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Abstract  
The electrochemical corrosion behaviour of untreated, quenched and annealed cold rolled 1060 aluminium specimens was 
studied through weight loss measurement, potentiodynamic polarization technique and optical microscopy in 0.5, 1, 1.5 and 
2M H2SO4 and HCl solutions. Data obtained from the tests show that the quenched specimens had the highest corrosion 
resistance as a result of its hardened surface due to retained saturated solid solution. The untreated aluminium specimens 
exhibited a lower corrosion resistance than the quenched specimens though the corrosion rates from HCl solution are 
generally higher than values obtained from H2SO4. Annealed specimens had the highest corrosion rate as its passive 
protective film resulting from the rearrangement of its microstructural constituents could not sustain the aggressive attack of 
corrosive anions within the acid solution. Micrographs from optical microscopy showed a severely deteriorated annealed 
morphology resulting from depletion of the grain boundary. Corrosion pits were observed in the untreated specimens while 
the quenched specimens showed limited deterioration due to general corrosion.  
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1. INTRODUCTION 
 

The Aluminium is an important structural engineering material, its usage ranking only behind ferrous 
alloys. Its growth in usage and production has continued to increase exponentially (Birbilis et al., 2011; Davis, 
1999). Aluminium alloys are extensive employed as the material of construction for heat exchangers, aircraft 
parts, electrical wires, radiators, automotive parts, marine, buildings and architecture, sports equipment and 
components in water cooling/treatment facilities (Makanjuola et al., 2013). The excellent corrosion resistance of 
aluminium and its application as one of the most versatile commercial used alloy is due to the barrier oxide film 
that is strongly attached to its surface and when damaged it immediately reforms in some industrial conditions. 
It is very resistant to corrosion under the majority of service conditions such as seawater, acids and chemical 
derivatives and no coloured salts are formed to stain adjacent surfaces or discolour products with which it comes 
into contact. Its light weight, strength and corrosion resistance are some of its most important advantages and 
the main reasons for its continued application (Sivam et al., 2016; Bruhn, 1972; Wernick et al., 1987; Bertila et 
al., 2013). Surface deterioration aluminium alloy is usually quite visible due to the formation of whitish 
precipitates on the alloy surface. Superior mechanical and optimal chemical properties of aluminium alloys are 
attained as a result of the possible application of structural hardening treatments and compositional 
modifications (Maria-Cristiana et al., 2010).  However aluminium alloys are reactive metals and susceptible to 
electrochemical reactions. The surface film on the alloy is amphoteric and deteriorates significantly when 
exposed to high concentrations of acids or bases. The subsequent exposure of the substrate alloy after 
breakdown of the protective film leads to a sequence of electrochemical reactions as the metal continues to 
deteriorate (Hurlen et al., 1984; Mountarlier et al., 2005).  

Numerous authors have studied the corrosion of aluminium in aqueous environments due to their economic 
and industrial importance, and a number of theories have been proposed to explain the deterioration of the 
protective film when anions of corrosive species including chloride diffuse through it into the metal film 
interface. Some theories propose that the anion chemisorbs on the oxide surface and aids dissolution through the 
formation of metallic complexes (Lukovits et al., 2001; Brett et al., 1994; Abedin, 2001; Brett, 1992; Beck, 
1988). Solange et al (2011) concludes that pitting corrosion of aluminium alloy in saline environment, seems to 
be closely related to the particles intermetallic second phase and intermetallic composition. Heat treatment is a 
required process in the final fabrication of any engineering component to make the metal more applicable 
structurally, mechanically and physically, for some specific application (Rajan et al., 1988). 

 Annealing is a heat treatment process used to change metallic properties such as hardness, toughness etc. 
through heating of the metal to a specified temperature then slowly cooling it to achieve ductility, softness, 
removal of internal stresses homogenizing and improvement of cold forming properties. Quenching involves 
rapid cooling of metal alloy to room temperature to retain the solute in metal solution. This prevents solid-state 
diffusion and phase precipitation. Quenching results in saturated solution and allows for increased hardness and 
improved mechanical properties of the metal (Abubakre et al., 2009). The 1xxx series of aluminium are strain-
hardenable and are applied where strength is not a major consideration but in applications where extremely high 
corrosion resistance, formability and/or electrical conductivity are required such as in chemical industries. This 
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from the Tafel plots of potential versus log current. The corrosion rate (ɤ) and the percentage inhibition 
efficiency (2) were from equation 1.  

                                                                                                                 ɤ = 
଴.଴଴ଷଶ଻	˟	௃ౙ౥౨౨	˟	ா౧

஽
                               (1) 

where jcorr is the current density in µA/cm2, D is the density in g/cm3; Eq is the specimen equivalent weight in 
grams. 0.00327 is a constant for corrosion rate calculation in mm/y (Àabanowski, 1997; Brickner, 1968).  
 
2. 5. Weight loss measurement 
        Weighed steel samples were individually immersed fully into 150 mL of the dilute acid media for 480 h at 
ambient temperature of 25 oC. Each sample was removed from the solution at 24 h interval, rinsed with distilled 
water and acetone, dried and re-weighed according to ASTM G31-12a (Souto et al, 2001). Graphical 
illustrations of corrosion rate, ɤ (mm/y) versus exposure time T were plotted from the data obtained during the 
exposure hours. The corrosion rate (ɤ) calculation is defined as (Antony et al, 2007); 

                                                                                                                        ɤ = ቂ
଼଻.଺ῶ

஽஺்
ቃ                                       (2) 

where ῶ is the weight loss in mg, D is the density in g/cm3, A is the total area in 
cm2 and 87.6 is a constant. 
 
2.6. Optical microscopy Characterization 
        Optical micrographs of the  surface morphology and topography of the heat treated aluminium specimens 
was studied after weight-loss analysis with the aid of Omax trinocular optical metallurgical microscope at the 
Physical Metallurgical Laboratory, Covenant University, Ogun state, Nigeria. 
 
3. RESULTS AND DISCUSSION 
 

3.1. Potentiodynamic Polarization 
        The polarization plots for untreated, annealed and quenched Al 1060 specimens from H2SO4 and HCl acid 
solutions are shown in Figs. 2-4. The results from the polarization scans are presented in Tables 2-5. Generally 
for all Al 1060 specimens, increase in concentration for both acids results in proportionate increase in corrosion 
rate. Untreated Al 1060 specimens (Table 2) showed greater corrosion resistance in H2SO4 solution compared to 
specimens from HCl solution. The same phenomenon was observed for the annealed and quenched Al 1060 
specimens (Tables 3 & 4). The corrosion rate of the annealed Al 1060 specimens are significantly higher than 
the untreated samples. The non-metallic constituents of annealed Al 1060 precipitate and diffuse from solid 
solution to concentrate at the grain boundaries, small voids, on undissolved particles, at dislocations, and other 
imperfections in the aluminum lattice. The changes in Al 1060 during solution annnealing has a detrimental 
effect on the corrosion resistance of the metal at all concentrations studied. During annealing heat treatment 
process, the rearrangements of the metallic constituents is responsible for texture development, grain size and 
mechanical and surface properties which invariably influence the electrochemical behaviour of the annealed Al 
1060 specimens. Quenched Al 1060 generally exhibited slightly higher corrosion resistance than the untreated 
and annealed Al 1060 specimens. The corrosion behaviour of the quenched specimens was significantly 
influenced by changes in their metallurgical structure. The difference in their intermetallic particles, their sizes 
and frequency of precipitation determine their overall microstructure and response to attack from chlorides and 
sulphates ions, however the overall effect of quenching heat treatment on the corrosion resistance of Al 1060 is 
minimal (Slamova et al., 2000). Quenching results in a saturated solid solution responsible for a hardened metal, 
previous research has shown that the highest degree of corrosion resistance is through quenching (Van Horn, 
1967).  The presence of chloride and sulphate ions significantly influence the corrosion behaviour of Al 1060 
specimens due to their ability to react with and penetrate into the protective oxide film, thereby breaking its 
passivity under induced potential during potentiostatic scanning (Sato, 1987). Corrosion potential values for Al 
1060 specimens in HCl are much higher than values in H2SO4 solution. There is a significant negative shift in 
corrosion potential values for Al 1060 specimens in HCl acid solution for untreated, annealed and quenched 
specimens. Similar phenomenon was observed by  Caperali et al (2008) which implies deterioration of the 
passive aluminium oxide layer on the specimens and removal of chloride/aluminium compounds on the metal 
surface according to the equation (Khaled, 2010):  

                                     Al3+(crystal oxide) + 2Cl-+ 2OH-  → Al(OH)2Cl-
2.     (3) 

 

       The small size of Cl− ions enables penetration through the passive oxide film under the effect of an electric 
field to maintain electrical neutrality and hydrolysis of the corrosion products causing acidification, and hence 
prevents repassivation. The accumulated presence of corrosive ions within the acid solution accelerated the 
corrosion rate of all Al 1060 specimens after 0.5 M acid concentration due to destruction of the passive oxide 
layer that forms on the metal surface. The passive layer consist of different modification of the oxide Al2O3, 
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hydroxide Al(OH)3, or the oxyhydroxide AlOOH (→passivity). In the acid solution Al 1060 dissolves to Al3+ 
ions according to the following reaction 

   Al→Al3+ + 3e-                                  (4) 

The oxide layers dissolves and Al3+ ions are formed according to equation (5) 

                                                                                                          Al(OH)3(aq) + 3H+ → Al3+
(aq) + 3H2O           (5) 

 

       Increase in corrosion current density observed on the plot is as a result of active metal dissolution reaction 
of the passive film. The anodic and cathodic Tafel slope of the annealed and quenched Al 1060 specimens did 
not showed any noticeable change despite the changes in their metallurgical structure, however the cathodic 
reactions tend to predominate over the anodic suggesting that the mechanism of the dissolution process is 
majorly through hydrogen evolution due to aluminium ion hydrolysis according to the equation; 

                                                                                                                     2H++ 2e- →H2                                   (6) 
 

       The interaction between local cathodes, anodes and the metal substrate leads to the uniform corrosion of Al 
1060 specimens. The protective oxide layer represents the thermodynamic stability of Al 1060 specimens in the 
corrosive environment - acting as a physical barrier as well as being capable of repairing itself in oxidizing 
environments when damaged. The soluble complex ion formed by the anionic species leads to the dissolution of 
the metal. (Sato, 1990; Szklarska-Smialowska, 2002). The susceptibility of these alloys is strongly affected by 
heat treatments, which change the microstructure of the alloy.  
formation. 
 

 
Figure 2. Polarization plots for untreated Al 1060 specimens in 0.5-2M H2SO4 & HCl acid media 

 

 
Figure 3. Polarization plots for annealed Al 1060 specimens in 0.5-2M H2SO4 & HCl acid media 
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Figure 4. Polarization results for quenched Al 1060 specimens in 0.5-2M H2SO4 & HCl acid media 

  
Table 2. Polarization results for untreated Al 1060 specimens in 0.5-2M H2SO4 & HCl acid media 

Untreated H2SO4             
Acid 
Concentration 
(M) 

Corrosion 
Rate 
(mm/y) 

Corrosion 
Current 
(A) 

Corrosion 
Current Density 
(A/cm2) 

Corrosion 
Potential (V) 

Polarization 
Resistance, Rp 
(Ω) 

Cathodic Tafel 
Slope (V/dec) 

Anodic Tafel 
Slope (V/dec) 

0.5 9.25 9.60E-04 8.50E-04 -0.617 17.6 -5.15 -8.23E-16 
1 14.36 1.49E-03 1.32E-03 -0.627 17.24 -5.74 1.65E-15 
1.5 20.91 2.17E-03 1.92E-03 -0.630 8.12 -6.24 8.23E-16 
2 35.94 3.73E-03 3.30E-03 -0.640 5.21 -7.42 -1.65E-16 
Untreated HCl   
Acid 
Concentration 
(M) 

Corrosion 
Rate 
(mm/y) 

Corrosion 
Current 
(A) 

Corrosion 
Current Density 
(A/cm2) 

Corrosion 
Potential (V) 

Polarization 
Resistance, Rp 
(Ω) 

Cathodic Tafel 
Slope (V/dec) 

Anodic Tafel 
Slope (V/dec) 

0.5 23.51 2.44E-03 2.16E-03 -0.661 10.52 -5.88 -1.65E-15 
1 35.36 3.67E-03 3.25E-03 -0.701 2.96 -6.49 0.00E+00 
1.5 54.92 5.70E-03 5.04E-03 -0.697 1 0 0.00E+00 
2 96.35 0.01 8.85E-03 -0.735 1.2 -5.75 0.00E+00 

 
Table 3. Polarization results for annealed Al 1060 specimens in 0.5-2M H2SO4 & HCl acid media 

Annealing H2S04             
Acid 
Concentration 
(M) 

Corrosion 
Rate 
(mm/y) 

Corrosion 
Current 
(A) 

Corrosion 
Current Density 
(A/cm2) 

Corrosion 
Potential (V) 

Polarization 
Resistance, Rp 
(Ω) 

Cathodic Tafel 
Slope (V/dec) 

Anodic Tafel 
Slope (V/dec) 

0.5 27.17 2.82E-03 2.50E-03 -0.611 19.41 -5.5 -1.65E-15 
1 39.50 4.10E-03 3.63E-03 -0.651 11.15 -5.3 0.00E+00 
1.5 45.67 4.74E-03 4.19E-03 -0.672 6.88 -5.38 1.65E-15 
2 73.42 7.62E-03 6.74E-03 -0.690 3.37 -5.44 1.65E-15 
Annealing HCl   
Acid 
Concentration 
(M) 

Corrosion 
Rate 
(mm/y) 

Corrosion 
Current 
(A) 

Corrosion 
Current Density 
(A/cm2) 

Corrosion 
Potential (V) 

Polarization 
Resistance, Rp 
(Ω) 

Cathodic Tafel 
Slope (V/dec) 

Anodic Tafel 
Slope (V/dec) 

0.5 45.24 4.70E-03 4.15E-03 -0.722 36.96 -7.38 1.65E-15 
1 56.05 5.82E-03 5.15E-03 -0.790 31.44 -6.97 1.08E+01 
1.5 70.72 7.34E-03 6.50E-03 -0.759 1.92 -5.72 0.00E+00 
2 108.69 1.13E-02 9.98E-03 -0.786 7.84 -6.29 -1.65E-15 

 
3. 2. Weight loss Measurement 
        Results obtained from weight loss analysis for weight loss (ῶ) and corrosion rate (ɤ) of untreated, annealed 
and quenched Al 1060 specimens from H2SO4 and HCl acid solutions are presented in Tables 5 & 6. Fig. 4, 5 & 
6 shows the graphical plot of corrosion rate versus exposure time for Al 1060 specimens in the acid media. 
Following the trend from potentiodynamic polarization tests, Al 1060 specimens corroded proportionately with 
increase in concentration of the acid media. Aluminium being an amphoteric metal reacts spontaneously to the 
changing properties of its protective oxide especially at sites of flaws, non-metallic inclusions, defects etc. The 
oxide do not offer sufficient protection against aggressive anions of chlorides and and sulphates as a result 
dissolution of Al 1060 substrate occurs in the acid solution. The dissolution reactions in the presence of the 
oxide film occurs through movement of Al 1060 ions through the film and an indirect metal dissolution reaction 
by consecutive oxide film formation and dissolution (Moon and Pyun, 1998; Moon and Pyun, 1999). 
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Table 4. Polarization results for quenched Al 1060 specimens in 0.5-2M H2SO4 & HCl acid media 

Quenching H2SO4 
Acid 
Concentration 
(M) 

Corrosion  
Rate  
(mm/y) 

Corrosion 
Current 
(A) 

Corrosion 
Current Density 
(A/cm2) 

Corrosion 
Potential (V) 

Polarization 
Resistance, Rp 
(Ω) 

Cathodic Tafel 
Slope (V/dec) 

Anodic Tafel Slope 
(V/dec) 

0.5 5.25 5.45E-04 4.82E-04 -0.685 39.85 -7.68 0.00E+00 
1 9.83 1.02E-03 9.03E-04 -0.684 16.86 -6.92 0.00E+00 
1.5 17.92 1.86E-03 1.65E-03 -0.679 9.36 -6.62 0.00E+00 
2 30.25 3.14E-03 2.78E-03 -0.684 4.18 -6.9 0.00E+00 
Quenching HCl 
Acid 
Concentration 
(M) 

Corrosion 
Rate 
(mm/y) 

Corrosion 
Current 
(A) 

Corrosion 
Current Density 
(A/cm2) 

Corrosion 
Potential (V) 

Polarization 
Resistance, Rp 
(Ω) 

Cathodic Tafel 
Slope (V/dec) 

Anodic Tafel Slope 
(V/dec) 

0.5 16.86 1.75E-03 1.55E-03 -0.691 5.22 -7.45 0.00E+00 
1 30.64 3.18E-03 2.81E-03 -0.742 4.25 -6.18 -1.65E-15 
1.5 47.21 4.90E-03 4.34E-03 -0.766 1.41 -6.45 0.00E+00 
2 83.83 8.70E-03 7.70E-03 -0.757 0.77 0 0.00E+00 

 
The presence of Cl- and SO4

2- ions caused an increase in corrosion current densities but slightly affects the 
corrosion potential. The results show that the aggressiveness of the anions is due to their easy adsorbability onto 
the surface of the protective oxide film and diffusion through the pores causing the rupture of the protective 
layer on Al 1060 surface (Belkhaouda et al., 2010). Table 5 shows a significant increase in weight loss and 
corrosion rates for Al 1060 specimens with increase in H2SO4 acid concentration. Specimens for annealed Al 
1060 specimens showed higher susceptibility to corrosion than the untreated specimens, while quenched Al 
1060 showed the lowest corrosion rates in comparison to the untreated and annealed specimens. The same 
phenomenon was observed in Table 6 for Al 1060 specimens in HCl acid solution, though at higher corrosion 
rate values. The electrochemical behaviour of the untreated, annealed and quenched Al 1060 specimens from the 
onset to the end of the exposure period are clearly depicted in the figures earlier mentioned (Figs. 4-6). The 
figures show that heat treatment has limited effect on the general corrosion behaviour of the Al 1060 specimens. 
The active passive reaction of the metal varies with exposure time and acid concentration with the exception of 
the unusual behaviour of Al 1060 specimen in 1.5M H2SO4 (Fig. 4).  
 

 
Figure 4. Graphical plot of corrosion rate versus exposure time for untreated Al 1060 specimen in H2SO4 & 

HCl acid media 
 

Table 5. Results for Al 1060 specimens (untreated, annealed and quenched) from H2SO4 acid media 
    Untreated Annealed Quenched 
Al 1060 
Specimens H2SO4 Conc. (M) 

Weight 
Loss (g) 

Corrosion Rate 
(mm/yr) 

Weight 
Loss (g) 

Corrosion Rate 
(mm/yr) 

Weight 
Loss (g) 

Corrosion Rate 
(mm/yr) 

A 0.5 0.074 0.0008 0.211 0.0017 0.058 0.0006 
B 1 0.107 0.0012 0.245 0.0027 0.082 0.0009 
C 1.5 0.170 0.0019 0.354 0.0040 0.112 0.0013 
D 2 0.249 0.0028 0.685 0.0077 1.133 0.0015 
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Figure 5. Graphical plot of corrosion rate versus exposure time for annealed Al 1060 specimen in H2SO4 & HCl 

acid media 
 

 
Figure 6. Graphical plot of corrosion rate versus exposure time for quenched Al 1060 specimen in H2SO4 & 

HCl acid media 
 

Table 6. Results for Al 1060 specimens (untreated, annealed and quenched) from HCl acid media 
    Untreated Annealed Quenched 
Al 1060 
Specimens 

HCl Conc. 
(M) 

Weight 
Loss (g) 

Corrosion 
Rate (mm/yr)

Weight 
Loss (g) 

Corrosion  
Rate (mm/yr) 

Weight 
Loss (g) 

Corrosion 
Rate (mm/yr)

A 0.5 0.101 0.0011 0.210 0.0024 0.075 0.0008 
B 1 0.481 0.0054 0.501 0.0056 0.280 0.0031 
C 1.5 0.852 0.0096 1.275 0.0143 0.573 0.0064 
D 2 2.244 0.0252 2.491 0.0279 1.919 0.0215 

 
3.3 Optical Microscopy  
      The optical micrographs give information about the resulting microstructure of the material before and after 
heat treatment and corrosion test. The micrograph for the as received, untreated, annealed and quenched Al 1060 
specimens from H2SO4 and HCl acid solution after the corrosion test are shown in Fig. 7 - Fig. 10. Fig. 7 shows 
the micrographs of untreated Al 1060 specimen before the corrosion test. The lined surface on the micrograph is 
due to the effect of machining of the specimens. The micrograph morphology tends to be heterogeneous due to 
the effect of cold working. The micrograph of the untreated specimen (Fig. 8) after the corrosion test showed the 
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4. CONCLUSION 
 

Quenching heat treatment reduced the corrosion susceptibility of cold rolled 1060 aluminium; the 
metallurgical structure of hardened saturated solid solution exhibited strong resistance to pitting and 
intergranular corrosion  due to improved passivation properties. The quenched micrograph showed a slightly 
depleted morphology from general corrosion. Annealed aluminium specimen was observed to be the most 
susceptible to sulphate and chloride attack leading to intergranular corrosion and severe deterioration along the 
grain boundaries. Results of corrosion rates from the electrochemical techniques confirms the severity of 
annealing heat treatment with values much lower than the untreated cold rolled aluminium. Pitting corrosion 
was observed on the micrographs of the untreated aluminium from HCl solution due to the debilitating action of 
chlorides.  
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