
 

 

                                                                                                          

Abstract— In this paper, we used differential transform 
method (DTM) to analyse free vibration of a railway bridge, 
modelled as an orthotropic rectangular plate, supported by 
Pasternak foundation. The effect of damping was considered. 
The present method transformed the governing equation to its 
algebraic form. Solution form to similar equation was adopted. 
The results obtained are in agreement with the ones in 
literature, and it shows that the technique introduced is easy to 
apply to such differential equation governing the vibration of 
such plates. 

Index Terms— Pasternak foundation, Vibration, Damping, 
Differential transform method  

 
I. INTRODUCTION 

ll branches of transport have experienced great 
advances characterized by increasing weight and high 

speed of vehicles including railway vehicles [9,10]. Railway 
bridges vibrate as loads move on them [1,10]. In this work, 
the railway bridge was modelled as a rectangular plate. The 
dynamic behaviour of Plates, as structural elements, highly 
influence overall performance of a structure [1,9,10]. The 
purpose of this paper is to implement the DTM to the fourth 
order differential equation governing the free vibration of 
damped orthotropic plates [1,7,8]. Most of the other 
methods used in solving such problem, are computationally 
intensive. On the other hand, DTM is relatively simple 
[2,3,4,5]. It involves the transformation of differential 
equations to their algebraic forms [3,6].   

 

Figure 1. A moving load on a plate supported by Pasternak 
foundation  
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II FORMULATION OF PROBLEM 

The equation governing the vibration of damped simply 
supported orthotropic plate resting on Pasternak foundation 
subject to a moving load is given by [1,9]; 
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 where 

w = w(x,y,t) is the deflection of the plate at the 
point (x, y). 

t = time in seconds 

E = Young’s modulus 

m = mass density per unit area 

H = thickness of plate 

v = velocity 

K, G1 = foundation stiffness 

  = viscous damping coefficient 

1
= flexural rigidity in the x direction 

 3
= flexural rigidity in the y direction 

 2  = effective torsional rigidity 

                                                                                                                    

A. Initial and boundaryConditions  

The following initial and boundary conditions are used [1,9] 
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III. METHOD OF SOLUTION 

    The Taylor series expansion of a function f(x), about x=0, 
is given by [4]: 
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kF
 is called the kth order differential transform of f(x) about 

the point x = x0. Usually, the series is truncated to finite 
number of terms for practical problems. For this work we 
used eight terms. Assuming the two opposite edges Y = 0 
and Y = 1 to be simply supported, the deflection function 
can be expressed as [1,4,5] 

( ) ( )                                            (2)W w X sin m Y
  Substituting equation (4)  into equation (1) leads to [4,5,6] 
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Taking the differential transform of equation (5) at x0 = 0 
and using the differential transforms of some of the 
fundamental functions reported in [ 2,3,4,5,6], we have 
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Equation (6) can be written in a more concise form as :  
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   The boundary conditions was also transformed in similar 
way. 

Now equation (7) can be rewritten in the form; [4], 
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 The general solution of equation (8) can be expressed as 
[4,6] 
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  , 
2  is the frequency parameter, a and b are the 

length and breadth of the plate respectively.  

G1and K are the Pasternak foundation moduli,d1 and d2 are 
parameters.         
                                                                                

IV. RESULT AND DISCUSSION 

    For the numerical work, the fourth order differential 
equation (1) was solved using DTM. The  values of various 
parameters  used are: m = 7, V = 3.5, 4.5, 5.5, a=1, b=2, 

d1=1, d2=2,  =  0.02, 0.34, 0.55, G1= 0, 0.09, 0.9, 0.18, E = 

2.109 x 107, 
2 =101 and K=0,1,2,3,4,5. 

It can be seen from Figure 2 that as the foundation modulus  
increases the deflection of the damped orthotropic plate 
decreases. This implies that the foundation reduces 
deflection of the plate. Also Figure 3 - 5 show the effect of 
damping on the deflection of orthotropic rectangular plate. It 
can be seen from the Figures that the higher the damping 
coefficient the lower the maximum amplitude. The damping 
effect also reduces the deflection of a plate under a moving 
load.  
 

Figure 2. Deflection of the plate as the foundation modulus 
increases for various time t.  
 

 
Figure 3. Deflection of the plate when damping coefficient 
is 0.02, for various time t 
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Figure 4. Deflection of the plate when damping coefficient 
is 0.34, for various time t 
 

 
Figure 5. Deflection of the plate when damping coefficient 
is 0.55, for various time t 
 
 

V.  CONCLUSION 

Application of differential transform method to the analysis 
of transverse vibration of orthotropic damped rectangular 
railway bridge supported by Pasternak foundation was 
carried out. The results obtained revealed that both the 
foundation modulus and damping have effects on the 
deflection of the railway bridges which was modelled as the 
plate in this work. These results and others obtained are 
consistent with the ones in the literature, as evident in some 
works referenced.  
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