SaaS Cloud

Computing., (pp. 251-256).

[4] Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing. Proceedings of the

10th IEEE International Conference on High Performance Computing and Communications

(HPCC'08) (pp. 5-13). IEEE. DOI: 10.1109/HPCC.2008.172

[5] Menychtas, A., Vogel, J., Giessmann, A., Gatzioura, A., Garcia Gomez, S., Moulos, V., et al. (2014).

4CaaSt marketplace: An advanced business environment for trading cloud services. Future

Generation Computer Systems , 104–120. DOI: 10.1016/j.future.2014.02.020

[6] Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composition: On the impact of software

product lines, global development and ecosystems. Journal of Systems and Software , 67-76.

DOI: 10.1016/j.jss.2009.06.051

[7] Papazoglou, M., & van den Heuvel, W.-J. (2011). Blueprinting the cloud. IEEE Internet Computing ,

74-79. DOI: 10.1109/MIC.2011.147

[8] Gatzioura, A., Menychtas, A., Moulos, V., & Varvarigou, T. (2012). Incorporating Business

Intelligence in Cloud Marketplaces. IEEE 10th International Symposium on Parallel and

Distributed Processing with Applications (ISPA) (pp. 466-472). IEEE.

[9] Akolkar, R., Chefalas, T., Laredo, J., Peng, C.-S., Sailer, A., Schaffa, F., et al. (2012). The Future of

Service Marketplaces in the Cloud. IEEE Eighth World Congress on Services (SERVICES) (pp.

262-269). IEEE.

[10] Chen, X., Zheng, Z., Liu, X., Huang, Z., & Sun, H. (2013). Personalized QoS-Aware Web Service

Recommendation and Visualization. IEEE Transactions on Services Computing , 35-47.

[11] Barros, A. P., & Dumas, M. (2006). The rise of Web service ecosystem. IT Professional , 8 (5), 31-37.

[12] Garg, S. K., Versteeg, S., & Buyya, R. (2011). SMICloud: A Framework for Comparing and Ranking

Cloud Services. 2011 Fourth IEEE International Conference on Utility and Cloud Computing

(UCC) (pp. 210-218). IEEE.

[13] Quinton, C., Haderer, N., Rouvoy, R., & Duchien, L. (2013). Towards Multi-Cloud Configurations

Using Feature Models and Ontologies. Proceedings of the 2013 international workshop on Multi-

cloud applications and federated clouds (pp. 21-26). ACM.

[14] Wittern, E., Kuhlenkamp, J., & Menzel, M. (2012). Cloud Service Selection Based on Variability

Modeling. Service-Oriented Computing , 127-141.

[15] Bakos, Y. (1998). The emerging role of electronic marketplaces on the Internet. Communications of the

ACM , 41 (8), 35-42.

[16] Akingbesote, A., Adigun, M., Jembere, E., Othman, M., & Ajayi, I. (2014). Determination of optimal

service level in cloud e-marketplaces based on service offering delay. International Conference on

Computer, Communications, and Control Technology (I4CT) (pp. 283-288). Langkawi, Kedah,

Malaysia : IEEE.

[17] Javed, B., Bloodsworth, P., Rasool, R. U., Munir, K., & Rana, O. (2016). Cloud Market Maker: An

automated dynamic pricing marketplace for cloud users. Future Generation Computer Systems ,

52-67.

[18] Vigne, R., Mach, W., & Schikuta, E. (2013). Towards a smart webservice marketplace. IEEE 15th

Conference on Business Informatics (CBI) (pp. 208-215). IEEE.

[19] Schulz-Hofen, J. (2007). Web Service Middleware - An Infrastructure For Near Future Real Life Web

Service Ecosystems. IEEE International Conference on Service-Oriented Computing and

Applications. IEEE.

[20] Cavalcante, E., Batista, T., Lopes, F., Rodriguez, N., de Moura, A. L., Delicato, F. C., et al. (2012).

Optimizing Services Selection in a Cloud Multiplatform Scenario. IEEE Latin America

Conference on Cloud Computing and Communications (LATINCLOUD) (pp. 31-36). IEEE.

[21] Baek, S., Kim, K., & Altmann, J. (2014). Role of Platform Providers in Service Networks: The Case of

Salesforce. com App Exchange. IEEE 16th Conference on Business Informatics (CBI) (pp. 39-

45). IEEE.

[22] Benavides, D., Segura, S., & Ruiz-Cortes, A. (2010). Automated analysis of feature models 20 years

later: A literature review. Information Systems , 615-636.

[23] Hubaux, A., Jannach, D., Drescher, C., Murta, L., Mannisto, T., Czarnecki, K., et al. (2012). Unifying

software and product configuration: A research roadmap. Proceedings of the Workshop on

Configuration (ConfWS’12), (pp. 31-35). Montpellier, France.

[24] Berger, T., Pfeiffer, R.-H., Tartler, R., Dienst, S., Czarnecki, K., Wasowski, A., et al. (2014).

Variability Mechanisms in Software Ecosystems. Information and Software Technology , 56 (11),

1520-1535.

[25] Haug, A., Hvam, L., & Mortensen, N. H. (2011). The impact of product configurators on lead times in

engineering-oriented companies. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing , 197-206.

[26] Hvam, L., Henrik Mortensen, N., & Riis, J. (2008). Product Customization. Springer Science &

Business Media.

[27] Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990, November). Feature–Oriented Domain

Analysis (FODA) Feasibility. Technical Report CMU/SEI-90-TR-21 . Software Engineering

Institute, Carnegie Mellon University.

[28] Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality‐based feature models and

their specialization. Software Process: Improvement and Practice , 10 (1), 7-29.

[29] Karataş, A. S., Oğuztüzün, H., & Doğru, A. (2012). From extended feature models to constraint logic

programming. Science of Computer Programming , In-Press.

[30] Elfaki, A. O., Abouabdalla, O. A., Fong, S. L., Johar, M. G., Aik, K. L., & Bachok, R. (2012). Review

and Future Directions Of The Automated Validation In Software Product Line Engineering.

Journal of Theoretical and Applied Information Technology , 75-93.

[31] Batory, D., Benavides, D., & Ruiz-Cortes, A. (2006, December). Automated analysis of feature

models: challenges ahead. Communications of the ACM , pp. 45-47.

[32] Jussien, N., Rochart, G., & Lorca, X. (2008). Choco: an open source java constraint programming

library. CPAIOR'08 Workshop on Open-Source Software for Integer and Contraint Programming

(OSSICP'08, (pp. 1-10).

[33] Mohabbati, B., Gašević, D., Hatala, M., Asadi, M., Bagheri, E., & Bošković, M. (2011). A Quality

Aggregation Model for Service-Oriented Software Product Lines Based on Variability and

Composition Patterns. Service-Oriented Computing , 436-451.

[34] Bouanaka, M. A., & Zarour, N. (2013). An approach for an optimized web service selection based on

skyline. International Journal of Computer Science Issues , 10 (1), 412-418.

[35] He, Q., Han, J., Yang, Y., Grundy, J., & Jin, H. (2012). QoS-Driven Service Selection for Multi-Tenant

SaaS. IEEE 5th international conference on Cloud computing (cloud) (pp. 566-573). IEEE.

[36] Yu, T., & Lin, K.-J. (2005). Service Selection Algorithms for Composing Complex Services with

Multiple QoS Constraints. Proceedings of the International Conference on Service-Oriented

Computing-ICSOC 2005, (pp. 130–143).

[37] Alrifai, M., Skoutas, D., & Risse, T. (2010). Selecting skyline services for QoS-based web service

composition. Proceedings of the 19th international conference on World wide web (pp. 11-20).

ACM.

[38] Li, J., Zheng, X.-L., Chen, S.-T., Song, W.-W., & Chen, D.-r. (2014). An efficient and reliable

approach for quality-of-service-aware service composition. Information Sciences , 269, 238-254.

[39] Quinton, ,. C., Romero, D., & Duchien, L. (2014). Automated Selection and Configuration of Cloud

Environments Using Software Product Lines Principles. IEEE 7th International Conference on

Cloud Computing (CLOUD) (pp. 144-151). IEEE.

[40] Schroeter, J., Mucha, P., Muth, M., Jugel, K., & Lochau, M. (2012). Dynamic Configuration

Management of Cloud-based Applications. Proceedings of the 16th International Software

Product Line Conference-Volume 2, (pp. 171-178).

