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Vibration-Based Structural Health Monitoring: Theo-
retical Foundations and Experimental Validation on 
Reinforced Concrete Beams  
 
Quick identification of damages in structures is of great importance to 
engineers. Among the various techniques available for the evaluation of 
reinforced concrete structural integrity, non-destructive tests method 
remain a viable one as its use can lead to speedy decisions that bring 
savings on repairs or replacement of damaged reinforced concrete 
structures. This research uses modal parameter-based non- destructive 
tests to assess damages in reinforced concrete beams under static 
load. Four-point static loadings were applied to the 3 RC beams to in-
duce three damage scenarios. After each static loading, a dynamic test 
was performed to access the degree of stiffness degradation. Modal 
frequencies and mode shapes obtained depicts clearly the stiffness de-
gradations of the beams as the severity of damages on the beams be-
came more pronounced. Results obtained showed that the research 
procedure adopted is a smart approach for damage assessment in rein-
forced concrete elements.  

Keywords: Damage Assessment, Dynamic Test, Non-Destructive 
Tests, Reinforced Concrete Beams 

1. Introduction  

Vibration-based structural damage assessment was conceived in analogy to 
the use of vibration as a machine condition indicator. Machines hardly break down 

without warning. The signs of impending failure are usually present long before 

breakdown makes the machine unusable. Machine troubles are almost always 
characterised by an increase in vibration level which can be measured on some 

external surface of the machine and thus act as an indicator. With the frequency 
analysis of vibration signals, it is possible to locate the source of many of the fre-

quency components present. The frequency spectrum of a machine in a normal 
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running condition can therefore be used as a reference "signature" for that ma-
chine. Subsequent analyses can be compared to this reference so that not only the 

need for action is indicated but also the source of the fault is often diagnosed. 
Based on this reasoning, vibration tests are adopted widely for structural 

health monitoring/damage assessment since the frequency spectrum of a structure 

in an un-damaged/normal condition can be used as a reference signature for that 
structure in subsequent moments or working conditions. 

 
2. The evolution of structural health monitoring  

The past 50 years have witnessed major developments in the theory and ap-
plication of linear dynamic systems, work that were heavily influenced by Kalman’s 

results in the early 1960s. Much of these works developed as system identification, 

originated from systems and control engineering and are applicable in many differ-
ent engineering fields, in economics and in medicine etc. System identification ba-

sically means modelling of the dynamic systems from experimental data. Structural 
health monitoring or damage detection is an important application of system iden-

tification. This consist in conducting non-destructive test or inspection of a struc-

ture to determine the existence, location and extent of damages, and, in some 
cases make a prediction on the future life of the system. This practice that started 

in the mechanical-based industries and have taken an increased importance in 
aerospace sector have finally crossed over to the civil applications within the last 

few decades. This has greatly increased the use of aircrafts structures far beyond 
their original life expectancy. Additionally, as the civil infrastructures ages, the de-

termination of their integrity for continued safe usage becomes critical. Costs asso-

ciated with inspection, maintenance, and system downtime also provides motiva-
tion for improved inspection and damage identification practices. For these rea-

sons, new methods of structural health monitoring are being explored to better 
determine the functional safety of structures ([1], [2], [3]). In particular, system 

identification has turned out to be very useful in damage assessment of complex 

civil engineering structures, such as towers, dams, bridges, offshore structures.  
This vibration based health monitoring algorithm that have its root in struc-

tural system identification utilizes changes in response functions or modal parame-
ters such as natural frequencies, mode shapes or their derivatives, to identify 

damage locations and levels of damages. Analysis of changes seen in parameters 

between sequential tests over time is used to determine damage characteristics. 
Excellent reviews of model-based health monitoring methods can be found in ([4], 

[5], [6], [7]).  
 Model-based health monitoring methodologies are excellent tools in the 

model updating process. For this purpose, one set of data from the analysis model 
is compared to a set of data from the physical structure. The presence of damage 

is detected when the features of the model do not match the experiment. Localized 

methods are much better suited for this purpose, as it is better to update individual 
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elemental or sub-structural properties rather than global properties across the 
whole design. Analytical sensitivities of response parameters to changes in physical 

properties are used to update modelling assumptions.  

2.1 Fundamentals of Structural Dynamics 

Vibration is a common phenomenon verified in our surroundings whenever 

dynamic forces excite structures. It is often a destructive and annoying side effect 
of a useful process, but is sometimes generated intentionally to perform a task. It 

can originate from natural phenomenon or man-made actions. The effects of vibra-
tions often cause discomfort, fatigue, health hazards and in extreme cases destruc-

tions. Within the recent times, the technological advancement has brought about 
the invention of more complex structures which are accompanied by increased dy-

namic problems. In this era in which a lot of emphasis is being placed on competi-

tive and sustainable growth, there is an ever increasing need for a reliable dynamic 
analysis. A comprehensive understanding of structural dynamics [see e.g. [8], [9], 

10]) is essential for the design and development of new structures, and to solving 
noise and vibration problems on existing structures. One of the reliable tools for 

vibration analysis is Modal Analysis.  
Modal analysis covers a variety of applications on the analysis of modal parame-
ters. These parameters describe specific dynamic characteristics of the structure. 

The application of modal analysis implies knowledge of a broad range of physical 
laws and mathematical concepts. The basic assumptions for linear modal analysis 

consist of schematizing the structure as a linear system whose dynamic behaviour 
can be described by a set of differential equations, the structure obeying Maxwell’s 

reciprocity theorem and the structure being time invariant.     

 
2.1.2. Single Degree of Freedom Systems (SDOF) 

The simplest linear system adopted is Single Degree of Freedom System 
(SDOF). The dynamic behaviour of the linear SDOF system can be regarded as the 

basis for much of the analysis and interpretation of results for more complicated 

vibratory systems. In particular, the response of multi-degree-of -freedom (MDOF) 
linear systems is a superposition of modal responses of SDOF systems. All dynamic 

properties of mechanical systems are distributed in space. However, in linear vibra-
tion analysis, the basic properties are considered as separated into simple discrete 

elements which often represent the dynamic properties of the system to sufficient 

accuracy. The discretization of a single degree of freedom (SDOF) oscillator with its 
properties are represented by the elements of an analytical model in figure 1. It is 

an abstract system consisting of a point mass (m) supported by a massless linear 
spring of constant stiffness (k) and connected to a linear viscous damper (c). The 

mass is constrained so that it can move in only one direction (x). 
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Figure 1. A single Degree of Freedom System. 

 

A mathematical model in the time domain can be derived by applying New-
ton's Second Law to the analytical model. By equating the internal forces (inertia, 

damping and elasticity) with the external (excitation) force, we obtain the model 

which is a second-order differential equation 
 

                     (1) 

 

where f(t) and x(t) are respectively the time dependent excitation force applied to 
the system and the corresponding displacement. The initial displacement and 

velocity conditions (t = 0) are (0)x  and .  

  The solution of equation (1) is the sum of the solution of the corresponding 

homogeneous equation of the free vibration with a particular integral of the non-

homogeneous equation of the forced Vibration. 
While the un-damped solution (( ) corresponds to a harmonic motion, of 

frequency nω  (known as the un-damped natural frequency) and with constant 

amplitude, the under-damped solution ( ) has an oscillating motion of 

frequency  (damped modal frequencies) which tends exponentially 

to zero. 

This solution which is closer to what is obtained in real structures has the 

following solution:  
 

   (2) 
 

 Steady state solution is the part relative to the forced vibration. Adopting  
 as a dimensionless parameter representing the ratio of the forcing fre-
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quency to the un-damped natural frequency of the system, we can consider the 
steady state solution of the forced vibration in terms of the following quantity: 

 

         (3) 

 
where  is the static deformation of the system if loaded by a constant 

force F and Q is amplification factor. When  and  ( ) the steady 

state vibration has infinite amplitude  and this particular situation is called reso-

nance. Avoiding resonance is of great importance for engineering design since it 
can lead to ruin of any structure.  

Since real dynamic system always have some energy dissipating mechanisms, 

the amplitude at resonance never arrive at infinity. For low damping, it can assume 
very large values. The maximum value of the amplitude of the steady state vibra-

tion occurs for . At resonance,  

 

          (4) 

 

The frequency domain solution for the forced vibration is contained in the mathe-
matical expression relating the output to the input: 

 

              (5) 

 
and is referred to as the system’s Frequency Response Function (FRF).  

 

2.1.3. Multiple Degree of Freedom Systems (MDOF) 
 

  The SDOF model served to describe a dynamic system in its simplest term. 
Real structures are continuous and non-homogeneous elastic systems with infinite 

number of degrees of freedom. Therefore, their analysis entails the adoption of a 

finite number of degrees of freedom (DOFs), which, permits an approximation that 
ensures accuracy. Choosing the DOFs must be one of the beginning points of any 

analysis. The DOFs are the number of independent coordinate necessary to com-
pletely describe the motion of the system. 

Typically, the equilibrium conditions for linear time-invariant continuum me-
chanics are discretized through spatial displacement interpolation to a finite num-

ber of variables (e.g. finite element methods), resulting in n-dimensional set of 

second-order linear differential equations having M, C and K as n x n mass, damp-
ing and stiffness symmetric matrixes respectively of the system.  are nx1 

vectors of time-varying acceleration, velocity and displacement responses, respec-

tively. This is then accompanied with by a sensor output vector and output influ-

ence matrices for displacement, velocity and acceleration, respectively. 
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2.1.4. Natural Frequencies and Mode Shapes of Un-damped MDOF 
system. Proportionally damped systems 

 
The natural frequencies and mode shapes of an un-damped MDOF system is 

obtained by solving for a non-trivial solution of equation 

 
          (6) 

 

or a characteristic equation in the form of: 
 

          (7) 

 

This equation yields n possible positive real solutions  known as 

the eigenvalues of equation (6), while   are the un-damped natural 

frequencies of the system. Substituting each natural frequency value in equation 

(6) and solving for X, we obtain n possible vector solutions   

known as the mode shapes, modes of vibration or eigenvectors of the system un-

der analysis. The n elements of these eigenvectors  are real quantities and can 

be graphed to give a clear view of how the system moves at that particular mode. 

The mass normalized mode shapes of the modal matrix are obtained from the 
un-damped modal mode shapes as: 

 

           (8) 

  
2.2. Execution of modal test and extraction modal parameters  

A typical modal test can be executed by setting up the modal test, taking 
measurements and estimating the parameters. You start by specifying the Degrees 

of Freedom (DOFs) of interest. The number of DOFs needed depends on the pur-

pose of the test, on the complexity of structural geometry, and must be chosen to 
capture the total dynamics of the structure. Hammer excitation or electrodynamic 

vibration exciter can be adopted, based on the frequency range of interest. The 
exciter is best positioned at a point where both the symmetric and asymmetric 

modes will exhibit maximum motion. 
The simplest set of instrumentations is composed of a dual-channel signal 

analyzer, with hammer excitation, and an accelerometer to measure the response 

signal. For the first few bending modes, few DOFs aligned in the vertical direction 
will be sufficient. After the setting up of the instrumentation, preliminary adjust-

ments are often necessary as to guarantee an improve the final results 
The measurement phase is the most critical and important part of the whole 

operation. The quality of results to be obtained depends primarily on the accuracy 

obtained at the measurement. Here, a set of FRF measurements between the exci-
tation DOF and all the other defined DOFs is taken and stored. A dual-channel FFT 
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analyzer is used to measure the FRF. For the measurements, the analog input sig-
nals are filtered, sampled, and digitized to give a series of digital records. Over a 

finite time these records represent the time history of the signals. The sampling 
rate and the record lengths determine the frequency range, and the resolution, of 

the analysis. Each record from a continuous sequence may be weighted by a win-

dow function, which tapers the data at both the beginning and end of each record 
to make the data more suitable for block analysis. The weighted sequence is trans-

formed to the frequency domain as a complex spectrum, by the use of a Discrete 
Fourier Transformation. The measurements are usually made in terms of acceler-

ance and the results arranged as elements of mobility matrix. For n defined DOFs, 
the number of possible input/output combinations is n x n. The individual FRF 

measurements can be arranged as the elements of a mobility matrix H. Each ele-

ment  is a particular FRF measurement. Each row of the matrix contains 

FRFs with a common response DOF while in each column they have a common 

excitation DOF. The diagonal of [H] contains a class of FRFs for which the re-
sponse and excitation DOFs are the same. These are the driving point FRFs. The 

off-diagonal elements are transfer FRFs. Because reciprocity helps in mobility ma-

trix, the number of measurements needed is equal to the number of specified 
DOFs. 

Preferably, a mobility measurement should simply involve exciting the struc-
ture with a measurable force, measuring the response, and then calculating the 

ratio between the force and response spectra. In practice however, we are faced 

with the problems of noise and limited analysis resolution. To minimize these prob-
lems, we have to apply some statistical methods and averaging process to esti-

mate the FRFs from our measurements. The Autospectra of the force and the re-
sponse, together with the Cross Spectrum between the force and response are 

then needed for the FRF estimates.  

From any measured FRF we can determine the modal frequencies and damp-
ings, and thus obtain the pole locations. A structure with lightly coupled modes 

behaves as a single-degree-of freedom system around its modal frequencies and it 
can be assumed that all the response is due to that particular mode. The modal 

frequencies are determined simply by observing the maximum magnitudes on the 
FRF. 

The modal dampings are not so simple to determine, and will often be the pa-

rameters measured with the greatest degree of uncertainty. One technique that 
can be used to measure the damping is to find the -3dB bandwidths. On a lightly 

damped structure the resonances are sharp and the peaks are too narrow for ac-
curate measurements of the bandwidths. This problem can often be overcome by 

making a zoom analysis to obtain sufficient frequency resolution for the measure-

ments.  
The mode shapes can be determined if we fix a response, or an excitation 

DOF as a reference and then make a set of measurements. The imaginary parts of 
the measured FRFs can be "picked" at the modal frequencies at which they repre-
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sent the modal displacement for that specific DOF. If the measurements were 
made with calibrated instrumentation, the mode shapes could then be scaled. 

 
3. Experimental Validation on Reinforced Concrete (RC) Beams 

This experimental research aims to verify the efficiency of using dynamic tests 
procedures presented in section 2 of this paper to assess damages in reinforced 

concrete beams under static load. The test specimens, material properties and test 
methods used are hereby presented. Three RC beams of 15 x 20 cm cross-section 

and a length of 220cm, reinforced with four ribbed longitudinal steel bars were 

adopted for the experimental program. The RC beam is shown in figure 2 while 
table 1 shows the material properties of the beams. 

 
Table 1. Reinforced concrete material properties 

VALUES PROPERTIES 

CONCRETE STEEL 

Young’s Modulus 28400 [MPa] 200000 [MPa] 

Poisson’s ratio 0.18 0.3 

Compressive Strength 60 [MPa] 500 [MPa] 
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Figure 2. Geometry (cm) and the four point bending loading of the beams 

 
To generate damages on the RC beams, four- point static loadings were ap-

plied to the beams to induce three damage scenarios. After each static loading, a 
dynamic test was performed to access the degree of stiffness degradation. Three 

PCB Piezometrics’ accelerometers were adopted for the dynamic test and were 
placed at 50cm, 65cm and 100cm, respectively from the beams support. The pro-

cedure was similar to that adopted in [11]. The position of the accelerometers are 

shown in figures 3, while the excitation points are shown in figures 4.   
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Figure 3. Accelerometers locations 
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Figure 4. Excitation points along the beams 

 

For all the beams, a dynamic test was performed at the beginning to obtain 
the reference dynamic properties. After every static a dynamic test was performed 

to verify the corresponding dynamic parameters at that stage. Starting from an 

edge of the beam and within a 10 cm spacing, 23 impact hammer excitations were 
performed to induce vibration of the beams for each damage scenario. The time 

history free responses were filtered with the Fast Fourier Transform (FFT) and the 
Frequency Response Functions (FRF) were obtained.  

 

4. Experimental Results 

Results of the experimental programs aimed at verifying the efficiency of using 
the dynamic tests procedure presented in section 3 of this paper to assess dam-

ages in RC beams under static load is hereby presented. Figures 5 and 6 show the 

sampled 1st and 2nd mode shapes for the RC beam. The mode shapes’ null points 
did not coincide exactly with the position of the beam’s supports, showing the im-

perfections that could arise from the assumptions of the fixity. Figure 7 shows the 
diminishing trend of the frequencies to forecast the degradation of stiffness as the 

severity of damages increased. 
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Figure 5. Sampled 1st mode shape of a RC beam 

 
 

 

 
 

 

Figure 6. Sampled 2nd mode shape of a RC beam 
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Figure 7. shows the diminishing trend of the frequencies as the stiffness degraded 
 

 5. Conclusion 

 The results showed that dynamic-based damage assessment method adopted 
in this research is good in monitoring damage evolution in RC beams under static 

loads. Narrow miss of the fixity points by the modal shape curves highlights the 

uncertainty that can accompany the realization of structural supports. The results 
obtained confirms the assessment procedures used in this research as a quick and 

reliable diagnostic approach to verify the degradation of stiffness of structural ele-
ments if the initial dynamic signature of the structure is known.  
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