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PREFACE

Structural design appears to have been an activity early 
man already. The modern fields of structural design are re
lated to the aircraft industry, space investigations, ship 
building, nuclear industry, off-shore industry, chemical and 
mechanical engineering etc.

Optimization in structural design should be assessed from 
several points of view. Firstly, for instance, the minimum 
weight of an optimized aircraft structure is smaller than that 
of the original sample. This, in its turn improves the flying 
characteristics of the structure. On the other hand, saving 
of the structural material gives direct profit in the finan
cial sense.

Optimization in the structural design has developed into 
a really multi-disciplinary field of science, which requires 
skillful combining of mechanics and engineering with mathe
matics. For solving the optimization problems the mathemat
ical programming theory, the calculus of variations, the op
timal control theory, as well as direct numerical procedures 
including the finite element method are used.

In the present work the variational methods of.the opti
mal control theory serve as the optimization tools. In order 
to shed some light on the behaviour of non-elastic structures 
optimized according to certain criteria, elastic deformations 
are disregarded. However, geometrical non-linearity is taken 
into account. The geometrical non-linearity is meant to be in
terpreted the same way as in the Von Karman plate theory.

The results presented herein have been obtained in the De
partment of Theoretical Mechanics of Tartu University. The 
author is indebted to Prof, tf. Lepik and other colleagues for 
their help and criticism. I am especially grateful to Mrs. L. 
Avaste and J. Volmer who have performed type-setting of the 
book with great skill and efficiency. I would lilse to express 
my sincere thanks to Mrs. H. Kaima who has done the drawings.
I wish to express my thanks and appreciation to Ms. R. Nelis 
for her assistance as a translation editor.

Tartu, May 1991
J. Lellep
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SURVEY OP THE LITERATURE

§1. Traditional plastic design

1.1. The role of analytical and numerical methods

The more readily available literature on structural op
timal design will be reviewed herein and suggestions for 
further work will be offered.

Research work in the structural optimization typically 
follows one of the two broad directions. One way leads to the 
use of the methods of non-classical variation, dynamic pro
gramming or the principle of maximum of Pontryagin in order 
to extremize the perfomance index subject to the prescribed 
constraints.

Another approach,though perhaps less interesting from 
the mathematical point of view , is to treat it as a problem 
of mathematical programming and to search for such a set 
of discrete variables which will extremize the objective 
function subjected to the constraints. Similarly to that 
the discrete finite element methods could be used.

Obviously, both kind of studies are important. Perhaps 
due to the rapid progress in the computer techniques research 
into numerical methods has been comparatively more intense 
in comparison with the various analytical methods.However, the 
analytical methods are able to shed more light onto the mech
anical and physical aspects of the designs of structures.Pra
ger, 1981 has emphasized that: "Because they use available 
resources in a most efficient manner, optimal designs are 
likely to have unexpected properties requiring special care 
in the formulation of problems of structural optimization". 
These words are confirmed by a number of examples. Thus, the 
role of analytical methods could not be neglected because 
as a rule, they lead directly to exact results.

In the present work an attempt is made to review the 
most important analytical methods applied in the optimal de
sign of plastic structures. The direct variational methods, 
the Drucker-Shield theory and the cost-gradient method are 
distinguished in the present work, although there are no

8



strict outlines between these.
Linear and non-linear mathematical programming methods, 

the dynamic programming technique as well as the finite ele
ment method and other numerical approaches are outside the 
scope of the paper.

1.2. Formulation of an optimal design problem

The statement of a problem of optimal design of struc
tures usually involves
a) picking a criterion of merit that can be used for choice 
of the optimal design from the set of acceptable alternative 
designs,
b) specification of the material model (elastic, plastic, 
elastic-plastic, geometrically non-linear rigid-plastic one, 
for instance), which prescribes the material behaviour in 
the fixed loading conditions with sufficient adequacy,
c) identification of the loading conditions (quasistatic 
loading, impulsive or dynamic loading with fixed or unifixed 
distribution),
d) specification of the limitations imposed on the stress- 
-strain state of the structure,
e) stipulation of limitations on the range of geometrical 
dimensions and other design variables,
f) selection of appropriate methods of structural analysis 
and optimization.

The problem of optimal plastic design usually consists 
in finding a structure of prescribed configuration which 
will carry given loads and which will be optimal for a given 
criterion (minimum volume or weight, for instance). Here the 
design is pursued regardless of the cost of its manufacture.

A number of different approaches to the optimal plastic 
design problems are developed. A direct design procedure was 
first given by Michell, 1904 for framed structures composed 
of a material which has limited strength.Framed steel struc
tures constructed of beams of constant cross-section between 
joints were studied by Heyman, 1953» Foulkes, 1953» 1954 and 
Prager, 1956 a. Necessary and sufficient conditions of opti
mality of such designs were derived with the aid of the lin
ear programming methods.

In the present work the usual structural elements, such 
as thinwalled shells, plates and beams will be considered.

9
2



It is assumed, "that the middle surface S as well as the 
external loading P distributed over the surface S and 
its boundary are prescribed. At the boundary points either 
the displacements vanish or the corresponding components of 
general stresses are given.

The aim of the analysis is to compile the design of the 
shell, which carries the prescribed external loading and for 
which the functional

takes the minimum value. Here P = P(P,h) stands for a given 
continuously differentiable function and h is either the 
thickness or a parameter depending on the area of the cross- 
-section of the shell. The function G depends on constant 
parameters, only. Por instance, in the case of a sandwich 
type structure h is the thickness of the working sheets 
carrying bending moments and force resultants by membrane 
stresses. The core of the prescribed thickness H carries 
shear forces only.

The function P for the minimum volume design is deter
mined as P = h and for the minimum weight problem as F *
* 9h where 9 denotes the density of the material. In the 
present section the material is assumed to be rigid plastic 
(without stralnhardening).

1.3. Drucker-Shield criterion

The start of the broad theory of plastic optimal design 
was made by Drucker and Shield, 1957 a. A criterion for ab
solute minimum weight design was established for the struc
tures, which are subjected to direct or membrane stresses. 
In the case of sandwich beams and plates in transverse ben
ding the condition (which now gives the relative minimum 
weight) would be written as

where D denotes the rate of the specific internal energy 
dissipation.

The previous paper by Drucker and Shield, 1957 a is ex
tended to provide upper and lower bounds to the minimum

( 1 . 1 )
S

JJ = const (1 . 2)
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weight by Drucker and. Shield., 1957 b. The generalization al
so includes the influence of the body forces. The design 
procedure which yields the result

Wfib “ const (1*3)
is developed by Shield, 1960. Here A stands for the modified 
dissipation rate per unit area of the middle surface:

Д = D - Piuih (1.4)

where P^ denotes the body forces per unit volume and u^ -
- the velocity components.

The general Drucker-Shield condition (1.3) is obtained 
through the use of the theory of limit analysis and not by 
direct application of the calculus of variations. The use of 
the limit analysis theorems established by Drucker, Prager, 
Greenberg, 1952, also by Gvozdev, 194-9 and extended by Pra- 
gex*, 1956 b to the structures characterized by generalized 
stresses greatly simplifies the derivation of the optimality 
conditions. Moreover, in the case of a sandwich shell it was 
shown by Shield, 1960 a,b; 1973 that the result provides the 
absolute minimum of the optimality criterion. This is a 
better result than can be obtained by means of the calcu
lus of variations.

In the case of sandwich shells and P * hf(X) where 
f(X) is a non-negative function of position over the surface 
S the condition (1.3) takes the form

hffTJ “ const . (1*5)

If the minimum volume design is sought (f=1) and no body 
force is present, the criterion (1.5) evidently coincides 
with (1.2). The condition (1.5) applies to sandwich struc
tures only; for solid shells it has to be replaced by

7JXJ Ü  e conat * (1,6)

The design procedure has been extended to the design of 
aulti-purpose structures which are to support different sys
tems of loads at different times. It was shown by Shield, 
1963 that the sandwich structure subjected to the multiple 
loading which consists of two independent sets of loades,

2 #=
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has the minimum volume, if

(1.7)
1 2Неге Д and Д stand for the dissipation rate correspon

ding to different rate fields associated with the different 
sets of loads.

Save and Shield, 1966 extended the result of Drucker and 
Shield to sandwich shells subjected to fixed and moveable 
loads and established a superposition theorem resulting, 
under certain conditions, in the minimum weight design for 
special combination of fixed and moving loads as the addi
tion of the minimum weight designs for the separate loads. 
Following the results by Save, 1975*1977 and Save and Shield, 
1966, if a sandwich structure is subjected to an infinite 
set of alternative loads, e.g. moveable loads, and the loca
tion of each set is specified by a parameter XeA then the 
minimum volume design (f s 1) is associated with

1.3.1. Special problems.

Plates and shells under prescribed loads. Optimality con
ditions (1.2) - (1.8) impose certain restrictions on the 
rates of curvatures of the middle surface. In the case of a 
sandwich structure the thickness h does not enter into 
these conditions at all because of the linear dependence of 
D on h. Thus, the optimal thickness distribution could be 
determined from the equilibrium equations using the rela
tions associated with the preliminarily chosen flow regime. 
This regards the linear yield conditions, first of all. The 
Drucker-Shield condition serves for a criterion of practical 
applicability of the yield regime, which in its turn is influ
enced by the geometry of the structure and its loading.

Minimum weight design of beams and frames was considered 
by Heyman, 1953* Using the rationally determined flow regime 
Prager, 1955 a,b has found minimum volume designs for solid 
circular and noncircular convex plates whose material 
obeys the Tresca yield condition. Circular and rectangular 
solid plates were considered by Craemer, 1955 and plates of

(1.8)
Л
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infinite length and. finite width by Sububi, 1961.
The circular sandwich plates obeying the Tresca yield con

dition were studied by Onat, Schumann, Shield, 1957» Prager 
and Shield, 1959 and Shamiev, 1957 a,b. The optimal design of 
circular plates in the case of the von Mises material was in
vestigated by Eason, 1960. Both built-in and simply supported 
plates were considered by Eason, 1960; Onat, Schumann and 
Shield, 1957* Prager and Shield, 1959* A sandwich plate of ar
bitrary shape from Tresca material was investigated by Shield,
1960. The applicability of different flow regimes л has been 
studied and the minimum weight design for an elliptic plate 
has been obtained. Plates of arbitrary shape are studied by 
Nemirovslsy and Nebogatov, 1985; Mr6z, 1961.

The minimum weight design of solid plates composed of a 
material, which obeys the non-linear yield condition has been 
studied by Sacci, 1980; Zavelani-Rossi, 1969 a,b, Kirakosian, 
1977 and Kirakosian, Sarkisian, Minasian, 1982, Circular and 
annular plates of Tresca material resting on an incompressible 
liquid were considered by Gasanova and Shamiev, 1977» 1979 and 
body forces have been taken into account in the minimum weight 
design of plates and discs by Drucker, Drucker and Shield , 
1957» Massonnet, Save, 1977» Save and Massonnet, 1972, 1982.

The problem of the minimum weight design of symmetrically 
loaded cylindrical shells has been studied by Shield, 1960 ; 
Ibragimov, 1968 a,b; Shamiev and Ibragimov, 1966; Shamiev 
1963; 1965 and Cinquini, 1983 in the cases of piece-wise lin
ear yield conditions. Kirakosian, 1978 studied a non-linear 
material.The methods for minimum weight for sandwich shells 
obeying the von Mises yield criterion were developed by Zave
lani -Rossi, 1969 a,b and Shulgin, 1984.

Multiple loading. The minimum weight design of a sandwich 
Tresca plate for multiple loading was obtained by Shield,1963. 
It was assumed that a simply supported circular plate was sub
jected to the set of lateral loads consisting of a uniformly 
distributed loading and of the concentrated load which acted 
at the centre of the plate. Circular plates loaded by two sets 
of transverse loads were considered later by Save, 1977» 
whereas beams and frames were studied by Prager, 1967; 1971 
and Mayeda and Prager, 1967.

Nagtegaal, 1973 employed the superposition principle to 
obtain minimum weight designs of beams and frames and Po-

13



lizzotto, 1974 developed a technique on the basis of the 
mathematical programming.

Movable loads.The minimum volume plastic design of beams 
subjected to one single movable load was first studied by 
Gross and Erager, 1962 starting from a linear programming 
approach. Solutions of some problems involving both fixed 
and moving loads were then given by Save and Erager, 1963. 
After extending the condition of Drucker-Shield to the case 
under consideration by Save and Shield, 1966, various prob
lems were investigated and discussed by Lamblin and Save, 
1971» Lamblin, 1972; Save and Massonnet, 1972 and Save, 
1977.

Non-homogeneous plates and shells. The Drucker-Shield 
condition has been extended to non-homogeneous and compos
ite materials by Mrdz, 1970. The particular problems of op
timal reinforcement of plates and shells were considered by 
Mroz, 1970; Mroz and Shamiev, 1970, Love and Melchers, 1972; 
1973 and Melchers, 1975«

1.3.2. Sufficiency of Drucker-Shield condition.
Uniqueness problems.

It was pointed out above that in the case of a sandwich 
structure and a convex yield criterion the Drucker-Shield 
conditions represent the necessary and sufficient condi
tions of optimality.

However, in general case, the lack of sufficiency has 
emerged. Using the direct variational methods Mroz, 1961 
showed that the minimum weight designs are associated with 
the corners of the Tresca yield locus only. Thus, the maxi
mum weight could be attained if the stress state corre
sponds to a side of the yield hexagon.

The uniqueness of the optimal design obtained by the 
Druckel-Shield procedure was investigated by Hu and Shield, 
1961. Following the results by Hu and Shield, 1962 all op
timal designs admit a common collapse mode. This conclusion 
was used to prove the uniqueness of minimum weight designs 
obtained in the previous work by Shield, 1960. The former 
result was confirmed by Nemirovsky, 1968; 1977 who showed 
that the Drucker-Shield conditions could lead to an infinite 
number of designs. All these designs have the same volume 
(weight) and correspond to a common collapse field.

14



1.4. Cost gradient method

1.4.1. Specific cost

Employing the concept of Drucker-Shield as a rule one 
obtains , structural designs with singular cross-sections of 
zero area. A theory of optimal plastic design free from this 
disadvantage was introduced by Erager and Shield, 1967 who 
generalized a notion by Marcal and Erager, 1964-.

The cost of the structure per unit length, area or vol
ume of the structural domain is termed specific cost -xy . 
The specific cost usually depends on the generalized 
stress vector Q. only and thus the total cost subjected to 
minimization can be expressed as

I = J ̂ (Q)dS . (1.9)
S

The latter may represent the total weight or volume of the 
structure or of certain specified components, or alternati
vely, some idealized form of cost in monetary sense.

Denoting the strain rate vector associated with the 
stress vector Q by q, the internal energy dissipation 
may be written as D = Q*q, if body forces are neglected. 
Thus, the new notations admit to convert the Drucker-Shield 
condition (2) into

= const. (1.10)

1.4.2. Marcal-Erager-Shield condition

Introducing a fictitious strain field for an "associa
ted" non-linear elastic structure and using the minimum 
principle of the complementary energy Marcal and Erager, 
1964; Erager and Shield, 1967, derived optimality condi
tions for the total cost (1.9)* Following Rozvany, 1973» 
1976 the general condition may be represented in the form

qk * G¥(q4) • (1 .11)

Here q^ and QÄ , respectively, are kinematically and 
statically admissible strain rates and stresses, wher°fis G 
stands for generalized gradient operator.

15



The generalized gradient operator will be determined by 
the equation G'W« dG/d'W, if the specific cost function is 
differentiable. However,.if 'y bas slope discontinuities, 
then G T  contains steps. Finally, the impulses correspond
ing to the form of Dirac's-delta function, in the cost gradi
ent are associated with the discontinuities of the specific 
cost function.

In its original form the Marcal-Erager-Shield theory is 
valid for continuous convex specific cost functions and lin
ear equilibrium equations as a necessary and sufficient con
dition of optimality. However, it was stated later by Roz- 
vany, 1973 that the criterion (1.11) is useful as a necess
ary condition for non-convex specific cost functions and 
for discontinuous cost functions by Rozvany, 1974. Never
theless, it leads to global minimum in special cases as it 
was shown by Rozvany and Adidam, 1973*

Optimality conditions for multiple loading were derived 
by Charrett and Rozvany, 1972, also by Rozvany and Adidam, 
1972 by means of the variational methods. A number of 
special problems regarding unspecified as well as assigned 
or partially preassigned cost distributions were studied 
by Marcal, 1967s Marcal and Erager, 1964; Charrett and Roz
vany, 1972; Adidam, Lowe and Melchers, 1972; 1973* Melchers, 
1975; 1981; Melchers and Rozvany, 1970; Rozvany, 1973 a,b, 
c,d; 1974 a,b,c; 1975; 1976; Rozvany and Adidam, 1972 a,b; 
1973» Rozvany and Charrett, 1971* Rozvany and Hill 1976 ; 
1978; Rozvany and Mroz, 1975« 1977. Systematic reviews of 
these problems in the context of the Marcal-Erager-Shield 
theory are represented in the book by Rozvany, 1976 and in 
the survey by Rozvany and Mroz, 1977» which also includes 
optimization problems of elastic structures.

Much light has been shed by Rozvany, 1976 to optimal 
flexure fields, which have two important practical applica
tions: (i) design of fibre-reinforced plates of minimum 
fibre-volume and (ii) design of minimum weight grillages. 
Eroofs of all properties of optimal flexure fields are given 
in the study of Rozvany and Hill, 1976, where the general 
theory of optimal load transmission is outlined.

Further extensions of the cost-gradient method have been 
made by Rozvany, Olhoff, Cheng and Taylor, 1981, Wang, Roz
vany and Olhoff, 1983 and Rozvany and Wang, 1983.

16



1.5« Direct variational methods

1.5*1» Preliminaries

The plastic optimization problems prescribed above 
could be considered as variational problems consisting in 
minimization of the functional (1.1). Depending on the par
ticular statement of the problem one has to take into ac
count the functional as well as special additional con
straints and physical and geometrical requirements (equi
librium equations, associated flow law, yield condition, 
compatibility equations etc.). The problems reduce thus to 
the constrained non-classical variational problems, mainly. 
Nevertheless, efficient solutions have been found in many 
cases.

1.5.2. Minimum weight design of plates and shells

Circular plates obeying the von Mises yield condition 
were considered by Freiberger and Tekinalp, 1956. Bj the 
use of the calculus of variations they derived the necess
ary optimality conditions which yield the Drucker-Shield 
criterion and found the optimal thickness distributions for 
sandwich and solid plates.

In a further study by Freiberger, 1957 the same ap
proach was employed in the case of circular cylindrical 
shells. The material of working sheets was assumed to obey 
the von Mises yield condition, which was satisfied in the 
average (see Robinson, 1971)*

Megarefs, 1966; 1967; 1968 developed a static technique 
of stress variation resorting to the linearity of the volume 
functional in the case of sandwich plates and the Tresca 
yield criterion. This approach proved efficient enough for 
determining of the minimum weight designs of annular plates 
for any support conditions and one - directional loadings» 
The static stress variation method was extended by Reiss 
and Megarefs, 1969; 1971 to sandwich axisymmetric plates 
and cylindrical shells obeying the von Mises yield con
dition. These studies encompass various edge conditions and 
a wide range of axisymmetric loading.

With symmetry conditions removed, the plates of arbit
rary shape were considered by Reiss, 1974. Introducing the

17
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Lagrangian multiplier to account for the equilibrium equa
tion the self-adjointness of the problem was observed. By 
self-adjointness, it is meant that in this particular case 
the Lagrangian multiplier is proportional to the deflection 
rate. Probably due to this phenomen the deflection rate ap
pears to be independent of the pressure distribution.

Limit analysis and minimum-weight design of circular and 
annular plates was investigated also by Mriz, 1958; 1959; 
1961; 196J. Both materials obeying the Tresca and Von Mises 
yield condition were considered. Mroz's, 1961 discussion of 
the influence of the second order terms neglected in the 
previous analysis reveals that the minimum weight of a struc
ture will be ensured, if the stress regime over the whole 
plate corresponds to a corner of the Tresca yield hexagon. 
Otherwise the nature of the extremum must be investigated.

Kozlovski and Mroz, 1969» 1970 showed that early minimum 
weight solutions for solid plates and shells represent only 
local minimum, since the absolute minimum weight converges 
to zero when the solution reduces to an infinite number of 
ribs of infinite depth. In the former paper the authors ob
tained a solution within the constraints that the maximum 
thickness is prescribed and the plate has a finite number of 
circumferential ribs. The fact that the need for the for
mation of flanges or ribs is a natural consequence of the 
minimum requirements has been emerged in the works by Mega
refs, 1966; 1967; 1968 Reiss and Megarefs, 1969; 1971* Ac
cording to these papers, if the admissible stresses are to 
be bounded, a minimum stress need not exist at all. But, if 
the condition of boundedness is removed, the minimum weight 
design consists of ribs.

Shablii and Zhuk, 1981 investigated the optimization 
problem in the case of a non-linear approximation of the 
exact yield surface talcing shear forces into account.

Reiss, 1974 has determined minimum weight designs for 
conical shells subjected to single loading. Circular Tresca 
plates for multiple loading have been studied by Reiss,1976. 
An approximation of the yield surface consisting of two 
hexagons was employed by Reiss, 1974.

A general variational formulation of the optimal plastic 
design problems without referring to any particular typj of 
structure is presented by Sacchi, 1971 a; 1975; 1980. The 
stationarity conditions derived by using the Lagrangian mul
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tipliers technique by Sacchi, 1975 coincide with the condi
tions obtained earlier by Save, 1972.

1.5*3» Optimal design of reinforced structures

Optimal reinforcement of rigid-plastic plates and shells 
has been studied by Mroz, 1959; 1964; 1967; 1970; 1974, Roz- 
vany, 1976; Lowe and Melchers, 1972; 1973 and others making 
use of different approaches. Mroz's, 1959 idea of incorpora
ting a lower bound approach with variational techniques has 
turned out to be quite a fruitful method in this field. La
ter Mroz, 1967 and Morley, 1966 derived independently the 
static-kinematic optimality conditions for variable reinfor
cement in arbitrary directions and presented examples for 
axisymmetric slabs and simply supported square plates.

Kaliszky, 1965 a,btc showed that in the case of a curvi
linear reinforcement the optimal solution is associated with 
the elastic moment field for a uniform plate.

A comprehensive set of solutions of optimal reinforce
ment problems obtained by Charrett, Adidam, Lowe, Melchers 
and Rozvany is presented in the book by Rozvany, 1976. The 
latter contains a review of the literature on optimal fibre- 
-reinforced plates, shells and grillage-like continuums.

1.5*4. Parametrical optimization

A broad circle of optimal design problems is formulated 
by assuming that the design is defined within a set of con
stant parameters that should be determined from the optima
lity conditions. A problem of this type is, for instance,the 
reinforcement problem consisting in optimal orientation of 
identical fibers.The optimal design of structures with piece- 
-wise constant cross-sections investigated in particular 
cases by Foulkes, 1953; 1954; Hopkins and Prager, 1955; Sheu 
and Prager, 1969; Rozvany, 1976; Prager, 1974; Mazalov,l973; 
Lamblin and Guerlement, 1971; Save, 1985; Lamblin, Guerle- 
ment and Save, 1985, as well as optimal location of additio
nal supports studied by Mroz and Rozvany, 1975; Prager and 
Rozvany, 1975; Rozvany, 1976 also could be conceived as pa
rametrical problems.

Mroz, 1972 has derived the optimality conditions for 
multiparameter plates and shells
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assuming that the middle surface is divided into n subre
gions and the design variable over each subregion is speci
fied within a single parameter. Here D̂ , denote the 
total power of dissipation and volume of each subregion. In 
particular, (1.12) can be reduced to the conditions obtained 
by Foulkes, 1954; Sheu and Prager, 1969 and Rozvany, 1976.

Mroz and Garstecki, 1976 studied the problem of optimal 
distribution and location of loads in order to achieve maxi
mum total load at limit state. The characterization for a 
particular distribution having the greatest possible total 
load at the yield point had been found earlier by Collins , 
1968. However, the results by Mroz and Garstecki, 1976 are 
more general.

1 .5.5. Existence and uniqueness

It was pointed out above, that the absolute minimum 
weight design of plastic solid plates appears to be with 
ribs of infinite thickness and infinitesimal width. To make 
a minimum weight design practicable, its thickness must be 
finite everywhere. Therefore, the specification of an upper 
bound on the plate thickness is necessary for avoiding non- 
-useful designs. But it was established by Rozvany, Olhoff, 
Cheng and Taylor, 1981, that the maximum thickness con
straint alone did not ensure smooth global minimum weight 
solutions. This turned out to be furnished, in the limit, 
by a grillage-like continuum consisting of a dense system 
of ribs of infinitesimal spacing and uniform depth. Wang, 
Rozvany and Olhoff, 1985 extended the previous paper, in
troducing the general cost gradient method for deriving mi
nimum weight solutions in the case of solid plates subjec
ted to maximum thickness constraint. Similar elastic prob
lems regularized with reference to the concept of G-clo- 
sures by Lurie Cherkaev and Fedorov, 1982.

In order to discuss the existence of the optimal solu
tion, one has to specify, first of all, the class of admiss
ible functions. Actually, these may be: (i) continuous 
smooth functions, (ii) piece-wise continuous and (iii) rib- 
density functions with unlimited number of discontinuities.
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The solid plate paradox discussed by Rozvany, Olhoff, Cheng 
and Taylor, 1981 showed that the absolute minimum weight 
solution may not exist in sets (i) and (ii).

Megarefs and Hodge, 1963 demonstrated that in some 
simple cases the minimum values of the optimality criteria 
may not be a point of zero variation and that points of 
zero variation may be relative maximum as well as minimum.

The existence and uniqueness of the optimal solution of 
variational optimization problems was studied by Cinquini 
and Mercier, 1976, and by Cinquini and Sacchi, 1980. The 
results of convex analysis in the abstract Hilbert spaces 
were invoked, which admitted to establish the existence and 
uniqueness conditions. These are certain constraints (first 
of all, the functional must be strictly convex), which have 
to be met by special sets, defined by the variational prob
lems.

1.6. Pontryagin’s maximum principle
Side by side with the direct variational methods also 

the Pontryagin's maximum principle (see the books by Pont- 
ryagin and Boltyanskii, 1971* 1976, Bryson and Yu-Chi-Hu, 
1969) may be used for optimal design of structures. The 
first paper in this field, as for as the authors know was 
that by Lurie, 1965» He solved some optimization problems 
regarding elastic structures. Optimal design of reinforced 
concrete circular plates and cylindrical shells was dis
cussed by Reitman and Shapiro, 1976; 1978; such a lay-out 
of reinforcement is to be found, for which the general 
amount of the reinforcement is minimal.

Some problems of optimal design for axisymmetric sand
wich plates and shells were examined by Pungar, 1972; 1973;
1974. The material of the structure is rigid-plastic, the 
yield condition of Von Mises is used. Following Odishvili,
1971 the optimality critirion is taken in the form

Integration of the state and adjoint equations is great
ly simplified, if instead of the Mises' yield condition we 
shall make use of piecewise linear yield conditions. Such 
an approach was applied by Lepik, 1972; 1973; 1974; 1975,

(1.13)
S
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where the Prager*s yield condition was used (in this case 
the yield stresses for tension and compression will be dif
ferent). This approach was utilized by Vainshtein, Rudis 
and Polyakov, 1980, also. The latter papers and the one 
by Lepik, 1972 considered homogeneous structures. How
ever, Lepik, 1973» 1974 studied the sandwich type struc
tures. For the design variable the thickness of the struc
ture (or the thickness of the working sheets) is chosen, 
this quantity is bound from below and above. The weight 
of the structure is to be minimized (in the case of a sand
wich structure the weight of the core will be neglected).Op
timal designs for circular plates were obtained by Lepik, 
1972; 19731 whereas axisymmetric cylindrical shells were 
considered by Lepik, 1974 and Vainshtein et.al., 1980.

A study on optimal design of circular sandwich Tresca 
plates subjected to concentrated loads was presented by Lel
lep, 1977* In this note the load carrying capacity is maxi
mized for given weight.

Optimization of rigid-plastic axisymmetric shells by 
taking into account shear forces was considered by Lepik,
1975.

The papers by Lellep, 1977 and Lepik, 1978 b were de
voted to the application of the optimal control theory and to 
the optimal design of non-linear elastic and viscous beams.

Lepik, 1987 b has studied the problem of optimal loca
tion of an additional support in the case of non-elastic 
beam. The perfomance index and the constraints are given in 
a quite general form. The aim of the optimization is to re
duce the beam's complience.

1.7. Other methods and approaches

1.7.1. Uniform strength

With reference to the concept of uniform strength by an 
optimal design of a beam such a beam is to be understood for 
which the yielding takes place in all cross-sections simul
taneously. In the case of rotationally symmetric plates the 
classical concept of uniform strength stipulates a stress 
state in which both the radial and circumferential moments 
are equal to the limit moment.
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The intuitive approach based on the competing yield 
mechanisms was used by Erager, 1955» Hopkins and Erager, 
1955 in order to obtain minimum weight designs of plates. 
Onat and Erager, 1955 developed a method for cylindrical 
shells loaded by a transverse pressure. This technique was 
extended by Freiberger, 1956 to account for the axial dead- 
-load. However, as it was noted by Hodge, 1957 it is not 
entirely evident that this technique will result in a shell 
of minimum weight. The suggested procedure leads to a small
er weight (compared with the shell of a constant thickness) 
in the case of short shells only.

The classical concept of a rotationally symmetric cu
pola of uniform strength which foresees -ehe realization of 
a membrane state of stress was used by Milankovjc, 1908. 
This concept was extended by Ziegler, 1958 who introduced, 
a locus of admissible stress points in a stress plane. Iss- 
ler, 1959; 1964 treated spherical shells under constant 
vertical dead load per unit area of the middle surface and 
rotationally symmetric shells of given meridian under their 
structural weight. The condition of rotational symmetry was 
abandoned by Schumann and Wuthrich, 1972 who discussed a shell 
of quadratic plan form as an example. Sayir and Schumann,
1972 investigated anisotropic shells obeying the von Mises 
yield condition. As it was pointed out by Erager and Rozva
ny, 1980 uniform strength design of a cupola for structural 
weight alone leads to an unexpted result: the weight of the 
shell can be made arbitrarily small by choosing the thick
ness at the apex tu be sufficiently small. To avoid tüis pa
radox, the combined action of structural and dead weights 
was considered in the paper by Erager and Rozvany, 1980.

The effect of shear forces on optimal design of plastic 
beams and circular plates was studied by Nemirovsky, 1975- 
He revealed that considering the transversal shear prevents 
obtaining designs with zero thicknesses which emerged by the 
use of the Kirchoff-Love hypothesis.

General theorems of elastic uniform strength design are 
established by Save, 1968. Following these results, any of 
von Mises' plates of elastic restricted uniform strength cor
responds to a minimum weight plastic design amplified by a 
shape factor.

Uniform strength designs of orthotropic shells obeying 
an approximate yield condition were found by Mikeladze,1959» 
1966.
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1.7*2. Probabilistic design

The discussed deterministic approaches to optimal plas
tic design are not applicable if the necessary strict in
formation about the mechanical characteristics, geometry or 
loading is not available. The structures having elements 
with random distribution of yield stresses were treated by 
Sacchi, 1971 a,b making use of probabilistic analysis. Bach 
structural element was considered as an Individual drawn by 
lot from a population of elements whose yield stress is dis
tributed according to the established frequency.

A number of theorems concerning limit analysis as well 
as the minimum volume design of structures composed of ele
ments with average resistance is formulated and proved by 
Sacchi, 1971 a. Upper and lower bounds on the average mini
mum volume are established in the contribution of Sacchi, 
1971 b. The bounds are evaluated on the basis of the deter
ministic limit design.

Multi-criteria probabilistic design of structures was 
discussed by Parimi and Cohn, 1975»

1.7.3. Superposition principles

Investigating the minimum weight design problems of plas
tic structures subjected to a set of alternative loads the 
superposition principles have been established and used by 
Save and Shield, 1966; Hemp, 1973» Nagtegaal, 1973» Nagte- 
gaal and Prager, 1973* Hemp's approach is developed on the 
basis of the linear programming,whereas Nagtegaal and Pra
ger used the energy methods of the limit analysis. Nagte
gaal, 1973 has shown that the optimal design of a beam-type 
structure which has to carry the alternative loads P̂  and 
P2 can be obtained by the way of determining the optimal 
solutions for the loads P̂* =* (P̂  + P2)/2 and P^ * (P̂  -
- P2)/2 separately. Adding then the moments associated with 
these designs the moment distribution of the optimal design 
could be obtained.

1 .7 .4 . Other approaches

A number of various methods and approaches have been 
used in the field of optimal plastic design. The variety of
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statements of the optimization problems is discussed by Cy
ras, 1975; 1980; 1982 in the light of the mathematical pro
gramming. The two methods based on the mathematical pro
gramming and the use of the optimality conditions were dis
cussed by Fleury, 1979« It was emphasized by Fleury, 1979 
that "far from being ineluctably opposed,the two approaches 
have in fact converged to the same method that consists of 
transforming the original problem to a sequence of simple 
approximate problems".

Some early works by Erager, 1959; 1970; 1974 are con
cerned with the optimization Of Michell type structures.

dynamic programming methods have been successfully ap
plied in optimal design by Distefano, 1974; Ealmer, 1968; 
Szefer, 1971; Eochtman and Baranenko, 1975*

Some attempts have been made to develop unified ap
proaches to optimal design of elastic and plastic struc
tures. The most efficient one was probably that by Prager 
and Taylor, 1968.

There exists a great number of papers devoted to the 
application of the finite element method in optimal plastic 
design but this topic is outside the scope of the current re
view. The authors recommed to refer to the survey by Van- 
derplaats, 19^2, also the papers by Fape and Thierauf, 198Q 
Maier, Zavelani-Rossi and Beneditti, 1972.

The rheology problems are considered in the context 
with the minimum weight design by WojJdanowska and ^yczkows- 
ki, 1980; Žyczkowski and Swisterski, 1980; Zyczkowski,1971; 
1974. A review of recent advances in this field is repre
sented by Žyczkowski, 1983* Žyczkowski and Kruzelecki,1985« 
Barlier Erager, 1968 has extended the Drucker-Shield condi
tion to the case of stationary creep. Nemirovsky, 1970 es
tablished some properties of optimal designs in rheology. 
Beams and plates of uniform strength are investigated by Ne
mirovsky and Reznikov, 1969. Minimum weight design of beams 
and annular plates in stationary creep is studied by Lellep, 
1977; 1979 taking into account the difference of the ma
terials' behaviour under tension and compression.

Comprehensive reviews of statements and methods of sol
ution of optimization problems regarding plastic as well as 
elastic structures are given by Barnett, 1966; Haftka and 
Erasad, 1981; Lellep and Lepik, 1984; Niordson and Pedersen,
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1973; Präger, 1970; Reitman and Shapiro, 1976; 1978; Rozva
ny and Mroz, 1977; Sheu and Prager, 1968; Vasilyev, 1970; 
Wasiutynski and Brandt, 1963; Žyczkowski, 1974; Žyczkowski 
and Kruželecki, 1985 and others. More detailed information 
is available in books by Banichuk, 1980; 1986; Brandt(ed.), 
1977; Cohn, 1972; Cox, 1965; Cyras, 1982;Hemp,1973; Kirsch, 
1981; Narusberg and Teters, 1988; Rozvany, 1976; Save and 
Massonnet, 1965; 1972; Shanley, .1960; Spunt, 1971 and Wood,
1961.

§2. Optimal design of plastic structures subjected 
to dynamic loading

2.1. General remarks

The problems of optimal design of non-elastic plates and 
shells subjected to dynamic loading received the attention 
of research workers comparatively recently. The first paper 
in this area was published by Rabinovitch, 1965«

The dynami cs problems are complex; remarkable simplifica
tion could be obtained by the use of the mode form method 
suggested by Martin and Symonds, 1966; also by Symonds,1980. 
The alternative possibility for simplification is the use of 
general theorems of dynamic plasticity. This approach was 
followed by Reitman, 1972; Kaliszky, 1981; firkhov, 1979*

Comprehensive reviews of the works devoted to the dyna
mics problems as well as to optimization in the case of non- 
-elastic materials are presented in the monograph book by 
Lepik, 1982; review articles by Lepik, 1981; Jones, 1989 and 
Lellep and Lepik, 1984.

2.2. Structures with segmentwise constant thickness

The beams with piece-wise constant thickness are studied 
by Lepik, 1981; 1982 b; Lepik and Mroz, 1977; 1978 making 
use of the mode form method. It appeared that the possible 
mode form is not unique. Exact solutions within the limits 
of the concept of a rigid-plastic body have been also found 
by Lepik, 1980; 1981; 1983« Soonets, 1981; 1982 has studied 
two-stepped beams.
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Aunin, Lellep and. Sakkov, 1986 as well as Lellep and 
Sakkov, 1985 have studied the problem of optimization of 
reinforced beams, subjected to the impulsive loading.

Annular and circular plates of minimum mass have been 
considered by Lepik, 1982 c; Lepik and Mroz, 1977. Circular 
plates consisting of two concentric parts with different 
materials and different thicknesses are discussed by Maza- 
lov, 1973; Mazalov and Nemirovski, 1973*

Optimal design of two-stepped conical and cylindrical 
shells are examined by Kirs, 1975.1979 a,b using the method 
of limited interaction between forces and moments. The 
yield surface was picked in the form of two diamonds in the 
different planes, suggested by Jones, 1970.

The use of the higher modes and quasi-mode method in 
the optimal design of structures subjected to the dynamic 
loads was discussed by Lepik, 1979; 1980 a. However the 
higher modes appear to be unstable and the motion of the 
structure steadily goes over to the fundamental mode form.

2.3» Structures with additional supports

An attractive way to diminish the structural compliance 
and increase the stiffness is to furnish the structures 
with additional supports. The location of the additional 
supports is reasonable to select so that the stiffness at
tains the maximal value.

For non-linear elastic beams ’under static loading the 
problem was examined by Mroz and Rozvany, 1975* Making use 
of the methods of variation the authors derived the optima
lity condition

C[MU+)] - C[M(yb-)] + Rw'u) = 0 , (2.1)

where С is the complementary energy per unit length of 
the beam, /Ь is the coordinate of the location of the ad
ditional support, R stands for the reaction of the sup
port.

Prager and Rozvany, 1975 obtained the optimality condi
tion for rigid-plastic beams in the form

M (ä + ) w  (/6+) - M (ä - )w  (/S-) = 0 . (2.2)
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I IHere M stands for the shear force and w is the slope 
of the deflection.

The applicability of the conditions (2.1), (2.2) was 
examined by Lepik, 1980; 1981 b; 1982 a with the aid of the 
methods of the optimal control theory in the case of beams 
loaded dynamically. It appeared that (2.2) holds good if 
the method of mode-forms is employed.

In the cases when for optimality criterion are picked 
(i)-the residual mean deflection, (ii)-the maximal deflec
tion or (iii)-the volume of the beam,a direct technique of 
determination of the positions of additional supports for 
plastic beams subjected to the impulsive loading was devel
oped by Lellep, 1978; 1979. It was somewhat amazing that 
these three criteria led to a common result.

The optimality conditions in the integral form are de
rived by Lellep, 1981 с for plastic beams loaded impulsive
ly. This approach was extended by Lellep, 1983 a; 1984 for 
cylindrical shells using the mode form method. In the first 
paper the case of the rectangular impulse was studied where
as in the second work the shell subjected to the uniform 
initial impulse was examined. In the both latter papers the 
problem was converted into a self-adjoint problem of the 
optimal control theory with distributed parameters.

The optimal location of rigid ring supports for cylind
rical shells was examined by Olenev, 1982; 1983; 1985; 1987 
in the cases of dynamic pressure loading and impulsive load
ing. The paper by Olenev, 1988 is devoted to the plastic 
beams, subjected to the pressure loading.

§ 3. Large deflections of rigid-plastic structures

3.1. The concept, of a geometrically non-linear 
structure

Within the concept of a rigid-plastic body the struc
ture remains rigid until the external loads attain certain 
values which correspond to the yield stresses. This con
cerns the one-dimensional tension or compression. In the 
two-or three-dimensional case the body is rigid if the 
stress-state corresponds to an internal point of the yield
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surface. However, if the corresponding point lies on the 
yield surface plastic flow will occur.

Introducing the geometrical non-linearity (non-linear 
terms in the governing equations) one can examine the post- 
-yield behaviour of the structure. In the present work we 
will presume that the deflections of the thin-walled struc
tures do not exceed the order of the wall thickness.

The number of investigations devoted to the determina
tion of the stress-strain state of geometrically non-linear 
structures is limited. The present review is not a complete 
one. Comprehensive reviews of the studies of this kind are 
presented by Duszek, 1975* Sawczuk, 1980; 1982; Jones, 1969; 
1970.

3.2. Large deflections of rigid-plastic beams, 
plates and shells

Plastic beams and arcs which operate in the post-yield 
stage are examined by Belenkii, 1973; Dikovitch, 1967; Gill, 
1976; Gurkok and Hopkins, 1981; Kondo and Pian, 1981 a. Kon- 
do and Pian, 1981 a suggested a simple method on the basis 
of the assumption that the beam deforms into a number of 
rigid regions which are separated by plastic hinges. Kondo 
and Pian, 1981 b,c,d extended this approach to plastic cir
cular and polygonal plates as well as to shallow spherical 
shells.

Circular and annular plates, the material of which obeys 
the Tresca yield condition were investigated by Lepik, 1960. 
Alternative methods based on the concept of the limited in
teraction between membrane forces and moments are developed 
by Jones, 1969; Jirkhov and Kislova, 1981; Srkhov and Starov, 
1986; 1987. The latter approach was extended to shallow 
shells by Jirkhov and Starov, 1987 b.

Simplified methods of calculation of the stress-strain 
state of rigid-plastic circular plates and slabs are due to 
Onat and Haythornthwaite, 1956; Calladine, 1968.

Moderately large deflections of cylindrical shells of 
the Tresca material are studied by Duszek, 1966; 1967; Dus
zek and Sawczuk, 1970; Lance and Soechting, 1970 using the 
yield surface in the three-dimensional space of generalized 
stresses. Another approach was developed by Lepik, 1966 a,b
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utilizing the Tresca yield hexagon in the plane of the prin
cipal stresses.

The method based on the two yield hexagons on the planes 
of the forces and moments, respectively, was explored by Lel
lep and Hein, 1988 when studying the large deflections of 
plastic shallow spherical shells of the Tresca material.

The circular plates and cylindrical shells of Von Mises 
material are investigated by Lellep and Majak, 1987; Lellep 
and Hannus 1983; 1987* The exact yield surface was replaced 
by a non-linear approximation which corresponds to the satis
faction of the yield condition on an average with respect to 
the thickness of the shell. For the geometrically linear 
case this problem was solved by Shulgin, 1985-

§4. Optimal design of geometrically non-linear 
structures

4.1. Optimality criteria and additional restrictions

Plastic optimization problems discussed above have been 
stated as minimum weight problems for a given collapse load, 
thus,under the requirement of the incipient flow. Of course, 
there were considered the problems consisting in maximiza
tion of the limit load, and others, but for all these de
signs the configuration variations in the post-yield range 
were neglected. As it was demonstrated by Mroz and Gawecki, 
1975» Gawecki and Garstecki, 1978; 1979 such designs appear 
to be sensitive to geometrical changes which the structures 
undergo during plastic flow. It was pointed out by Mroz and 
Gawecki, 1975 that the post-yield stiffness of optimal struc
tures (for geometrically linear approach) is generally small
er than that of a reference structure for which no optimiza
tion procedure was carried out. Moreover, it appeared that 
the load deformation response of an optimal structure could 
be unstable even when the load deformation curve of a uni
form structure was stable. Thus , a necessity arises to con
sider for geometrical non-linearity in the plastic design. 
This matter was discussed by Save, Guerlement and Lamblin, 
1989.

This involves the question of an optimality criterion as 
well as of additional restrictions which have to be taken
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into account by solving a minimum weight problem. The inci
pient collapse load is no longer suitable as a measure of 
the strength since the load changes when the structure de- 
f orms.

If the post-yield behaviour were accounted for,the opti
mality criterion would be presented in the form

Here F , F , G stand for continuous differentiable func
tions depending on displacements U and W , generalized 
stresses Q and certain parameters. It is assumed that p 
is a scalar parameter, whereas the set of its admissible 
values is a closed set. Different particular forms of the 
functional will be discussed later.

The optimal design of a structure which minimizes the 
criterion (4.1) has to satisfy the basic equations of the 
moderately large deflection theory and special additional 
restrictions imposed on the deflections and stresses as well.

4.2. Optimization for prescribed deflected shape

In the case of piece-wise linear yield surfaces, it ap
pears to be reasonable to state the optimization problem for 
a given deflected shape associated with the structure of 
prescribed thickness distribution and subjected to the same 
loads. In the case of a minimum weight problem now we have 
FQ = G = 0, F = h in (4.1). For an additional requirement 
can serve the restriction W4W,(X,P), where W. denotes the 
deflection of the prescribed structure. For the simpler 
problems (concerning with beams or shells obeying piece-wise 
linear yield conditions for instance) the inequality in the 
latter relation could be changed by the equality.

Such an approach was developed by Lellep, 1981; 1983 b; 
Sawczuk and Lellep,1980;1987 using a variant of the deforma
tion theory of plasticity according to which the strain vec
tor itself is orthogonal to the yield surface. The paper by 
Lellep, 1981 is devoted to minimum weight design of rigid- 
-plastic beams subjected to an arbitrarily distributed trans
verse loading and the axial dead-load. The deflection is re
quired to be the one of the beam or a constant area of cross
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section. With the aid of the variational methods of the op
timal control theory necessary optimality conditions are de
rived. These yield the result

<£(M,N,h) = О (4.2)

which has to be satisfied over the whole beam. In the latter 
formulae M and N denote, respectively,the bending moment 
and the axial force, whereas Ф 4  О represents the yield con
dition. As an example, a simply supported beam of homogene
ous rectangular profile and loaded by the uniformly distri
buted transverse pressure is studied in greater detail.

A similar problem is investigated in the case of a 
sandwich cylindrical shell by Lellep, 1983 b; Lellep and 
Sawczuk, 1980. Lellep and Sawczuk, 1980 studied a structure 
consisting of a cylindrical shell and of two end plates and 
subjected to internal pressure is considered and the optimal 
wall thickness variation is sought for under the requirement 
of minimum material consumption. The solution procedure re
garding optimization of plastic shells obeying a piece-wise 
linear yield condition has been developed. The optimal de
sign of a shell assuming a required shape beyound the in
cipient collapse load was found employing the optimal cont
rol theory.

The shells of a plastic fiber-reinforced material and 
rib-reinforced shells are studied by Lellep and Hein, 1987; 
1989. Lellep and Mandri, 1987 developed a method for optimi
zation of plastic cylindrical shells with limited thickness.

4 .3. Mini-max approach

The optimization technique for prescribed deflected 
shape in the post-yield range which was discussed above 
could lead to practically nonuseful designs in more insidi
ous cases. In fact, such a design appears to be the mi n i m u m  
weight design for a given value of the external load P, and 
associated with its deflection W,(X,P„) only. But it is not 
clear what happenes if P<P*. As it was noted by Lellep, 
1982 a; 1984 a these designs even may not have resistance to 
all loads pe[0,pj ^here the load intensity is assumed to 
be representable in the form P-R(X), where R(X) is a given 
function).
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To avoid this paradox an optimal design procedure has to 
be used accounting for a set of loads. Elastic beams optimal 
for a given class of loads were studied by Banichuk, 1975 ; 
1976 making use of the game approach to problems with inad
equate information. Some particular elastic and plastic op
timal design problems considered in the light of the mathe
matical game theory are discussed by Aptukov and Pozdeyev, 
1982.

The mini-max approach to the optimal design of rigid- 
-plastic structures taking into account the post-yield be
haviour is as follows. The optimality criterion subjected to 
minimization could be represented as

I * J max h dS (4.3)
S P

where the maximum is attained for P€[Pq ,P.]. Thus,the 
special case of (4.1) associated with F » G = 0; PQ e h , 
p = P will be considered. Here PQ stands for the limit 
load for the structure of specified shape. As before the ad
ditional constraint W a W, and the constitutive equations 
are assumed to be satisfied.

The papers by Lellep, 1982 a, 1984 a are devoted to the 
minimum weight design of clamped plastic beams loaded by a 
distributed transverse pressure and an axial force. As the 
"associated” structure with the specified shape the beam of 
a constant thickness was used. With reference to the prin
ciple of maximum for non-smooth problems of optimal control 
theory Boltyanskii, 1971; Demyanov and Malozemov, 1972; Al- 
sevitch, 1976 the necessary optimality conditions were de
rived for sandwich beams and beams with arbitrary cross-sec- 
tion. Following the notations of the present work the opti
mal thickness distribution corresponds to

h = max<i>(lM|,N). (4.4)
P

In (4.4) the piece-wise differentiable function Ф  is defi
ned by the yield condition, which now is represented as
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4.4. Parametrical optimization

A set of parametrical optimization problems discussed 
above admit proper extension to geometrically non-linear 
structures. The preliminary unknown constant parameters sub
jected to variation could specify the external load distri
bution, the cross-sectional area of the structure, layount 
of the reinforcement or non-homogeneity of the material, 
support conditions or other factors, which influence the 
post-yield behaviour of the structure.

For a problem of this kind the optimality criterion may 
be represented as

I « G(p,A,h) + j F(P,H,W,U)dS (4.5)
S

where W,U stand for the displacements, P and H are 
functions but p,h and a are certain parameters which 
prescribe, respectively, the load distribution, the thick
ness or cross-sectional area and the location of additional 
supports. The parameters may be scalars as well as vectors 
depending on the formulation of the problem under consider
ation. Note that the functional (4.5) is a particular case 
of (4.1)(now PQ * 0).

By minimizing the functional (4.5) one has to take into 
account some additional requirements

j fi(P,H,W,U)dS = Ai (4.6)
S

and

gjj(P*b,s,W(xk) ,U(xk) 4 Bj , (4.7)

where A^ and B̂  are given constants. A number of con
straints (4.6) and (4.7) may be given in the form of equa
lities. To distiguish the equalities and inequalities is 
certainly essential from the mathematical point of view, 
but in the present paper the details of derivation of opti
mality conditions will be omitted. Thus, this refinement is 
not necessary herein.

The parametrical approach to optimal design of plastic 
beams in the post-yield range was developed by Lellep, 1981 
a, 1982 b,c. Necessary optimality conditions for the prob
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lem of types(4.5) - (4.7) were derived by means of the vari
ational methods of the optimal control theory (see the books 
by Bryson and Ho, 1969 and Troickii, 1976, Gabasov and Ki
rillova, 1974). It appeared that the optimal trajectory in 
the state space which corresponds to the optimal solution of 
the problem comprises singular as well as usual subarcs (see 
Gabasov and Kirillova, 1973» Bell and Jacobson, 1975)»

An example of the paper by Lellep, 1982 с refers to op
timal location of an additional support to the beam clamped 
at the left-hand end and simply supported at the right end. 
The sandwich beam of constant cross-section is treated which 
carries the uniform transverse pressure P and an axial 
dead-load N. The mean deflection is minimized under the 
condition that the transverse loading is large enough to ge
nerate plastic deformations in both parts of the beam (the 
latter is divided into two regions by the additional support). 
This criterion is a particular case of (4.5) associated with 
G = 0, F = W. A simple expression was obtained for the op
timal layout of the additional support

M (N - N)
s = 2 + -- Ш ---  (4*8)о

where L denotes the length of the beam and MQ, Nq are 
respectively, the yield moment and yield load. It should be 
noted that (4.8) holds good if the load is considerably lar
ger than the limit load.

The optimization technique discussed above was extended 
to plastic cylindrical shelJs by Lellep, 1983 b; 1985 a, b. 
The general theory of optimal design of plastic sandwich 
shells is developed by Lellep, 1985 b,c assuming that the 
material obeys the Tresca yield condition and taking into 
account moderately large deflections. For the sake of sim
plicity the deformation-type theory of plasticity was em
ployed and the attention is restricted to the short shells. 
The shells made of a fiber reinforced material were con
sidered by Lellep, 1989 and shells of Von Mises material by 
Lellep and Hannus, 1988. Two approaches concerning the opti
mization for prescribed deflected shape and parametrical op
timization, respectively, are concerned from the common point 
of view by Lellep and Sawczuk, 1984; 1987.

Optimal designs for non-homogene0us plastic beams and the

5*
35



beams of piece-wise constant thickness are established by 
Lellep, 1989 a; Lellep and Majak, 1985; 1988 b. Plastic cy
lindrical shells of piece-wise constant wall thickness are 
studied by Lellep and Hannus, 1989 in the case of Von Mises 
material.

4.5. Minimum weight design in the case of smooth 
yield surfaces

Minimum weight design of the circular plates for the 
given collapse load is studied by Preibergar and Tekinalp, 
1956; Eason, 1960; Reiss and Megarefs, 1971; Pungar, 1972. 
Geometrically non-linear annular and circular plates, the ma
terial of which obeys the Von Mises yield condition are con
cerned by Lellep and Majak, 1989. A numerical method is de
veloped which enables to define the minimum weight designs 
for given maximum deflection.

Cylindrical shells subjected to the transverse pressure 
were studied in the geometrically linear form, i.e. for 
given collapse load by Freiberger, 1957; Reiss and Megarefs, 
1969; Shulgin, 1984. Geometrical non-linearity has been 
taken into account by Lellep and Majak, 1988; 1990. In the 
first paper the shells subjected to the transverse pressure 
and to the axial tension were considered whereas the latter 
is devoted to the case when the axial force is generated as 
the reaction of the supports. In this case the axial dis
placement vanishes at the edge points of the shell.
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CHAPTER I

THEORY OP OPTIMIZATION OP PLASTIC BEAMS

§1.1. Problem formulation

1.1.1. Preliminary remarks and notation

Let us consider a rigid-plastic beam of length L which is 
subjected to the action of distributed transverse loading 
of intensity P and to an axial dead-load N (Fig.1.1.1).

Fig. 1.1.1. Beam subjected to the lateral pressure 
and axial tension

The ends of the beam may be fixed in different manner; the 
support conditions will be specified by solving particular 
problems.

The loading is assumed to be quasi-statical, whereas the 
axial tension is smaller than the corresponding limit load 
NQ. If N * NQ, then the stress-state of the beam undergoes 
to the membrane state and shape optimization is no more pos
sible.

The displacements of the beam are assumed to be finite 
(not exceeding the order of the thickness of the beam), whe
reas the deformations are small.Thus, the deformation com
ponents and equilibrium equations are non-linear, they cor
respond to the non-linear shell theory of Von Karman. Since 
the concept of an ideally rigid-plastic body will be used, 
the load intensity P must exceed the load-carrying capacity
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PQ. The quantity PQ will be determined in special cases.
It depends on the yield stress of the material Cor yield 
stresses when different materials are utilized),on the geo
metry of cross-sections,on the load distribution,as well as 
on the support conditions of the ends the beam. The limit 
load may be evaluated by using the corresponding lower and 
higher bound theorems of the limit analysis.

The load distribution is not necessarily a uniform one. 
Let P - P (x, P0,...,Pg), where P0»...»PK stand for pre
liminarily unknown constant parameters. The coordinate ax
is Ox coincides with the axis of the beam in the non-defor- 
med state with the origin coinciding with the left-hand end 
of the beam. The function P (x,pQ,...,pK) is assumed to be 
a piece-wise continuous function. Thus, the piece-wise cons
tant load distribution and the uniform pressure may be con
sidered as special cases of the loading prescribed above. It 
is worth mentioning that one has to distinguish between the 
cases when the parameters p0,...,pg are fixed and when they 
are unspecified, respectively. Nevertheless, both cases will 
be treated in the following analysis.

The geometry of the cross-sections may be arbitrary. Ho
wever, it is assumed that the cross-sections are of a common 
configuration and the geometrical sizes are either constants 
or continuously variable quantities in each interval D^* 
a (a^, a ^ ) , where jj 0, •..,E and a^ * 0,a^^ * L » The
geometrical dimensions of the configurations of the cross- 
-sections of the beam are specified by the coordinate x 
and parameters h^,...,!^, which may be previously fixed or 
unfixed quantities.

The area of the cross-section of the beam may be presen
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ted as S * Sj (x,H^»h^,...»Ьщ) for xeD^. Here H^ ■ H^(x) 
stands for an unknown differentiable function, whereas 3̂  is 
the given function. Thus, the function S is piece-wise dif
ferentiable with respect to its arguments.

The parameters h^,... may be interpreted as diffe
rent thicknesses in the case of a beam of piece-wise cons
tant thickness (Fig. 1.1.2). But h^,...,!^ may stand for 
the dimensions of different layers in the cases of non-homo- 
geneous reinforced or layered beams (Fig. 1.1.3).

Fig. 1.1.3» Mon-homogeneous beam

Generally, these are the parameters denoting arbitrary geo
metrical dimensions of physical constants of the structure 
under consideration.

Let us assume that at the points x ■ s^,...,x * sn 
additional rigid supports are located (Fig. 1.1 .4).

I I

p

I ! I
— --- -----------

-̂ 77,

Fig. 1.1.4. Beam with additional supports

The parameters ŝ  (j * 1,...,n) may be preliminarily fixed 
or unfixed parameters. In the latter case the problem con
sists in the determination of the quantities ŝ  so that the 
optimality criterion obtains the minimal value.
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Let Xj 6 Dj (j « 0,...,K) denote the coordinates of the 
cross-sections of the beam where certain restrictions are im
posed on the stress-strain state of the beam. At x = x̂  the 
bending moment M, the transverse and axial displacements W, 
U as well as the slopes of these variables may be restricted. 
The numbers K, m, n are fixed integers.

The need for different notation of the corresponding 
points at Sĵ (i « 1,...,n) and x^ (j ■ 0,...,K) springs 
from the different behavior of stresses and displacements 
near these points. It appears that at the points s.̂ the 
slope of the deflection and that of the bending moment have 
finite discontinuities. However, at the points x^ and el
sewhere these variables are continuous.

The variational methods of the optimal control theory 
will be employed in the present analysis. The variables

71 « M, y2 .  Ц  , y  ̂ .  w, y4 « Ц  , y5 .  U (1 .1 ) 

will be considered as state variables.

1.1.2. Optimality criteria

In the present work an optimization theory will be deve
loped for plastic structures which takes into account the 
post-yield point behavior. It is assumed that the optimiza
tion criterion is a differentiable functional.Thus, the to
tal cost of the design is expressed as 

К
J = ZZ [G^(P0**••»P̂ »hi»••*»hm,s1»** *»sn»aj ^ j + 1 *

3=0 (1.2)

» U(xj}) + j V P»S;j»W’li ’U) **}
DJ

where the functions F̂  and Ĝ  are /given differentiable 
functions.

Let us consider some particular cases of the functional 
(1 .1).

(i) The cost functional corresponding to the minimiza
tion of the maximal deflection at the center of the beam may 
be expressed as
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J ■ W (£ )

provided both ends are fixed in the same manner. Evidently, 
t;his is a particular case of (1.2), associated with GQ * 
ж W (х^), Gj ■ 0, j £ 0, Xq ■ L/2, Pj ■ 0(3 ■ 1,...,m)•

(ii) In the case of weight minimization of the beam of 
piece-wise constant thickness one has cost function

m
j -  ZZ, V a3 + i '  V  <1-J)

ja«0

subjected to minimization. The functional (1.3) follows from
(1.2) if Gj * ĥj (a^+>j — a^) ; ■ 0 (j * 0,...,m).

(iii) The statement of the problem which consists in the 
minimization of the mean deflection, e.g.

L
J « J W dx (1.4)

о
is a particular case of (1.2) associated with Ĝ  « 0(j ■ 0, 
.,.,m){ я W. It is worth mentioning that (1.4) may be coa- 
sidered as a linear approximation of the non-differentiable 
functional

J ■ max W (1.5)x
where the maximum is calculated with respect to xe[o,L],

It was indicated by Banichuk (1990, 1986) that the func
tional of type (1.5) may be approximated in the class of dif
ferentiable functionals as

J . ( 1 j W* dx)1/k , (1.6)
о

where к is a positive number. If k-*-oo then (1.6) tends to 
(1.5). Evidently, (1.6) coincides with (1.4) if к ■ 1.

6
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1.1.3. Additional restrictions

The minimum of the coat criterion is sought for under the 
condition that the optimal solution satisfies the basic equa
tions of the geometrically non-linear theory of plastic beams 
as well as the additional constraints. The additional const
raints may be divided into two groups. These are the state 
constraints which are imposed on the stress-strain state of 
the beam at each point of the optimal trajectory and local 
constraints which apply at singular points, respectively.

The state constraints are assumed to be expressed as

Ri (P* S’ W» fx 1 « '».•••.r (1-7)

and

г ,
Z .  J Si0(P. s3> », Ц ,  U) dx « i«1,...,s (1.8)

where the functions R^ (i « 1,...,r) are given continuous 
and differentiable functions. The functions 3iQ(i * 1,...,s) 
are assumed to be piece-wise differentiable functions whe
reas A^ stand for given constants. The numbers r and s 
are fixed integers.

Particular cases of (1.7) are, for instance, the const
raints

W - W 0 4 0  (1.9)

and

H - HQ 4 0 (1.10)

which impose the upper bounds to the deflection and to the 
thickness, respectively. The quantities WQ and HQ in
(1.9) and (1.10) are given constants.

Relations (1.8) present these constraints, which rest
rict the quantities of integral type. For instance, in the 
case of problems with a given volume (mass) of the beam one 
has
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Similarly, the assumption that the mean deflection is given 
leads to the constraint 

L
I Wdx . A2 . (1.12)

Evidently, the integral constraints (1 .1 1) and (1 .12) are 
the particular cases of (1 .8), associated with S^q * S and 
S20 ■ W, respectively.

The local constraints may be presented as inequalities
dM(x.)

fi ^ po»*',*pk,h1’***’hm* (̂x.j) Лг. , W(x^),
, (1.13)dW(x.)

,̂-r » i e 1 t ••• 9-f

and equalities
dM(s,±)

®ij ^o* * * * * * * * ,tlm* s'j»»»»»sn» M(Sjj)» — —  ,
(1.14)

dw(s —)
— —  * U(sj-)) ■ 0; i ■ 1 »...,gjj* d •= 1 ,...,n .

Here the set is a subset of integers 0,..,,K. It may
also be an empty s e t .In (1.13) and (1.14) f^  and g^ stand 
for given differentiable functions{numbers f^,gj,K, n are 
specified. As a rule, these numbers are arbitrary. The only
limitation is that g. 4 K + m + n + 8  for each $ « 1 ,...,dn, provided the functions g^ depend upon the variables 
indicated in (1.14). If this inequality is violated, then 
the number of unknown quantities in (1.14)is smaller than the 
number of equations, and thus the equations may be contradi
ctory ones.

It is assumed that (1.13) and- (1.14) express intermedia
te conditions, only. The boundary conditions at x * 0 and 
x = L will be specified later.

If, for instance, at x = s., (3 = 1,...,n) the additional

fi*
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rigid supports are located, one has
W(e.j) ■ 0, M(e5) - M* ; J .  1 , . . . , n  (1.15)

where the quantity M. is to be determined according to the 
yield condition. Thus, in the present case the requirements
(1.14) take the fora • w(s.j) and g2  ̂■ M*.

§1.2. Basic equations

1.2.1. Equilibrium equations and geometrical relations

In the present study the theory of moderately lurge de
flections will be used. Within this concept, the post-yield 
behavior of structures can be properly treated when the cha
nges in geometry are not large and the transverse displace
ments do not exceed the order of the thickness.

The equilibrium equations of the beam element have the 
form

л2.и ,2Ш &N.
— £ + N* — £ ♦ P a 0, -rr- ■ 0 (2.1)dx dx ax

where stands for the axial force. According to the se
cond equation in (2.1), the axial force is constant along 
the span of the beam. Thus, - N, where N stands for 
the value of the axial force at the end of the beam. The 
quantity N may be a fixed as well as an unfixed parameter, 
depending on the statement of the problem under considerati
on.

The deformation components may be expressed as 

. dU< 1 /dWx2 „  d2W
£ 'S  + Z Mx' » -  ~~2 (2.2)dx

where t and stand for the elongation and curvature of the 
neutral axis of the beam, respectively.

1.2.2. Yield condition and associated deformation law

The material of the beam is assumed to be ideally rigid- 
-plastic (without strain-hardening). Within the limits of the
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concept of a rigid-plastic body the experimental sample re
mains rigid in one-dimensional stress state until the stress 
is less than the yield stress б'о . Thus, in the one-dimensio
nal case the yield condition is 161 - б0 ̂  0 .

The yield condition may be expressed in terms of genera
lized stresses, e.g. via axial force and bending moment.The 
form of the yield curve depends upon the yield stress of the 
material as well as on the geometry of the cross-sections of 
the beam. Generally, the yield curve of a beam is a piece- 
wise smooth closed curve. The area surrounded by the curve 
comprises the origin of coordinates.

Let us denote the equation of the yield curve for x 6
by Ф: = 0 in the plane of the membrane force and bending mo-Üment. Thus, the yield (plasticity) condition may be presented 
as

(M.N^h,,,...,!^) 4 0 (2.3)

for x e D̂ j 3 » In (2.3) Ф -j stands for a piece-
-wise differentiable function.

Гог instance, in the case of a cross-section of sandwich 
type one has (Fig. 1.1.5)

Fig. 1.1.5» Yield condition for sandwich cross-section
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I Ml lNil . ПЕГ, + “ST,- 1 ^ 0oj 03
(2.4)

where Mo;J “ ^oHô 3» MoJ * 2 ̂ oh-j» 60 being the yield 
stress. Here h. stands for the thickness of carrying layers 
in the region , whereas HQ is the total thickness of the 
beam. Similarly, in the case of a beam of a homogeneous re
ctangular cross-section, the yield curve may be presented 
as (Pig. 1.1.6)

Fig. 1.1.6. Yield condition for rectangular cross-section

* ( Nl л г n ( 1  о"ТГ + ( 17“ - 1 ^ 0 .  (2.5)

In (2.5) * 60Ь * А  , N00 - 60hy

Different types of yield curves for associated types of cross- 
-sections have been presented by Dikovitch [ 1967].

A deformation - type theory of plasticity will be utili
zed in the present study. Since geometrical non-linearity is 
taken into account, the stresses and strains are coupled.The 
relations between generalized stresses and strain components 
are furnished by the associated deformation law, which states 
that the vector with strain components (2.2) is directed
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along the outward normal to the yield curve (2.3). Inside 
the region determined by (2.3) the strain vector must vanish 
(corresponding to these points the zone of the beam remains 
rigid).

The normality rule yields the relations

2 2 
Ж;  > <2*6>

for x 6 D . provided Ф; * 0. If Ф; 0 then £ * 9€ ■J 2 " <3* 0. In (2.6) "S?j stands for an unspecified scalar multi
plier. Stipulating Vj* 0 for С 0 e.g. assuming that

■Vj Ф  j - 0 (2.7)

one can employ the equations (2.6) in the plastic regions 
(associated with ф: * 0) as well as in rigid domains
(Ф.,^0).

It is worth noting that the gradientality rule in its 
original form (2.6) is applied at the regular points of the 
yield curve. At the points of intersection of smooth curves 
the strain vector is to be specified as an arbitrary positi
ve linear combination of the normal vectors for the adjacent 
parts of the curve at the non-regular point. In this case 
the right-hand sides of relations (2.6) have to be handled 
as scalar products of relevant vectors.

1.2.3. Complete set of differential constraints

It appears to be reasonable to eliminate the deformation 
components £ and bt from the set of basic equations. Sub
stitution of (2.2) into (2.6) leads to the equations

A cfc>da 4 1 / dW x2 e „2 0 .1 3x + Z ( 3x > ■ 1ЛГ
(2 .8 )

d2W 2
s? - v  j "5ТГ

for x € Dj (j ■ 0,...,K)| provided ^  » 0 if Ф^ ^ 0.
Making use of the notation (1.1) one can present (2.1)
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and. (2.8) ae

I
У2

'3
t

У4

I
У*

P д$л 
- ^ d *1 д7л ~ p*

• 7ц. »
ЭФ

- - • » !  T R ? -

(2.9)

ЭФ,
■3*1

for x e Dj. Here primes denote the differentiation with re
spect to x. The quantity is to be considered as a con
stant (with respect to x ) parameter.

Evidently, y^,...,ŷ  in (2.9) must be referred to as 
the state variables but "v̂ as a control function (see Bry
son and Ho, 1969» Pontryagin et al., 1962).

The state variables have to satisfy certain boundary con
ditions imposed at the points x = 0 and x ■ L . The 
boundary requirements depend on the type of supports. Since 
the strict boundary values of the state variables may be un
specified at this stage of the solution, we assume that

У±(0) - 70i. i 6 IQ (2.10)
and

y^(L) * ŷ -j » d ^ • (2.11)

In (2.10), (2.11) IQ and 1^ stand for certain subsets, 
of the set of integers 1, 2, 3, 4, whereas yQi and yL^
denote the given constants. If, for instance, the left end of 
the beam is simply supported, one has y1(0) - У^(0) ■ 0.Thus,
I в in case*

Alternatively, in the case of the built in right-hand end 
of the beam, the corresponding boundary conditions are y^d)«
* М., y^(L) ■ 0 where is the value of the bending moment
which corresponds to plastic hinge and is to be determined 
from (2.3). Consequently, IL « {1*3} similarly to the case 
of the hinged end. However, in the case of the absolutely free 
end IL * (1,2} , since now y^L) « y2(L) » 0.
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§1.3» Necessary optimality conditions

1.3*1. Order of the state constraints

The posed problem is a control problem with state varia
ble inequality constraints. It appears that the form of the 
extended functional depends upon the order of the state con
straints (1.7) and (2.3) (see Berkovitz and Dreyfus, 1965» 
Troickii, 1976; Speyer and Bryson, 1968; Jacobson, Lele and 
Speyer, 1971; Kreindler, 1982.

We say that a state constraint F(x,y,j,... ,ŷ ) 4 О is
the constraint of order к if the derivatives F*,F'
С k»1)F4 ' do not depend explicitly on control functions but6k)Fv ' does depend. The differentiation must be performed 

by the sample

where the derivatives y| have to be substituted with the 
help of (2 .9). If, for instance, F depends only on x and 
ŷ  then according to (3.1) and (2.9) F’ ■ F*(x, y^, y2). 

Therefore, the order of this constraint is not equal to one. 
Svidently, it equals two in this case.

Let us consider the state constraints (1*7) in greater 
detail. Let us assume tnat the equality sign applies in (1*7) 

and consequently we have

RjCP» 3, 7 y  У4» У5> « О; i « 1,... ,r (3.2)

in the regions ( /\.j* ), where ;) « 0,...,K.
Differentiation of (3*2) with respect to x making use of

(2.9) leads to

5

i-1
(3.1)

clP
-5nr* XT +

(3.3)

A
for x e ( p. t i-j)• It yields from (3.3) that the const-ij) *
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raints 4 0 generally, are of order one, since the first 
derivative of R^ comprises the controls expicitly.If,
however

9Rj d<$, ÕR, ЭФ .

then (3 .3) takes the form

5Ri dR1 dR, л ÕR, p
Я Г  p* + ЭЗ” 3’ + Зу^у4 ” 7 5 у ^ У ? в 0  (3*5)

and thus, R| does not depend explicitly on controls. Dif
ferentiation of (3*5) with the help of (2.9) shows that R'£ 
does depend on the controls. Thus, the constraints О
are the second order constraints in this case.

It is worth noting that (3*4) is satisfied if
■ ЭН^уЭу^ ■ О. Therefore, the order of (1.7) is equal to 
two when does not depend on W' and Ü.

How let us study the constraints (2.3). We assume that 
the equality sign in (2.3) applies in a subdomain of D.,.
Let

ф^(у^» , Ĥ j, h^,...,^) • О (3.6)

for x 6 (a0-j, a0jj) * where aQ.j € D̂  and aQ  ̂e D̂ .

Differentiation of (3*6) with respect to x gives 

ЭФ.
5^  У2 - 0 (3.7)

A
for x 6 (aQj, a0-j)« Since Ф^ depends on the bending moment, 
generally, ЭФ/Эу^^О. Therefore, (3*7) yields

У2 “ 0 (3.8)
for ie(ao3, a'.,).

Differentiating (3.8) and making use of (2.9) one obtains

^  N1 S y }  ‘  P "  °  (5 *9)

for xe(aQj, aQ  ̂). It follows from (3*7) - (3.9) that the 
state constraints (2.3) are the second order.
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1.3*2. Extended functional

In order to derive the necessary optimality conditions, 
one has to compile an augmented (extended) functional intro
ducing the corresponding Lagrangian multipliers. This func
tional has to take into account the cost criterion (1.2)and 
additional constraints (1.7), (1.8), (1.13), (1.14)»as well 
as the state constraints (2.3), differential constraints
(2.9) and boundary requirements (2.10), (2.11). Assuming 
that (1.7) or (3*2) are the first order constraints,the fol
lowing functional will be used 

К - 5
■ Ž Z  Gd + J yi -&j> dx ♦ 9oj $oj +
d«0 L D.J i-1

+ §23 ♦ Т У ц  H!d} * Ž + 
i=1 i=1

+ 4 ? T V yi(0) " yoiJ + 9i^i^L) “ +о i G I

+ 21 Zl f c d ( f id + r i i )e
jeKf i=1

m  (3.10) Я о у  р 1а, 92d, v iJf A.id, b ’ stand
for unknown Lagrangian multipliers which are assumed to be 
constants whereas '^(i = 1»..»»5) are the so-called addoint 
variables. The quantities r^^ are constant parameters 
which meet the requirements

f—  + r/j = 0; i “ 1,...,f^i d £ . (3*11)

Here and R ^  stand for the left sides of (3.6) and
(3.2) evaluated at aQ;j and b^, respectively, e.g.

ф 0  ̂= (a0-j) * , Hj, ĥ  ,... ,hm) ; d =0,...,K

*!j 1 RiCP ‘’V *  s (bid)* W 5*
i a 1 , ...,Г.
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The Lagrangian function in (3.10) is defined as
л _£L, л „ 0 9Ф.

- нз ♦ Z  «  (3-13)
i- 1 1

where j * 0,...,K and
2 Э*1

- ^ j74 - %-Vj g j  ♦ (3.14)

1 .2, °
+ ' V  ̂ 5 ^ - 2  * V  * F . % 1  310-

i-1

In (3.13) and (3.14) stand for the left-hand sides of
equations (3 *3 ) * whereas ф ^  and ф ^  denote prelimina
rily unknown multipliers. These should be certain functions 
of coordinate x, but are presumably constants. The
latter is due to the isoperimetric nature of the constraints
(1.8) (see Pontryagin et al. 1962; Troickii, 1976).

1 .3 .3 . Total variation of the functional

For optimality of the solution, it is necessary that the 
total variation of the functional (3.10) should be equal to 
zero. The variations of the state variables at unspecified 
positions will be determined by the following sample (see 
Troickii 1976, Sage and White, 1977)

Ay (s -+ 0) « 6y(s - о) + Ц  x = g± -As. (3 . 1 5 )

Here S j  stands for the variation of the state variable у 
which is due to the variation of the trajectory in the state 
space, whereas Ay(s+) and Ay(s-) denote the total varia
tions of y, As being the increment of the parameter s.If 
the variable у must be continuous at x e s then, of cour
se, Ay(s-) a Ay(s+). While

у(s - ) = lim y(x) .
x — s +
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Bmploying the rule (3*15) iu the case of points whose 
coordinates are assumed to be fixed, one easily obtains

бу^О) ■ Ayi(0) ; i « 1,...,5;
(3.16)

d7±(L) •  Ay±(L)

However, at x ■ â , x ■ a0j» x “ ^ij* x “ xj 0019 k*®

Ay(a^) - Sy(a^) + у'(а^) Д â  ; j *0,...,K 

iy(aOJ) . <5y(a0j) » y ’(ao3J Aa0j
(J.17)

Ay(bi;.) e tfy(bi;j) + y'(bi;j) Д bi;j; i«1,...,r; j£K 

Ay (x̂ ) * dy(x^) + у'(х^) Дх^ 5

where the variable у may be replaced by any of the state 
variables y1t...»ŷ * At these intermediate points of the 
optimal trajectory all state variables are assumed to be con
tinuous.

Since at x = ŝ  (d ■ 1,...,n) the state variables y^t 
y^t 7cj have discontinuities, one has to take into account 
that

Лу^а., ±) - d y ^  i) + yJCaj i) As., ig)

i = 2, 4, 5» d m 1,... ,n .

On the other hand, ŷ  and y^ are fixed at x = ŝ . There
fore, Ayi(ŝ .+) ■ Ayi(ŝ -) * 0 for i с 1, 3 and according 
to (3.15)

<5y1(s. ±) « - y* (s. -) Д Sj; i = 1,3;1 0 i d  d C3.-I9)
d = 1,... ,n.

It is worth noting that despite ŷ  and y^ have not any 
discontinuities at x * ŝ , 6 ŷ  and 6y^ are not conti
nuous at these points. Moreover, certain adjoint coordinates 
may have finite d^ps at the points s^(j = 1,...,n) as well 
as aQ.., a ,̂ x^ (d = 0,...,K) and b.̂.. . Therefore, for each

yk
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L к
$ c5(ayy’)dx - - 21 U'6y dx + [лр(а ,j\ 6y(ao1)
о 3-оЪ.

r 3
Zl  t^Cbi;J)] 6y(bi;J}] - 21 6y(x3) -♦
i-1
К n (3.20)

" ZL ŷCftjj) + 2Z C'mksjj-) «SyCsj-) -
d*i d-1

- ^(3^+) 6'y(s^)) ♦ 'iy(L) 6  y(L) - 1̂ (0) б'у(О).

In (3*20) square brackets denote the finite discontinuities, 
e.g.

£m>(s)] - ^(s+) - 'ip(s-). (3.21)

Performing the variation of (3.10), making use of (3.12)-
(3.14) and (3*16) - (3*20) one obtains the total variation 
of the cost criterion which may be presented as

A J* - ДО + ДУ + A J 0 + 2 L  ij A r ij * 0 • (3 .22 )

jJeKf i«1

Here
К f 5

Jo - Z j < Z 'Vi n  - <5.23)

and

G

d«0 Dd i-1

к fd n sd
ZZ Gd + 2Z ZL ( Mij fij) + ZÜ ZZ A idsid
3«Ю i*1 j«1 i»1

(3.24)
I - * Z  4 ^ ( 0 )  - yoi) ♦ Z ^ C L )  - yLi) ♦

1£I0 i«L
К Г

+ Z < 9oj*o3 + * Z Лз "ip-
3«0 i»1

The first term in (3*22) becomes
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^  - E #  л*ч ♦ Ž &  л- ♦ 
i-1 1 i- 1 x

* IL щ  AP i + H й :  ♦ 
i-0 1 >1 3
n sj 5 9 k

+ 2 ]  Z ]  4 d (8^ ( й -7 Дук(8Г  
j-1 i-1 k-1 * 3

й у ^ в ?*) д Ук(8з+)) + £  §xT Ü I j ♦Л- •! ĵg-ТГ d

£  5

d6^

Similarly, the second term in (3*22) yields

AY - H  fjq Alii ♦ ZZ -üj Aei + 
i-1 1 i-1 1

Z
♦ 2 1  ü r  A Pi ♦ Z  ♦ ̂_n 1 1 «=т

j,+j -К'-о *— • ox.
3 jeKj 3

+ E  Ёми ZZ 5гк(хз> •
je K,, i«1 ' k-1

0<ф* E  9iАу±(Ь) + E  с frj 6>-(a°b Ari(aOJ)
ielb j-0 n °°

г 5 0Rp
♦ 9sj * Z  E  ^  а £ ( ь Ь  Дук(ъ„)

i-1 k«3 K 13 * 10

and the third term gives

4 , - E  { J с 
j-0 ^  i-1

d&, Э&, _ JL &£
- 5 ^  д Ъ  * <**, - g  5pJ ü*i -

m r 5
- E se?av  111 ■ E E  ["Vk̂ iĵ yk - 
i=1 1 i-1 k=1
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- 21 [ % (aod)dyi(ao3^ - 21 ZltViCxpltfyiC*^ -
i-1 dfcKj i-1
K 5 5

- TL 71 [^iCajj)] ^JiCaj) + YL {\ (b) AjiCL)- 
d«1 i-1 i-1

n
- ^(0) Ay^O) + 21 ^ i (sd")(5,yi(e3-)-'4)i(sj+)5yiCs;j-*-))|.

d«i

5 5

1.3*4. Adjoint set and stationarity conditions

Bqualizing AJ, with zero and taking into account that 
öy^(x) and (54j(x) are the independent variations of the 
corresponding quantities, one obtains from equations (3.22),
(3.23), (3.27)

Э&
Vi - - * 1 * (5*28)

and

« о I d -  0 , . . . , K  (3.29)
d

dÄ«
4 ‘ °  ’

for I 6 Dj. Bquations (3*28) are the so-called addoint equa
tions which will be used for determination of the variables 
^(x) (i - 1,...,5)* whilst (3.29) may be interpreted as the 
stationarity conditions of the Lagrange function.

Making use of (3.22), (3.26), (3.27) and taking into ac
count that Ay^(O), Ay^(L) may be handled as independent 
variations one obtains from (3.27) the transversality condi
tions, e.g. boundary conditions for addoint variables at x -
- 0 as

*4̂ (0) - 0, i ё io

^ (0) ■ *lr 3 6 O,30)
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and at x ■ L as

^(L) - 0, i I IL

V L) - - 9у  JJ6Il-

Since Ar ^  in (3*22) are arbitrary from (3.22) follow 
the equations

îjj “ ®  ̂ ■ 1»...f^-ji «J ^ ^  (3»32)

which may be used for determination of parameters r^j .
Bearing in mind that the quantities Ap^ and Ah^ 

have to be considered as constant parameters,the relatione
(3.22), (3 .25) - (З.27) permit to get the equations

g|- (g  ♦ T) - 2 1  j  g j1 di •  oi t .  о , . . . , к  o . » )

1 3-° Ds 1

and
К r 0££gg- (в * T) - 21 J gi? - Os к . 1... . (3.34)

i-° “j

0.31)

1 .3 .5 . Intermediate conditions

Considering for $ * 1,...,K and Ау̂ (х.|)
for 5 e as arbitrary variations in (3 »25) - (3 *27) and 
шяк-ing use of (З.1 7)» one obtains for i « 1, 2, 3» 5

LW ] - °» d - 1»...»K  (3.35)

and
э,

I L ^ w j b  1 3eK*- °**>k»1 meE^ J

Note that (3*35) holds good, provided х̂  Ц â  . If, ho
wever, х̂  * â , then (3.36) must be utilized for x. * aj.

57

8



Similarly to the previous cases it follows from (3.25) “
(3.27) that for j ■ 0,...,K

[^1(ao^] ■ 9oj Эу^а^) *

[^2(aoj)l * ?2j » (3*57)

[^(aioj)] - 0 « i * 3,4,5

[^(bij)] ■ [^2^ 1 3^  * ^ »

and

(^ 8)

kct>i;j-1%<ьц Я  • • ' ч щ й т  * к - З А . 5

where i * 1 ,...,r.
Taking (3.28) - (3.38) into account (3*22) may now be 

converted into 
К 5

+ ZZ[̂ i(ad̂  yi(aj)} A a j + ZL ( & Г  +
0 i*1 3

5 К 5
+ S tVpi(x0)]yi(xd))Axd + § )£ 1{[̂ (ао 0 Я У к Ч з > ЛаоЗ *

r n 5

♦ E №k(bi3)]yi(bi3) дь13} ♦ z  E t<-vk<ej-)5jk(ej-)- 
i«1 d«1 k=1

*3 3g
+ Z \ 3 <5y4=^T Ayk(er ) * i=1 * J

♦eypsi+T Д*к(ва+)} ♦ E  Ц- As3 ■ ° •J.1 3

Due to the independence of variations Aa^, Ax^, AaQ  ̂ and 
ДЪ^ and to the continuity of the functions and S^Q
in (3.14) it immediately follows from the previous equation
that L^?(a-j)3 + ga~ *0*

г n ag (3.39)L36̂ (Xj)J + ■ 0; j*0,...fK;
3
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and

t̂ j(aQ-j)]e — О ; i ■ 1»...»Г} j * 0,...,K (3*40)

provided ^(а^+) ■ ^(a^-f) and3tj(a^-) • (a^-).
Substitution of the variations dy^Cs^-) according to (3.18),
(3.19) into (3.39) leads to the equation

E { E  {< V sd_) + Z A j 07Uaj-J } Лук(Т ) +j«1 k«2,4,5 i«1 * 3
gd 3g-

+ ( £  h i  öyJe^V) ’ ^k (sd+)) АУкСвЗ+) + i=1 * J
8j 0g.

♦ £  (- t-VnCej)] ♦ 21 4 j  ж г й г  ) Ä7k(sd) +
k=1,3 i-1 * J

5
♦ (Цт ♦ ) Asj * О

3 k=1
from where it directly yields that for j - 1,... ,n

+ ^  9Sii 
V er> - i ^  gjJifiT * * ■ 2*<t'5 i-1 •>■

ei a g 
[■4>к(ва>] - £  4 j  . к . 1,5

i-1 * 3

and

L^j(sj)l + gs ' * 0  ; j * 1,...,n ; (3*42)
«

provided HJ « , if ŝ  e D̂ .
On the basis of (3*13). (3.14) in (3.39), (3.40), (3.42) 
may be substituted by & y  Thus, in the case of the pre

sent approach, the Lagrangian function may have finite dis
continuities at x a â , x = Xj (jj * 0,...,K), x - ŝ  (j =
* 1 ,...,n), whereas at x = a0j* x * ^ij as ne^  613 else
where it is continuous. Note that the adjoint variables are 

1 1continuous at aQ  ̂ and b ^  , being discontinuous at aQj 
and b^.
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1.3.6* Tile second order inequality constraints

In the previous section it was assumed that the inequa
lities (1.7) present the first order state constraints. In 
this case equations (3 .3) explicitly depend on controls "'Jj • 
Let us assume now that it is not the case and (3*3) converts 
into (3*5)« Differentiation of (3»5) with respect to x leads 
to the equations

Assuming that the controls do not disappear from (3.4-3)* 
the constraints (1 .7) turn out to be the second order cons
traints imposed on the state variables. In this case the op
timization technique utilized above must be slightly modi-

О 1 1filed. Namely» the sums with terms aadn ‘'’и  Ru  Й
(3 *10), (3 .1 3 ) have to be replased by ♦ *9 0 R ^

^i;)2 • respectively. Here Ri;J * Rid (Ь1^  4,1(1 aij 
stand for the left-hand side of (3*43). As a result of this 
substitution the corresponding intermediate conditions (3 *38) 
have to be modified.

However, in the present work another approach which was 
used by the author in 1982 will be employed . This con
sists in the following. Introducing new control variables 
▼j (0 ■ 1 ,...r) and (;) ■ 0,...,K) one can present the 
Inequalities (1 *7) and (2*3) as

Rjj (p. S, j y  y4, ♦ v2 * О; (3.44)
j a 1 f ... ,r

and
Ф0(У1, M1t Ry  b1 f...,hm) ♦ 02 - 0 ; (3 .45)

j a 0 *... *K ;

respectively. Now the extended functional will be presented 
as previously in the form
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J .  * g  + y + j q + 2 ^  Z  АЧ3 r ij »
leKf i-1 1

whereas JQ and. G are specified by (3.23) and (3.27),re
spectively, whilst

1 - Z *]1<У1<ад-Уо1> * Z 9l(yi(b)-7tl) ♦i€I0 i « (
E

+ Z (?0J Уг(ао3> ♦ §13 y2(ao1d>} ♦ 

♦ Z Z W  Hi13 <V + Hi5 сь*35)3*0 i*1

and
г

+ ♦ BP * Z fiôi - vi> ■ «.*7) 
i»1

The derivation of the necessary conditions is similax 
to that presented above. Therefore, only final results will 
be presented herein. For determination of the controls 0  ̂
and v^, one obtains the equations

(fy 9^ . 0; 3 - 0,...,K (3.48)

and

cfiovi - °i i = 1»..• ,r. (3.49)

After their application , equations (3*29), (3.47) and
(3.14) give

r ЭФ ЭФ л
U ^ 2 N1 + " °* I"0 *---»* • (3.50)

Bearing in mind that the control variables 0^ and v^
1 1 have to specify the parameters а0з* а0  ̂ » an(i ^1 3 » ^13 »

the variations of the latter are equal to zero. Thus, the

61



intermediate conditions obtained in the previous section 
have to be suitably changed.

It appears that instead of (3.37) one has now for d ■
■ 0,•..,K

* hfcUoJfl " 0; 1 * 1» 3. 4, 5

- ?оЗ 5 (3.51)

tlfe<ao3>l ■ ?13 *

Similarly to that the requirements (3*38) have to be re
placed by the following conditions

[V bi d)] * t4’k(b1j>] -Oi
9RiJ„ ; к . 3,4,5 (3.52)

[ W ]  * '’id 1 * * 3,4,5 

1 aRi3
[ V bl j ) ]  ■ э х к(ь11 * *  ’  3 ’ 4 ’ 5 -

It is worth noting that the requirements (3*35)» (3*36), 
(3*39), (3*41), (3.42) hold good, whereas (3*40) must be 
omitted, in the present case. Thus, the Lagrangian function 
is not continuous at the points aQ  ̂ and b ^  , now. Evi
dently, (3.28) - (3*34) are also valid.

The adjoint set (3.28) takes the form for x £ (here 
j * 0,...,K)

“ " Ч’З 53^ >

'Ч’г - -'Vi •
9PS

%  ■ 5 ^  • (5-53>

э?;
УД - - Уз ♦ У4 У 5 * äyj - 

а?;
%  *5у£

where the following notation is introduced
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S г
?J ■ 7j - Z  % i  3io - E  tioRl - f j V  «*5») 

i«1 i=1

By solving an optimization problem one has to distin
guish between the cases when the axial force is spe
cified and unspecified, respectively. In the first case, 
the quantity (0) <■ N is to be considered as a given pa
rameter. In the second case, the axial force is generated 
as a reaction of supports which must not permit the axial 
displacements. Now the parameter N̂  is subjected to the 
variation with the variation of the extended functional. 
This yields

i r r  ЭФ.. 2 321 ) M .  + 3̂ Щ  ((̂ 2N1 - V  Щ  *
jcOD 1 1 1

дЪ. \+ ^  ) J dx « 0 . (3.55)

Bquation (3 .55) may be considered as the equation for 
determination of the quantity

Now let us consider the particular case of the posed 
problem when neither the optimality criterion (1 .2) nor 
the requirements (1.7), (1.8) depend on y^ and y^. We 
assume that = Fj(?, , y^) ; Ri * Ri (p* s» У3) *
Sio = Sio^P* S’ Now» according to (3.54)

22* 22*3y4 = ay5 (3.56)

Consequently, the last equation in the set (3*53) gives
* 0. Thus, in the case when the axial force is specified 

and the axial displacement does not vanish at one end of the 
beam one has for x e (0, L)

- 0 . (3.57)

In fact, now = const and according to the transver-
sality conditions (3 .30), (3 .3 1) ''ф̂ (О) = 0  or ^(L) = 0. 

Substitution of (З.56), (З.5 7) into (3.53) results in
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Considerable simplification may also be achieved in 
(3*50). Taking (3*56) - (3*58) into account one can easi
ly establish that

%  * N1 ^2» ^3 * N1 'HV (3*59)

and

ЭФ< Э»?
" i f j  5y7 * • 5^  <},60)

if jt 0. In the regions where * 0 (these correspond 
to the rigid zones of the beam) relations (3.59)» (3.60) 
do not hold good. In the plastic zones * 0 , whereas the 
rigid ones are associated with Ф^ <. 0 and * 0.

§1.4. Optimal location of additional supports

1.4.1. Statement of the problem

As the first illustration of the previous analysis can 
serve a problem consisting in the determination of the op
timal positions of additional supports. It consists in the 
determination of the coordinates s,j,...,sn which specify 
the locations of additional absolutely rigid supports (Jig. 
1.1.4).



The left end of the beam is clamped, whereas the right end 
is simply supported. Assume that the beam is loaded by the 
uniformly distributed lateral pressure of intensity P and 
by the axial tension N .

Such a layout of rigid supports is sought for which the 
criterion

L
J с  ̂ y^dx (4.1)

0

attains the minimal value.
The deformations of the beam are expected to take place 

in the range of finite deflections. Thus,the load intensity 
has to exceed the load carrying capacity for each section 
of the beam, which yields the requirements

P - P̂  > 0; j = 0,...,n . (4.2)

In (4.2) Pj = Pj(sj» sj+v stands for the limit load for 
the section of the beam which is located between the supp
orts ŝ  and s -+1 * Here sQ = 0 and sn+  ̂= L, while 
S1 = N for xe(0,L).

The problem posed herein could be considered as a parti
cular case of (1 .2), (1 .7), (1 .8), (1 .1 3 )» associated with
Gd = °* F j = l y  SiQ = Ai0  = 0, Ri  = 0, f ^  *  Pj -  P (J ■
= 0,...,n).

It is reasonable to assume that at x= s ^(j= 0,...,n) 
plastic hinges are located. Thus, the state variables have 
to meet the following boundary conditions

у (0) = - M* , y.CL) = 0,
1 1 (4.3)

У^(0) = y^(L) = У5(0) = 0 .

Similarlly, at x = ŝ  one has

y1 (s;j) = - М., 7 3(83) = 0; 3 = 1, • • • ,n ; (4.4)

where M, stands for the value of the bending moment which 
corresponds to a plastic hinge. For instance, in the case of 
a sandwich beam the yield curve is specified by (2.4) or Fig.
1 .1 .5 . Now
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and

“• - - § )о
(4.5)

Ф  = 1у1 \ - м, (4.6)

where М - 6„Hh ; N. = 26. h .о о о о
Evidently, the boundary requirements (4.3) conform to 

(2.10), (2.11), if I0 »{1, 3, 5}i IL * (/l, 3} and (4.4) 
may be conceived as a particular case of (1.14) .

1.4.2. Optimality conditions and the adjoint set

It appears that the equations for determination of the 
parameters s^,...,sn are given by (3,42) which may be pre
sented as

+ ̂  = 0; 3 = (4.7)3
where 6̂ is specified by (3*47) and (3.14). According to
(3.24), (4.2) - (4.4) the function G in (4.7) changes 

n n
s 1 S - p) + -

3 (4>e)

♦ •

On the other hand, in the present case (3.54) may be 
converted into

F* = Y3 - . (4.9)

Since according to (4.6) Ф=Ф(у1, , h, H) the validity 
of (3*56) immediately follows from (4.9) . Moreover,now 
y^(L) is not fixed and therefore =0, as shown by 
(3*57^. Making use of (4.9.), one can present the adjoint 
set as
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UM , Ф =  о1 (4.10)
0 , Ф<  0

*4$ - - ̂  •

*4 5 - 1

4$ = - 'Фз

where (3*60) is taken into account.
According to (4.3) the transversality conditions (3*30), 

(3 *3 1) take the form

^2(0) ж % (0:) “ ^2(L) ж ^4(L) * °* (Zf#11)

From (3*41) and (4.8) it follows that

*4̂2̂ ® j ̂ * ^̂ .(S-j) “ 0 } j s 1 1 . . . ,n (4.12)

and

['^(Sj)] = ^1 j ’ 3 2̂3 » «J “ 1 ,...,П . (4.13)

therefore, adjoint variables Ofy, 'ipj are discontinuous at 
x к Sj in the present case. However, the Lagrangian func
tion is not necessarily discontinuous.

Proceeding from (4.8) one easily obtains

dP1 ap,
a ij  * f t

0Г. OV. .
—  = u. -r-i + U. . 1Д 1 (4.14)

for j = 1,...,n . Substitution of (4.14) into (4.7) leads 
to the jump condition

t̂ (Sj)] = " üs^ (̂ jPj + /̂ j-1 Pj-1); J = (4.15)

where the Lagrangian function is given by (3.14), (3.47).Ma
king use of (3.14) and taking into account (4.12), (3.57), 
one can establish that on the other hand

D*(sd)] = [^(s^y^s^) + '4>j(sj)y4(s;j)]; j=1,...,n. (4.16)
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The relations (4.15), (4.16) furnish the optimality 
conditions

['4,1(s;J)y2(s;j) ♦ ^(s-j) *
(4.17)

-  -  s l j  ( f V a  i > i,...n

« 0, if P - > 0.

1.4.3. Adjoint variableä

In order to employ the requirements (4.17)» one has to 
find the solutions of the basic equations (2.9) and of the 
adjoint set (4.10). Since these are not coupled in the pre
sent case, there exists a possibility of solving the ad
joint set separately.

In the rigid-plastic analysis one has to distinguish bet
ween the rigid and plastic zones of a beam under considera
tion. In the plastic zones, at each point the stress-strain 
state corresponds to a point lying on the yield curve Ф* 0, 
whereas rigid zones are associated with the inequality Ф<0.

Suppose that the plastic zones are (â , b^) for each j= 
« 0,...,n; where ŝ _̂  < â  < b^ < sу  Note that in compa - 
rlson to the notation used above b^ о â  herein. Thus, 
according to (4.6)

Ф »  У1 - M, ш 0 (4.18)

for each x e (â , b^); j a 0,...,n; provided the bending 
moment is positive in these regions.

The adjoint coordinates have to meet not only (4.10) -
(4.13) but (3*51)» (3*52) as well.The requirements of (3 .52) 
are satisfied spontaneously, while (3.5 1) establishes the 
continuity of variables 1^, at x = â  and x » b...
However, ^ 2  may have finite jumps at these points. The 
jump conditions in (3 .5 1) should he used for determination 
of corresponding Lagrangian multipliers.

Therefore, in oach region (ŝ , Sg+1) variables 
are continuous whereas according to <4.13)» has finite
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jumps at the boundaries of these regions. Integrating the 
latter equations in (4.10) and making use of (4.12), one 
obtains

•4*3 2 C21 - S3+1 - s3}

Уч. - i  - S3)(I - S3+1)
(4.19)

for x e (sj, s.j+1)» where j * 0,...,n .
In the plastic regions (â , b..) the relations (3*59) 

hold good. It is easy to check that the solution of the ad
joint set (4.10) which satisfies (3«59)» (4.11)-(4.13) has 
the form

j(2aj - Sj - Sj+1} /2N’ x e ( s j » aj)*
ix " sj “ Sj+1)/2H’ X e (a.., b 3),

j “ sj “ Sj+1)/2N» X S (bj* sj+1)*
(4.20)

4>2S

(x - за)(за ♦ ва+1 - 2а3)/2Я, x e (з3,а3),
(x - s^)(s^+1 - x)/2H, X e (a^,b^),

k(sj+1 “ x)(2bj " sj " Sj+1)/2N’ xe(bj,sj+1)

for the region (s^f s.+1) where j * 0,...,n . 
Due to (4.19) and (4.20) one has

W ) (2b3-1 - sd • 3з-1)/2И’ %(s3+) *
= (2aa - Sj - Sa+1)/2N, O)lj(sj-) = ̂ CSj— J ; (4.21)

% < V >  ■ г ( = r  s3+1>-

1.4.4. State variables

Let us study the integral curves of the basic set (2.9) 
now. In the present case К = 0 , evidently. Thus, in (2.9),
(3.6) - (3.9) the subscripts may be omitted and (3.9) leads
t0 2 P

V “ N (4.22)
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which holds good in plastic zones (â , bj)» wbare Ф  “ O.The 
most essential attribute of rigid zones Сwhere Ф^О) is the 
vanishing of the deformation components. Thus

(4.23)

for x € (â , Ь^) .

These considerations accompanied with (4.18) make pos
sible the integration of (2.9). The first two equations in
(2.9) after integration lead to the relations

I- J u ad ♦ М.. *e(Sj, a3),

71 x i М.. I£(V b3),

r I
1

H - v 2 + М., xeCbj, Sd+1

-- P (x - a^), xe (sj, ad}

7 2 = ̂ 0 t xe(a^, bj),

P(x - ba >• ie(bj, Sd+1

(4.24)

for xe(s^, sjj+1)i where the continuity requirements for 
the state variables are taken into account.

The bending moment and its «lope given by (4.24) have to 
meet the boundary and intermediate conditions (4.3), (4.4). 
For that reason

a^ * Sj + aQ { j * О,• • * I

b^ « si — aQ ; i a 0,... ,n — 1 ; (4.25)

bn - L- / ä T .

where

ao * \ [ Щ ^  * (4.26)

Making use of (4.22), (4.23) as well as (4.5), (4.6) the
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state variables are obtained from (2.9)

I aj + Aj^ x “ s3̂ » x e ŝj* a^» 

73 ж ) - h  *2 + V  + ВУ  bd),

I bj + Aj)(x " sj+1)» x e ^ V  sd+1)t

'S aj ♦ V X6(sj, a^),

*4 * ” H x + Ay  

~ § bi * Ay

хе(а^, Ь^),

x6(V  s0-1),

(4.27)

- i (h aj ♦ V 21 + V  * V  ie <s3- aj>-
y5 “ ) i (AJT I x)5 + 1RT x + V  X£(ajt bd),

x e ( V  ‘W

where , B ,̂ , D̂ , (j ■ 0,...,n) stand for arbitra
ry constants of integration.

For the determination of the constants A ,̂ B^ the con
ditions of continuity of y^ at x « â  and x = b̂  may be 
utilized. This yields

Aj * Ж 5 ^ = г р ?  (b3 ■ ad * 2aJsd " 2ЬЛ + 1 )->
j = 0,;..,n; (4.28)

Bd - ŽHUj-sV-l <аЛ * 1 (аЗ ' 2s3) * 

+ b33d(2sd.1 - V > -

It is easy to draw the conclusion from (4.24), (4.27),
(4.28) that, in particular
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When deriving (4.22) - (4.29) it is tacitly assumed 
that the measure of a plastic region (a^f b^)is non-nega- 
tive, e.g. âj 4 . The case â  * b̂  is associated 
with the limit state of the section of beam which lies 
between the supports ŝ  and Thus, the corres
ponding limit loads may be obtained from (4.25)t (4.26) as

p « 16M.
3 7я -я ) »  ̂ж ^ , » » • »n~1 »U j+1 ay

(4.30)
Pn » 2(1 ♦ (2)2 -- ^ - 5  .

( i - O z

1.4.5. Optimal layout of additional supports

The parameters s^,...,sn will be determined with the 
aid of the equations (4.17). Substituting the jumps of the 
state and adjoint variables from (4.21) and (4.29) into
(4.17), one obtains the equations

Pl(2aj “ aj “ 8j+1)(aj - sj) “ (2bj-1 * Sd ’

■ sj-i)(bj-i “ sĵ  " i(aj - bj)(aj + bj
(4.3 1)

~ 2sj +1  ̂ " z(aj-i “ bj-i)(aj-i + bj-i2sj-i^1 *
ЭР, ЭР, л

= -2N(rt õ ? } + ft-i ^ 7  > ! 3 1 1 .... n •

Making use of (4.30) the equations (4.31) may be pre-



sented аз

l(sd ‘ s3-1)2 - (sd*1 * V 2b

„ .  _žž“ » &  + 32M*fa-l 

Csd-'i-s3> (sr 83-v ‘

j * 1 ,•••»n—1 (4*32)

"TÜ 2sn (L " sn) + sn-1 - L2 - “
32M.Ü 1 4(1+j2)2M.an

(sn"sn-1 )3 (L“

In order to solve the set of algebraic equations (4.32) 
with respect to the coordinates ŝ , one has to consider 
tne two principally different cases. Firstly, if |U.̂ * 0 , 
then according to (4.2) P > P̂ . Secondly, t 0 when 
P * P.. It means that the Lagrangian multipliers U* va-U I иnieh in each section of the beam where the plastic deforma
tions take olace.

Analysis of the possible versions leads to the solution
of (4.32)

f 23] ^ *  p. < p ‘ f v

£ -| ---- -------.

where P0 and P1 are the following values of the load in
tensity

P * —^  M. ( 1 ( 1  -f2n)/2)2,
0 L

(4.34)
P = -2- м. ( 'J~8n + \f7)2 .
' L

It is easy to recheck that
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s.(P ) ----- ži-2 *3L.. (4.35)
ü l4-(1+2n)\f2

Thus, for P = PQ the layout of the additional supports cor
responds to the maximum load carrying capacity, FQ being the 
common limit load for each section of the beam.

It should be noted that the optimal location cf supports
(4 .3 5) corresponds not only to the optimal solution of a geo
metrically linear problem which consists in the maximization 
of the load carrying capacity but it was established in the 
cases of dynamic loading of beams and cylindrical shells as 
well by the author, 1973, 1981, 1933, 1984.

Economy of the design established could be assessed by the 
ratio

j(SyJ , • • . , 3д)

J(ŝ j , . • . ,Sq)
(4 . 3d )

where J(s.-,... ,sn) stands for the value of the cost criteri
on (4.1) which corresponds to the optimal layout of additio- 
nal supports given by (4.33). J(s^,...,sn) in (4.36) is the 
value of (4.1) calculated for the uniform distribution of ad
ditional supports specified by

= n+1 * = 1,...,n . (4 .3 7)

Numerical results are presented in Tables 1.4.1 and 1.4.2 
for the case n = 1. Table 1.4.1 corresponds to the axial for
ce N = 0,2 Nq, Table 1.4.2 to the case N = 0,5 NJ#

Table 1.4.1. Optimal location of the additional support 
in the case N = 0,2 Nq

p 2,769 2,775 2,80 3,00 4,00 5,00 6,00

s1Q 0,539 0,518 0,517 0,516 0,513 0 ,5 1 0 0,508 
e 0 0 ,3 02 0,685 0,946 0,992 0,997 0,998
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Here the following notation is introduced:
PL2 Pol2 S1 ßi

p - таг; p0 = i m ;  » sio * "гг* sii = n r  • ^*з8)

Table 1.4.2. Optimal location of the additional 
support for N a 0,5 N .

P 1,718 1,75 2,0 2,5 3,0 5,5 .4,0

s1Q 0,539 0,518 0,516 0,512 0,510 0,509 0,506 

e 0 0,685 0,973 0,993 0,996 0,998 0,999

In Tables 1.4.1, 1.4.2 the values of the economy coef
ficient are presented, too. It appears that the quantity e 
vanishes when the lateral load equals the load carrying capa
city of the beam. This phenomenon is consistent with (4.36)лbecause J(s^) = 0, but J(s^) 4 0 for p * pQ .

Table 1.4.^, Optimal coordinates for different 
numbers of additional supports

n 1 2 3 4 5 6

*>0 1,718 4,071 7,425 11,78 17,13 23,49

Pi 1,873 4,308 7,744 12,18 17,61 24,05

310 0,539 0,350 0,260 0,206 0,171 0,146

S11 0,500 0,333 0,250 0,200 0,167 0,143

In Table 1.4.3 the results are presented for several 
numbers of additional supports. The data accommodated herein 
correspond to the limit state of beam and N = 0,5 NQ.

?0*
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1.4.6. Mon-self-adjointness of the problem

The problems of optimal design of beams and axisymmetric 
plates and shells posed in the geometrically linear form ap
pear to be self-adjoint problems as a rule (see Lepik, 1982; 
Grinjev and Filippov, 1979; Lellep and Lepik, 1984).The pro
blems sire called self-adjoint ones if there exists a linear 
relation between the solutions of the basic set and adjoint 
set, respectively. However, if the configuration changes 
are taken into account the problem seems to be a non-self- 
-adjoint one.

Indeed, making use of (4.19)» (4.20) and (4.24), (4.27),
(4.28) it could be checked that

sj+l) w^ere 3 = 0,...,n-1. For (cr, L) similar relations 
may be derived.

According to (4.19), (4.20) and (4.24) - (4.28) one has 
for x e (sn, L)

f 0, x e (.Sy â j),

 ̂0, x e (b̂ , s.j+1)

Ъ  “ “ P Cy2 +

%  = 1  ^1 + ИУ5 + “,).

Mote that the relations (4.38) hold good in the regions (ŝ ,J

-•U2-3n), xe(an,bn)

s . x G(s ,a ) n’ n* n'n* n' *

1, xe(bn,L).
(4.ЗУ)



Thus, it follows from (4.38), (4.39) that the relations bet
ween state and adjoint variables are not linear.

§1.5* Piece-wise homogeneous beams

1*5*1• Concept of a quasi-homogeneous beam

Let us study the behaviour of a piece-wise homogeneous 
beam (Fig. 1.1.3) in the range of finite deflections. The 
structure consists of a matrix with layers of finite dimen
sions embedded reinforcement. The thicknesses of the layers 
are marked with h^,...,]^, whereas their materials have 
yield stresses 6^»..., 6^ , respectively, the yield stress 
of the matrix being 6̂ .

Let a^ and b^ (j = 1,..*,m) be the coordinates of 
the beginning and end points of the layers.

We call a section of the beam lying in an interval 
D a quasi-homogeneous section if for each x e D the geo
metry and dimensions of the cross-sections remain the same. 

Thus, the quasi-homogeneous sections of the beam do not com
prise the end points of reinforcements.

The points x = a . and x ■ b. subdivide the intervalu u(0,L) into 2m + 1 regions D. (the length of the beam isJassumed to be 2L). Within each region D.. (j « 0,...,2m) 
the beam is quasi-homogeneous. Let D* be a quasi-homoge- 
neous region (a,b) of finite length where the plastic de
formations take place.

It seems to be convenient to use the notation a^+m в b^ 
for j a 1,...,m.

Employing the methods of plastic analysis of structures 
one could derive a yield curve for each quasi-homogeneous 
section of the beam. The equations of the yield curves ex
pressed via a bending moment and membrane force depend not 
only on the thicknesses of the layers h^,...,!^, but on the 
thicknesses of those layers which are located between the 
layers of the reinforcement, as well. Thus, the number of 
thickness parameters is equal to 2m + 1 and it appears to 
be reasonable to assume that for x e the generalized
yield condition may be presented as

Ф^(У1, **» I • • • »^2m+1 ̂ ̂  3 = 0,... »2m, (5*1)
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provide! tile yield stresses of different materials are fi
xed. Here the parameters Ьщ+1,...»h2m+1 stand for the 
distances between adjacent layers.

It should be noted that the functions Ф -j might be ob
tained using the hypothesis of Kirchoff accompanied with 
the linear distribution of strains along the normal to the 
curved axis of the beam. Particular cases of piece-wise 
qU33i-homogeneous beams subjected to static and dynamic 
loads are studied by the author and Majak, 1988 and Sakkov, 
1984, 1985.

The functions Ф., in (5.1) are continuous and piece- 
-wise differentiable with respect to their arguments.

1.5.2. Optimization problem

In the present study the attention will be confined to 
the problems in the case of which the optimality criterion 
may be presented as

m
1 * 21 -  V  (5>2)

d=i
where k. will be handled as given constants. If the prob- dlem consists in the minimization of the amount of the rein
forcement then k^ coincides with the density of the cor
responding material.

When the minimum of (5*2) is looked for, it Is required 
that the deflection of the oeam does not exceed deflection 
of the associated quasi-homogeneous beam. The latter means 
that a state constraint

У3 - W„ 4 0 (5.3)

is imposed on the optimal trajectory at each xe(0,L).Here 
W* stands for the deflection of the associated beam.

Evidently, the posed problem is a particular case of the 
problem expressed by (1.2), (1.7)» (1.8). In the present ca
se one has according to (5*2), (5*3)



where К = 2m + 1 , aQ = 0, a ,m+1 = L, г = 1» s = 0.

1.5.3* -Necessary optimality conditions

Let us adjust the set of the necessary conditions to the 
present problem.

It was assumed above that the only plastic region of fi
nite length is D*. Thus,

for each x£D„. The region D, is a subset of one of the 
regions D^(j * 0,...,2m).

Besides the zone D, there may exist single points 
which correspond to the plastic hinges. The minimum material 
requirement (5»2) implies that the utilized material is to be 
extremely stressed. However, the extremal bending moment dis
tribution must not violate the flow condition (5*1) in each
region D.. Obviously, the most dangerous cross-sections Jcorrespond to the ends of the reinforcing layers. Thus, it 
is reasonable to assume that

attention will be paid to the case (5»6), only.
It appears that the assumption (5*6) leads to a Jump 

condition for adjoint variables. This should be applied for

Making use of (5.5), it follows from the state equations
(2.9) that y^ e 0 in the plastic zone D * . Thus, in parti
cular case

Introducing a new control variable v̂  one can (5«3) 
put into the form

,Ja2m+1

a suitable endpoint of the region D.U •

У2(а) = y2(b) = 0 . (5.7)

(5.8)
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Due to (5.3), (5*8) the posed, problem xs a problem with 
the second-order state constraints. Thus, (3*^7) “ (3*55) 
hold good in the present case.

Assuming that the beam is subjected to the transverse 
pressure P and axial load N, which implies that the axial 
displacement y^ does not vanish at x = L, for instance. 
Consequently, ^  = 0 and (3.54) taxes the form

-  fd фз ’ (5,9)

being introduced by (5.1). In the plastic region D„ 
one has according to (3.59), (3.60),

N —  * = Ц̂ /jq , , 0̂ 4 = N\p2*(5./10)
71

It is assumed herein that v^ = 0 in (3.49) and Ф 0
for x € D, whereas in the rigid zones ^  = 0, respectively.

Since, in the rigid zones ^j^-O *or xeDj (except 
the boundary points of D̂ ) one has the non-trivial controls

i 0 and (3.48) lead to

vp3 « 0 (5.11)
_ 2 for x€D*. Thus, it might be expected that = c ^  ,

which implies that ^  « const. Evidently, this is not the
only case.

Taking (5.8)-(5.11) into account one can put the adjoint 
set (3*58) into the form

“ ̂ 10 
Т Г “ x€ D* ,

xi D* ,
^  = - 0^1 , (5.12)

^3 = " ^10 
\  = - ^з

The adjoint variables have to meet the transversality 
conditions (З.ЗО), (3 .3 1) as well as the jump conditions 
(З.З9), (З.5 1)» (З.52). The requirements (3.39) may be pre
sented as
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ÄJ (a3* * x 0 ; 3 x (5 .13 )9a3
where (5*2) and (3*24) aare taken into account. 

The equations (3*34) take the form
2m * 0&да

öh3 ii D± 9hi
where &« is given by (3*47) and according to (3.24),(5.2),
(5.6)

2m
G “ 1 + ZL *^3^1 ̂ a3̂  * *» »• • • »h2m+1̂  ' (5*15)

3=1

Due to the requirement (5*6) one can assert that in com
parison with the general analysis i, * , in the present 
case. Thus, the З^Р condition (3.35) must be replaced by
(3.36), which leads to

[тц. (a..)] = Llj » 3 = 1,*.*,2m (5*16)
1 J 0y1<a3>

whereas

[W ] - О , i - 2,3,4,5 .

Bearing in mind that at x > a  ̂ the only discontinuous 
variable (among the state and adjoint variables) is ijjg on 
the grounds of (3.47), (3*14), one obtains the З^Р °f the 
Lagrangian function as

ЫзСз>] = [f4̂ (азЯ ̂ 2^a3̂  * * 1,...,2m . (5*16)

The relations (5*18) with (5*13) lead to

WU«.,)] = — =2----fl. . j * i (5.19)
3 3

which, in turn, with (5.16) give the Lagrangian multipliers
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Let us study the equations (5*14) in a greater detail, 
now. Substituting (5 .1 5), (3.47), (3*14) into (5-14) may 
be obtained

provided ^  » О and dW*/ 9h^ =0.
It is worth emphasizing that the thicknesses which are 

subjected to the variation are h^,...,!^. Evidently, if 
,•.• »Ь^-И are previously unknown the equations (5*21) 

hold good for j * 1,...,2m+1.
Substituting (5.20) into (5.21) and taking into account 

that *9̂ = 0 (except of x£D,) where in turn » яу*
and that ц>̂ в 0 (since A 0) one obtains

The latter equations serve for determihation of unknown 
parameters h^,...,!^ , whereas the coordinates â  may be 
specified according to (5.6) after solving the basic and ad
joint equations. In a particular case when the section of 
the beam for x6D* is either homogeneous or quasi- homoge
neous with fixed geometrical parameters so that 0Ф,/91^=0,
(5.22) takes the form

2m 2m

(5.21)

2m

3=1 (5.23)
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§1.6. Beams of piece-wise constant thickness

1.6.1. Preliminaries

Let us consider a beam of piece-wise constant thickness 
hinged at both ends. The beam is subjected to the uniform 
lateral pressure and to the axial dead load M . It is assu
med that the structure is symmetric with respect to the cent
ral cross-section and (Jig. 1.1.2)

h = hj (6*1)

for (d c 0,...fm). Here aQ * 0 and * L.
The material of the beam is assumed to be a homogeneous 

rigid-plastic one and the cross-sections of the beam are 
rectangles with dimensions h^ and В . The latter stands 
for the width of the beam.

The yield condition for the present case is given by
(2.5) and Fig. 1.1.6. Assuming that M^O one has now

Г 1 ♦ (тГ")2 “ 14° (6.2)Moj Noj

for x 6 . In (6.2) = 6QB hjj /4, Nq;J = б^В ĥ  . Multi
plying (6.2) by hij one obtains the equation of the yield
curve as

# j = ~тг0 + ( ž.)2 “ hj (6*3)

where N* = ÖqB.
The minimum volume problem with the cost criterion

m
1 = Z  b3(ad+1 - a3) (6.4)

will be investigated in this section. The parameters a^(j s 
e 1,...,m) and h^(j = 0,...,m) are handled as previously un
known constants for which (6.4) attains the minimal value.

The minimum of (6.4) is sought for under the requirement 
that the deflection of the beam with optimal parameters does

33
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not exceed, that of an associated beam of constant thickness 
hQ . Thus, the problem could be considered as a particular 
case of the one studied in (1.6).
According to (6.3) in this case

(6-5 >

Let us study the boundary conditions (2.10), (2.11),now. 
Due to summetry at the center of the beam

У2(°) = = Jj(°) x 0 • (6.6)

The end of the beam at x = L is hinged, thus

7-j(L) = 73(L) = 0 . (6.7)

Making use of (6.6), (6.7) one can compile the sets IQ ■
= {2, 4, 5 } and IL » {1, 3} .

1.6.2. Optimality conditions and state variables

Evidently, the optimality requirements established in 
the previous section are applicable in the present case af
ter slight modifications. ?irst of all, the number of un
known coordinates â  is equal to m , now. Thus the index 
j in (5»6), (5*13) - (5 *2 3) changes up to m .

Making use of (6.4), the relations (5 .23) may be conver
ted into

У  (h - h ЭФЛа!,) ЭФ.(a-) -1
h  3"1

- “ ai) =0, i = 1,...,m .

(6 .8)

Since =0, if i / j it follows from (6.8) that

Эф.(а,) ЭФ,(а.)
< V i  - - (ad+1 - а0)у2<а3> 5 ф ф  * 0 -

t) = 1 j• • • |Ш , (6*9)
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Finally, substituting the partial derivatives from (6.5) 
into (6.9), one obtains

1Г" ^ j * 1 1 • • #,ш • (6.10)
The second group of equations may be obtained on the 

grounds of (5.6). Thus, according to (6.3) one has

^  У^(а^) + (jf̂ )2 - hj = 0 i j = 1,...,m . (6.11)

The set (6.10), (6.11) enables to calculate the values 
of parameters â  and ĥ . A characteristic feature of this 
set is that it does not depend upon the values of adjoint 
variables.

The solution of the state equations (2.9) could be found 
assuming that a half of the beam is divided into the plastic 
zone (0,b) = D«, and the rigid zone (b,L). In the plastic 
zone, according to (6.3) У̂  = M*, whereas in the rigid zone

=0. Here

= zr(ho " (ib)2) * (6’12)

Substituting (6.3) into (2.9), one can integrate these 
equations by turn in different regions. After satisfying the 
boundary conditions (6.6), (6.7) as well as the continuity 
requirements of the state variables,one obtains for xe(0,b)

7^ = M* ,

У2 = 0 »
Jj » |ц(2Ы. - Ъ2 - x2) , (6.13)

^ * I 1 • 
у5 = Ч Ф 2* 3 * § ;  ’

provided b<a^ . For xe(b,L) the state variables turn to 
be as follows :
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У1 * м. - |(Х - Ъ) 2 ,

У2 = Р<Ъ - *) .

= тр(ь - х) , (6.14)

У4 - - £ Ъ ,

у5 = “ ?(? )2х + 5 (1 )2ъ5 + i" •

The length of the plastic zone in (6.13)» (6.14) may be 
evaluated as

b * L - ]J^p * (6.15)

Calculating y^a-j) У2(а )̂ according to (6.14)
and substituting into (6.1 0) and (6.1 1 ), one could obtain 
the equations

"•Wi - V ♦ - a3)(ad+i - V *0 '
d = 1 »... ,m (6.16)

and

S-CM. - |(«3 - b)2) ♦ <§-)2 - h2 « 0 ,

d ~ 1»• • • »m I (6.17)

where b stands for the length on the plastic zone, M, is 
given by (6.12), whilst P and N stand for loading para
meters .

1.6.3. Optimal design of a beam of piece-wise constant 
thickness

Optimal values of parameters â  and ĥ  may be ob
tained solving the non-linear set of equations (6.16),(6.17)- 
Introducing non-dimensional quantities
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p (6 .1 8 )

this set may be converted into

2(h2 - h2)L2 - pUj - b)2h2 - О , 3 *

" hd)1,2 “ p(ad “ ъ)(аз+1 ~ aj)ho = 0 »
(6.19)

where according to (6*15) and (6.12)

b * L ( 6 . 20)

For numerical solution of the system (6.19) the method 
of Newton was used. The results of the calculations are pre
sented in Tables 1.6.1 - 1.6.5. In Table 1.6.1 - 1.6.4 opti
mal values of parameters a^, h^ are accommodated for dif
ferent values of loading parameters (here m = 7)«

Economy of the design established is assessed by the 
coefficient

which is equal to the ratio of the optimal volume and of the 
beam of constant thickness, respectively.

Tables 1.6.1, 1.6.2 correspond to the limit state, i.e. 
7^(0) = 0. The same results may be obtained when using the 
methods of the limit analysis. It was observed that the data 
given in Table 1.6.2 also provide the optimal solution in 
the post-yield range. However, the coordinates of the steps 
depend on the load intensity.

In Tables 1.6.3, 1.6.4 the optimal values of the coordi
nates of the cross-sections where the jumps of the thickness 
occur are accommodated for different values of the load 
intensity. The first lines in the both tables correspond to 
the limit state. They coincide with the second and the third 
rows in Table 1.6.1 and 1.6.2, respectively. The calcula
tions carried out reveal that the coordinates of the steps 
which are located near the supports are much less sensitive 
to the changes of the loading intensity (in comparison with

m
»
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Table 1.6.1. Optimal non-dimensional coordinates of the 
steps

^/Ь &g/L a^/L a^/L a^/L a^/L a^/L e
0,0 0,320 0,475 0,600 0,707 0,800 0,880 0,948 0,825
0,2 0,315 0,469 0,593 0,700 0,792 0,873 0,943 0,835
0,4 0,307 0,458 0,580 0,685 0,778 0,862 0,935 0,861
0,6 0,299 0,446 0,566 0,671 0,765 0,850 0,929 0,899
0,8 0,290 0,434 0,553 0,658 0,753 0,841 0,923 0,946

Table 1<>6.2. Optimal non-dimensional thicknesses

n h1/ho V bo 4 ^ 0 У * о V ho У * о e

0,0 0,948 0,880 0,800 0,707 0,600 0,475 0,320 0,825
0,2 0,951 0,888 0,814 0,728 0,630 0,518 0,383 0,835
0,4 0,960 0,908 0,847 0,778 0,701 0,617 0,512 0,861
0,6 0,971 0,934 0,892 0,844 0,791 0,733 0,669 0,899
0,8 0,985 0,965 0,943 0,919 0,892 0,863 0,833 0,946

Table 1.'6.3. Optimal coordinates of the steps for ПрЮ,2

P a1/L a2/L V L \ / L a5/L a6/L a?/L e

1,92 0,315 0,469 0,593 0,700 0,792 0,873 0,943 0,835
2,22 0,363 0,506 0,622 0,721 0,807 0,882 0,947 0,846
2,52 0,402 0,536 0,645 0,738 0,819 0,889 0,950 0,858

Table 1.6.4. Optimal coordinates of the steps for n=0,4

P a1/L a2/L a3/L a^/L a5/L a6/L a ?/L e

1,68 0,307 0,458 0,580 0,685 0,778 0,862 0,935 0,861
1,88 0,345 0,487 0,603 0,702 0,791 0,869 0,939 0,869
2,08 0,377 0,513 0,622 0,717 0,801 0,876 0,942 0,875
2,28 0,405 0,534 0,639 0,730 0,810 0,881 0,945 0,881

Table 1.6.5 . Volume ratios for different numbers
of steps

m 1 2 4 5 . 10 -5° 100

e 0,914 0,878 0,858 0,846 0,837 0,81.5 0,792 0,789
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those located near center of the beam).
The values of the economy coefficient (6.21) are presen

ted in Table 1 .6.5 . for different numbers of jumps of the 
thicKness. The given values correspond to load carrying ca
pacity. Here N * 0 .

The earlier investigations have predicted the value of 
the economy coefficient e = 0,785 for a beam of continuous
ly variable thickness.The volumes of the designs of piece- 
-wise constant thickness are quite close to this value in 
the cases of large numbers of steps, as shown in Table 1.6.5* 

In order to be convinced in the non-singularity of the 
problem let us examine the solution of the adjoint system
(5 .1 2). In keeping with the boundary conditions for the 
state variables (6.6), (6.7) the transversality conditions 
become now as

^(0) = H>3(0) = y 2U )  = Op4(b) = ^ 5(L) = 0.(6.22)
In addition to (6.22), one has to take into account the

l^iUj)] * 0 ; i = 2, 3, 4, 5-

The jump conditions at the boundary point of the plastic 
zone might be obtained from (3 *5 1) as

[\p2(b)] = 910 * tiPjCb)] = 0 ; j = 1, 3, 4, 5 . (6.24)
When integrating the set (5.12) considering ф10 as a 

constant and accounting for (6.22) - (6.24),one can state 
that

x e  (0, b),

intermediate conditions at x = a.. and x = b . According 
to (5*19) and (6.4) one has

fa. "“fa
(6.23)

xe(b, a1), 
xeDj,

(6.25)

' i(*2 " 82)  * x e (0, b) ,
x e(b, a1) 
xeDj,

^2 = -j db(x - a1) + d21»
(db - d^)(x - a_j) + d.
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Ч 'з  =  "  d N x *

\  = \ dN(x2 - L2),

х е (О, L), 

х е (о, 1).

In (6.25) the following notation is used:

4 = ^  ^  ’ <6-26> 
d2j = (bd - <Ц3)(а1+1 - aj.) 5 i = 1. •••.»•

Note finally that d is an unknown constant in (6.25)»
(6.26). If, however, the thickness hQ is not fixed pre
viously (5.22) furnishes the relation

Ф ю  “ " 2БЕ£

which enables us to determine the quantity d .

§1.7. Reinforced beams

1.7.1» Statement of the problem

Let us consider a non-homogeneous beam which consists of 
a rigid-plastic matrix with two layers of the reinforcement 
(Pig. 1 .7 .1 ). It is assumed that the structure is symmetric

X

of

with respect to the central cross-section. Thus, the upper 
and lower layers of the reinforcement are of the lengths 2â  
and 2a£, respectively. The matrix material as well as that 
of reinforcement are assumed to be rigid-plastic ones, &
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and 6^ being the yield stresses. It is reasonable to suppose 
that > 6Q.

Let the structure be subjected to the axial tension H 
and uniformly distributed trahsverse pressure of intensity 
P . The ends of the beam are simply supported. Therefore,
(6.6) and (6.7) might be applied in the present section as 
well.

The total thickness (heigth of the cross-section) of the 
beam H is fixed, whereas the dimensions of the layers of 
the reinforcement a^, a2, h^, h2 are preliminarily unknown 
constants. The optimal values of these parameters are sought 
for under the condition that the volume of layers

I = В (ĥ â j + h2a2) (7.1)

attains the minimal value. We look for the minimum of (7*1) 
taking into account that the deflection of the beam must not 
exceed that of the associated quasi-homogeneous beam. In the 
quasi-homogeneous case â  в a2 = L.

1.7.2. Yield conditions for non-homog»neous beams

The problem set up above was examined by the author and 
Majak, 1988; 1989.In these studies a method for construction 
of the yield curve was suggested. This technique will be 
used in the present study. The parametrical equations of the 
yield curve will be derived for each region = (aj* а^+̂ )» 
where j =0, 1, 2 and aQ я 0, a^ = L.

The yield condition (5.1) could be expressed as

<i>d = - M° (N, hr  h2) j j = 0, 1, 2 . (7.2)

The generalized stresses M and N are related to the 
normal stress as follows

H/2 H/2
M = В \ z6 dz ; N = В J 6 dz (7.3)

-H/2 -H/2

where В is width of the cross-section of the beam and z 
stands for the local coordinate axis. Since = N the 
subscripts relevant to N are omitted.
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The statically admissible stress distributions along 
the thickness of the beam axe presented in Fig.1.7*2 a,b,c.

a b с

Fig. 1 .7 .2. Admissible distributions of stresses

Here zQ stands for the coordinate of neutral axis. As 
shown in Fig. 1.7.2, three different cases of the stress 
distribution must be examined. If

- f  + h i ^ z 0 4 f - h 2  (7.4)

then according to Fig. 1.7.2 and (7.3) one has 

M = В 60 {- z2 + J(1 - k)((H - 2h^2 + (H - 2h2)2)],
(7.5)

N = В 6o{ - zQ + (k - D(h2 - hi)} ,

where к = 6^/6Q •
If, however,

- f 4 z 0 i - f + h 1 (7.6)

or

I - h2 4 Z0 4 I (7.7)

similary to the previous case one obtains
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M = ВбД-kz2 + |н2 + J ( k  -  1 )((н - 2h1)2-(H -  2h2)2)],
(7.8)

N = В60{-2kzo 1 (к - 1)(Н - h1 - h2)} ,

where the sign plus applies when (7.6) is satisfied and mi
nus is associated with the case (7*7).

Taking into account that the ends of the beam are simply 
supported, it seems reasonable to assume that M ^ 0; N > 0. 
Elimination of zQ from (7.5) and (7.8) gives the equations 
of the yield curves. The yield curves have different equa
tions for different ranges of axial tension. Using the no
tation (7.2), one has for x eDq

Mo » Mo{k - Ь Ь 0 - - h1 - h2 » 2 +

+ *fcJl((B - 2h2)

if 0 4 N 4 N° ,

<  = “o{k - <1; - - hi » 2 -
- ^4^((H - 2h?)2 + (H - 2hy.)2)] , (7.10)

2H 1 *

if Nj П  Ž N° and

Mõ * Moik - Щ ;  + - Ь1 - h2>>2 +

+ ^=ji((H - 2h.)2 - (H - 2h2)2)| , (7.11)
2H 1 d >

if N° ^ N 4 + 26^Ъ.Л .

In (7*9) - (7*11) the following notation i3 used 

N0 = б0ЗН , M0 = ^BH2 , к = h ,

= N0(-1 + + ^ ^ - ( h  - h )) , (7.12)

N° = N0(1 - 2—q + 1 ^ 1 2 (h2 - h,,)) .

It was assumed above that N ^ 0. Thus, according to
(7.12) N° is non-negative, if
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(7.13)

If, however, (7.13) is not satisfied then (7.9) may be dis
regarded and (7.10) applies for 0 4 N 4 . Furthermore, 
if is not positive the relation (7*11) holds good for
each value of N.

In the region , making use of (7»3) <>ne obtains

The relations (7*14) - (7«17) lead to the yield curve 
associated with

M * B6Q(-z2 + J(1 - kHH2 + (H - 2h2)2)) 

N = B60(-2z0 + (k - 1)h2) ,
(7.14)

if

(7.15)

and

M = B66(-kz2 + |h2 + J(k - 1)(H2 - (H - 2h2)2)) 

N = B6‘0(-2kzQ - (k - 1)(H - h2)) ,
(7.16)

if

(7.17)

+ - 2h2)2) , (7.18)

if

(7.19)

and



M° = м0(к - J(g- ♦ Ü ^ h 2)2 -

+ П=Ю.((Н _ 2hp)2 - Н2)) , (7.20)
2Н *

if

N0(-1 + 4 N 4 No(1 + - Ц р ^ 2) . (7.21)

Finally, for x € D2 one obtains

M° = M (1 - (£-)2) (7.22)
о

as might be expected, since in this section the material of 
the beam is uniform. The relation (7.22) holds good for each 
N from the interval 0 4 N 4 NQ „

Thus, the equation of the yield curve for the reinforced 
beam is specified by (7.2), where for xeD  ̂ given
by (7.9) - (7.11), (7.18) - (7.21) and (7.22), respectively.

1.7.3. Necessary optimality conditions

The problem posed herein may be considered as a parti
cular case of the problem set up in the section 1.5.1. The 
unknown parameters are a^, a2, h^, , now.

In the present case according to (3.24), (7.1)

G = B(ĥ â j + h2a2) + /̂ 2̂ 2̂ 2̂̂  *

f3 = ^ ( y 1(aj), N, bp h2) ; j = 1,2 (7.23)

ф. = %  •

Therefore, (5*5) yields

У1  - M°(N, hv  h2) = 0 (7.24)

for xe(0,b). From (5.13) and (7.1) one obtains

[&*(ad)] + Bh^ = 0 ; 3 = 1,2 (7.25)

where the jumps of the Lagrangian function may be determined
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by (5>o18). Combining (5.18) and (7.25) gives
г л

- - y^TaJJ 5 d ‘ 1,2 ' C7“i6)
On the other hand, it appears that (5*16) and (5»17) 

nold good for j = 1,2, too. Thus,
r , , ЭФ* (a.)
I ^ i (aj)] = 5 1 = 1 , , , , , 5 i  Õ = 1»2 . (7.27)

In the case i = 1 the latter may be used for determination 
of the Lagrangian multipliers = 1»2).

According to (7 .23), (7.24), 9Ф*/<ЭЬ^ does not vanish, 
which implies that (5»23) may not be applied. The equations
(5.22) with (7 .1 ), (7 .23), (7.24) lead to

Д  1 ЗФ (a.) S ЭФ
Bai - Z  Bhd уГГецТ - ä P -  “ W o  SET * °> i«i.2.(7.2B) 

0=1 ^ 3 1 0 1

It follows from (7.24) that 
Эф_ 9M°(N,h1 fh2)
5Б“ = -----^5“----  = const • (7.29)

Furthermore, f0 = О f°r хё(0,Ь). Thus, it appears that 
= ON»2 , where л?0 is constant and consequently, 

ip = const.
Integrating (7.28) making use of (7.24), (7.29) gives

Bh. ЭФ Bhp ЭФ дФп

y ^ q r  эЕ^ + 31^ + 'VohgEJ - = °- 3=1,2. (7.30)

It is easy to check using (7*2), (7.18) - (7.22) that
ЭФ. дФР

<7-Я>
which enables us to determine from (7 *30)

Ba. ЭМ° -1 
%  = - П Г  (3h ^  • (7*32)

Substituting (7.32) into (7*30) gives the equation



which, accompanied with (5.3) and (5.6) leads to the opti
mal values of unknown parameters.

1.7.4. Optimal design of the reinforced beam

.It appears that the state variables are specified by
(6.13), (6.14) in the present case too, where M„ is to be 
substituted by M° . Thus, (6.15) leads to

./ 2M°
b = L -y —p- . (7»34)

It is supposed that y^(0) = WQ, where WQ is to be 
considered as a given constant. This constant is equal to 
the maximal deflexion of the reference beam. Making use of
(6 .13)» one obtains

wo * In (2bL “ b2) » (7o35)

which enables to determine

b = L - W L 2 - f NWq . (7.36)

Combining (7.34) and (7.36) gives

M° = \ PL2 - NWq (7.37)

which, in turn, with (5»6) and (6.14) leads to the following
system

M° = - |(а/] - b)2 ,
(7.38)

M° = M° - |(a2 - b)2 .

The set (7.38) may be converted into

an = b + ]l L2 - |(NW0 + M°)' ,
r_______________ , (7.39)

a2 = b + yi2 - |(NW0 + M°) .

Equations (7*39) with (7.33) and (7*37) are solved nu
merically after substituting into (7-33) partial derivatives
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calculated making use of (7.9) - (7.11), (7.18) - (7.21).
The adjoint set (5.12) might be integrated similarly to 

the previous case. The solution which satisfies (6.22),
(6.24), (7.26), (7.27) may be presented as

- V  ,
- V0b •
- ?ob +

x 6 (0,b) , 
x <= (b,â j) ,

x £ (a1 ,a2) ,

x£(0,b),

- - % b  + d1 + , x e (a2,L) ,

r ̂ (x2 . L2) , 
^0b(x-a1)+(ip0b-d1)(a1-a2)+(^0b-d1-d2)(a2-L) , (7.40) 

^2 = < xe (Ь,а^) ,
(4?0b-di)(x-a2) + (ip0b-d1-d2)(a2-L) , x e ( a 1 ,a2), 

s. (tpob-cL1-cL2)(x-L) , x e ( a 2,Ii),

%  = - V *  *

0^ = ̂  N(x2 - L2) , 

where

dj = ["4̂ |(a.j)] ; j - 1,2 (7.41)

and p̂0 is given by (7 .32). Evidently, the constants d^ 
could be found from (7.26).

The economy of the design established could be assessed 
by the ratio

IL
V (7-42)

where I stands for the minimal value of (7.1), whereas 
VQ = B(h^ + h2)L. The quantity VQ may be interpreted as 
the amount of the reinforcement in the case when both layers 
stretch up to the end of the beam. Naturally, both, the op
timal and reference beams have a common maximal deflection.

Numerical results (the solutions of the set (7.33),
(7*37) with (7*39)) are presented in Tables 1.7.1 - 1.7.4. 
Here the following notation is used
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Tables 1 .7 .1 and. 1.7.2 correspond to к * 2 and n^ * 0,5- 
In Table 1.7.1 p = 3, whereas Table 1.7.2 is associated 
with fixed maximal deflection wQ = 1. It follows from Table
1.7.1 that for wQ > 1,2 the upper layer of reinforcement 
is unnecessary, provided the lateral loading and axial ten
sion are fixed.

Table 1 .7.1 . Optimal dimensions of the layers for 
different deflections

wo h^/H h2/H an/L a2/L b/L e

0 0,116 0,283 0,307 0,707 0 0,591
0,4 0,057 0,200 0,285 0,675 0,069 0,588
0,8 0,017 0,126 0,261 0,627 0,144 0,583
1,2 0 0,053 0,225 0,542 0,225 0,542
1,4 0 0,017 0,270 0,452 0,270 0,452
1,5 0 0 0,293 0,293 0,293 0

Table 1.7.2. Optimal dimensions of the layers for
different values of the load intensity

P hj/H h2/H a ^ L a2/L b/L e

2 ,5 0 0 0,225 0,225 0,225 0
2,6 0 0,017 0,216 0,412 0,216 0,412
2,8 0 0,053 0,210 0,526 0,198 0,525
3,0 0,005 0,089 0,245 0,592 0,184 0,574
3,8 0,075 0,245 0,365 0,727 0,142 0,642
4,6 0,256 0,474 0,478 0,791 0,115 0,681

According to Table 1.7.2 for p 4 2.8 the reinforcement 
must be utilized in the lower layer only. In the case p = 2,5 
the beam carries given loads without reinforcement.

Table 1 .7 .З corresponds to the case when p = 4,2; n^ =
0,5 ana wQ = 1. It appears that the length of the lower 
layer of the reinforcement does not depend on the ratio of 
the yield stresses of the reinforcement and matrix, respec
tively. The same may be asserted with respect to the length 
of the plastic region. In Table 1.7.3 might be accommodated



b = 0,127 and. &2 e 0,763 for each value of the ratio k.

Table 1 .7.5. Influence of the yield stresses on the 
optimal values of parameters

к h^/H h2/H a^/L e
2,0 0,144 0,338 0,419 0,66?
2,2 0,102 0,266 0,404 0,664
2,4 0,079 0,223 0,394 0,667
<.,6 0,064 0,192 0,387 0,669
2,8 0,054 0,168 0,381 0,671
3,0 0,046 0,150 0,376 0,673

Table 1.7.4. Optimal values of parameters for different 
values of the axial tension

n1 hA /H h2/H а Л/Ъ a2/L b e
0,2 0,062 0,116 0,329 0,545 0,069 0,470
0,4 0,016 0,095 0,263 0,560 0,144 0,517
0,6 0,000 0,08989 0,232 0,642 0,225 0,642
0,8 0 0,103 0,318 0,793 0,317 0,793

Table 1.7.4 is associated with p = V>J S3 0 li 1 and к =
It follows from Table 1.7*4 that in the case of large values 
of the axial tension (for n^=0,6) the upper layer of the 
reinforcement is unnecessary (h^ * 0).

Let us consider the same optimization problem under the 
condition that the dimensions of the upper and lower layer 
are equal to each other (Fig. 1.7.3).

Fig. 1 .7 .5 . Beam with two Identical layers of 
reinforcement



The yield carves for the beam presented in Fig. 1.7*3 шау be 
found according to (7*2) - (7*22) putting h^ = h2 = h. The 
derivation of the optimality conditions is similar to the 
previous case and therefore it will be omitted herein.

The results of the calculations are presented in Tables 
1.7*5* and 1.7.6. The results accommodated herein correspond 
to the case к = 2, n^ = 0,5* Now h = h^ = h^ and a =
= â  = a2.

Table 1.7.5* Optimal values of parameters for the case 
associated with two identical layers of 

the reinforcement

p h/H a/L b/L V
2,0 0,032 0,418 0,065 0,027
2,5 0,105 0,599 0,051 0,125
3,0 0,194 0,688 0,043 0,267
3,5 0,517 0,744 0,036 0,471

The data presented in Table 1.7.5 are found for the maximal 
deflection wQ » 0,25* The economy coefficient e * a/L in 
the present case. Thus, the corresponding values of the ra
tio e are presented in the third column of Table 1.7*5* In 
the last column the non-dimensional volumes of the reinfor
cement layers are given, i.e. V * 2ah/BHL.

Table 1.7*b. Influence of the optimal dimensions of 
layers on the maximal deflection

w0 h/H a/L b/L V
0 0,250 0,707 0 0,354

0,25 0,194 0,688 0,043 0,267
0,50 0,146 0,665 0,087 0,195
0,75 0,105 0,634 0,134 0,153
1 ,00 0,067 0,592 0,184 0,079
T,25 0,052 0,525 0,256 0,034
1,50 0 0,295 0,293 0

Table 1.7.6 corresponds to p = 5. It appears that the 
greater deflection, ehe smaller the amount of the reinforce
ment. For w ^.1,5 1 ле reinforcement is unnecessary (V - Oj. 

Note finally thac the two typos of optimization problems
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should be considered as independent problems since the load
ing parameters as well as material constants and the deflec
tion of the beam are assumed to be fixed previously. Thus, 
the comparison of the respective solutions is quite proble
matic.

1.8. Optimal design of plastic beams for given 
deflected shape

1.8.1. Problem formulation

Let us consider a beam of length 2L simply supported 
at the ends. The beam is made of a uniform rigid-plastic ma
terial and has a variable thickness H = H(x). The beam is 
subjected to a distributed transverse loading of intensity 
P(x) and to the axial force N. Let the origin of the coor
dinate system be located at the median cross-section of the 
beam. Due to the symmetry the attention will be confined to 
the right-hand side of the beam, only.

We are looking for the design of the beam with variable 
cross-section whose volume

L
J « j H(x)dx (8.1)

0
attains the minimum value. Minimum of (8.1) is to be deter
mined under the condition that the deflection y^ does not 
exceed the deflection W, of a beam with given thickness HQ. 
Here H0 may stand for a constant as well as a given conti
nuous function. Thus, one has to take into account that

y ^ - W ^ O  (8.2)

when minimizing the cost criterion (8.1).
This problem was studied by the author in 1981 assuming 

that in (8.2) applies the equality sign for each x.

1.8.2. Necessary optimality conditions

The posed problem may be considered as a particular case 
of the problem set up in §1.1. Now, according to (1.2), (1.13),



К = 0 , Gq =s О , Pq c H ( x )  , R̂j = y^ — w, ,

Г = 1 , в Â  = О , = Sj_j s (8.3)

Since (8.2) presents the second-order constraint imposed 
on the state variables, the optimality conditions derived in 
section 1.3.6 might be used in the present case. Making use 
of a control variable v^, inequality (8.2) may be converted 
into the equality (5 *8) which leads to the optimality condi
tion (3.49). The latter gives

4 1̂0^1 * 0 . (8.4)

The beams with homogeneous rectangular cross-sections as 
well as the sandwich-type beams with variable face-sheet 
thickness will be studied. The yield condition is assumed to 
be expressed as

<Hy1tN,H(x)) + 82 « 0 (8.5)

where H stands for the variable thickness and according to 
(3.48) the control function 0 must meet the requirement

^8 = 0. (8.6)

The Lagrangian function is obtained from (3.14), (3.47),
(8.1) - (8.3) as

-H ♦•Ц1)у2 - P) -% N>2 | ±  ♦

+ ^74) + ЦКФ + 82) + Ф ю ^ з  ~ w* + » (8.7)

where the unnecessary subscripts are omitted.
Making use of (8.7) one can put the optimality conditions

(3.29) into the form

- 1 + ^  f f  + ^  ^  (̂ 2N Щ  + ^4 Щ  +^5 ^  = ° (8,8)
and

n?(('4>2N “ ^ 4  ̂ + ^ 5 § Ф  = 0 * (8.9)

(1.14), one has
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It appears that the boundary conditions for the state 
variables may be given by (6.6) and (6.7) for the present 
case. Thus, from the transversality conditions one obtains 
Vc = 0 which implies that (5.10) - (5.12) are also appli
cable .

Bearing in mind that >5=0 in a rigid zone and (5.10) 
applies in a plastic region, equation (8.8) may be presented 
as

- 1 + « 0 . (8.10)

evidently, (8.9) coincides with (5.10) in the plastic zones 
where ^  0. When substituting the multiplier if from (8.10) 
into (5»10) and (5*12) leads to the adjoint set

■44
ЭФ,ЭФч-1 , n .“ tv7“(5Tj) » Ф * 0 ;
^ 71 ЭЫ (8.11)

О , $<0 ;

V  2 = “ Ч'') » е — Ф-jo * V 4 * ”

which could be integrated accounting for corresponding trans- 
versality and jump conditions.

Necessary optimality conditions are presented by (8.4),
(8.6) and (8.9)» whereas (8.10)may be considered as an equa
tion for determination of the multiplier cp . Equation (8.10) 
gives a solution  ̂0. Consequently, in (8.6) Q = 0 and ac
cording to (8.5) one has

Ф(у1,И,Н(х)) - 0 , (8.12)

from where the unknown function H = H(x) may be determined. 
Equation (8.4) results in

lf10 = 0 , / 0 (8.13)

or
lp/j0 4 0 , v1 = 0 . (8.14)

The latter case corresponds to the equality y^ = W„. Bear
ing in mind (8.13), (S.14) one has to compile the optimal 
solution, so that in certain regions the deflections of the 
optimal beam and the reference beam coincide, but out of
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these regions the respective deflections might be different. 
However, if the reference beam has a constant thickness, the 
equality applies at each point xe(0,L).

1.8.3. Large deflections of a beam of given shape

The solution of the state equations (2.9) corresponding 
to a beam of constant thickness and rectangular cross-section 
was presented by (6.13) - (6.15). Evidently, this solution 
holds good in the case of sandwich beams when M, and N, 
in (6.13) - (6.15) are modified suitably. In the present 
section this solution will be extended to the case of beams 
with variable thickness.

The attention will be confined to the class of beams for 
which the stress-strain state corresponds to a plastic state 
near the center of the beam for xe(0,b) and to the rigid 
state out of this region, Thus, it may be assumed that

for xe(b,L). Here M„(N,x) stands for the solution of
(8.12) with respect to y^.

Integrating of (2.9) and making use of (8.15)» (8.16) 
leads to (it is assumed that P = const)

where the boundary conditions (6.6), (6.7) as well as the 
continuity requirements for y^ , y2 , y^» y^ x = b are taken 
into account. Here*

y1 = M,(N,x) (8.15)

for xe (0,b) and
(8 .16)

(8.17)
x 6 (0,L)

and

M,(N,x) , xe(o,b) ,
(8.18)

|(x - b)2 + Q(b)(x - b) + M,(N,b) , x G(b,L)
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dM(N,x)
Q(X) = — --- . (8.19)

The maximal deflection WQ may be evaluated аз

Wo - J(PLb - |b2 + Q(b)(L - b) + M,(N,b) - M,(N,0)) (8.20)

whereas the length of the plastic zone has to be determined 
according to the equation

|(b - L)2 + Q(b)(L - b) + M.(N,b) = 0 . (8.21)

In the case when the thickness is a constant (8.20) gives

wo * i(Lb “ ib2) (8*22)

and (8.21) coincides with (6.15), provided M. is in consis
tent with (8.15)»

1.8.4. Optimal design of plastic beams in the post-
-yield range

Let us consider the beams of uniform rectangular cross- 
-section with width В and heigth H. The yield curve for 
this case is presented in Fig. 1.1.6, also by (6.2), (6.3). 
It should be presented as

4| yj N ? J?Ф- ~YT^- + - H a 0 . (8.23)

For the reference beam let us employ the beam of cons
tant thickness HQ. In this case M, = const and Q = 0 
in (8.17) - (8.21). Besides, the validity of (8.14) might be 
expected. The latter implies that the deflection y^ co
incides with the corresponding deflection of the reference 
beam.

Within the limits of the non-linear beam theory the ben
ding moment ŷ  and the deflection ŷ  are coupled due to 
the equilibrium equations and the associated deformation law
(2.9)« Thus, for determination of the optimal design one can 
use the bending moment distribution (8.18) associated with 
the beam of constant thickness.

The optimality criterion for the general case is ex
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pressed by (8.12), where ŷ  is the distribution of the 
bending moment. In the present case it means the use of
(8.23) and (8.18) under the above assumptions. Thus, one ob
tains easily the optimal thickness (evidently ŷ  ̂  0)

ie(0,b) ,,

\  ~ fл _ 2̂̂  ,-x - b\2
(8.24)

“ n )(j I )̂ * xe(b,L) , 

where

b « L(1 p д2 )̂ (8.25)

and

▼ - P = ̂ 0“ • (8.26)

Here M° , N° stand for the limit moment and limit load 
for the beam of constant thickness, i.e. 14° « 60BĤ /4, n£=
« 6 -BE ,О о

In the case of the beams of sandwich-type (8.23) must be 
replaced by

у
ф = шт;+ 5$: - H 11 0 • (8.27)

H being the thickness of carrying layers and h Is the to
tal thickness of the beam. Evidently (8.18) holds good in 
the present case if Q = 0 and

M, = h(H0N. - N/2) . (8.28)

Combining (8.18) and (8.27), (8.28) leads to the distri- 
butinn of the material in carrying layers as

f 1 xe(0,b) ,
v=J (8.29)

L1 - -2- (x - b) , xe (b,L) ,
2L

where (8.26) might be used for suitable N°, M° and

b = L(1 - / пУ) . (8.30)
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ficoaomy of the designs established herein could be as
sessed by the coefficient

L
e = S Hdx ‘ (8.31)

When integrating in (8.31) making use of (8.24), (8.25) and
(8.29)» (8.30), respectively leads to

e = т(Ъ - $(L - b) ♦ — ^ ~ — arcsin /1 - n2') (8.32)L 2 2 f\ - n
and

e = 1 - -Цг (L - b)3 . (8.33)
6L̂

The values of the economy coefficient calculated by
(8.23) and (8.33) are accommodated in Tables 1.8.1 and 1.8.2, 
respectively, for certain values of b and p. Both Tables 
correspond to the axial tension n = 0,2.

It follows from Tables 1.8.1 and 1.8.2 that maximal econ
omy for given axial load may be obtained for the limit load 
(load carrying capacity). If n = 0, p = 2 one obtains e a 
» 0,785 for sandwich beams and e 3 0,667 in the case of 
uniform rectangular cross-section.

Table 1.8.1. Bconomy of the design for a beam with 
homogeneous rectangular cross-section

b/L 0_____0,1 0,2 0,4 0,6 0,8
p 1,920 2,370 3,000 5,334 12 48
e 0,799 0,819 0,839 0,879 0,919 0,960

Table 1.8.2. Economy of the design for sandwich beam

b/L 0_____0,1 0,2 0,4 0,6 0,8
p 1,600 1,975 2,5 4,444 10 40
e 0,733 0,760 0,787 0,840 0,893 0,947

The optimal thickness distribution is presented in Fig.
1.8.1 for several values of the load intensity. Here n = 0,2. 
It may be observed that the optimal non-dimensional thickness 
tends to unit when the load intensity increases.

108



Fig. 1.8.1. Optimal thicknesses for the simply supported 
beams subjected to the transverse pressure 

and axial tension

The continuous lines in Fig.1.8.1 correspond to the sand
wich beams, whereas the dotted curves are associated with the 
uniform beams.

Note that adjoint set (8.11) could be integrated account
ing for the transversality conditions (6.22). For instance, 
in the case of sandwich beams the solution procedure results 
in

^1 = Ш  » ^2 = 2ЫГ " l2)
(8.34)

'Ч'з » •

The solution (8.34) may be non-unique.
Note finally that the optimal thicknesses (8.24), (8.25) 

and (8.29), (8.30) were found under the assumption that the 
external loading parameters p and n are given constants. 
Therefore, it is not clear whether the designs obtained above 
for the values p and n are applicable for lower values 
of the loading parameters.

In order to ansver this question let us consider the de
sign of the beam for p = p̂  and n = n^. In the case of a 
sandwich beam according to (8.29)



но х е(0,Ь1) ,
Н(х,р1,п1) - (8.35)

Н,о х е ^  ,L)

where is obtained from (8.30) when substituting p = p̂ , 
n в n^.

Let us study the behaviour of a beam with thickness
(8.35) for p€(p0,p1) and n€(0,n1), where pQ is the 
limit load for both, the reference and the optimized beam. 
According to (8.30) p0 a 2(1 - n).

When solving the equations (2.9) for (8.35) one obtains

where m ■ y1/N.hHQ and b is determined by (8.30). Now 
one has to check the statical admissibility of the stress 
distribution (8.36). Thus, according to (8.5) and (8.27)the 
following inequality

must be satisfied for each пе(0,п/)) and рб(р0,р̂ ).
Svidently, for the above assumptions b^b^. Thus, the 

inequality (8.37) must be checked in the regions (0,b); (b,tu ) 
and (b̂ ,L), respectively. For xe(0,b) (8.37) applies as 
equality. In fact, substituting (8.36) into (8.37) gives far 
x e(0,b)

which is satisfied spontaneously due to (8.35)*
For xe(b,b1) combining (8.35) - (8.37) leads to the 

inequality

r1 - n x €(0,b)
(8.36)

.1 - n -- Еч(х _ b)2 f xe(b,L)
2L

л
1 - n - —2— (x - b)24 —щг » 

2L no
(8.38)

whereas for (b̂ ,L) one has

(8.39)
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Making use of (8.30) one can establish the validity of
(8.38), (8.39) for each pe(p0*p1) and n€(0,n1).

Thus, the solution obtained above is statically and ki
nematically admissible.

Let us consider now the beam of rectangular cross-sec
tion with variable thickness corresponding to the loading 
parameters p̂  and n^. According to (8.24), (8.26) one has

where b̂  is given by (8.25) when p =s p̂  and n = n,j • 
Integrating the state equations (2.9) one obtains

Using (8.41) it is easy to recheck that there exists 
statically and kinematically admissible stress-strain state 
for the beam of thickness (8.40) for each p€(p0,p1) and 
n€(0,n1).

xe(0,b1)

H(x,p1,n1) = 2 (8.40)
x€(b/J ,L)

1 - n‘2 xe(o,b)
m (8.41)

1 - n2 --(x - b)2, xe(b,L) .2L
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С НАРТ SR I I

OPTIMIZATION OF PLASTIC CYLINDRICAL SHBLLS 
FOR PRBSCRIBED DBFLBCTSD SHAPB

§2.1. Problem formulation and. the basic equations

2.1.1. Optimality criterion and additional restrictions

Let us consider the moderately large deflections of a 
rigid-plastic circular cylindrical shell of length 2L and 
radii A . The shell is subjected to the axial dead load N 
and to the internal pressure loading of intensity P(x). The 
coordinate system with its x-axis coinciding with the unde
formed generator of the shell has its origin at the central 
cross-section of the shell (Fig. 2.1.1).

Fig. 2.1.1. Shell geometry

The intensity of the pressure loading as well as the defor
mations are expected to be symmetric with respect to the 
central cross-section of the shell. Due to symmetry, the 
right-hand side of the shell will be considered (0 4 ^ 4 LI 

The stress-strain state of the shell is specified by the 
axial and transverse displacemants U and W as well as 
the moment M , the axial force N̂  , the hoop force N2 
and the tangential force Q . The positive directions of
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generalized stresses and strains are shown in Pig. 2.1.2.

Fig. 2.1.2. Sign convention

It should be noted that the internal forces contributing to 
the energy dissipation are , N2 and M .

It is assumed that the yield moment and yield force de
pend upon t-he functions ĥ  (x) ,... »h^x) . These quantities 
could be termed thicknesses but in particular cases they 
could stand for arbitrary dimensions or parameters of the 
cross-section of the shell. The shells with non-homogeneous 
cross-sections including layered and rib-reinforced tubes 
will be considered.

The functions h.(x)(j = 1,...,m) have to be determined tJso that the optimality criterion

attains the minimum value. Here F stands for a given diffê  
rentiable function. For instance, if the shell wall is homo
geneous and the problem consists in the weight minimization 
of the shell, one can state F «= h,hbeing the wall thickness. 
For a similar problem in the case of a layered shell one has 
F = + ... + 9mhm, where Q±(i = 1,...,m) stand for the

L
(1 .1 )

О
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densities of different layers.
Minimum of (1.1) will be looked for under the condition 

that the deflection corresponding to the optimal solution 
does not exceed the deflection W, of the reference shell 
of specified shape. The latter is characterized by the thick
nesses h°,...,h° . Thus

W - W.(P,N1 fh°,...,hJ) ^  0 . (1.2)

When minimizing (1.1) in addition to (1.2) one has to 
take into account the functional constraints

R̂ (ĥ j,... ,hm,U,x) ^ 0 } jj * 1,... ,r; (1*3)

as well as integral constraints
L
^ S;j(h1 ,...,hm ,W,U,x)dx * Aj ; jJ * 1 1«.. |S (1.4)
0

where R^(d = 1 ,...,r) and S^(d = 1 ,...,s) are given dif
ferentiable functions.

The geometrical and physical meanings of the constraints
(1.3) and (1.4) are similar to those of the corresponding 
restrictions in the case of plastic beams (chapter I). If, 
for instance, the statement of a particular problem is such 
that the thicknesses of the layers h., must not exceed the 
corresponding thicknesses h^ of these layers for the re
ference shell, the constraints (1 .3) could be expressed as 
R d * **d "* hj ^  = ''»•••»и1)» However, if * h^, then the 
weight (volume) of different layers is fixed previously.

In the present section the shells with simply supported 
ends will be studied.Although, the attention will be focu
sed to the case when the axial tension applied to the edges 
of the shell is fixed the analysis should also be carried 
out for the shells with fully fixed ends. Thus, the bounda
ry conditions may be expressed as

M*(0) = w ' (0)  = LT(O) X 0,

M(L) = W(L) * 0 . 

primes denoting differentiation with respect to x .

(1.5)
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2.1.2. Basic equations

Moderately large deflections will be taken into account 
in the present study. Thus, the equilibrium equations of the 
shell element could be expressed as

dN. ,2M ,2Ш N0
33T = °. 7 5  - N1J T  + зг - p = 0 • <1-6>dx dx

The geometrical relations may be presented as

с _ dJ ж 1xdWx2 p _ W^1 ~ dx + * 2 " A *
2 (1.7)

'St. = ̂ -5 , Обр = 0 ,
1 dx tL

provided the stress-strain state of the shell is symmetric 
with respect to the axis of the tube. Due to symmetry, the 
hoop moment is eliminated from the set of relations (1.6),
(1.7)» The consistence of (1.6) an (1.7)» respectively was 
studied by Duszek, 1975; Jones, 1971; Sawczuk, 1982.

The material of the shell is assumed to be a rigid-plas- 
tic one obeying the Tresca yield condition or generally, a 
piece-wise linear yield condition. Although the yield sur
face in the space of stress resultants associated with a 
piece-wise linear yield condition in the plane of principal 
stresses may consist of linear and non-linear parts, it is 
assumed that the stress profile lies on the flat

H2 = V h1..... V  <1-8>
only, where N_ is the yield force. In the case of the uni-2form shell wall NQ = ö̂ h, MQ = 6"0h /4-, whereas in the ca
se of a sandwich shell one has Nq = 261h, MQ = &QhH, h 
and H being the thickness of carrying layers and the total 
thickness, respectively.

The stress points lying on the flat (1.8) of a yield 
surface must meet the restriction

§(M,N1,h1,...,hm) ^0 (1.9)

where Ф is a given continuous and piece-wise differentiable 
function.

15*
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Note that the hypothesis about the stress profile (1.8) 
was successfully utilized in the plastic analysis by Duszek, 
1975 and Sawczuk, 1982 when accounting for moderately large 
deflections of rigid-plastic cylindrical shells. It is use
ful tool in the optimal design of plastic cylindrical shells 
in the post-yield range as shown by the author and Sawczuk 
1980, 1987.

Evidently, foregoing analysis remains valid for the ap
proximations of the yield surfaces for which the stress re
gime is specified by the flat of type (1.8), but the quanti
ty Nq must not be interpreted as the yield force. Such a 
situation occurs when studying the oost-yield behaviour of 
cylindrical shells manufactured of a fiber-reinforced aniso
tropic material.

A type of deformation theory of plasticity will be used 
which states that the strain vector with components given by
(1.7) is directed along the outward normal to the yield sur
face. Thus, according to the associated deformation law and 
the hypothesis about the stress profile (1.8), (1.9)

ei * x i = ^ m  (1.1°)

2 2whereas Eg = ̂  * Here \ stands for a non-negative sca
lar multiplier, which vanishes, if Ф  < 0 . The equation re
garding to 62 will be omitted in the further analysis , 
since it may be conceived as an equation for determination 
of the quantity .

At the non-regular points of the yield surface e.g., at 
the intersections of the smooth pieces of the yield surface, 
the strain vector may be specified as an arbitrary positive 
linear combination of normal vectors to the adjacent flats 
at this point. Thus, the relations of the type given by(VIO) 
remain valid at non-regular points of the curve specified by
(1.9) if the products in (1.10) are interpreted as the sca
lar products of appropriate vectors.

Elimination from (1.7)» (1.10) the components of defor
mation gives



2.1.3. Yield surfaces for shells of a Tresca material

Let us consider a cylindrical shell made of a material 
which obeys the Tresca yield condition.In its original form 
the Tresca condition represents the hexagon in principal 
stresses (Fig. 2.1.5).

Pig. 2.1.3. Tresca yield hexagon

■iqaations of the exact yield surface in the space of the 
stress resultants were first derived by Gnat and Prager, 
1954 using the assumption of straight normals.

In the case of a circular cylindrical shell with shell 
wail of sandwich type, the yield surface is a polyhedron 
whose faces are



Fig. 2.1.4. Yield surface for the sandwich Tresca shell

Fig. 2.1 .5 . An approximation of the yield surface for
sandwich shells
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In Pig. 2.1.5 there is shown a linear approximation of this 
surface for which the face N2 = Nq is bounded by the lines 
N1/Nq ± M/MQ = 1 .

For the cylindrical shells with uniform shell walls the 
yield surface becomes non-linear (Fig. 2.1.6) which may be

I,Taking use of the strain-mapping method suggested by 
Onat and Prager 1954, one can derive the equations of the 
yield surface corresponding to an arbitrary piece-wise lin
ear yield condition.

Fig. 2.1.6. Yield surface for homogeneous shells of
Tresca material

presented as

(1.13)
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2.1.4. Normal form of state equations

The differential constraints are presented by (1.6) and 
(1.11). Evidently, the first equation in (1 .6) may be omit
ted, stipulating that is a constant. The second equa
tion in (1.6) after using (1.8) leads to the equation

dx dx'

According to (1.11) we have

dJ _ 1rdWx2 *2ЭФdx - " 2(S} + % Щ  (1*15)
where X will be considered a control function, h^,...,h 
are also controls.

It appears to be convenient to use the state variables 
У ^ »•••>У^ defined by (1.1)(chapter I). According to (1.11), 
(1.14),(1.15), the state variables have to satisfy the state 
equations

yi = y;

У2 » - Г  + p '
,2 ЭФ No

У3 = . (1.16)
* _ л2_9Ф
4 - Эу1 ’
• 1 2  л2 0Ф

У5 - - 2 y4 + A 9Nn •

The quantity will be regarded as a given constant, if
the axial tension of the shell is specified. However, if 
is generated as a reaction of supports, will be treated
as a parameter subjected to the variation.

Introducing new control variables v^, one can put the 
inequalities (1 .2) and (1 .3) into the form of equalities

У3 - W. + v2 = О (1.17)

and
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R;j(h1,...,hm,y5 ,x) + v2 = О ; j = 1,...,r . (1.18)

Similarly to the previous case (1.9) may be converted into 

<̂ (y1,N1,h1,...,hto) + 92 = o . (1.19)

§2.2. Necessary optimality conditions

2.2.1. Extended functional

The posed problem consists in the minimization of the 
functional (1.1) taking (1.2) - (1.10) into account. The 
state constraints are presented in the form (1.16) - (1.20).

In order to derive necessary optimality conditions re
sorting to the method suggested in chapter I,the following 
functional will be employed:

Lr 5
j* = \ (Ц. 'Vi/i “ e£)<lx + Y . (2.1 )

i=1

In (2.21) due to (1.14), (1.16) - (1.19) the Lagrangian func
tion is expressed aa

Nn
&= - F + + ̂ ( N ^  —  - —  + P) + +

+ +^5(_ \ A  + + ZL'Woi3! + (2*2)
1 r 1 i=1

+ Я>0(У3 - W„ + v2) + 21 ^jCRd + v2)+ ф(Ф+ 02) ,
3=1

ф, ЦК being the Lagrangian multipliers. The quantities 
, . . . , are termed adjoint variables.
The term Y in (2.1) may be picked according to (1.5)

as

Y = 91У1(Ь) + 92У2(0) + 9373(L) + 9Л(°) + 95У5(°Ь(2.3)

Note that the terms of type Rj(b^) are omitted in (2.3) 
for the sake of simplicity. Evidently, the jump conditions 
(3«57)t (3*38) or (3*51), (3*5̂ ) from chapter I remain val-
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id. for the present case.

2.2.2. Variation of the extended functional 

Variation of the functional (2.1) results in

p г 5 m
63 • = \  ( Z ^ i  -  -  1&sx- Х.Щ6ьз ■

5 li=1 1 3=1 J

- “ 2% v0^v 0 ~ 2 4,6<50l dx + 91<3y1(L) + (2.4)
0=1

+ < ^ y 2(o) + 9^6y3(L) + <?46y4(o) + 956y5(o) .

Since <5ä, and c5h^ are arbitrary in (2.4), one has

I  ■»
and

d<£
щ

Similarly to that
vp.v. = 0 ; 3 = 0,...,r (2.7)

and
vp0 = 0 . (2.8)

Integrating by parts the terms ^(Sy^dx in (2.4) and 
bearing in mind (2.5) - (2.8) leads to the equation

L 5 ... 5
“ \ Ž ^ i ^ i  + § 7 ^ 7i)dx + H  (Vi(Lrfy±(L) -^(0)^(0)) +
0 M  1 1=1 (2.9

+ 916y1 (L) + 92<5y2(o) + б̂у̂ (ь) + 94<5y4(0) + q̂ Sŷ Co) = о 

One readily obtains from (2.9) the adjoint set
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= - §^т * 1 = (2.10)

as well as the transversality conditions

^(0) = V2(b) = y 3(0) *^4(L) =V5(b) = 0 (2.11)

and

^(L) = - 91 , 0^(L) = - 93 ,

Y2(0) = 92 , 0^(0) = * ^5(0) = ?5 •
(2 . 12)

The relations (2 . 12 ) could be regarded as the equations 
for determination of the corresponding Lagrangian multi - 
pliers ^,...,9 .̂ Therefore, they will be out of the at
tention of the further analysis.

2.2.3. Optimality conditions

Let us study the relatiors (2.5) - (2.11) in a greater 
detail. Equation (2.5) m^y be put into the following form 
when using (2.2)

\|(N1̂ 2 + Я^) Щ  = 0 . (2.13)

evidently, it follows from (2.13) that either
X = 0 (2.13)

or

(“ л  W\ +^5 Sq '  0 • (2-15)

Inserting (2 . 2 ) in (2 . 6 ) leads to the set of equations
ЭБ*, 3N 2f а ЭФ а 9Ф1

- Щ  - Т - Щ + X 1(N1^2 + V  Щ  дГ + ^5 äh" ÖN7J +
ЭФ C2-16)+ = 0; j = 1,... ,m ,
0

where for the conciseness sake the following notation is in
troduced
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г s
' • -  * - 1 > л  - Z % i si • (кИ7) 

i=1 i=1
The adjoint system (2.10) could be expressed as

= +гГs—'I 92Ф Э2Ф 1 ,

\  • -

- %  - f  9si 
Z-Voi 3y7 » 
i=1 *

(2.18)

4  - -'4'j + ^ 4  ’

S" i=1 5 i=1

aRi
Щ •

In a particular case when the constraints (1.3) and (1.4) 
do not depend upon the axial displacement, i.e.

sr. as,
= 9y^ ~ ® j = 1,...,r ; i = 1,...,s (2.19)

it follows from (2.18) and (2.11) that

^  = 0 . (2.20)

Note that (2.20) takes into account the case when LT(L)  ̂0.

2.2.4. Optimality conditions for the minimum weight
design associated with the given deflected shape

Consider now the optimization problem which consists in 
the minimization of the material volume of the shell

J = J h(x)dx (2.21)
0

under the conditions that the thickness is constrained be
low by

h - 0 (2.22)

and above by
-h + h ^ O  . (2.23)

124



Evidently, the problem (2.21) - (2.23) is a particular 
case of that stated by (1.1) - (1.4). In the present case
F = h , R1 = -h + ^  , R2 в h - hj , Sj = 0 (2*24)

which according to (2.19), (2.20) implies that = 0. 
Therefore, (2.13), (2.15) simplify considerably taking the 
form

+^4) = 0 . (2.25)

Substituting (2.25) into (2.15) leads to the equation
3F. 4l2 9N M  

" 3F" - ЗГ ST" ■"4’gE = 0 (2'26)

where according to (2.17) and (2.21) - (2.24)

F* = (-h,, + Ь)ф1 + <p2(h2 - h) + h . (2.27)

According to the relation (2.25) we put the adjoint 
equations (2.18) into the form

яу* _ _ ,пЭФ y1 " Mdy1 »

(2.28)
.

s  = - %  ’

у I = - ^ з

which, in turn, combined with (2.25) yields

%  = - N ^ 2  , *̂ 3 = “ N1^1 (2.29)

and
* - *Н1 Щ  ■ (2.30)

Note that (г.29) and (2.30) is applied in the regions where 
the stress state of the shell corresponds to the regime
Ф= 0.

In the further analysis the minimum weight problems will
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be studied for which W, is the deflection of the reference 
shell of constant thickness. It is assumed that cpQ / 0 in
(2.7) and thus, vQ = 0. This means that the deflections of 
the corresponding shells coincide at each point.

From (2.26) making use of (2.27) one readily obtains
яр? 3<i> -1<4? = (1 + cf1 - if2 + — gnr)(§f) * (2.31)

On the grounds of the latter relation one can draw the con
clusion that Ц) does not vanish simultaneously, at least if 
the constraints (2.22) and (2.23) are passive, i.e. ify =
= = 0. Therefore, in (2.8) 0 = 0  and (1.19) yields

Ф(М,К1 ,h) = 0 . (2.32)

The equation (2.32) could be interpreted as the optima
lity condition for the shell with the specified deflected 
shape, provided no additional restrictions are imposed. If, 
however, the thickness of the shell is constrained by (2.22) 
and (2.23), one can start with the solution procedure from
(2.32) and construct the admissible solution when suitably
combining the requirements ш . = 0 or v. = 0 in (2.7)*7 J JSolving the so-called problem of synthesis certain regions 
could occur with 0 ^ 0  for the problem with additional res
trictions .

Note finally that we cannot provide a guarantee that 
there really exists the optimal solution for arbitrary func
tion W,. The problems of the existence and uniqueness of 
the optimal solution exceed the scope of the present work. 
Valuable achievements in this field have been made by Cin
quini and Sacchi, 1980.

§2.3. Reference solutions for shells of constant
thickness

2.3.1. Shells of sandwich type

Large deflections of rigid-plastic cylindrical shells 
the material of which obeys the Tresca yield condition have 
been studied by Duszek, 1966, 1967; Duszek and Sawczuk,1970; 
Lance and Soechting, 1970 and Sawczuk, 1982 using the yield
surface in the space of the stress resultants. Another ap-
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proach to these problems was developed by Lepik, 1966; 1967 
on the basis of the original Tresca yield condition in the 
space of principal stresses.

Consider first the shell if ideal sandwich type. The 
yield surface for shells of sandwich type is presented in 
Fig. 2.1.4, the equations of the faces are given by (1.12). 
The stress state of the shell entirely belongs to the face 
N2 = No of the yield surface (Fig. 2.1.4). The sketch of 
this face of the yield polyhedron is presented in Fig.2.3.1.

Fig. 2.3.1. Sketch of the face N2 = NQ of the yield

Assuming that the stress state of the shell corresponds 
to the point К in Fig. 2.3*1 in the central zone for 
xe(0,b) and to the line KL for xe(b,L) one states 
that

0

polyhedron

M = M* (3.1 )

for xe(0,b) and

(3.2)

for xe (b,L) • In (3.1) according to (1.12)

о
(3.3)
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where м° = 6-0Hh0, = 2eoho .
Making use of (3»1) and (3*2) one can integrate the equi

librium equation (1.14) and the relations (1.11) separately 
in the regions (0,b) and (b,L), respectively. Satisfying 
the boundary conditions (1.20) as well as the continuity re
quirements of the quantities M, М», W and W' at x = b 
one obtains the bending moment as

rM* , x g (0,b) ,
M =| no (3.4)

^(P - - b)2 + M, , xe(b,L)

and the transverse deflection as
2 N°

--+ Wo ’ xe(0,b) ,
W = - 1 jjo (3.5)

■ - P)(x - L) , xe(b,L) .

In (3«4), (3*5) coordinate b is to be defined as
Г5Ш 7” 4

b = L -i/-3----  (3.6)К  - “
whereas the maximal deflection becomes

1 К 2
Wo = “ P)(b - 2bL) •

Note that the solution (3*4) - (3*7) remains valid until 
N̂  is not less than value N̂ /2* For N̂  < N /̂2 the results
(3.4) - (3.7) remain valid if M«, in (3*3) is replaced with 
-MqN^/No. However, the obtained results hold good for the 
approximation of the exact yield surface (Fig. 2.1.5), for 
which the face N̂  = Nq is presented by in Fig.
2.3.1.

2.3.2. Homogeneous shells

It appears that (3*4) - (3*7) remain valid for shells 
with solid shell walls when using the plastic regime N2 = Nq 
on the yield surface (Fig. 2.1.6). The sketch of this face 
of t,ho surface is presented in Fig. 2.3*2. Now (3«3) must be
replaced by
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Fig. 2.3.2, Sketch of the face N. N.2 = of the yield 
surface for homogeneous shells

M. = M“( & 2 - 1)
О

(3.8)

Naturally, the quantities NQ , MQ are different in the 
cases of sandwich and uniform shells, respectively. The ex
pressions for the social displacement will also be different.

Putting b = О in (3.6), one readily obtains the load 
carrying capacity of the shell

2M, 
7 (3.9)

which holds good in both cases, if M, is interpreted suit
ably. In the further analysis it is assumed that P^ P .

§2.4. Minimum weight design of the closed sandwich shell 
of the Tresca material

2.4.1. Problem formulation

Consider a closed sandwich cylindrical shell hinged at 
the end sections and allowed to displace in the axial direc
tion. The shell wall consists of a core layer carrying shear 
forces and of two layers of thickness h(x) carrying memb
rane forces and moments (Fig. 2.4.1.).
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Pig. 2.4.1. Longitudinal section of the sandwich
shell wall

The structure consisting of a cylindrical shell and of 
two end plates is subjected to the internal pressure of in
tensity P considered as a dead load at small configuration 
changes. For the considered shell and loading the axial 
force is generated by the internal pressure. The equilibrium 
of the end plates yields

Nn = JAP . (4.1)

In the present section the optimum design of a short clo
sed cylindrical shell will be established for which the vol
ume of carrying layers

L
J =  ̂h(x)dx (4.2)

0

attains the minimum vaxue under the requirement that the 
shell deflections are as given by (3.5) - (3.7). In (3.5) -
- (3*7) the axial force is specified by (4.1). Besides,when 
minimizing (4.2) there have to be satisfied the basic equa
tions (1.5) with boundary conditions (1.20) as well as the 
yield condition (1.9) or (1.19).

We are looking for the optimal thickness distribution 
among continuous and smooth functions.

Material of the shell is assumed to be rigid-plastic 
obeyingthe Tresca yield condition. Besides, the stress state 
of the shell corresponds to the plane Ng = NQ (Fig. 2.3*1)
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and thus, according to (1.12), assuming that M is non-po- 
sitive one can state

ф= “ Г" + 1Г “ 1 * (4*з)о о

The deformation regime (4.3) is admissible for ^ *
Because of (4.1) this leads to the restriction

№
p > Ja • I«)

In order to check the validity of (4.4) we determine the 
load carrying capacity of the shell. It follows from (3.6) 
that for b = 0 one has

N° _
Po = Г  - p  M * * (4*5>

Substituting (3*3) and (4.1) in (4.5) gives 
N° AM°

P° ■ + (4-6) о о
which shows that for (4.4) is satisfied spontaneous
ly. Thus, the deformation regime (4.3) is associated with 
the exact yi^ld surface, with the quadrate OAgA^A^ in Pig. 
2.3.1*

2.4.2. Optimal solution

For the intended optimization the necessary optimality
condition is expressed by (2.32).Employing (2.32) with (4.3) 
and (4.1) one obtains the relation

M = - Mo(1 - <4-7)о

which should be satisfied at each x e (0,L). It is worth 
emphasizing that MQ and NQ depend on the actual face 
sheet thickness and thus (4.7) states the relation between 
the bending moment M and the thickness h. This permits 
to integrate the basic equations (1.16),or (1.14) and(1.15).

It appears to be convenient to use the following non- 
-dimensional quantities

17*
131



,0 *
L(N°)^U N°W

U в  -------7Г-Ч- I W в  - ü -4(M°)2 2M°

(4.8)

Using (4.8) one could put (4.7) into the form

m = ̂ p - v (4.9)

whereas the load carrying capacity (4.6) may be expressed as

p = 1 + y - ■vo 1 + a (4.10)

Calculating the curvature with the aid of (3*5) gives

fa { IpCl - p) > *6»,Ъ) ,
S 2 "

(4.11)
0 , xe(b,L) ,

where

b ■ L<1 - / i t f - H j  > • <4И2)

Substituting (4.11) in (1.14) - (1.16) leads to the 
following set of equations

m‘ a q ,

a

,J
V i  - v) ,L

V P  - v)L

x e(0,b) ,

xe(b,L) , (4.13)

“ + rfp(p ~ 1) » х ^(о,ь) ,

x e(b,L) ,
2 b V  

1 #
_ a2(P - 1 ) V

where q may be considered as an auxiliary variable.
The equations (4.13) could be integrated with the aid of



(4.9) separately in the regions (0,b) and (bfL). For de
termination of the constants of integration one can utilize 
the boundary conditions (1.5) as well as the continuity re
quirements imposed on variables m, q and u at x = b.

Doing so one eventually obtains the solution of (4.13) 
in the form

for xe(b,L). Here the notation d = \[a?L is used.
Inserting the quantity m according to (4.14) and (4.15) 

into (4.9) leads to the optimal thickness distribution

In the case when p = pQ according to (4.12) b = 0 and
optimal thickness will be

However, for p = 2 one has b = L and the optimal thick
ness coincides with the constant thickness h = h .

m = -1 + £ + (g - (p - Dch d(L - b))f£-g ,

 ̂= cE - (p - 1)ch d(L - b)) sh dx , (4.14)

for xe(0,b) and

m = - ̂  + ^ ^ (fch dx + (p - 1)sh db • sh d(L - x)) ,

* = ̂ T3I(fsh dx - (p - 1)sh db • ch d(L - x)) , (4.15)

m = -

« - - - fb> + -1)u = -

1 - (| - (P - 1)ch d(L - Ь))||-д  , xe(0,b) ,
v = (4.16)

Р - ~S1'dI f̂ch dx + (p - 1 )sh db sh d(L - x)) ,
xe(b,L) .

v p ch dx
= p “ f cirai • (4.17)
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2.4.3. Adjoint variables

The optimality condition (2.32) holds under the condi
tion that the problem is not a singular one. This implies
that the adjoint variables must not be equal to zero simul
taneously.

As there are not any constraints of type (2.21), (2.22)
imposed on the optimal thickness one can put ify = = 0 
into (2.31) which using (4.3) yields

26
ф= -h(1 + • (4.18)

Due to the validity of (2.29) only the first two equa
tions in the set (2.28) have to be integrated. Substitution 
of (4.18) as well as (4.3) in (2.28) gives the set

^1 = " ^2 + »
(4.19)

*4$ = - %  »

which has the solution

14̂  = - (C^sh dx + C2ch dx)d ,
(4.20)

V 2 = C^ch dx + C2sh dx - A* .

Here A* = A/26̂  and , C2 are arbitrary constants. The 
constants of integration may be determined when satisfying 
the transversality conditions. This results in

A,d
^1 = " БЕТЕ sh ** ’

(4.21)
Уг -  A*(- 1 + äH6> '

Consequently, the solution of the adjoint system (4.19) 
is non-trivial and thus the posed problem is non-singular.

2.4.4. Applicability of the optimal design

The optimal solution (4.14), (4.15) and thicknesses 
(4.16), (4.17) were obtained under the assumption that the
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intensity of the pressure loading was fixed. It means that 
the optimal thickness is associated with the given value of 
the internal pressure. This involves the question about the 
applicability of the design established herein for the pres
sures which are lower than those corresponding to the con
structed solution.

In order to answer this question consider design (4.16) 
for p = P1

-1 - ф -  - (p., - Dob 4(L - V ) f H !  ■
xe(0,b1) ,

v(p^,x) = I (4.22)
1 P1P1 “ ch dl/2~^h + (P1 “ 1)ch db>] sh d(L - x))»

xe(b1,L) ,

where

b1 “ W1 W a(p > • (4-2«

It will be shown that the load carrying capacity of the 
shell with thickness (4.22) coincides with (4.10) and that 'an 
admissible solution to the problem of determination of the 
stress-strain state of the design (4.22) exists for pe(p0,p>j). 
It appears to be reasonable to assume that the stress state 
of the shell corresponding to (4.22), (4.23) is associated 
with point К in Pig. 2.3.1, i.e.

m(p,x) = ■Jp - v(p1fx) (4.24)

for xe(o,b) and with the profile KL for xe(b,L), where 
b is given by (4.12).

For the statical admissibility of this solution it is ne
cessary that the stress point should not exceed the limits of 
the interval KL in Fig. 2.3.1, i.e.

m(p,x)> ̂ p - v(p1fx) (4.25)

for xe (b,L) and each p£(p0,p̂ ).
Note, that for b = 0 (4.23) gives the limit load pQ 

which coincides with (4.10) as might be expected. Making use
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of (4.12) and. (4.23) it is easy to recheck that if
P4 P̂ . Hence, the validity of (4.26) must be studied in the 
regions (b,b^) and (b1fL).

For xe(0,b) by means of (4.22), (4.24), one obtains

m = -1 + \ + (^ - (P/| - 1)ch d(L - b))f| -д  ,
(4.26)

л P-iq в сЪ"~д (?~ “ (P-j - 1)ch d(L - b))sh dx .

Since the equations (4.13) have to be satisfied, the 
variable u given by (4.14) remains valid in the present 
case as well. Naturally, (4.26) is in consistence with
(4.13), too.

Now one has to integrate (4.13) inserting first (4.22) 
and making use of (4.12) and (4.23). Performing the integra
tion and determining the integration constants according to 
the continuity conditions at x = b and x = b̂  leads to 
the solution

_ j2 P
m = I - v(p1fx) + £-(p - 1)(x - b) (4.27)

for x€(b,b<|) and
d2 2 m = I - v(p1tx) + £-(p - p1)(x - b̂ ) +

2 (4.28)
+ §-(P “ 1)0^ - b)(2x - b - Ья)

for x€(b^,L). Evidently, the boundary condition m(L) = 0 
is satisfied spontaneously, if b and b̂  are determined 
by (4.12) and (4.23), respectively.

Employing (4.26) - (4.28), it is easy to recheck that
(4.25) is satisfied for each xe(b,L).

2.4.5. Discussion

Economy of the optimal design established could be asses
sed by the coefficient

L
e = Л .  \ h(x)dx , (4.29)

0 0
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where h is the optimal thickness and hQ stands for the 
constant thickness of the reference shell.

Inserting (4.16) in (4.29) leads to the relation

e = J(b + p(L - Ъ)) + д7;д-д((р “ Dsb db " |sh dL).(4.30)

Certain values of the economy coefficient are placed in 
Table 2.4.1 for the given values of the load intensity. Ta
ble 2.4.1 corresponds to the case when a = 4 and dL «= 2.

Table 2.4.1. Economy of the design of a closed 
sandwich shell

b/L P e
0 1,200 0,911
0,1 1,230 0,921
0,2 1,281 0,931
0,3 1,338 0,943
0,4 1,410 0,954
0,5 1,500 0,967
0,6 1 >610 0,978
0,7 1,735 0,988
0,8 1,862 0,996
0,9 1,962 0,999
1,0 2,000 1,000

In the present work the attention is focused on compara
tively short shells. Now the bending moment is a monotonic 
function. Naturally, it is not easy to establish the strict 
boundaries between short and long shells. This depends not 
only on the geometrical parameter a but on the material 
utilized by the manufacturing of the shell as well as on the 
loading and on the support conditions. Therefore the numeri
cal investigations are carried out for shells with ае(1,8).

Table 2.4.1 shows that the amount of the material saving 
is not large (maximally less than 9% in the case when a = 4). 
The first row in Table 2.4.1 corresponds to the load carrying 
capacity of the shell, p = 1,2 being the limit load. The 
last row in Table 2.4.1 illustrates the fact that for p = 2 
the axial force n = 1 and the only admissible project of 
the shell is the design of a constant thickness. Evidently, 
when n = 1 then the shell operates in the membrane state,
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i.e. m = 0. However, for p = 1,2 one has n = 0,6. Thus, 
due to comparatively large values of the axial force (memb
rane stress) generated by the internal pressure the economy 
of the material need may not be large.

Pig. 2.4.2 presents the optimal thickness of the face 
sheet

and the bending moment is shown in Pig. 2.4.3. The curves 
presented in Pig. 2.4.2 and 2.4.3 correspond to the shell 
with a = 4. Here b = 0; b = 0,3 and b = 0,7, respecti
vely. The optimal thickness in Fig. 2.4.2 seems to be cons
tant near the center of the shell. However, the calculations 
carried out reveal the dependence of the thickness on the 
coordinate. Specific values of the thickness v at different 
extents of the central zone corresponding to the stress re
gime К on the ridge of the yield surface are given in Ta
ble 2.4.2.
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Fig. 2.4.3. Bending moment of a closed sandwich shell

Table 2.4.2. Optimal face sheet thickness of a closed
shell

x/L b/L=0 0,3 0,5 0,7
0,0 1,0405 1,0154 1,0057 1,0011
0,2 1,0276 1,0166 1,0062 1,0012
0,4 0,9867 1,0138 1,0077 1,0014
0,6 0,9112 0,9651 1,0003 1,0019
0,8 0,7889 0,8561 0,9220 0,9880
1,0 0,6000 0,6700 0,7500 0,8700

It follows from Table 2.4.2 that in the central part of 
the shell the optimal thickness exceeds that of the refer
ence shell. However, if b tends to unity, the function h(x) 
uniformly tends to hQ.
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§2.5» Optimal design of an open sandwich shell

2.5.1 . Preliminaries

Consider a circular cylindrical shell subjected to the 
internal pressure loading and to the axial tension N. It 
is assumed that the internal pressure is uniformly distribu
ted, i.e. P = const and the shell wall is of the sandwich 
type.

The approximation on the exact yield surface(Fig.2.1.5) 
will be employed.Suppose that the stress state of the shell 
corresponds to the face N2 = NQ of the yield polyhedron 
presented in Fig. 2.1.5. The ridge of this face is shown in

Fig.2.5.1 . Sketch of the face N2=Nq of the yield polyhedron

Fig. 2.5.1 . Here the line KL represents the stress regime. 
Thus, the relation (4.5) holds good for each N which does 
not exceed the value NQ, in the present case.

The non-dimensional quantities (4.8) will be utilized in 
the present section, as well. Since the optimality condition
(2.32) remains valid the relation (4.3) gives

m = n - v (5*1)
which should be used at each point xe(0,L).

2.5.2. Optimal solution

For an open shell the reference solution associated with
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the constant thickness shell is given by (3»4) - (3*7)»where

b = 1(1 - \llll~- f}> • <5.2)

Thus, the curvature becomes

f In(1 " p)’ x G (0,b) ’W* = J (5-3)
0 , x e (b,L) .

Substituting (5.3) in (1.14) - (1.16) leads to a set of 
equations similar to (4.13) which could be integrated making 
use of the condition (5*1)* The integration of basic equa
tions under the continuity requirements and appropriate boun
dary conditions results in

m = n - 1 — (n — p + (p — 1 )ch d(L - b))^  ^  ,

q = - (n - P + (p - 1)ch d(L - b))sh dx , (5.4)

u = — ( p - D 2 + f l l24^1/ 4nij

for x e (0,b) and

m = n - p - д '-д((д - p)ch dx + (1 - p)sh db’sh d(L - x)),

q = с̂ ((п - p)sh dx - (1 - p)sh db.ch d(L - x)), (5.5)

u = - --g"? (p - 1)2(x - |b) + (p - 1)
8n Ir 3 *ых

for xe (b,L).
Combining (5.1) and (5*4), (5.5) leads to the optimal 

non-dimensional face-sheet thickness

+ (n - p + (p - 1 )ch d(L - b))gl-g  ,

x £ C0’b) • (5.6)

+ с̂ 7д ( (n - p)ch dx + (1 - p)sh db*sh d(L-x)),
x e (b,L) .
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For the limit load pQ = 2(1 - n)/a the formula (5-6) 
gives

However, in the case when n = 1 according to (5.2) b = L 
and (5*6) yields v = 1 .

Note that the adjoint variables could be determined the 
same way as in the case of a closed shell. It may be reche
cked that (4.18) - (4.21) remain valid in the present case, 
as well.

2.5.3. Applicability of the optimal design

Let us study the applicability of the shell with opti
mal thickness v(ny],p1 ,x) when loaded by ne (0,n̂ ) and 
pe (P0*P̂ |). Here v(n^,p1 fx) stands for the thickness (5.6) 
corresponding to the axial load n̂  and the pressure loa
ding of intensity p^.

Assume that the stress state of the shell with variable 
thickness corresponds to the point К (Fig. 2.5.1) for 
x€(0,b) and to the line EL for xe(b,L). Therefore, the 
verification of the statical admissibility of the solution 
reduces to the checking of the inequality

for xe(b,b^) and xe(b^,L). The coordinate b̂  is to be 
specified by (5*2) for n = n̂  and p = p^. Evidently , 
b4br

Integrating the set of basic equations for v=v(n̂ ,p^,x) 
one eventually obtains

v = (5.7)

m(n,p,x)>n - v(n1 fp1 tx) (5.8)

' n - v(n1 ,P1 ,x) , x e(0,b),

m = & 22 (p - 1 )(x - b) + n - v(n1 p1 ,x) , xe(b,b1), (5.9)

In - v(nn ,p1 ,x) + у , x e(b,L)
where

У = f-((p - Ря)(х - Ъл)2 + (p - 1)(ЬЯ - b)2) + 
+ d2(p - 1)(Ц - b)(x - b^) .

(5 . 10)
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Making use of (5»9), (5.10) one can establish that (5*8) 
is satisfied for each xe(0,L). Thus, the solution of the 
direct problem is statically and kinematically admissible.

2.5.4. Discussion of the results

Economy coefficient (4.29) could be expressed as

+ p(L - b)) + 'Д - с̂ —д ( (n - P)sh dL + (p - 1)sh db).

Different values of (5*11) corresponding to different val
ues of b and n̂  are presented in Table 2.5*1.

Table 2.5*1. Economy of the optimal design of an open
shell

b/L n = 0 0,2 0,4 0,6 0,8
0 0,777 0,822 0,866 0,911 0,955

0,2 0,809 0,847 0,885 0,924 0,962
0,4 0,846 0,877 0,908 0,938 0,969
0,6 0,889 0,911 0,933 0,955 0,978
0,8 0,939 0,951 0,964 0,976 0,988

Le 2.5.2. Load intensities for fixed extent <
central zone

b/L n = 0 0,2 0,4 0,6 0,8
0 1,500 1,400 1,300 1,200 1,100

0,2 1 ,781 1,625 1 ,469 1,313 1,156
0,4 2,389 2,111 1,833 1,556 1,278
0,6 4,125 3,500 ■2,875 2,250 1,625
0,8 13,500 11,000 8,500 6,000 3,500

Optimal thickness distribution is presented in Fig.2.5 .2  
for different values of the transverse pressure. Fig. 2.5.2  
corresponds to the value of the geometrical parameter a = 4 
and the axial force n = 0,2. Evidently, v(1) = n. If the 
axial force tends to unity or the load intensity increases 
the thickness tends to unity as shown in Table 2.5 .3.

It should be noted that when n is approaching unity 
the limiting process is uniformly convergent. However, for 
a fixed value of n near the edges of the shell there oc-

143



cur the regions where v < 1 .

10

0.8

0.6

0.4

' 0 0.2 0.4 0.6 0.8 x /L  10

Fig. 2.5.2. Optimal thickness of an open sandwich shell

Table 2.5*3. Optimal shape of an open sandwich shell

p x/L = 0 0,2 0,4 0,6 0,8 1,0
1,400 1,081 1,055 0,973 0,822 0,578 0,200

3,500 1,012 1,013 1,015 1 ,021 0,827 0,200

11,000 1,003 1,003 1 ,004 1,005 1,007 0,200

The maximal economy which can be achieved corresponds to 

n = 0 and p = P0 for each value of the parameter a. For 

a = 4 the maximal material saving equals 22,3%. If the axi

al force or load intensity increases the eventual economy 

decreases.

§2.6. Weight minimization of an open homogeneous shell

2.6 .1 . Preceding remarks

The optimal design problem posed in the previous para

graph will be investigated herein assuming the shell wall 

is homogeneous. Let the thickness of the shell wall be de-
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noted by h(x). The shell is subjected to the internal pres

sure and to the axial tension, edges of the shell being hin
ged.

Material of the shell is assumed to obey the Tresca 

yield surface shown in Fig. 2.1.6. The face N2 = NQ of 

this surface is outlined in Fig. 2.3.2. The stress regime 

KL (Fig. 2.3.2.) will be used, provided the point К cor

responds to the region (0,b) and KL to the interval (b,L). 

Thus, the function ф in (4.3) could be expressed as

Ф  = -  jjr + ( jtO2 ~ 1 » (6 .1 )
о о

where MQ = 6‘0b2/4 , NQ = ö^h .

Note that the non-dimensional quantities defined by(4.8) 

are also applicable in the present case.Naturally,the yield 

force N° and yield moment M° have to be replaced by ap

propriate expressions.

Evidently, the posed problem may be considered as a par

ticular case of the one studied in section 2.2.4. Thus, the 

optimality condition (2.32) holds good in the present case. 
Combining (2.32) and (6.1) one obtains

v = \/n2 - m* , (6.2)

where the notation (4.8) is used.

2.6.2. Minimum weight design of the shell

Substituting the curvature of a generator of the shell

(5 .3) into the system (1.14) - (1.16) leads to the equations

( £*(1 - v), x e ( 0,b) , 

m" = L" (6.3)

% ( p  - v), x e  (b,L) , 
L

and

a2 (p - 1)*X + f;(p - 1 ) ,  X £ (0 , b )  ,
8I^nb

a (p - 1)2x2 , X €  (b,L) ,
(6.4)

8L n

where according to (3*6), (3*8) and (4.8)
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ъ = L ( 1 - v S - H r 5 - (6-5)

Prom (6 #5) one could obtain the limit load

P0 = 1 + §<1 -  n2) . (6 .6 )

Evidently (6.4) could be integrated analytically. This 

results in

a 2̂
( p  - 1)2P  + |j.(p - 1 ) x  , x€(0,b) ,

u = { 24n gf (6.7)

■ (P ” 1)2(x - ^b) + ^j(p - 1)b ,

xe(b,L) .

Taking the optimality condition (6.2) into account the 

equation (6 .3) may be converted into the set

dm
cE = q ’

f a (1 - \l n2 - m) , t€(0,b/L) ,

Iff =l I 2------’ (6*8)
la(p - ¥n - m) , t€(b/L,1) ,

where t = x/L. The set of equations (6.8) is integrated nu

merically under the following boundary conditions

q (0) = m(1 ) = 0 . (6 .9)

2.6.3. Numerical results

The boundary value problem (6 .8),(6.9) was solved by the 
use of the Runge-Kutta method of the fourth order. The re

sults are presented in Table 2.6.1 and Fig. 2.6.1 .Two curves 
in Fig. 2.6.1 correspond to the case when a = 4 and n = 

= 0,5. Here p = 1,5 and 1,7; respectively. Calculations 

carried out reveal the matter that the optimal thickness is 

comparatively weakly sensitive to the changes in the inten

sity of the transverse pressure loading for fixed axial ten

sion. This was observed in the case of sandwich shells, too. 

The third curve in Fig. 2.6.1 is associated with the axial 

tension n = 0 ,8.
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Fig. 2.6.1. Optimal thickness of an homogeneous Tresca

shell

The economy of the design established is assessed by the 

economy coefficient defined by (4.29). Different values of 

the economy coefficient are presented in Table 2.6.1 for dif

ferent values of the transverse pressure. Here a = 4 and

n = 0,5.

Table 2.6.1. Economy of the design for an homogeneous

Tresca shell

P 1,5 1,6 1,7 1,8 1,9 

e 0,902 0,911 0,917 0,920 0,924
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§2.7» Optimal design of fiber-reinforced shells

2.7.1. Problem formulation

Consider a plastic circular cylindrical shell subjected 

to the axial dead-load N and to the internal pressure loa

ding of intensity P. The shell is composed of a fiber re

inforced composite material. A composite material could be 

defined as a set of relatively thin and long fibers embed

ded in a matrix material. The filaments have high strengths, 

whereas the surrounding matrix material is less strong.

Common combinations of the fibers and matrix include 

glass fibers in a polymeric matrix, carbon(graphite) fibers 

in an epoxy resin matrix, boron fibers in an aluminium mat

rix etc. The wide use of the composite materials is moti

vated by their desirable properties, cost saving potential 

for structural applications as well as the ability to de

sign the structures with high rigidity, load carrying capac

ity etc.

In the present section the shells of ideal sandwich 

type will be studied assuming the face sheet thickness is 

variable. The optimal thickness distribution is being sought 

that corresponds to the minimum weight and for which the de

flections coincide with that of the reference shell of con

stant thickness. It is reasonable to demand that

N - 26T.h(x) 4 0 , (7.1)

6, being the yield stress of the material in the axial di

rection.

2.7.2. Yield surfaces for fiber reinforced shells

Anticipating the need for the ductile failure theory, a 

simple approximation of the yield surface for fiber rein

forced materials was suggested by Lance and Robinson; 1971; 

1972. This surface was used in evaluating the load carrying 
capacity of cylindrical shells and plates by Lance and Ro

binson, 1972; 1973.
Because of the strong dependence of the yield behaviour 

on the angle between the direction of fibers and principal 

stresses it appears to be impossible to draw one single
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yield surface characterizing materials behaviour for arbit

rary orientation of fibers. In the present work, only the 

cases of unidirectional orientation of fibers in the circum

ferential and axial direction will be considered.

Lance and Robinson established that the plastic fiber 

reinforced material obeyd the yield polyhedron

+ N1 T N2 - r = 0 

- 1 = 0 ,

- r = 0 , 

- 1 = 0

N2

M
С

(7.2)

in the case of the circumferential orientation of fibers. 

Here r stands for a given constant. It should be inter

preted as the ratio of the yield stresses of the composite 

material and matrix material, respectively, in the direc

tion of fibers. The parameter r although being a parameter 

of the reinforced material is not a physical constant.

However,

1 = 0N2 
Ъ 
N1 -  N2Л- + ^  - r - 0 , ^  ^

N1
К
M

- r = 0

- r = 0

in the case of axial orientation of fibers.

It appears to be reasonable to introduce a formal para

meter (a distinctive mark) к so that к = 1 corresponds 

to the axial orientation and к = r to the circumferential 

orientation of fibers. The use of this attribute allows to 

present the yield surfaces (7.2) and (7.3) as a single clo

sed polyhedron formed by the intersection of the faces

“ n1 ~ = © > - n^ - kv = 0 ,

± m - | v  = 0 ,  - n1 + n^ - rv = 0

(7.4)
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where notation (4.8) is employed.

It will be assumed that r > 1 as the fibers should be 

stronger than the matrix material, as a rule.

2.7*3. Shell of constant thickness

The solution obtained for the sandwich shell of a Tresca 

material in the section 2.3.1 must be modified slightly when 

using the shells manufactured of a reinforced composite. 

Substituting v = 1 and assuming that the stress profile 

lies on the face n2 = к of the yield surface (7*4) leads 

to the restriction imposed on the bending moment

|mU§ '. (7.5)

Assuming m = -r/k for xe(0,b) and m > -r/k for 

x e  (b,L) yields the curvature distribution

-2-*(к - p) , xe(0,b) ,

2nL (7.6)

o , xe(b,L) ,

which could be used when integrating the equilibrium equa

tion (1.14) where NQ is to be replaced by kNQ. Thus, 

(7.6) with (7.4) and (1.14) lead to the displacement field

-^-*(k - p)x2 + w , xe(0,b) ,

^  (7.7)
—^ ~ ( k  - p) (x - L) , x € (b ,L) .
2nL

In (7.7) L stands for half of the length of the shell, 

whereas

and

wo = S7T(a(p " k; ~ (7*9)

The bending moment corresponding to (7*5) ~ (7-9), (1.14) 

may be expressed as
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I * x e  (0,b) ,

m =\ , (7 .1 0 )
-  k) (x -  b )2 -  I  , xe (b,L) .

2L *

By the use of (7.10) it is easy to rectieck that (7*5) is 
met.

From (7.8) and (7*9) follows the load carrying capacity 
in the form

p0 c k + f£ • <7.ii)

2.7.4. Minimum weight design for a fiber reinforced

shell

According to (7*2) - (7.4) the function Ф could be 

picked as

* * - r Q - § <7.12)

whereas (7.1) could be expressed as

n - §v + Q2 = 0 (7.13)

0^ being an additional control function.

it should be noted that the present problem differs 

slightly from the particular problems studied in the previ

ous sections. It is caused by restriction (7.13). Therefore, 

the optimality condition (2.32) holds good in a section of 
the optimal trajectory, only. In some other parts of the in

terval (0,L) this requirement must be substituted by the 

condition 01 = 0 .  Thus, according to (7.12) and (7.13)

m = - |v (7.14)

v = |n . (7.15)

It appears that (7.14) holds good in the region xe(0,b^), 

whereas (7 .1 5) applies for xe(b,L).

Assuming that the stress state of the shell of a varia

ble face sheet thickness corresponds to the plane n2 = kv 

of the yield polyhedron (7.4) one readily obtains from(1.14>- 

-(1.16) the equations
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r % 1  - v) , х е (0,Ъ) ,
m" = J L (7.16)

l^jCp - kv) , xe(b,L) ,
L

2
u* = ■ -~n-?(k - p)2x2 , xe(0,L). 

en^L5

The first equation in (7.16) when substituting (7.14) 

and. (7 .15) leads to

m = <

^ 5(1 + гш) * xe(0,b) , 
L r

2
p (p  * p * ) ,  xefb.b.,) ,

- f-n) X 6 (b^)

(7.17)

whereas the last equation in (7.16) gives

u = ---- ^ - r ( k  - p)2x3 .
2РгЪГ1?

(7.18)

The solution of (7.17) can be presented as

m = - r + A.ch dx + A^sh dx (7.19)

for xe(0,b),

m = - =UpB.ch dx + B„sh dx 
к ' *

for xe(b,b^) and

ш = -~n(p — *-k2)x2 + C^x + C,
2L 1

(7 .20)

( 7 . 2 1 )

fur хе(Ь̂ ,Ь), where d = к \Ja/rL2 .

For determination of the arbitrary constants , A2> B^f 

B^, one can use the boundary conditions

m(1) = m (0) = 0 , (7 . 22 )

the requirement

in(b1) = - n (7.23)

which follows Гт'огп (7.14), (7.1‘j) as well as the continuity

с ' j n i i t i  .»nr: f o r  in(x) a n d  m (x) a t  x = b and x = b^.
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These result in

+ ^ c h  d(b - b^) - § (7.24)

for xe(o,b),

+ |ish d(x - b1) (7.25)

for хе(Ъ,Ь/]) and

m = (ll(P " - V  - е-Д. L)(x - L) (7.26)

for хеЦ,!),

In (7.24) - (7.26) the following notation is introduced:

■J. = y .e  -  j^X b ., -  L) -  з- ^ j .  . (7.27)

The boundary conditions (7.22), (7,23) and continuity condi

tions are oatisfied if b^ is the root of the equation

Lnch db̂ . ^ ~

dC'L -  Ъ1) "  Ж С(р  "  "  b )ch  dbl “

- ( ^ p  - n)sh db^ + ^ ( p  - k)sh db = 0 . (7.28)

The optimal thickness distribution can be defined accor

ding to (7.14), (7.15), (7.24) - (7.26) as 

, kq„

Г1 " §F~if((i " rk)sh d(b " V  + rd~cb i(b " bi})*
x e (o ,b ) ,

I  . (B . Bk)ch d(x - b.,) - Slish d(x - b.,), (7.29)

x e  ( b , ^ ) ,

^n , x e ( b /],L).

The adjoint variables could be determined according to
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(2.28) - (2.31). As cp̂j is not zero over the region (0,1) 

the relation (4.18) is not applicable. However, ify = 0 for 

xe(0,b1) and. = 0 for x e ( b 1tL).

Integrating (2.28), making use of (2.29) - (2.31) and 

satisfying the transversality conditions and continuity re

quirements imposed on the adjoint variables at x = b1 leads 

to the solution of the adjoint set

Consequently, the adjoint variables are not spontaneously 

equal to zero which implies that the problem is not a singu

lar one.

2.7.5* Applicability of the design

In order to study the behaviour of the minimum weight de

sign established herein let us consider the shell of thick

ness

which is obtained from (7 .29) for p = p^ and n = n^.

I - С sh db.
’1 *

xe(0,b1) , 

x e ( b ^ )  ,

(7.30)

" aE + §Lch ^  » xe(o,b1)

С sh db^(x - L) , x e ^ J j )

where

С = ^ ( c h  db1 + d(L - b ^ s h  d b ^ " 1

x e  (b2 ,L)
r

In (7.31)

(7.32)
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Ln. ch db3, n. 5  ̂ ^

--------~ “ ж :(р1 - —k )(L " V ch <ib2 -
d(L - b p  (7.33)

- (^P^ - n^)sh db2 + ^ ( p  - k)sh db̂ j = 0 . 
к к

The quantity b̂j is defined by (7.8) for p = p^ . It should 

be noted that b^ does not depend on the axial force .

Let us study the post-yield behaviour of the shell of 

variable thickness defined by (7.31). Assume that p e ( p 0 ,p^) 

and ne(0,n^), where pQ is the load carrying capacity of 

the shell.

The stress distribution is assumed to be such that

m = - |v (7.34)

'I
and b 2 stands for a root of the equation

for xe(0,bQ) and

m > -  §v , w = 0 (7.35)

for x 6 ( b o ,L), where v is given by (7.31) - (7.33).

Integrating the equilibrium equation (1.14) taking(7.34), 

(7.35) into account leads to the relations

m = - £v + - % ( p  - k) (x - b )2 (7 .З6 )
к 2L 0

for x e ( b 0 ,b̂ j),

m = - |v + ~ ^ ( P  - k)(b^j - bQ)(2x - bQ - b^) (7.37)
2L

for xe(b^j,b2) and

m = - |v + - ^ ( b 2 - x)2(p - jr-k2) + ^-(x - b2) +
2L

+ a,g(p - P 1 ) ( b 2  - b!j)(2x - b̂ j — b2) +
2L

+ - ^ ( p  - k)(b!j - bo)(2x - b] - bQ) (7.38)
2L

for x e ( b 2 ,L).

The unknown quantity bQ in (7 .36) - (7.38) is to be 

calculated as a root of equation

20*
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21/
a

(P - ^ k 2)(L - b\)2 ♦ Jl(L - bj) +

+ — jy(p ~ ” b!|)(2L - b̂J - b̂ ,) - n^ ♦
2L

a (p - k)(bl - b )(2L - b\ - bn) = 0 .

(7.39)

21/
Making use of (7*31) - (7*33) and. (7*36) - (7*39)» one 

can recheck that the inequality (7.35) holds good for each 

x e ( b 0,L). Thus, the solution is admissible for each p e ( p Q , 

p^) and ne(0,n>1). Evidently, the load carrying capacity 

of the shell of variable thickness coincides with the limit 

load for the reference shell of constant thickness.

2.7.6. Discussion and conclusions

The results of calculations are presented in Tables 

2.7*1, 2.7.2 and in Fig. 2.7*1, 2.7*2, 2.7*3* The dashed

4.2

Х Ч  \ \  \  N N4
4  "
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-

V 4
\ \

\ \
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\ \
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v \
a  = 4 
r  =1 5  
n  = 0.2

L ..

W \\\\
\AAj____

0.8

0.2 0.4 0.6 0.8 X/L <.0
Fig. 2.7.1. Optimal thickness for a fiber-reinforced

shell (n = 0,2)
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Fig. 2.7.2. Optimal thickness of a fiber-reinforced.

shell (n = 0,5)

lines in Fig. 2.7.1 - 2.7*3 correspond to the shells with ax

ial orientation of fibers and the continuous ones to the cir

cumferential orientation of fibers.

It is somewhat surprising that the optimal thickness is 

comparatively unsensitive to the orientation of fibers,while 

the stress-strain state of the shell strongly depends on 

that. However, this discrepancy springs from the statement 

of the problem — the minimum material consumption is looked 

for under the requirement that the deflections of the shell 

of variable thickness and that of the reference one, respect

ively, coincide. Naturally, the deflections corresponding to 

the axial and circumferential orientations of fibers, essen

tially differ from each other.

Fig. 2.7 .З presents the bending moment distribution foi 

a relatively long shell. In the case of greater values of 

the transverse pressure the crests of these curves lie off
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Fig. 2.7.3» Moment distribution for a cylindrical shell 

made of a fiber-reinforced composite

the center of the shell as shown in Fig. 2.7-3.

Specific values of the economy coefficient e which may 

be expressed by (4.29) are accommodated in Tables 2.7.1 and

2.7.2. The Tables correspond to the axial tension n = 0,2 

and n = 0,5, respectively. The load carrying capacity of 

the shell with a = 4, r = 1,5 is equal to 1,75 in the case 

of the axial orientation of filaments and to 2,0 in the case 

of circumferential arrangement of fibers in a composite ma

terial. The exposed data reveal the fact that the material



saving is greater if fibers have the social orientation 

rather than in the case of circumferential orientation of 

fibers. The latter refers to the post-yield, behaviour of the 

shell. However, the load carrying capacity of the shell as

sociated with the circumferential orientation of fibers in 

the matrix material exceeds the one corresponding to the ax

ial orientation of fibers.

Table 2 .7 .I. Economy of the minimum weight design for a 

shell made of the fiber-reinforced material 

(n = 0,2)

к = г = 1,5 к = 1

p b/L Ц/L e b/L b л/ь e

1,75 - - - 0 0,94 7 0,763
2,0 0 0,932 0,804 0,134 0,952 0,789
2,4 0,255 0,941 0,838 0,268 0,957 0,817
3,0 0,423 0,950 0,867 0,388 0,962 0,846

3,5 0,500 0,955 0,882 0,452 0,966 0,863

4,5 0,592 0,961 0,903 0,537 0,970 0,889

5,0 0,622 0,964 0,911 0,567 0,972 0,900
7,0 0,698 0,970 0,936 0,646 0,976 0,934

Table 2.7.2. Economy of the design for n = 0,5

к = r = 1,5 к = 1

P b/L Ц/L e b/L Ц/L e

1,75 - - - 0 0,856 0,781

2,0 0 0,797 0,838 0,134 0,868 0,806

2,4 0,255 0,828 0,868 0,268 0,883 0,832

3,0 0,423 0,856 0,892 0,388 0,898 0,859

3,5 0,500 0,870 0,905 0,452 0,907 0,875

4,5 0,592 0,890 0,923 0,537 0,920 0,900

5,0 0,622 0,897 0,930 0,567 0,924 0,910

7,0 0,698 0,915 0,952 0,646 0,936 0,943

§2.8. Optimal design of rib-reinforced cylindrical shells

2.8.1. Statement of problem

The shells strengthened by means of longitudinal and cir-
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cumferentiäl rib-reinforcements have quite a broad, reuige of 

applications. In the last decades, in addition to the tradi

tional fields of applications of rib-reinforced shells, the 

attention has been paid to the structures of the off-shore 

industry.

The load carrying capacity of rib-reinforced rigid-plas

tic cylindrical shells has been studied by Biron, 1970; Ne- 

mirovsky, 1969; Nemirovsky and Rabotnov, 1963; 1964; Biron 

and Sawczuk, 1967; Cinquini and Kouam, 1983.The authors have 

studied three types of shells:

(i) the structure consists of two cylindrical layers, the 

ribs being between them (Fig. 2.8.1),

Fig. 2.3.1. An element of a rib-reinforced shell (the

stringers lying between the cylindrical layers)

(ii) the ribs are located symmetrically at both sides of the 

rim (Fig. 2.8.2) and

(iii) the cylindrical layer is strengthened with the ribs at 

one side of the shell (Fig. 2.8.3)»

In the present work, for the conciseness’ sake the atten

tion is focused to the first type of the shell (Fig. 2.8.1). 

Let H(x) and h be the variable thickness of the ribs and 

the constant thickness of the layers, respectively. The dis

tances between the ribs are denoted by d^ (Fig. 2.8.4).
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Pig. 2.8.2. A shell element with ribs lying in both

sides of the rim

Pig. 2.8.3. A shell element with ribs lying in one

side of the shell
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The cylindrical shell(struc

ture) is subjected to the uni

formly distributed transverse 

pressure P and to the axial 

dead-load N. The ends of the 

shell are assumed to be hinged.

The minimum weight design 

of the shell with the cost cri

terion

L

J = ^ H(x)dx (8.1)

is looked for. Its deflections 

must coincide with the deflec- 
Fig. 2.8.4-, The dimensions tions of the shell of constant 

of the shell element dimensions.

2.8.2. Yield surfaces for rib-reinforced shells

Nemirovsky and Rabotnov, 1963J 1964 have derived the 

yield surfaces for the rib-reinforced cylindrical sheila 

For the case presented in Fig. 2.8.1 the yield surface is 

formed by the intersection on 18 flats. These equations are 

as follows:

- n2 = 1 ,

- (пя - n,) i m + (n2 + 1) = 1 ,

2 ( ^  - n j  + m + (n2 + 1) = 1 ,

- (i^ - n j  + (n2 - 1) = 1 ,

+ — a * J. _ _ Л _ Л _
m - m, - n2 + — (- n2 + n ^  + 1  + ^ )  + 2 = + 1  , 

£
m + m, + n2 ± _I(± n2 -+ ni + 1 + 1) + 1 = ± 1 f

-  +  a *  2 m + m* - —  = 0 ,

m - (n. - n.) = 0 ,

m + (n^ + n,) = 0 .

I

II

III

IV

V (8.2)

VI

VII

VIII

IX
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The yield surface with flats (8.2) is presented in Fig.

2.8.5.

Fig. 2 .8.5 . Sketch of the exact yield surface for a 

cylindrical shell reinforced by the 

longitudinal ribs

Here the following notations

N.
n. M

1 , 2

a * = h(h +"H)

eo(h

n = 1 +

+ hH)
a. =

a1H.

ШГ m, = 1

d1

=  ^  * 2a.Hd 
+ а, Ц— 

4h

(8.3)

are used.

Nemirovsky and Rabotnov, 1963; 1964 have used an approxi

mation of the exact yield surface (Fig. 2.8.5) where the in

tersections of the surface with the planes n^ = const have 

the rectangular form. This approximation was achieved when 

omitting faces II - VI (Fig. 2.8.5) and elongating planes I 

and VII - IX.

The approximation of the exact yield surface(Fig.2.8.6) 

used in the present work has been formed by the intersection
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Fig. 2.8.6. An approximation of the exact yield surface

of the faces I, VIII and IX. Thus, in the plane

N2 = 260h (8.4)

the bending moment is restricted by the inequality 

M . a1H N
e0'(3 +"Ь')Б 1̂ + 2E- - ТЩр * (8*5)

According to (8.4), (8.5) the function Ф could be put 

into the form

<§> = - M + ffQh(H + h)(^g  ̂  ---1) . (8.6)

2.8.3. Minimum weight design of the rib-reinforced shell

Consider at first the reference shell of constant thick

ness HQ. Let us denote v = H/h and vQ = HQ/h. Similarly 

to the results of the previous sections, we get the bending 

moment for a shell with thickness vQ as
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f(1 + vQ)(n - 1 - 1  aiv0  ̂ ’ xe(0,b) ,
m = J (8.7)

4 1  + v Q)(n - 1 - £ a1v Q) + ~ ^ ( P  - 1)(x - b)2 ,
2 L

xe(b,L) .

Неге

/ 2(1 + v ) äi ’

Ъ = L(1  -  у ä ( p - -" 1 )~ C1 "  n  "  2 "  V )  ‘ ( 8 ,8 )

From (8.8) one obtains the load carrying capacity for 

the rib-reinforced shell:

p0 = 1 + i(1 + vo)(1 - n - T - V  * (8*9)
Evidently, for vQ = 0 ,  we can derive from (8.9) the 

limit load for the sandwich shell without ribs, familiar 

from section 2.3*

In order to get the optimal solution for the shell of 

variable thickness v, let us assume that according to(2.7)» 

(2.8) and (2.32) v = v Q for xs(0,b) and v = v(x) , 

Ф = 0 for x€(b,L). Therefore, according to (8.6) - (8.8) 

one has the optimal thickness in the form

it , x e  (0 ,b ) ,

(i + £-i-l)2- - ^ ( p  - 1)(x - L)(L + x - 2b) + (8.10) 
2 a1 а1

2
1+ n ~ -1 - 1 , x e  (b,L) .

■ * 5

«1

The economy of the design (8.10) could be assessed sis

L

v(x)dx . (8.11)

0

Substituting (8.10) into (8.11) gives 

= Д  ( L  -  b)(n ^ 1  _ 1} +

L

1
+

vo
b

‘- ’a

~  J + I~ ) 2 - -^(p-1)(x-L)(L + x - 2b) dx (8.12)
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The results of calculations are presented in Pig. 2.8.7 

and in Tables 2.8.1 and 2.8.2.

In Fig. 2.8.7 the optimal thickness distribution is 

shown for several values of the transverse pressure. Here 

vQ = 4,5; a = 4 ;  a^ = 0,1; n = 1,1. It is shown that the

Fig. 2.8.7. Optimal thickness of a rib

optimal thickness tends to the constant value vQ when the 

transverse pressure increases.

Tables 2.8.1 and 2.8.2 present the corresponding values 

of the economy coefficient (8.12) as well as those of the 

coordinates b/L. Table 2.8.1 corresponds to the axial ten

sion n = 1 , 1 whereas Table 2.8.2 is associated with n = 1,2.

Table 2.8.1. Economy of the design of a rib-reinforced

shell for n = 1,1

P 2,0 2,5 3,0 5 , 5 4,0 4,5 5,0 5 , 5 6,0 
b/L 0,414 0,521 0,585 0,629 0,661 0,687 0,707 0,724 0,738 
e 0,910 0,926 0,936 0,943 0,948 0,952 0,955 0,958 9,60
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Table 2.8.2. Economy of the design of a rib-reinforced

shell for n = 1,2

P 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 
b/L 0,738 0,786 0,815 0,834 0,849 0,860 0,870 0,876 0,883 

e 0,991 0,992 0,993 0,994 0,995 0,995 0,995 0,996 0,996

In order to be convinced in the validity of the design 

of type (8.10) for an interval of load intensities let us 

consider the shell with thickness (8.10) for p = p^ and 

n = n^. For the statical admissibility of the solution for 

p ̂  p,j and n ̂  n̂ j there must exist such a stress distribu

tion which can satisfy the requirement

т^(1 + v)(n - 1 - ^ a^v) (8.13)

where v is the variable thickness corresponding to the 

loading parameters p^ and n^. The inequality (8.13) is 

checked numerically.

The absolute values of the bending moment are presented 

in Table 2.8.3 for different values of the transverse pres

sure. The shell studied in Table 2.8.3 corresponds to the 

thickness (8.Ю) with p = 7* n = 1,1 and a = 4; vQ = 

= 4,5; a^ = 0,1. The last row in Table 2.8.3 is associated 

with p = 7, thus it is equal to the right hand side of the 

inequality (8.13).

Table 2.8.3» Moment distributions for a shell of 

variable thickness

\X/L
n 0,471 0,588 0,647 0,706 0,765 0,824 0,882 0,941

2,0 0,681 0,627 0,579 0,517 0,441 0,352 0,248 0,131
4,0 0,688 0,688 0,688 0,676 0,624 0,530 0,395 0,218

5,0 0,688 0,688 0,688 0,688 0,661 0,579 0,441 0,248

6,0 0,688 0,688 0,688 0,688 0,680 0,614 0,479 0,274

7,0 0,688 0,688 0,688 0,688 0,688 0,640 0,510 0,296

Table 2.8.3 demonstrates the fact that (8.13) is satis

fied at each point of the shell.
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2.8.4. Minimum weight design of the shell in the case 

of the rims of variable thickness.

Consider now such a case of a rib-reinforced shell where 

the thickness of ribs is constant but the cylindrical layers 

have variable thicknesses. Thus, H = const, h = h(x). As 

above, we are looking for the design which corresponds to 

the minimum weight.

Using the non-dimensional quantities

лг - h и - H
T - к; - Hi - e ;

the relation (8.6) may be substituted by

4> = - m + (v + Hy|)(n - ^a1H^ - v) . 

Combining (2.32) and (8.15) leads to the relation 

v = J l(n - lijO + J ая))2 + nH^ - ^цН2 - m' +

(8.14)

(8.15)

+ ^(n - Н̂ (1 + 2a1)) •

1 2ч 1

(8.16)

However, the bending moment m in (8.16) is defined as 

a solution of the equation

С a /j(n - Ц(1 + J a ^ ) 2 + hH1 - ^ H 2 - m +

+ a(1 - Ц (1 + ^a^ )) , x E  ( 0, b ) ,

a /^(n - Н̂ (1 + ^ ) ) 2 + nH1 - ^a^H2 - m' +

+ a(p - 2 + 2^1(1 + 2а1 ̂  ’ xe(b,L) .

= (8.17)

The equation (8.1?) must be integrated under the bound-
I

ary conditions m(1) = m (0) = 0. The integration has been 

accomplished numerically. Several values of the economy coef

ficient and coordinate b are presented in Table 2.8.4 . 

Here a = 4 ;  n = 1,1; a^ = 0,1; H^ = 4,5»
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Table 2.8.4. Economy of the design of variable thickness

P 1,5 2,3 
b/L 0,171 0,521 

e 0,943 0,957
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