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Abstract 

The equations of energy balance and heat conductivity was 

queried by introducing known parameters and expanded using 

virtual mathematical experimentation. Distribution of 

temperature of the pipe wall, fluid flow and surrounding air 

were accounted for via mathematical expressions.  A new 

dimensionless parameter was introduced with the aim of 

solving future problems in hydraulic engineering.  
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Introduction 

The dynamics of thermal radiation through a pipe wall is 

important to accurately predict the fluid flow and its effects 

over long distances. Fluid flow along a lengthy pipe line 

experiences the friction losses which mitigate the rate of flow. 

The reality of the friction loss in laminar and turbulent fluid 

flow is an important phenomenon in hydraulic engineering. 

One of the reliable modern methods (1) of acquiring an 

accurate thermal analysis of the pipe wall with respect to the 

length of the pipe is the Rosemount 0085 Pipe Clamp Sensor 

shown in the figure [1a] below. Thermal signatures of fluid 

flow are dependent on the viscosity of the fluid (1), friction 

factor (2) and the temperature gradient between the pipe and 

fluid (3). In this paper, we shall account for the three heat 

transfer processes (i.e. conduction, convection and radiation) 

to adequately improve the theory of the work done in Ref [1].  

In this paper, a two order differential equation was derived 

from the equations of energy balance and solved using the 

Bessel polynomial scheme. Previously, the Galerkin technique 

was used to analyze the weak singularity of the tensor kernel 

in fluid engineering (4). Jorge et al., (5) furthered the 

application of the Galerkin technique to obtain the viscous 

drag and capturing singular behavior of the surface tractions 

close to edges and corners of pipe walls.   However, creeping 

flow of fluids within the pipe wall do not account for 

dynamics of thermal radiation through a pipe wall (6), hence, 

the Galerkin technique may not be appropriate. The validity of 

the Galerkin technique to analyze thermal radiation of fluids 

in pipes may be argued on the ground of pipe geometries 

which contributes to the flow properties inside the pipe (7). 

The pipe configurations that yields weak turbulence intensities 

at the exit of the pipe requires a more detailed approach which 

have been suggested in this text. A new dimensionless 

parameter (known as the unified number) was used to solve 

the thermal gradient between two dissimilar fluids operating 

at the boundaries of a separating conductive medium. The 

unified number was first introduced in Ref [6] to incorporate 

both the unified number (U) and the temperature profiles of 

the fluid flow to determine the volume flow rate which varies 

to the third power of the diameter (D). This simply means that 

when the diameter of the pipe is doubled, the flow rate 

increases by a factor 8. This idea was used to solve the 

shortcomings of the application of Reynolds number greater  

than 2000 i.e. Re>2000. Since the Reynolds number have 

been reported to be limited  to estimate measurements of 

velocity and stress fields in rigid pipes (8), the unified number 

(U) is more appropriate for straight pipes. This hypothesis was 

inferred from Ref [6] as shown in the figure 1 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, section two introduces the theoretical 

background to this study. Section three elaborates on the 

mathematical prospects of the unified number to fluid 

engineering. Section four expresses the practical application 

of the mathematical model-generated in section three.  

 

Theoretical Background 

We propose a long pipe of length AB as shown in figure [1a]. 

At any point within the pipe, the following assumption was 

made i.e. fluid temperature at point A differs to the 

temperature at point B 

  or  and or          

Where the temperature of the fluid at point A is,  is the 

temperature of the fluid at point B,  is the temperature of 

 
Figure 1: Theoretical Model using the unified number 

in laminar flow and was validated via experiments of 

two turbulent flow  (Gasljevic et al., 2000)Ref (6) 
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the pipe at point A,  is the temperature of the pipe at point 

B. 

The following thermal flow assumptions were applied i.e. 

when the fluid temperature is greater than the pipe - heat 

flows from the fluid to pipe. For a relatively very long pipe, 

we assume that the pipe and fluid are in thermal equilibrium 

which is represented as  

                 ( )       [1] 

 is the total heat energy in the pipe,   is the total heat 

energy in the fluid, is the heat loss/gain by the surrounding 

air.   

            ( )    [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The heat transfer in the pipe either as heat gain or heat loss is 

conductive. Therefore, the heat transfer processes can be 

summarized as  

                                            

                            [3] 

                                                                [4] 

 is the specific heat of at constant pressure, (Jkg
-1

K
-1

),  is 

the species concentration in the fluid, (kgm
-3

),  is the thermal 

conductivity, (Wm
-1

K
-1

),  is the temperature profile, (K),  

is the mass diffusion coefficient, (m
2
s

-1
),  is the time, (s), 

is the velocity of the fluid,  is the density of the material 

(kgm
-3

),  

 

The initial and boundary conditions are 

 ,            ,         ,     for all    

 , ,          ,      

 ,            ,           ,      

 

Before deriving a unified differential equation, the most 

significant dimensionless parameter are highlighted as 

 

                                                           [5] 

Equation [5] is the dimensionless parameter for temperature 

which expresses the scale or magnitude of the temperature 

gradient of the fluid with respect to the pipe wall. The 

condition  is relative because the temperature of the 

pipe may not necessarily be dependent on the surrounding air. 

To avoid complexities due to the heat source of the pipe, we 

assume it takes its temperature from the surrounding air. 

Again, this assumption is also relative because of the nature of 

the heat source which might be either due to weather or 

artificial (heat generated from machineries). Another vital 

factor of the condition  is the fluid flow of very low 

temperatures. In this case, the pipe absorbs heat from the 

environment so that  

                                                                [6] 

The condition  might also be relative. For clarity, we 

assume that the fluid temperature is dependent only on its 

source i.e. the machine from which it is flowing. 

The other key dimensionless parameters are the Reynolds 

numbers which is defined as ratio between inertial and viscous 

forces. Therefore we shall be looking at the external airflow 

and for the internal fluid flow which is expressed as 

 

                                                                    [7] 

 is the density,  is the viscosity of the fluid flowing in the 

pipe,  is the internal diameter of the pipe and  is the 

mean velocity of that fluid.  Due to the overall convective 

exchange of heat between the liquid and surrounding air, it is 

also necessary to state the Reynolds number for the air as 

                                                                      [8] 

Another dimensionless quantity is the Prandtl number which 

is the ratio between momentum diffusivity and thermal 

diffusivity.  Prandtl number of liquids varies correspondingly 

to the temperature of the fluid even though it is not shown in 

its expression 

                                                                         [9] 

 is the viscosity of fluid,  is specific heat at constant-

pressure, and  is the thermal conductivity of the fluid. The 
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other dimensionless parameter is the Nusselt number which is 

the ratio between total heat transfer in a convection dominated 

system and the estimated conductive heat transfer 

                                                                         [10] 

  is the internal diameter of the pipe,  is the thermal 

conductivity of the fluid,  is the convective heat transfer 

coefficient. 

 

 

 

Mathematical Experimentation 

 

Solving the second order differential equation in Equation [3-

5] enables the discovery of another dimensionless quantity. If 

equation [11] below is introduced to equation [3], equation 

[12] emerges with the introduction of a decelerating parameter 

 which is due to the presence of friction loss as the fluid 

flows through a lengthy pipeline.  is negligible 

because the fluid is assume to have a homogenous flow.  

 

                                                                     [11]        

                                                          

                                      [12] 

The generalized Bessel polynomial scheme was used to solve 

the flow rate which is dependent on the thermal equilibrium of 

the pipe wall and fluid. The generalized Bessel polynomial 

scheme is defined as follows 

                                 

               [13] 

 

 

Where , ,  

Therefore, 

                                            [14] 

The dimensionless parameter are harnessed in one form as  

                                                                     [15] 

To cub the tendencies of bogus formular, we represented the 

three dimensionless parameter by a unified number (Un) and 

represented as . The relationship between the 

temperature and the unified number was achieved by 

considering the second term of equation [14]. Higher order of 

the speed was avoided to reduce cumbersome mathematical 

representation and outrageous values. Extensively, this 

assumption applies to the computation of pointwise traction 
(5)

. 

                                                                 [16] 

If we assume that  this concept introduces a vital 

dimensionless parameter for the analysis of heat exchange 

between two fluids possibly separated by a conducting 

medium (in this case, the medium is the pipe). If , then 

 

 
 

                                                                     [17] 

 is the thermal ratio which defines the ratio of the average 

temperature of fluid in the pipe to the room temperature of the 

pipe. 

 
Application of the Unified Number to Industrial-Piping 

Problems 

The unified number is tested against an experimental Reynolds 

number and Nusselt number as shown in Figure [3a,b]. Our 

objective is to know the applicability of the Unified number to 

live problems. 
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 As explained by Simone et al., (8), the effect of Reynolds 

number is limited for straight and reduced section pipes. When 

the Reynolds is far greater than 2000, it affects the stress fields 

as shown in figure 4. Hence, the unified number (U) effect 

(shown in figure 3b) enables the linearity of the stress field 

(see figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The linearity of the unified may be localized for certain fluids. 

The Unified number was calculated for various fluids and 

documented as shown in table 1 below. The fluid (liquid and 

gas) states were specifically treated to capture their behavioral 

pattern in a convective system. We believe that the thermal 

radiation follows a pattern-defined by the Temperature 

Polynomial Expansion Scheme (TPES) 
(10,11) 

for uni-layer i.e. 

                                                                                                                  

[18] 

Here n is the layer,  is the temperature of the nth layer,  

is the fundamental temperature of the first layer. The uni-layer 

was applied via the homogenous flow explained in the 

previous section. However, the application of higher or lower 

order of 'n' depends on the distance between the stable regions 

of the pipe. For example, Donghyuk et al., 
(12)

 affirms the 

dependence of stable region on pipe lengths.  

Table 1: Unified numbers for volatile liquids from laminar 

and turbulent flow 

 

 
The pressure gradient of fluids in the unilayer was validated 

via the multianalysis techniques of Ref [12] shown in figure 5 

below 

 

 
 
 
 

Spaggiari et al.,
(13) 

investigation on the flow mode under 

pressure of magnetorheological (MR) fluids further confirms 

the importance of the unified number to investigate the shear 

mode, where MR fluids were found to exhibit  pressure 

dependency. Therefore, if water within this unified number 

flows through pipes made up of copper, the outcome 

simulated using the conservation principle of heat is 

summarized as 

                                                             [19] 

 is the temperature of the fluid, is the temperature of the 

pipe,  is the equilibrium temperature between the fluid and 

pipe,  is mass of water flowing through the pipe, A is the 

cross sectional area of the pipe. The following parameters 

were used for the experiment i.e.  , , 

, , , .The 

following results were obtained as shown in figure [6]. 

 

 

Figure 4: The linearity correction of the unified number 

for higher Reynolds in straight pipes. (Ref (8)) 

Figure 5: Pressure dependence on pipe length as 

expressed by Ref [7]. This is a theoretical validation of 

the unified number in equation [17]. 
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Results and Discussion 

The heat loss/gain to the surrounding air dispenses via a 

quadratic format as expressed by the Bessel polynomial 

scheme. The negative nature of the quadratic equation 

confirmed the vanishing nature of the heat loss/gain to the 

surrounding air. This condition holds if the equilibrium 

temperature of the fluid is not thrice greater than the room 

temperature of the environment. The mass diffusion 

coefficient was also shown by the Bessel polynomial scheme 

to decrease by a square root magnitude as the fluid travels 

along a very long pipe. This process controls the pressure 

dependency on the length of the pipe (shown in figure 5). The 

Unified number governs the convective phenomena between 

two interacting fluids that are separated by a conducting 

medium 
(6)

. In this case, the conducting medium is the pipe 

whose properties are defined by its density and specific heat 

capacity. The Unified number was tested against the 

experimental Nusselt and Reynolds number (figure [3a&b]). 

The unified number showed a strange convective relationship 

at lower Reynolds number. At higher Reynolds number, the 

unified numbers were normal at particular magnitude. By 

table 1, water was used in the experiment with a high 

conductive copper pipe. The static temperature of fluid was 

determined along the changing pipe length. This experiment is 

synonymous to the results gotten by Abbas et al. 
(14)

. The 

temperature gradient between the pipe and fluid are 

independent of one another if the homogenous flow is 

operated at isobar at specific lengths of the pipe.  This idea is 

opposed to the assumptions made in Ref (15,16). Therefore 

the unified number is a special case which sheds light on the 

relationship between the transverse velocity and fluid particle 

interaction parameter. If the thermal radiation of either the 

fluid or pipe is constant at the start of the pipe, the transverse 

velocity of the fluid initiates a non-uniform fluid particle 

interaction which depends on the inherent properties of the 

fluid. 

 

The inverse relationship between the transverse velocity of the 

fluid and the fluid interacting particle established in Ref [16] 

may not be the outcome even in the presence of magnetic 

field. This theorem is affirmed in Ref [17] via the effects of 

half-bend angles and the presence of a nozzle on the 

momentum thickness and turbulence intensity at the exit plane 

of the curved pipes. Also, if the thermal radiation from of 

fluid is high, it exposes the pipeline to mimic the Bauschinger 

effect which is responsible for thermal gradient truncation in 

some heterogeneous compounds. The Bauschinger effect 

refers to the effects of microscopic stress distribution as a 

result of characteristic changes in the material's stress/strain 

relationship (18). Hence, the temperature distribution may 

align at higher length of pipe (as shown figure 6) and 

validated experimentally (19). The dynamics of the electronic 

structure of the thermally-excited fluids is hinged on the 

complementary stoichiometry signatures, thermal properties 

interacting particles. This is the idea of the unified number in 

solving hydraulic problems in machinery (20). 

 

 

 
 

Conclusion 

The Bessel polynomial scheme had enabled the hypothesis of 

a scheme known as the Unified number which is believed to 

govern the convective phenomena between two interacting 

fluids that are separated by a conducting medium. The trivial 

validity of this hypothesis is the adequate inclusion of the 

conducting medium whose properties were defined by its 

density and specific heat capacity. Unified number is more 

effective in lower Reynolds number because of its strange 

convective system and can be substituted for high Reynolds 

number because of a lower but equivalent unified number. 

One of the advantages of the unified number is its ability to  

elaborate on the physics between the transverse velocity and 

fluid particle interaction parameter. If the thermal radiation of 

either the fluid or pipe is constant at the start of the pipe, the 

transverse velocity of the fluid initiates a non-uniform fluid 

particle interaction which depends on the inherent properties 

of the fluid. Hence, the solution to the abnormality noticed in 

the Reynolds number for straight pipes is the adequate 

estimation of the unified number. 
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