TARTU UNIVERSITY

ORGANIC REACTIVITY

Vol. XXVI ISSUE 3(95) - 4(96) July - December 1989

TARTU UNIVERSITY

ORGANIC REACTIVITY

Vol. XXVI
ISSUE 3(95) - 4(96)
July - December 1989

The Editorial Board:
V.A. Palm, Editor-in-Chief
V.I. Minkin
A.F. Popov
I.A. Koppel
A.V. Tuulmets

Title of original:
Реамцинная способность органических соединений, Том XXVI, вып. 3(95)--4(96), иодь--декабрь 1989. Тартуский университет


```
Vol.26, 3(95)-A(96) 1989
```

STUDY OF MEDIUM EPFECT ONTO THE
decomposition rate of potassium
1,1-DIMETHOXY-2,4-DINITROCYCLOHEXA-2,5-DIENATE

T.D. Kartashova, A.I. Glaz, and S.S. Gitis Tula State Teacher Training Institute

Received July 4, 1989

Kinetics of decomposition of potassium 1,1-di-methoxy-2,4-dinitrocyclohexa-2,5-dienate has been measured spectrophotometrically in binary mixtures of dimethylsulfoxide - protonic components. Ali phatic alcohols and water in temperature range 15$35^{\circ} \mathrm{C}$ were taken for the latter. Activation parameters of this reaction were found. It has been established that the reaction of the δ-complex decomposition proceeds according to bimolecular mechanisin and substantially depends on the acidity and structure of the protonic component. This is proved by the excellent correlation between $\log \mathrm{k}$ and pK_{a} of alcohols and the $6^{(I I}, E_{s}^{c}$ values of alcohol radicals.

At present, there can be found sufficient data in literature on the studies of medium effect on the stability of the Jackson-Meisenheimer anionic 6-complexes as well as on establishing interrelations between the structures of complexes and their reactivities ${ }^{1,2}$. Nevertheless, the studies of 6 -complexes on the basis of aromatic dinitro compounds are very rare.

Thus, the present work is aimed at studying the effects of medium structure and acidity as well as the temperature
on the stability of potassium 1,1-dimethoxy-2,4-dinitrocyc-lohexa-2,5-dienate 0 -complexes. In free form, this complex is unstable, since in the case of the dissolution in protonic solvents, it decomposes instantly. Therefore, the decomposition reaction was studied in the binary mixtures, consisting of an aprotic polar solvent - dimethyl sulfoxide (DMSO) and of one of the protonic components - water or aliphatic alcohols $\mathrm{C}_{1}-\mathcal{C}_{4}$ with either normal or iso-structure, the content of the latter being $0.1-1.2 \mathrm{~mol} / 1$.

The studied anionic 6 -complex which has the structure of quinolonitro acid has been fully dissociated into ions in DMSO, whereas the solvents having high dielectric constants favor the formation of free ions instead of the solv-ent-separated ion pairs ${ }^{3}$.

Reaction rate was determined spectrophotometrically by the optical density change of the solution at the absorption maximum ($\lambda=506 \mathrm{~nm}$) which is characteristic of the $\boldsymbol{\sigma}^{\delta}$-complexes of Jackson-Meisenheimer with two nitro-groups in benzene ring. The linear character of the corresponding kinetic dependences (Pig. 1,8) shows that at low concentrations in the mixture of alcohols and water the reaction follows the first order both according to the protonic components and to the decomposing complex.

Consequently, the decomposition of the 6-complex of 2,4dinitroanizole with potassium methylate is a protolytic reetion and it proceeds according to the bimolecular mechanism, including the protonation of the oxygen atoms of σ complex and the cleavage of the $C-0^{4}$ bond (Scheme 1).

The results of the measurements can be found in Table 1. They indicate that the rate of 6-complex decomposition

linearly depends on the acidity of the protonic component and

changes as follows: $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}>\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}>\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}>1-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ $>1-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$. The point for water does not $0-$ bey this relationship. Namely, in the mixtures of water and DMSO the decomposition rate is unexpectedly low and does not correspond to the pK_{a} of water. We believe that this phenomenon can be explained by the formation of the atructures of type DMSO. $2 \mathrm{H}_{2} \mathrm{O}^{5}$, the latter being less reactive than the free molecules of water. The observable lowering of the reaction rate is probably also due to the atabilization of the product by the formation of hydrates of nitro groups. It has been shown in the studies concerning classical Jackson-Meisenheimer complexes ${ }^{6}$.

The calculations according to the least squares' method ${ }^{7}$ have shown that there is an excellent correlation between the $\log k$ and pK_{a} of alcohols $(\mathrm{r}=0.999 ; \mathrm{s}=0.013)$. As to the acidity of aliphatic alcohols, it depends on the electron-donor properties of the alkyl group, which certainly influences the rate of σ-complex decomposition. Incidentally, there is a satisfactory correlation ($\mathbf{r}=0.952 ; \quad \mathrm{s}=$ 0.097) between the logarithms of decomposition rate constants and the σ-constants values of alcohol radicals ($\sigma^{\boldsymbol{I}}$). The obtained positive values of the reaction constant ρ for the present isokinetic series in equation $\log k=-1.34+$ $+3.24 \sigma^{\text {II }}$ give evidence of the process's electrophilic character towards the substrate. A comparatively high ρ value refers to a rather significant polarity level of the transition state ${ }^{8}$.

The study of the kinetics of potassium 1,1-dimethoxy-2,4-dinitrocyclohexane-2,5-dienate has shown that the reaction rate does not only depend on the acidity of medium but also on the protonic component structure. The data analysis (Table 1) reveals the existence of a certain interrelation between the log k of the rate of 6 -complex decomposition and steric constants of alkyl radicals $\mathrm{E}_{\mathrm{g}}^{\mathrm{c}}$. This is also proved by the established satisfactory correlation between those two quantities $(r=0.950 ; s=0.100)$. Evidently, the branching of the alkyl chains of alcohol diminishes the role of
specific solvation of etheric oxygen atoms and retards decomposition rate.

The study of temperature dependence of the σ-corplex decompositionenabled us to find the activation parameters of the reaction. The activation energy (Table 1) is changed insignificantly by the nature of alcohol. Thus, the entropy factor which is connected with the solvation of the complex by the protonic components of binary mixture probably controles the decomposition. Fig. 3. shows that the experimental points fall well onto the straight lines within the coordinates $\log k=1 / T$, thus justifying the application of the Arrhenius equation for the given systems.

Fig. 3. Relationship $\log k-1 / T$ for the potassium 1,1-dimethoxy-2,4-dinitrocyclohexane-2,5-dienate decomposition reaction in the mixtures of DuSO and protonic components. The numbers of lines correspond to those of Table 1.

The obtained negative activation entropy values agree with the earlier suggested reaction mechanism ${ }^{9}$.
Table 1
Kinétic and Thermodynamic Parameters of Potassium 1,1-dimethoxy-2,4-dinitrocylo-hexa-2,5-dienate Decomposition Reection

	Protonic component	$\begin{aligned} & k_{2} \cdot 10 \\ & 288^{\circ} \mathrm{K} \end{aligned}$	$\begin{aligned} & \cdot \mathrm{mol}^{-1} \\ & 298^{\circ} \mathrm{K} \end{aligned}$	$308^{\circ} \mathrm{K}$	pK_{a}	$6^{\text {I }}$	$\mathrm{E}_{\mathrm{s}}^{\mathrm{C}}$	$\underset{\mathrm{kJ} / \mathrm{mol}}{\mathrm{E}}$	$\log A$	Δs^{7} $\mathrm{kJ} / \mathrm{mol}$ • -degree
1	$\mathrm{CH}_{3} \mathrm{OH}$	1.30	3.00	5.72	15.09	0.00	0.00	11.74	7.201	-26.01
2	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1.15	2.10	3.72	15.93	-0.10	-0.38	10.28	5.867	-31.65
3	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	1.08	1.94	3.49	16.10	-0.115	-0.67	10.34	5.872	-31.63
4	$\mathrm{i}_{-\mathrm{C}}^{3} \mathrm{H}_{7} \mathrm{OH}$	0.70	1.10	2.30	17.10	-0.19	-1.08	10.74	5.950	-31.27
5	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	0.79	1.84	3.39	16.10	-0.13	-0.70	10.75	6.195	-30.15
6	$\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	0.99	1.77	3.20	16.10	-0.125	-1.24	10.78	6.163	-30.30
7	${ }_{\text {t-C }}^{4} \mathrm{H}_{9} \mathrm{OH}$	0.20	0.44	1.00	19.00	-0.30	-2.46	13.45	7.522	-24.08
8	$\mathrm{H}_{2} \mathrm{O}$	0.22	0.61	1.42	15.70	-0.49	0.32	16.90	10.198	-11.86

The results of our studies confirm that the interaction of the complex with the protonic component functions as the limiting stage of the reaction. As a result of this interaction the transition state (II) is formed with the consequent rise of the order of the whole system.

Thus, we have established that the potassium 1,1- di-methoxy-2,4-dinitrocyclohexa-2,5-dienate decomposition reaction proceeds by the bimolecular mechanism and it largely depends on the structure and acidity of the protonic component.

Experimental

The σ-complex I was obtained using methods described elsewhere ${ }^{10}$. The solvents used were purified according to the standard methods ${ }^{11}$. The technique of kinetic studies has been published earlier ${ }^{12}$. The constant was calculated according to the first-order equation ${ }^{13}$. The bimolecular constants were found by dividing the pseudofirst order constants with the concentration of the protonic component ${ }^{13}$. Activation parameters were calculated according to the equation given in monograph ${ }^{14}$. Correlation parameters were calculated using the well-known methods of mathematical statistics 7,8 .

References

1. F. Terrier, Chem. Rev., 82, N 2, 77-152 (1982).
2. M.J. Strauss, Chem. Rev., 70, N 6, 667-712 (1970).
3. M. Shwarz̀, Ions and Ion Pairs in Organic Chemistry, Moscow, Mir, 1975, 285 pp. (in Russian).
4. M.R. Crampton and M. Willison, J. Chem. Soc. Perkin Trans 2, 1686 (1974).
5. J. Murto and A. Viitala, Suomen Kemist., 39, 138-143 (1966).
6. R.S. Kerber and A. Porter, J. Am. Chem. Soc., 21, 366371 (1969).
7. H.H. Jaffe, Chem Rev., 53, 191 (1953).
8. Yu.A. Zhdanov and V.M. Minkin, Correlation Analysia in

Organic Chemistry, Rostov-on-Don, Rostov State University, 36, 1966 (in Russian).
9. K. Bowden and R.S. Cook, J. Chem. Soc. B, 1765-1770 (1971).
10. S.S. Gitis, A.I. Glaz, and A.Ya. Kaminskij, 2h0Kh, 33. 3301-3303 (1963).
11. A. Weissberger, E. Proskauer, J. Riddick, and E. Toops, Organic Solvents, Moscow," IL, 63, 1958. (Russian translation).
12. T.I. Morozova, S.S. Gitis, A.Ya. Kaminskij, and I.A. Glaz, in : "Synthesis, Analysis and Structure of Organic Compounds", Tula, issue 4, 73, 1972 (in Russian).
13. N.M. Emmanuel and D.G. Knorre, A Textbook of Chemical Kinetics, Moscow, Vysshaya Shkola, 412, 1962 (Russian translation).
14. M.K. Yatsimirskij, Kinetic Methods of Analysis, Moscow, "Khimiyan, 23-51, 1967, (in Russian).

INFLUENCE OF LEAVING GROUP NATURE
 AND MECHANISMS OF ORGANIC BASE CATALYSIS
 IN REACTIONS OF :-X-2,4-DINITROBENZENES WITH
 PIPERIDINE IN BENZENE

T.P, Kulishova, G.D. Titskij, S.G. Sheiko, and E.S. Mitchenko
Donetsk Polytechnical Institute, Institute of Physicoorganic and Coal Chemistry, Academy of Sciences of the Ukrainian SSR, Donetsk

Received August 15,1989

Influence of leaving group nature on the kinetics of reactions of $1-\mathrm{X}-2,4$-dinitrobenzenes ($\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, $\mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) with piperidine and its deuterium analogs in benzene at $25^{\circ} \mathrm{C}$ has been studied spectrophotometricalıy. For substrate's halogen derivatives noncatalytic route of nucleophilic substitution proceeds in stages. The process includes slow decomposition of 6 -complex via cyclic transition state and limiting formation of б-complex for benzene sulfonate. Leaving group nature has a certain effect on the catalysis mechanism of those reactions by bases containing nitrogen and oxygen. Catalytic rate constants, of substrates ($\bar{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, $\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$) depending on their structures and main catalysts obey the following equations: $\log \mathrm{k}_{\mathrm{m}}=(-8.93 \pm$ $0.31)+(8.31 \pm 0.28) \mathrm{pK}_{\mathrm{ags}}+(1.24 \pm 0.08) \mathrm{pK}_{\mathrm{HB}}$ and $\log k_{m}=(-6.66 \pm 0.25)+(0.97 \pm 0.03) \mathrm{pK}_{\mathrm{HB}}\left(\mathrm{N}^{+} \mathrm{X}^{-}\right)+$ (1.17 $\pm 0.08) \mathrm{pK}_{\mathrm{HB}}$. Slow decomposition of $\tilde{0}$-complex in catalytic process is determined by NH proton group separation via cyclic transition state with participation
of leaving group and essential catalyst. In the case of benzene sulfonate leaving group, the associative mechanism of catalysis by bases is discussed.

The influence of leaving group in reactions of acti vated benzene derivatives with aliphatic amines has been studied in polar media mainly ${ }^{1-3}$. Papers ${ }^{4,5}$ deal with the catalytic effects of the additions of organic bases in those media. It could have been expected that in the case of transition to nonpolar aprotic media (cf. ${ }^{6-9}$) the leaving group effect should more clearly be revealed in catalytic reaction as well.

The present paper is aimed at studying the effect of leaving group both in noncatalytic reactions and in those catalyzed by organic bases of the compounds having the following formulae: $2,4\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{X}(\mathrm{X}=\mathrm{F}(\mathrm{I}), \mathrm{Cl}(\mathrm{II}), \mathrm{Br}(\mathrm{III}), \mathrm{I}$ (IV), ${ }^{0} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{~V}), \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$ (VI) ${ }^{8}$) with piperidine and its deuterium analogs in benzene at $25^{\circ} \mathrm{C}$.

Our research into the kinetics of reactions of compounds (I)-(IV), (VI) with piperidine has shown that they proceed in two parallel routes: in the noncatalytic one with constant $k_{0}\left(1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}\right)$ and in the route catalyzed by the second amine molecule with constant $k_{B}\left(I^{2} \cdot \operatorname{mol}^{-2} \cdot s^{-1}\right)$. In a similar reaction with participation of compound (V) no catalytic action of amine was observed (Table 1).

It was supposed that there takes place the following conversion of the limiting stage during transition from compounds (I)-(IV), (VI) to (V): for compounds (I)-(IV), the decomposition of the σ-complex is limited by (VI), in the case of (V), it is the formation of the latter that acts as a limiting stage. In keeping with that, the scheme of nucleophilic substitution proceeding in stages includes simulta neous formation of the σ-complex and then its monomolecular and bimolecular decomposition with participation of the second amine molecule.

Noncatalytic Constants. Catalysis of Second Molecule of Amine for Reactions of Compounds (I)-(V) with Piperiđine and N-Deuterium Piperidine in Benzene

Comp- ounds	$k_{0} \cdot 10^{2}$	$k_{0}^{D} \cdot 10^{2}$	k_{0} / k_{0}^{D}	k_{B}	k_{B}^{D}	k_{B} / k_{B}^{D}	$K_{\text {ass }} 10$
I	73.9	38.2	1.93	594	50.4	11.8	9.10
II	7.17	6.61	1.08	0.323	0.094	3.72	4.35
III	10.1	7.52	1.31	0.214	0.103	2.08	4.20
IV	2.80	2.32	1.19		-	-	3.99
V	201	201	1.00	-	-	-	

In order to confirm the existence of differences in the mechanisms of the reaction series studied it was interesting to observe the influence of another separating group - hydrogen atom, in the case of piperidine nitrogen in the very complex replacing it by a deuterium atom. The kinetic regularities of the reaction with N-deuteropiperidine are analogous with those obtained for piperidine. Rate constants k_{o}^{D} and k_{B}^{D} as well as the values of kinetic isotope effects (KJE) estimated by k^{H} / k^{D} are given in Table 1. The KIE found exceeds one both in the case of noncatalytic and catalytic reactions of substrates (I)-(IV). The effect is an essential one and, consequently, it refers to the separation of the hyarogen atom in the rate limiting stage. In the case of substrate (V) the KIE is close to one and cannot therefore be very exactly defined.

On the other hand, according to report ${ }^{1}$, sigaificant differences in constant values in the case of leaving groups' exchange for the reactions of substrates (I)-(IV) with piperidine and N-deuteropiperidine show that leaving group X also splits into limiting stage. The fact that both leaving groups (hydrogen atom and X) split off in the limiting stage makes us conclude ${ }^{11-13}$ that the formation of hydrogen bond between them in cyclic four-member transition state (VIIa) favors their separation.

The formation of hydrogen bond in (VIIa) agrees with the existence of correlation dependence (2) for the substrates containing halogen

$$
\begin{equation*}
\log k_{X}=\log k_{X}^{0}+\alpha \cdot \mathrm{pK}_{\mathrm{ass}} \tag{2}
\end{equation*}
$$

where k_{X} is the rate constant for leaving group X;
$\mathrm{pK}_{\text {ass }}$ - logarithm of constant of association of cyclohexylhalogenides with phenol in CCl_{4} at $25^{\circ} \mathrm{C}$ assessing the ability of leaving group X to form hydrogen bond; α denotes permanent sensitivity of the reaction series to a. certain property of the leaving group; k_{X}^{0} - rate constant for hypothetical substrate with $\mathrm{pK}_{\text {ass }}=0$.

The numeric value of constants k_{0} in the case of variable X is

$$
\begin{aligned}
& \log k_{0}=\left(-3.27^{ \pm}-0.56\right)+(3.30 \pm 0.78) \mathrm{pK}_{\mathrm{aas}} \\
& \mathrm{~s}=0.23 \quad \mathrm{R}=0.95
\end{aligned}
$$

Value α found in Eq. (3) equals 3.30 referring to rather high sensitivity of leaving group X toward the formation of hydrogen bond strengthening in order $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$. It
is in agreement with the suggested stage-like substitution scheme (1).

Nucleophilic substitution with participation of benzene sulfonate derivative of the substrate proceeds more rapidly in the leaving group series, it has not been influenced catalytically by the second molecule of amine and the KIE does not exceed one. Those facts enable us to consider that in this case it is the formation of the σ-complex that acts as the limiting stage.

In order to establish the leaving group nature in the catalytic reactions of compounds (I)-(V) with piperidine in benrene, we studied the effect of the additions of nitrogen and oxygen-containing bases. The values of catalytic constants $k_{m}\left(1^{2} \cdot \operatorname{mol}^{-2} \cdot s^{-1}\right)$ are given in Table 2. The data indicate that the k_{m} values decrease in the series of substrates (I)-(IV), (VI) parallelly to the $\mathrm{pK}_{\mathrm{HB}}$ change according to Eq. (4).

$$
\begin{equation*}
\log \mathrm{k}_{\mathrm{m}}=\log \mathrm{k}_{\mathrm{m}}^{0}+\mathrm{B} \cdot \mathrm{pK}_{\mathrm{HB}} \tag{4}
\end{equation*}
$$

where $\mathrm{pK}_{\mathrm{HB}}$ denote the constant logarithm of associa tion of a given base with p-fluoropu $)^{-}$in CCl_{4} at $25^{\circ} \mathrm{C}$, enabling to assess the proton-acce. Jr ability to form hydrogen bond; B - the coefficient of sensitivity of reaction series to this parameter.

The authors of paper ${ }^{9}$ have noticed a similar dependence in reactions of nucleophilic aromatic substitution.

The dependence of catalytic constants on the $\mathrm{pK}_{\mathrm{HB}}$ values for various leaving groups (Fig. 1) and the statistic parameters of Eq. (4) for compounds (I)-(VI) (Table 3) show that sensitivity coefficient B depends on the leaving group nature. As in the case of compounds (I)=(IV), (VI) characterized by the decisive role of the O-complex's decomposi tion, the B values practically coincide. The level of proton transfer to the catalyst forms 10-20 \% (cf. ${ }^{14}$).

Since the intensity of catalysts decreases in substrate series (I)-(IV), (VI), as well as in the case of noncatalytic processes, correlation (2) was used for the quantitat ive estimation of this phenomenon. The numeric values of the
Table 2 Values of Logarithms of Catalytic Constants for Roactions of Compounds (I)-(VI) with Piperidine, Catalyzed by Organic Bases in Benzene, $25^{\circ} \mathrm{C}$

Base	$\log k_{m}$						$\mathrm{pK}_{\mathrm{HB}}$
	1	II	III	IV	V	VI ${ }^{8}$	
1. Dicxane	-0.19	-	-	-	-0.64	-3.55	0.73
2. Ethylacetate	0.36	-	-	-	-0.38	-	1.08
3. Acetone	0.45	-	-	-	-0.24	-	1.18
4. Piperidine	1.43	-1.55	-1.18	-1.95	0.51	-2.08	1.88
5. Triethylamine	1.31	-	-	-	-	-	1.31
6. Dimethylformamide	-	-1.05	-0.95	-1.75	-	-	2.06
7. 2,4-dimethylpyridine	- 6	-0.87	-0.85	-1.63	-	-	2.17
8. Diazabicyclo octane	$1.51{ }^{6}$	-	-	-	-	-1.81	2.20
9. Diethylacetamide	-	-0.38	-0.55	-1.16	-	-	2.47
10. Dimethylsulfoxide	2.10	-0.47	-0.41	-1.12	1.10	-	2.53
11. Triphenylphospine cxide	1.16	-0.22	-0.16	-0.69	1.38	-	3.16

Pig. 1. Dependence of $\log k_{m}$ for reactions of compounds (I)-(VI) catalyzed by various bases with piperidine in benzene. Point numbers correspond to those in Table 2.
parameters of (2) are given in Table 4. It follows from those data that the α values do not actually depend on the catalyst chosen. The sensitivity value of α exceeds more than twice that of the noncatalytic process. Consequently, at the transition to the catalytic process the sensitivity of the leaving group substrate to the formation of hydrogen bond tends to increase.

Table 3
Parameters of Correlation Equation (4) for Catalytic Reactions of Compounds (I)-(VI) with Piperidine

Compound	$\log k_{m}^{\circ}$	B	R	s
I	-1.00 ± 0.12	1.21 ± 0.07	0.993	0.11
II	-3.22 ± 0.03	1.23 ± 0.15	0.980	0.08
III	-3.33 ± 0.13	1.14 ± 0.05	0.996	0.03
IV	-4.48 ± 0.14	1.33 ± 0.06	0.992	0.05
V	-1.21 ± 0.16	0.88 ± 0.06	0.992	0.12
VI	-4.42 ± 0.13	1.21 ± 0.08	0.998	0.08

Table 4
Parameters of Correlation Equation (2).for Catalytic
Reactions of Compounds (I)-(VI) with Piperidine

Catalyst	$\log k_{X}^{0}$	α	R	s
DMSO	-6.69 ± 0.76	8.50 ± 1.05	0.985	0.309
Pyridine Piperidine Triphenyl- phosphinm oxide	-6.23 ± 0.79	8.55 ± 1.09	0.984	0.321

lated the $\mathrm{pK}_{\text {ass }}$ values for (VI), which is equal to 0.545_{0}

The analysis of the data of Tables 3 and 4 leads us to the consideration that the catalytic constants studied obey multi-parameter equation (5) taking into account the additive contribution of the structural parameters of substrates (I)-(IV), (VI) and the catalysts.

$$
\begin{equation*}
\log \mathrm{k}_{\mathrm{m}}=\mathrm{A}_{0}+\mathrm{A}_{1} \cdot \mathrm{pK}_{\mathrm{ass}}+\mathrm{A}_{2} \cdot \mathrm{pK}_{\mathrm{HB}} \tag{5}
\end{equation*}
$$

The numeric values of the parameters of this equation in both natural and normed scales are given in Eqs. (6) and (7)

$$
\begin{align*}
& \log k_{\mathrm{m}}=(-8.93 \pm 0.31)+(8.24 \pm 0.28) \mathrm{pK}_{\mathrm{ass}}+(1.24 \pm 0.08) \mathrm{pK}_{\mathrm{HB}} \\
& \mathrm{~s}=0.210 \quad \mathrm{R}=0.987 \\
& \log \mathrm{k}_{\mathrm{m}}=(-8.06 \pm 0.57)+(1.04 \pm 0.03) \mathrm{pK}_{\mathrm{ass}}+(0.51 \pm 0.03) \mathrm{pK}_{\mathrm{HB}} \tag{7}\\
& \mathrm{~s}=0.157 \quad(7) \\
& \mathrm{R}=0.988
\end{align*}
$$

Statistical parameters of Eq. (6) confirm its firmness, while the coincidence of the A_{1} and A_{2} with parameters α and B (Tables 3 and 4) refer to the validity of Eq. (5). Eq. (7) enabled us to draw conclusions about the prevalence of the contribution of hydrogen bond with the leaving group.

Since the $\mathrm{pK}_{\text {ass }}$ for Br -, Cl- and I-derivatives have but insignificant differences (Table 1), the quantitative $\mathrm{s}_{\mathrm{-}}$ timation of the formation of hydrogen bond with the leaving group was based on the equation of type (4). The $\mathrm{pK}_{\mathrm{HB}}$ of tetrabutylammonium halogenides were equal to ${ }^{15} I^{-}=2.52$, $\mathrm{Br}^{-}=3.27, \mathrm{Cl}^{-}=3.60, \mathrm{~F}^{-}=5,86^{\text {\# }}$, yet remarkably differing in their values. In this case the numeric values of correlation equations in natural and normed scales are as follows:

$$
\begin{gather*}
\log \mathrm{k}_{\mathrm{m}}=\left(-6.66^{ \pm 0} 0.25\right)+(0.97 \pm 0.03) \mathrm{pK} \\
\mathrm{sB}(\pm \overline{\mathrm{N}})+\left(1.17^{ \pm}=0.08\right) \mathrm{pK}_{\mathrm{HB}} \tag{8}\\
\mathrm{R}=0.152 \quad(8)
\end{gather*}
$$

(Calculated from relationship $\mathrm{pK}_{\mathrm{HB}}\left(\mathbf{N X}^{-}\right)=5.09+0.22 \mathrm{pK}_{\mathrm{a}}\left(\mathrm{X}^{-}, \mathrm{H}_{2} \mathrm{O}_{2}\right.$

$$
\begin{gather*}
\log k_{m}=(-6.04 \pm 0.23)+(1.17 \pm 0.35) \mathrm{pK}_{\mathrm{HB}(\stackrel{+}{\mathrm{NX}})}^{+(0.51 \pm 0.04) \mathrm{pK}_{\mathrm{HB}}} \\
\mathrm{~s}=0.138 \quad-\mathrm{R}=0.992 \tag{9}
\end{gather*}
$$

As it was expected, the parameters of Eqs. (6)-(9) agree well with each other, thus confirming the correctness of the application of parameters $\mathrm{pK}_{\text {ess }}$ and $\mathrm{pK}_{\mathrm{HB}}(\stackrel{+}{\mathrm{NX}})$ to estimate the role of the participation of leaving group in the formation of H -bond in the processes studied.

We should also like to dwell upon the nature of catalysis by the second molecule of the amine in the reactions studied. The α value for relationship (2) of its catalysis by piperidine (Table 4) is identical with other bases which do not have any active hydrogen atom. On the other hand, the $\mathrm{pK}_{\mathrm{HB}}$ values for piperidine, equalling 2.95 were calculated on the basis of the data of Table 3. The catalysis by the second molecule of piperidine in the studied processes does not differ from other organic compounds. Consequently, in these catalytic processes pyridine participates as the monofunctional basic catalyst. Analogous basic character of the catalysis by the second molecule of amine in the reactions of nucleophilic aromatic substitution has also been revealed in the cases of participation of butyl amine ${ }^{9}$ and aniline ${ }^{17}$.

As concerns the catalysis by piperidine (Table 1), we noticed a rather strong isotope effect during the substitution of deuterium for the hydrogen atom of NH-group. For the fluoro-derivative of the substrate, the primary KIE value reaches 11.8. This permits us to consider that in the case of the catalysis of these reactions by some other basés, proton transfer takes place in the rate-determining stage.

The results of the present paper as well as the literature data characterizing similar kinetic processes ${ }^{5-7,18-19}$ make us consider that the decomposition of the σ-complex can proceed via the transition state (VII b).

The role of base B in the decomposition of the zwitterionic complex stands in the creation of the cyclic transiti-
on state, including the atom of hydrogen, coordinated with three atoms - the X leaving group, catalyst B and the nitrogen atom of attacking nucleophile, i.e., piperidine. The a-fore-said is in keeping with the sensitivity to the formation of hydrogen bond with the leaving group, catalyst and data of the primary KIE.

(VII b)
The alternative mechanism for catalytic processes in nucleophilic substitution suggested by Bunnett ${ }^{20}$ is hardly applicable here, since its realization is possible in strops ly polar media mainly. On the other hand, in this case one might expect not only the dependence of catalytic reaction series on the $\mathrm{pK}_{\mathrm{HB}}$ of bases but also on the pK_{a} which is responsible for a full proton transfer. But the latter dependence wes not found. One can presume that for the processes studied here Bannett's mechanism is realizable only in the protoinert nonpolar medium, provided that the basicity of the catalyst is at least by one order higher than that of the nucleophile (piperidine). In such a case a full proton transfer from the zwitter-ionic complex onto the catalyst and the consequtive formation of the BH^{+}are highly probable. The phenomenon has been observed in the case of picrylfluoride reaction with aniline ${ }^{17}$, catalyzed by the organic compounds whose basicities exceed that of the nucleophile - aniline.

Triphenylphosphine oxide having the largest $\mathrm{pK}_{\mathrm{HB}}$ value has got a special importance among the catalysts studied. According to Eq. (4) the catalytic constants of this base are smaller than expected (Fig. 1) and the α values are also much lower then those for the sensitivity of the other ca-
talysts studied here. The causes of this stand probably in the spoilt additivity (Eq. (5)) in the border zone of transition into the isoparametric correlation (10) including the cross-effect of the structural factors of the leaving group and catalyst.

$$
\begin{equation*}
\log \mathrm{k}_{\mathrm{m}}=\mathrm{A}_{0}+\mathrm{A}_{1} \cdot \mathrm{pK}_{\mathrm{ass}}+\mathrm{A}_{2} \cdot \mathrm{pK}_{\mathrm{HB}}+\mathrm{A}_{3} \cdot \mathrm{pK}_{\mathrm{ass}} \cdot \mathrm{pK}_{\mathrm{HB}} \tag{10}
\end{equation*}
$$

The catalysts having high $\mathrm{pK}_{\mathrm{HB}}$ values, e.g., triphenyl phosphine oxide, can like the cyclic form of transition state (VII b) realize a less reactive flow with transition state (VII c) in which leaving group X being competitive with base B for the hydrogen atom separates without any electrophilic contribution.

If the catalysis is carried out by such bases, the contribution of the catalytic flow via the cyclic transition state (VII b) can diminish owing to the realization of the catalytic flow via the noncatalytic state (VII c) which is connected with their affinity to the hydrogen bond formation. In the case of triphenylphosphine oxide the α sensitivity to the formation of hydrogen bond with the leaving group decreased twice.

For the substrate's benzene-sulfonate derivative the sensitivity to parameter $\mathrm{pK}_{\mathrm{HB}}$ is less than 1 , equalling 0.88 Consequently, the level of proton transfer to the catalyst for reaction (V) is different, which actually refers to the different catalysis mechanism.

If we take into consideration that in the case of the reactions of compounds (V) with piperidine, the formation of

6-complex appears to be the limiting stage, the catalysis can be observed in this stage only, i.e., the very stage s should be accelerated by the catalyst used. Base B takes part in the equilibrium formation of the hydrogen-bonded associate with nucleophile

$$
\begin{equation*}
\mathrm{C}_{5}{ }^{\mathrm{H}} 10 \mathrm{NH}+\mathrm{B} \xrightarrow{\mathrm{~K}_{\mathrm{p}}} \mathrm{C}_{5}{ }^{\mathrm{H}} 10^{\mathrm{NH}} \ldots \mathrm{~B} \tag{11}
\end{equation*}
$$

having stronger nucleophility than the initial amine, since the electron density is localized on the nitrogen atom; thus it resulta in the acceleration of the σ-complex formation that can be estimated by product $K_{p} \cdot K_{m}$ (in the case of the changes taking place by stages) which is ratner close to or exceeds that of the noncatalytic reaction. The scheme of the catalytic route is as follows:

The fact that triphenyloxide falls onto a common relationship $\log \mathrm{k}_{\mathrm{m}}-\mathrm{pK}_{\mathrm{KB}}$ (Fig. 1) agrees with the mechanism suggested.

This mechanism can be classified as an associative one in the framework of the general basic mechanism. Evidently, it can be realized also in the case of the leaving group with a strong tendency towards separation. In our case this is the benzene sulfonate group.

Experimental

2,4-Dinitroderivatives of benzene were synthesized and purified according to methods ${ }^{3}$; benzene piperidine and organic catalysts according to those described in ${ }^{21}$. N-Deuteropiperidine was obtained like in handbook ${ }^{13}$. The content of deuterated amine was determined according to the IR-spectra
and it formed 96%.
Reaction rate was measured in the conditions of pseudofirst order towards the substrates whose concentration was $5 \cdot 10^{-5} \mathrm{~mol} \cdot \mathrm{l}^{-1}$ in all experiments. Catalytic constants measurements were carried out at the following concentrations of piperidine: (I) $-2,5 \cdot 10^{-3}$, (II)-(IV) $-2.5 \cdot 10^{-2}$, (V) $1.25 \cdot 10^{-3} \mathrm{~mol} \cdot \mathrm{I}^{-1}$. The concentration intervals of catalysts: (I) - pyridine, triethylamine (2.5\%13.3) 10^{-3}, dioxane, acetone ($0.1 \div 0.2$), dimethylsulfoxide $(0.5 \div 2.25) 10^{-3}$, ethylacetate $0.03 \div 0.125$, piperidine $(1.0 \div 2.5) 10^{-3}$, triphenylphosphine oxide ($0.6 \div 2.5$) $10^{-2} \mathrm{~mol} \cdot \mathrm{l}^{-1}$; for (II)-(IV) - pyridine $0.34 \div 1.67,2,4$-dimethylpyridine, dimethylsulfoxide, diethylacetamide $0.1 \% 05$, dimethylformamide $0.5 \div 2.5$, piperidine (2.5:7.0) 10^{-2}, triphenylphosphine oxide $(2.0 \div 9.0) 10^{-2} \mathrm{~mol} \cdot 1^{-1}$, for (V) - pyridine $0.1 \% 0.4$, dioxane $1.0 \div 2.0$, dimethylsulfoxide $(1.26 \div 6.3) 10^{-2}$, acetone, ethyl acetate $0.5 \div 2.0$, piperidine $(1.25 \div 5.0) 10^{-3}$, triphenylphosphine oxide $(0.6 \div 2.5) 10^{-2}$ mol.1-1.

The reaction was controlled on a spectrophotometer SF16 on the basis of the accumulation of tertiary amine of 1-piperidino-2,4-dinitrobenzene, at 375 nm ; the cell thickness was 1 cm .

Rate constants of pseudofirst order were calculated as follows:

$$
\begin{equation*}
k=\frac{1}{t} \ln \frac{D_{\infty}-D_{0}}{D_{\infty}-D_{t}} \tag{13}
\end{equation*}
$$

where D_{∞}, D_{0}, D_{t} are the optical densities of the solution by the termination of the reaction, at the beginning of the reaction and at time moment t, respectively.

References

1. J. Bunnett, E. Garbisch, and K. Pruitt, J. Am. Chem. Soca 72, 385 (1957).
2. H. Suhr, Chem. Ber., 97, 3268 (1964).
3. R.V. Vizgert, Reakts. sposobn. organ. soedin., 3,35 (1960).
4. T.O. Bamkole, J. Hirst, and I. Onyido, J. Chem. Soc. Perkin Trans. II, 889 (1982).
5. T.O. Bamkole, J. Hirst, and I. Onyido, Bull. Chem. Soc. Belg., 2I, 409 (1982).
6. C. Bernasconi and H. Zollinger, Helv. chim. acta, 49, 103 (1966).
7. C. Bernasconi, M. Kaufman, and H. Zollinger, Helv. chim. acta, 49, 2563 (1966).
8. D. Spinelly and G. Consiglio, J. Chem. Soc. Perkin II, 1316 (1977).
9. R.V. Vizgert and S.G. Sheiko, ZhOrKh, 17, 600 (1981).
10. A. Murty and C. Rao, Applied Spectroscopy Reviews, New York, London: Marcel Deccer, 1966, 2, 191 pp.
11. F. Pietra and A. Fava, Tetrahedron Letters, 4, 1535(1966),
12. C. Bernasconi and H. Zollinger, Tetrahedron Lett., 6 , 1083 (1965).
13. L.M. Litvinenko, G.D. Titskij, and A.E. Shumeiko, Dokl. AN SSSR, 226, 804 (1976).
14. D. Gurka, R.W. Taft, L. Joris, and P. Schleyer, J. Am. Chem. Soc., 89, 1557 (1967).
15. G.D. Titskij and M.K. Turovskaya, Organic Reactivity, 22, 422 (1985).
16. G.D. Titskij, M.K. Turovskaya, and A.E. Shumeiko, ZhOrKh 24, 2408 (1988).
17. G.D. Titskij, A.E. Shumeiko, and L.M. Litvinenko, Dokl. AN SSSR, 234, 868 (1977).
18. B.Capon and C.W.Rees, Ann. Reports, 60, 279 (1963).
19. D. Ayediran, T.O. Bamkole, J. Hirst, and I. Onyido, J. Chem. Soc. Perkin II, 1580 (1977).
20. J. Bunnett and R. Garst, J. Am. Chem. Soc., 87, 3879 (1965).
21. A. Gordon and R. Ford, Chemist's Companion, Mir, 1976, p. 541 (Russian translation).

Organic Reactivity Vol.26, 3(95)-4(96) 1989

REACTIVITY OF DERIVATIVES OF PHENYLANTHRANILIC ACID. VIII. KINETICS OF ALKALINE HYDROLYSIS OF 2^{1}-DERIVATIVES OF B-DIMETHYLAMINOETHYL ESTER OF 4-CHLORO-NPHENYLANTHRANILIC ACID IN BINARY DIOXAN-WATER SOLVENT
A.N. Gaidukevich, E.N. Svechnikova, G.P. Kazakov, and T.A. Kostina

Kharkov State Institute of Pharmacy, Kharkov, the Ukrainian S.S.R.

Received October 17, 1989.

Abstract

Kinetics of alkaline hydrolysis of 2^{1}-derivatives of B-dimethylaminoethyl ester of 4 -chloro-Nphenylanthranilic acid in water-dioxan mixture (60 vol \% of dioxan) in temperature range of 298-358 K has been studied. Bimolecular constants of reaction rate have been found. Thermodynamic activation parameters have also been determined. Substituent effects of ester molecule on obtained parameters have been discussed. It has been established that the reaction series obeys the Hammett equation. Isokinetic character of the reaction is shown. By the method of multiple regression analysis the multi-parameter equation is found describing the influence of 6-constants of substituents and experiment temperature for B-dimethyl, as well as that of B-diethylaminoethyl eo ters of 4-chloro-N-phenylanthranilic acid.

We have already studied the kinetics of alkaline hydro-
lysis of 4^{1}-derivatives of B-dimethylaminoethyl ester of 4-chloro-N-phenylanthranilic acid ${ }^{1}$. Our interest was to investigate the effect of ortho-substituents in the nonanth ranilic fragment of a molecule on the kinetic parameters of alkaline hydrolysis.

The bimolecular reaction rate constants were calculated from the variation of sodium hydroxide concentration in time by means of potentiometric titration. The methods of kinetic measurements are analogous ${ }^{1}$.

The reaction series studied obeys the kinetic equation of second order:

$$
\begin{equation*}
\frac{d x}{d t}=k(a-x)(b-x) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } a, b- \text { initial concentrations of ester and alkali } \\
&(\text { mol/l) at time moment } t(s) ; \\
& x ~-~ c u r r e n t ~ c o n c e n t r a t i o n ~ o f ~ r e a c t i o n ~ p r o d u c t ~ \\
&(m o l / l) \text { at time moment } t(s) ; \\
& k=\text { reaction rate constant (} 1 / \mathrm{mol} \cdot \mathrm{~s}) \text {. }
\end{aligned}
$$

The integrated version of the equation is:

$$
\begin{equation*}
k=\frac{1}{t(b-a)} \ln \frac{a(b-x)}{b(a-x)} \tag{2}
\end{equation*}
$$

permitting to calculate the value of k at time moment t.
The obtained k value is corrected for the volume expansion of the solvent at the experiment's temperature (it changes from $25^{\circ} \mathrm{C}$ to t°) multiplying it by factor $\tau=\mathrm{d}_{25} / \mathrm{d}_{\mathrm{t}}$. where d_{25}, d_{t} denote the densities of the binary solvent dioxanmater at $25^{\circ} \mathrm{C}$ and $t^{\circ} \mathrm{C}$.

The reaction rate constants were calculated according to Eq. (2). The changes in the concentrations of the ester and the nucleophile do not bring about any change of the bimolecular reaction rate constant value in the range of the experimental error, thus referring to the total second order, the first order in nucleophile and in substrate.
Table 1

R^{1}	Meltiong point	\% N found	Empirioal formula	\% N calculated	$\mathrm{R} f$
$2^{1}-\mathrm{cl}$	80-81	7.3	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Cl}_{3} 3_{2}^{\mathrm{N}_{2}}$	7.1	0.61
$2_{1}^{1}-\mathrm{CH}_{3}$	121-122	7.6	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	7.5	0.65
$2^{1}-\mathrm{OCH}_{3}$	141-142	7.4	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	7.2	0.63

Table 2

	$k \cdot 10^{4}, 1 \cdot \operatorname{mol}^{-1} \mathrm{~s}^{-1}$			
	H	$2^{1}-\mathrm{Cl}$	$2^{1}-\mathrm{CH}_{3}$	$2^{1}-\mathrm{OCH}_{3}$
298	$2.35 \pm 0.06^{\text {II }}$	4.13 ± 0.10	1.39 ± 0.04	0.73 ± 0.03
308	$3.66 \pm 0.03^{\text {x }}$	6.28 ± 0.08	2.28 ± 0.06	1.25 ± 0.06
318	$6.05 \pm 0.07^{\text {気 }}$	10.57 ± 0.11	3.87 ± 0.09	2.13 ± 0.08
328	$10.3 \pm 0.07^{\text {표 }}$	16.66 ± 0.17	6.77 ± 0.05	3.96 ± 0.12
338	$16.9 \pm 0.12^{\text {Fr }}$	26.38 ± 0.09	11.34 ± 0.11	6.86 ± 0.06
348	$26.4 \pm 0.11^{\text {FI }}$	40.24 ± 0.21	18.17 ± 0.09	11.33 ± 0.21
358	$40.6 \pm 0.24^{\text {互 }}$	59.57 ± 0.24	28.15 ± 0.16	18.04 ± 0.09

(Irom Ref. ${ }^{1}$
Parameters of the Hammett Equation for 2^{1}-Derivativea of
B-Dimethylaminoethyl Esters of 4-Chloro-N-Fnehylanthranilic Acid

T, K	ρ	$l o g k_{0}$	T	S
298	1.276 ± 0.032	-3.635 ± 0.024	0.9936	0.0221
308	1.188 ± 0.028	-3.433 ± 0.021	0.9984	0.0249
318	1.117 ± 0.037	-3.201 ± 0.034	0.9944	0.0358
328	1.054 ± 0.044	-2.989 ± 0.017	0.9981	0.0183
338	0.987 ± 0.025	-2.772 ± 0.027	0.9958	0.0197
348	0.932 ± 0.036	-2.582 ± 0.028	0.9942	0.0317
358	0.880 ± 0.083	-2.392 ± 0.012	0.9931	0.0219

The introduction of an acceptor substituent (see Table 2) accelerates the reaction. This is connected with the stabilization of the acid's anion owing to a more remarkable delocalization of its charge. Donor substituents are decreasing the reaction rate.

The comparison of the data of Table 2 and those published in ${ }^{2}$ lead us to the conclusion that the replacement of the CH_{3} radical by the $\mathrm{C}_{2} \mathrm{H}_{5}$ radical in the alcoholic fragment of ester within the experiment error does not influence the value of the reaction rate constant. We can, probably, explain it with the isolating effect of the $-\mathrm{CH}_{2}$ -$-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ group ${ }^{3}$. This statement confirms the suggestion expressed already in Ref. ${ }^{2}$ that the reaction proceeds according to the $\mathrm{B}_{\mathrm{A}}{ }^{2}$ mechanism:

The dependence of the reactivity of the substrate on the substituent's nature in the nonanthranilic molecule fragment can be assessed by the Hammett equation (Table 3):

$$
\begin{equation*}
\log k=\log k_{o}+\rho \sigma \tag{3}
\end{equation*}
$$

The value of reaction constant ρ for the ester derivatives is positive, which also confirms the $\mathrm{B}_{\mathrm{AC}}{ }^{2}$ reaction mechanism. A rather low ρ value refers to a weak sensitivity of the reaction center to the substituent effect in the ortho position. If the temperature rises, ρ will decrease, and thus makes the electron system of the molecule less sensitive to the substituent effect.

For the 2^{1}-derivatives of B-dimethylaminoetbyl ester of
Parameters of the Hammett Equation for $2^{1}, 4^{1}$-Derivatives of B-Dimethyl- and B-Diethylaminoethyl Esters of 4-Chloro-H-Phenylanthranilic Acid
$\log k=\log k_{0}+\rho \sigma$

T, K	ρ	$\log k_{o}$	r	S
298	1.275 ± 0.042	-3.634 ± 0.026	0.9931	0.0247
308	1.190 ± 0.060	-3.328 ± 0.061	0.9958	0.0316
318	1.118 ± 0.054	-3.206 ± 0.053	0.9938	0.0307
328	1.054 ± 0.048	-2.987 ± 0.041	0.9951	0.0231
338	0.989 ± 0.031	-2.773 ± 0.028	0.9932	0.0261
348	0.933 ± 0.044	-2.583 ± 0.019	0.9921	0.0346
358	0.881 ± 0.094	-2.396 ± 0.087	0.9917	0.0351

Table 5
Parameter π for Baters of Phenylanthranilic Acids
R

N	R_{1}	R_{3}	ρ RCOOH	ρ ester at 318 K	π
1	$4-\mathrm{Cl}$	$-\left(\mathrm{CH}_{2}\right) 2^{\mathrm{N}}\left(\mathrm{CH}_{3}\right)$	0.73^{7}	1.117	0.654
2	$4-\mathrm{Cl}$	$-\left(\mathrm{CH}_{2}\right){ }_{2} \mathrm{~N}^{2}\left(\mathrm{CH}_{2} \mathrm{H}_{5}\right)_{2}$	0.73^{7}	1.118^{2}	0.653
3	$4-\mathrm{HO}_{2}$	$-\mathrm{CH}_{3}$	0.73^{7}	1.110^{4}	0.658
4	$4-\mathrm{Cl}-5-\mathrm{NO}_{2}$	$-\mathrm{CH}_{3}$	0.73^{7}	1.104^{5}	0.661

Kinetic Aotivation Parameters (E_{A} and $\ln \mathrm{A}$) of Alkaline
Hydrolysis of 2^{2}-Derivatives of B-Dimethylaminoethyl Ester
of 4 -Chloro-N-Phenylanthranilic Acid

R_{1}	$E_{\text {Â koal/mol }}$	$\ln \mathrm{A}$	r	S
H	10.24 ± 0.16^{1}	8.86 ± 0.39^{1}	0.9990^{1}	0.0041^{1}
$2^{1}-\mathrm{Cl}^{1}$	9.02 ± 0.08	7.83 ± 0.21	0.9934	0.0071
$2^{1}-\mathrm{CH}_{3}$	$10.86^{ \pm} 0.11$	9.31 ± 0.16	0.9947	0.0052
$2^{1}-\mathrm{OCH}_{3}$	11.02 ± 0.14	9.28 ± 0.07	0.9981	0.0063

4-chloro-N-phenylanthranilic acid, the ρ value is identical to that of 4^{1}-derivatives of the same ester ${ }^{1}$ and of the $2^{1}, 4^{1}$-derivatives of B-diethylaminoethyl ester of the same acid ${ }^{2}$. Proceeding from that, it was possible to find a common Hammett equation for both $2^{1}, 4^{1}$-derivatives of B-dimeth-yl- and B-diethylaminoethyl esters of 4-chloro-N-phenylanthranilic acid (Table 4).

It should also be mentioned that ρ values for the derivatives studied and for the methyl esters of 4 -nitro- and 4-chloro-5-nitro-N-phenylanthranilic acids ${ }^{4,5}$ are rather close, which confirms the common mechanism of alkaline hydrolysis of those compounds. The same is expressed by the value of parameter π^{6} (Table 5), calculated by Eq. (4):

$$
\begin{equation*}
\pi=\frac{\rho R-\mathrm{COOH}}{\rho R-\mathrm{COOS}} \tag{4}
\end{equation*}
$$

The present reaction series obeys the Arrhenius equation. Thus, it was possible to calculate activation energy E_{A} and pre-exponential factor A (Table 6).

The introduction of the electron-acceptor substituent makes the E_{A} value drop, while the use of electron-donor substituents has the opposite influence. Changes in $\ln \mathrm{A}$ are similar to those of E_{A}. Changes in in A are similar to those of E_{A}. Relationships $E_{a}=A+B \sigma$, $\ln A=C+D O$ are not statistically reliable.

The enthalpies (ΔH^{f}) and entropies (ΔS^{\neq}) of activation have been calculated according to the Eyring equation (see Table 7):

$$
\begin{equation*}
\ln \frac{\mathrm{k}}{\mathrm{~T}} \cdot \frac{\mathrm{~h}}{\mathrm{~K}}=\frac{\Delta \mathrm{S}^{\neq}}{\mathrm{R}}-\Delta \mathrm{H}^{\frac{f}{f}} \cdot \frac{1}{\mathrm{RT}} \tag{5}
\end{equation*}
$$

Free activation energy (ΔG^{\neq}) was found by the second law of thermodynamics (Table 7).

Negative activation entropy value also proves the $B_{A C}{ }^{2}$ mechanism of the reaction studied. High absolute values of activation entropy have probably been caused by the form-
Table 7
Thermodynamic Activation Parameters of Alkaline Hydrolysis of
2^{1}-Derivatives of B -Dimethylaminoethyl Esters of 4-Chloro-N-Phe-
nylanthranilic Aoid

R_{1}	$\begin{gathered} \Delta \mathrm{H}^{\neq} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$-\frac{\Delta s^{\neq}}{\text {e.u. }}$	r	S	$\quad \Delta \mathrm{G}^{\neq}$ $298 \mathrm{kcal} / \mathrm{mol}$
H	9.59 ± 0.15^{1}	43.1 ± 0.4^{1}	0.9989^{1}	0.0042^{1}	$22.4{ }^{1}$
$2^{1}-\mathrm{Cl}$	8.37 ± 0.26	45.5 ± 0.8	0.9954	0.0084	21.9
$2_{1}^{1}-\mathrm{CH}_{3}$	10.17 ± 0.51	42.0 ± 1.1	0.9967	0.0103	22,7
$2^{1}-\mathrm{OCH}_{3}$	10.74 ± 0.34	41.3 ± 0.9	0.9969	0.0061	23.0

Table 8

$$
\begin{aligned}
& \text { Correlation Parameters of Eqs. } y=a+b x \text { of Dependenoes of Kinetic and } \\
& \text { Activation Parameters of Alkaline Hydrolysis of } 2^{\hat{1}} \text {-Derivatives of } \\
& \text { B-Dimethylaminoethyl Ester of 4-Chloro-N-Phenylanthranilic Acid }
\end{aligned}
$$

x	y	a	b	r	S	B, K
$\log \mathrm{k}_{298}$	$\Delta \mathrm{H}^{\dagger}$	$(0.394 \pm 0.037) \cdot 10^{3}$	$(-2.49 \pm 0.04) \cdot 10^{3}$	0.9947	0.0071	658
$\log k_{308}$	$\Delta \mathrm{H}^{*}$	$(0.398 \pm 0.021) \cdot 10^{3}$	$(-2.70 \pm 0.07) \cdot 10^{3}$	0.9941	0.0024	644
$\log k_{318}$	$\Delta \mathrm{H}^{\ddagger}$	$(0.417 \pm 0.027) \cdot 10^{3}$	$(-2.84 \pm 0.06) \cdot 10^{3}$	0.9983	0.0048	652
$\log \mathrm{k}_{328}$	$\Delta \mathrm{H}^{*}$	$(0.527 \pm 0.017) \cdot 10^{3}$	$(-3.02 \pm 0.06) \cdot 10^{3}$	0.9962	0.0051	652
$\log \mathrm{k}_{338}$	$\triangle \mathrm{H}^{\boldsymbol{*}}$	$(0.634 \pm 0.043) \cdot 10^{3}$	$(-3.23 \pm 0.05) \cdot 10^{3}$	0.9910	0.0036	649
$\log k_{348}$	$\Delta \mathrm{H}^{\boldsymbol{\prime}}$	$(0.743 \pm 0.029) \cdot 10^{3}$	$(-3.43 \pm 0.04) \cdot 10^{3}$	0.9947	0.0027	650
$\log k_{358}$	$\Delta \mathrm{H}^{\boldsymbol{*}}$	$(0.846 \pm 0.034) \cdot 10^{3}$	$(-3.62 \pm 0.09) \cdot 10^{3}$	0.9939	0.0033	654
$\Delta \mathrm{S}^{\neq}$	$\Delta \mathrm{H}^{\neq}$	$(38.4 \pm 0.6) \cdot 10^{3}$	646 ± 21	0.9947	0.193	646
$\log A$	E_{A}	-1.084 ± 0.029	296 ± 16	0.9937	0.186	682
1/T	ρ	-1.088 ± 0.063	706 ± 11	0.9961	0.084	649

Table 9
Determination of Isokinetic Temperature
According tc Eq. Iog $k_{T_{2}}=$ const $+\mathrm{x} \log \mathrm{k}_{\mathrm{T}_{1}}, \mathrm{~T}_{2}>\mathrm{T}_{1}$
$\mathrm{x}=\frac{\left(\mathrm{T}_{1}-\mathrm{B}\right) \mathrm{T}_{1}}{\left(\mathrm{~T}_{2}-\mathrm{B}\right) \mathrm{T}_{2}}$

Temperature, K		x	r	S	B, K
T_{1}	$\mathrm{~T}_{2}$				
298	318	0.884	0.9981	0.0077	649
298	338	0.790	0.9944	0.0096	683
298	358	0.693	0.9932	0.0041	656
318	338	0.884	0.9963	0.0132	652
328	358	0.783	0.9947	0.0117	654
338	358	0.885			
				6.9971	0.0139

Table 10
Values of Parameters of Eq. (6) and Isoparametric Values (IPV)

Variables	Parameters	Nurneric values of parameters	IPV	S	R
6	$\log \mathrm{k}_{0}$	3.840 ± 0.023	$\mathrm{~B}=638$	0.0187	0.997
$\mathrm{~T}^{-1} \cdot 10^{3}$	a_{1}	-1.128 ± 0.046	$\mathrm{x}_{1}=3.11$		
$\sigma \mathrm{~T}^{-1} \cdot 10^{3}$	a_{2}	-2.237 ± 0.043	$\mathrm{x}_{2}=1.57$		

183
Table 11
Vaiues of Parameters of Eq. (6) and Isoparametric Values (IPV)
 $2^{1}, 4^{1}$-Derivatives of B-Dimethyl- and B-Diethylaminoethyl Esters of 4-Chloro-N-Phenylanthranilic Acids

Variakles	Parameters	Numeric values of parameters	IPV	S	R
6	$\log \mathrm{k}_{0}$	3.798 ± 0.021	$\mathrm{~B}=641$	0.0218	0.996
$\mathrm{~T}^{-1} \cdot 10^{3}$	a_{1}	-1.114 ± 0.037	$\mathrm{x}_{1}=3.12$		
$6 \mathrm{~T}^{-1} \cdot 10^{3}$	a_{2}	a_{12}	-2.221 ± 0.035	$\mathrm{x}_{2}=1.56$	

ation of a highly symmetrical intermediate, but the insignificant ΔH^{\neq}values by the synchronism of the reaction. The decrease in the ΔH^{\ddagger} values makes the absolute value of Δs^{\neq} rise, thus permitting us to expect the existence of an isokinetic relationship. In order to check the validity of the supposition, we analyzed the reaction series according to the known tests ${ }^{3}$:

$$
\Delta H^{\neq}-\log k_{T_{i}}, \Delta H^{\neq}-\Delta \mathrm{S}^{\neq}, \mathrm{E}_{\mathrm{A}}-\log \mathrm{A}, \rho-\mathrm{T}^{-1}
$$

using pattern $y=a+b x$. Calculated values of pair correlations are given in Table 8.

The values of isokinetic temperature B in Table 8 coincide with those found using other methods ${ }^{3}$ (Table 9).

The value B for the reaction series studied is quite close to the B for the alkaline hydrolysis of 4^{1}-derivatives of the B-dimethyl- and $2^{1}, 4^{1}$-derivatives of B-diethylaminoethyl esters of $4-c h l o r o-N-p h e n y l a n t h r a n i l i c ~ a c i d^{1,2}$, as well as for methyl esters of 4-nitro- and 4-chloro-5-nitrophenylanthranilic acids ${ }^{4,5}$. This is also confirmed by the common mechanisms of those reactions. B stands out of the experimental temperature range, i.e., ethalpic control probably functions here.

The obtained results have been treated applying the polylinearity principle by a multiparameter equation which takes into account the effect of σ-constants of substituents and temperature (Table 10):

$$
\begin{equation*}
\log k=\log k_{o}+a_{1} \sigma+a_{2} \cdot T+\bar{a}_{12} \sigma \cdot T^{-1} \tag{6}
\end{equation*}
$$

Closeness of values of the parameters of Eq. (6) for the compounds studied and 4^{1}-derivatives of B-dimethyl- and $2^{1}, 4^{1}$-derivatives of B-diethylaminoethyl esters of 4 -chloro-N-phenylanthranilic acid, enabled us to derive a general multiparameter equation (6), describing those three reaction series (Table 11).

Experimental

Reagents. The purification of solvents and testing of their purity levels have been described in ${ }^{1}$. B-dimethylesters of 4-chloro-N-phenylanthranilic acids were synthesized using known methods 7,8 . Compounds' purity was tested in system propanol-water 1:1 by means of element analysis (Table 1). The solution of sodium hydroxide which did not contain any carbonates was prepared in keeping with methods ${ }^{9}$.

Kinetic measurements have been described in ${ }^{1}$. Changes in the sodium hydroxide concentration depending on the duration of the reaction were determined by means of potentiometric titration on a pH-meter EV-74 with glass ESP-43074 and chlorosilver EVL-1M electrodes. The aqueous solution of HCl was used as the titrant. Linear correlations were calculated on a computer Elektronika MK-52, using standara programs ${ }^{10}$. Multiparameter equation (6) was calculated on a EC-1045 computer.

References

1. A.N. Gaidukevich, E.N. Svechnikova, G.P. Kazakov, and T. A. Kostina, Organic Reactivity, 23, 440 (1986).
2. A.N. Gaidukevich, E.N. Svechnikova, G.P. Kazakov, and T. A. Kostina, Organic Reactivity, 25, 176 (1988).
3. V.A. Palm, "Foundations of the Quantitative Theory of O_{L} ganic Reactions", (in Russian), Leningrad, "Khimiya", 1977.
4. A.N. Gaidukevich, E.N. Svechnikova, and G. Sim, Organic Reactivity, 24, 131 (1987).
5. A.N. Gaidukevich, E.N. Svechnikova, and E.E. Mikitenko, Organic Reactivity, 24, 348 (1987).
6. J.D.S. Ritter and S.J. Miller, J. Am. Chem. Soc., 86, 1507 (1964).
7. Jap. patent 1895 939/ Koto Hideō, order of 06.12.79 No 50828177, published 19.08.81.
8. Jap. patent 57-112327/Takabe Radgi, order of 20.02 .80 No 56-184009, published 13.07.82.
9. A. Albert and E. Serjeant, Ionization Constants of Acids and Bases (Russ. transl.), Moscow, "Khimiya", 1964.
10. Ya.K. Trokhimenko, Programming of Micro Computers "Elek-tranika"MK-61" (in Russian), Kiev, "Tekhnika", 1987.

> Organic Reactivity Vol. $26,3(95)-4(96) 1989$

EFFECT OF LIGAND VOLUME ON AFFINITY OF MUSCARINIC ANTAGONISTS J.Järv and M.Eller

Tartu University, Tartu

Received November 20, 1989
The applicability of hydrophobicity constants $\log P$ and molar refractivity parameters MR in QSAR for muscarinic ligands is compared on the basis of binding data for a series of classical muscarinic antagonists. These compounds involve esters, ethers and alkylammonium ions. It has been found that the molecular refractivity parameters give a common linear dependence of pK_{d} upon MR for all of these types of ligands, except benzilic and tropic acid esters, for which the mechanism of the recep-tor-ligand interaction is different from all other ligands. In the case of hydrophobicity parameters the reaction series is split into subgroups reflecting their different chemical structure.

Proceeding from the structure of acetylcholine molecule important role of the structural fragment NCCOCC has been postulated for muscarinic ligands ${ }^{1-5}$, including both agonists and antagonists of this receptor. As a rule the ligands of the latter type possess extra bulky substituents at the both ends of the NCCOCC backbone. The influence of these apolar fragments on binding affinity pK_{d} of ligands has been quantified by means of the hydrophobicity constants $\log \mathrm{P}^{67}$:

$$
\begin{equation*}
\mathrm{pK}_{\mathrm{d}}=\mathrm{c}+\varphi \cdot \log \overline{\mathrm{P}} \tag{1}
\end{equation*}
$$

For several groups of muscarinic antagonists these studies
have revealed linear correlations between the pK_{d} and $\log \mathrm{P}$ values yielding similar slopes p but different intercepts $c^{6,7}$. As a rule these subseries of antagonists involve different polar groups or different number of electronegative atoms in ligand molecule. This means that there are two possible explanations of the different intercepts found from Eqn (1). Firstly, Tropsha et al ${ }^{7}$ took this as an indication of different binding modes of muscarinic antagonists to the receptor site. On the other hand, however, the similar slopes of pK_{d} vs $\log P$ plots were taken as evidence for the common mechanism of hydrophobic binding of ligands 6, and thus the different intercept values can be related to different solvation effects on processes of ligand binding to receptor site and the partition of the ligands between water and octanole used as the reference system for determining the hydrophobicity parameters.

In the present analysis the mechanism of the antagonist binding to muscarinic receptor is further analyzed by making use of the molecular refractivity parameters MR, which also characterize the "bulkiness" of ligand molecule, but differently from the $\log P$ values do not reflect the solvation effects of the polar groups in their structure.

DATA AND METHODS

The Table contains the binding data for muscarinic antagonists compiled from literature and used for the present analysis. Besides the ammonium group these compounds involve ester or ether groups or are simple alkylammonium salts without polar moieties. The $\log P$ values for these ligands were calculated according to the additive scheme by making use of the Rekker fragmental constants ${ }^{8.16}$ and the PRO LOGP program ver. 2.0 from CompuDrug LTD (Budapest). As all the compounds used in the following analysis involve quaternary nitrogen atom at pH 7.5 , its contribution was not taken into account and thus all calculated log P^{\prime}-constants are equally shifted relatively to the actual $\log P$ values for ligands.

The MR values were calculated by means of the same program and the fragmental constants published by Hansch et al ${ }^{16}$.

Table.
The set of muscarinic antagonists used for QSAR.

Continuation of Table

Continuation of Table
19.
 $5.92 \quad 92.0$ 12
18.

7.20
8.02
3.7488 .9
13
20.
 $4.25 \quad 93.5$
13
21.

4.41 96.1
14

Continuation of Table.

No Ligand
pKd
$\log P^{\prime} \quad M R$ Ref.
22.

9.89
$5.08 \quad 103.3$
13
23.

8.07
4.8390 .3

13
24.

9.58
6.38104 .3

15
25.

$3.94 \quad 83.6$
13
26.

$$
\begin{equation*}
1.97 \quad 83.7 \tag{13}
\end{equation*}
$$

Continuation of Table.

RESULTS AND DISCUSSION

The parameters $\log P^{\prime}$ and MR for the set of antagonists used in the present analysis are plotted in Fig 1. It can be seen that the ligands were split into different subgroups reflecting the negative hydrophobicity increments for -C00and -0- groups which were used for calculating the \log P' values. Thus there exists no simple correlation between the $\log P^{\prime}$ and MR values for the present reaction series. The latter fact allows differentiation between the hydrophobicity and volume effects on antagonist binding to muscarinic receptor.

The values of pK_{d} for muscarinic antagonists are plotted against $\log P$ and MR in Figs. 2 and 3. It can be seen that a common linear relationship was obtained for alkylammonium ions, ethers and esters if the MR constants are used to characterize the ligand structure:

Fig.1. Plot of MR versus log P^{\prime} for the set of muscarinic antagonists used for QSAR. Data from Table 1, \square-alkylammonium ions, Δ-ethers, -benzilates, (1)-tropates, \bigcirc-other esters.
$\mathrm{pK}_{\mathrm{d}}=\mathrm{c}^{\prime}+\Psi \mathrm{MR}$
where $c^{\prime}=-0.3 \pm 0.6$ and $\psi=0.077 \pm 0.008$ (correlation
coefficient 0.913). Benzilic and tropic acid esters deviate from this linearity, showing either larger or smaller slopes $\psi=0.12 \pm 0.03$ (correlation coefficient 0.947) and 0.048 ± 0.005 (correlation coefficient 0.990), respectively.

Differently from the data shown in Fig. 2 the plot of pK_{d} against $\log P$ gives several parallel linear dependences, as identified in the previous reports ${ }^{6,7}$. The changes in the intercept c in Eqn (1) are proportional to the negative fragmental constants for the polar functional groups of the ligands. Thus a conclusion can be drawn that the affinity of muscarinic antagonists is governed by the volume of the ligand molecules rather than by their hydrophobicity, quantified by the constants log P. That also means that the splitting of the pK_{d} versus $\log \mathrm{P}$ plot into different parts cannot be regarded as evidence of different binding modes of these ligands because

Fig.2. Plot of pK_{d} versus MR for muscarinic antagonists listed in Table. Definition of points is given in the Legend to Figure 1.

Fig.3. Plot of pK_{d} versus $\log \mathrm{P}$ for muscarinic antagonists listed in Table. Definition of points is given in the Legend to Figure 1.
this phenomenon is due to the disparate $\log P$ values for esters, ethers and alkylammonium ions.

The benzilic esters involved in the present analysis are characterized by a steeper plot of pK_{d} versus $\log \mathrm{P}^{\prime}$, as has been shown previously ${ }^{6}$. The similar phenomenon can also be followed in Fig. 2 where the plot of pK_{d} versus $M \mathrm{R}$ is given. The latter fact confirms the idea of different mechanisms governing the interaction of these ligands with the receptor site in comparison with the rest of the reaction series.

Another deviation of the affinity data from the general correlation for the pK_{d} values is revealed in the case of esters of tropic acid. In spite of the variations in "bulkiness" of these ligands these pK_{d} values are quite similar pointing to the absence of the appropriate structural effect. It is noteworthy that similar phenomenon can be observed in the QSAR when log P constants are used (Fig.3).

In summary, the affinity of muscarinic antagonists seems to depend upon the volume of ligands, quantified by molecular refractivity constants MR. In a rather good approximation the application of these parameters provides a common interrelationship between the structure and potency of muscarinic antagonists although the physical meaning of the effects quantified by MR is not clear yet. For further analysis of the different binding mechanisms found in the case of benzilic and tropic acid esters a more thorough kinetic analysis of the ligand binding process will be carried out.

LITERATURE

1. F.B.Abramson, R.B.Barlow, F.M.Franks, F.B.M.Pearson, Br.J.Pharmacol., 51, 81.(1974).
2. F.B.Abramson, R.B.Barlow, M.G.Mustafa, R.P.Stephenson, Br.J.Pharmacol., 37, 207 (1969).
3. R.W.Baker, C.H.Chotia, P.Pauling, T.J.Petcher, Nature, 230, 439 (1971).
4. R.B.Barlow, K.A.Scott, R.P.Stephenson, Br.J.Pharmac. Chemother., 21, 509 (1963).
5. H.R.Ing, Science, 109, 264 (1949).
6. J.Järv, T.Bartfai, Acta Chem. Scandinavica, B36, 489 (1982).
7. A.E.Tropsha, S.V.Niznhi, L.S.Yaguzhinsky, Bioorgan. Khimya, 11, 1402 (1985).
8. C.Hansch, A.Leo, S.H.Unger, K.H.Kinn, D.Nikaitani, E.J.Lien, J.Med.Chem., 16, 1207 (1973).
9. A.Gabrielevitz, Y.Kloog, A.Kalir, D.Balderman, M.Sokolovsky, Life Sci., 26, 89 (1980).
10. F.B.Abramson, R.B.Barlow, M.G.Mustafa, R.P.Stephenson, Br.J.Pharmacol., 37, 207 (1969).
11. M.Eller, J.Järv, P.Palumaa, Organic Reactivity, 25, 372 (1988).
12. E.C.Hulme, N.J.M.Birdsall, A.S.V.Burgen, B.Metha, Mol. Pharmacol., 14, 737 (1978).
13 M.Eller, E.Loodmaa, J.Järv, Organic Reactivity, 26, (1989).
13. J.Järv, R.Sillard, T.Bartfa1, Proc. Acad. Sci. Estonian SSR, Chemistry, 36, 172 (1987).
14. K.Ensing, R.A.De Zeeuw, Pharmaceut. Res., 3, 327 (1986).
15. C.Hansch, A.Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley \& Sons, New York, Chichester, Brisbane, Toronto 1979.

KINETIC ANALYSIS OF INTERACTION OF ESTER ANTAGONISTS WITH MUSCARINIC RECEPTOR
 M.Eller, J.Järv and E. Loodmaa

Received November 23, 1989
The kinetic parameters for interaction of several non-radioactive antagonists with muscarinic receptor from rat brain cortex were measured by using N-methyl-[$\left.{ }^{3} \mathrm{H}\right]$ scopolamine as radioactive reporter ligand at $25^{\circ} \mathrm{C}$ and pH 7.4. It has been found that esters of benzilic and tropic acids initiate conformational isomerization of the receptor-ligand complex, while some variations of the structure of the acyl part of these esters result in alteration of the reaction mechanism. The data obtained were analyzed by means of quantitative structure-activity relationships.

Kinetic studies on binding of several radioactive antagonists to muscarinic receptor have revealed complex mechanism of this process, the most characteristic feature of which is the isomerization of the initial receptor-antagonist complex into a slowly dissociating form (RA) 1,2,3:
$R+A \xlongequal{K_{A}} R A \xlongequal[k_{-i}]{k_{i}}(R A)$
The latter complex can be determined by the filtration or centrifugation methods, generally used for the detection of membrane-bound radioligand ${ }^{1}$.

According to this reaction scheme the overall process of the ligand binding is a reversible process and thus it can be characterized by the dissociation constant K_{d}, which has the
same meaning as the appropriate parameter determined from the equilibrium binding experiments. However, this constant is an apparent parameter:
$\mathrm{K}_{\mathrm{d}}=\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{i}}$ 。
where $K_{i}=k_{-1} / k_{i}$. The constants K_{A} and K_{i} can be separately detected by means of kinetic analysis of ligand association to the receptor.

Until recently such kinetic analysis was feasible only in the case of radioactively labelled ligands that complicated a wider use of this approach. In our previous paper ${ }^{4}$ of this series we offered an experimental procedure to investigate the kinetic mechanism of interaction of non-radioactive ligands with muscarinic receptor by making use of one radioactive "reporter ligand". In the present study by means of this experimental procedure the mechanism of interaction of several muscarinic antagonists with the membrane-bound receptor from rat brain cerebral cortex is analyzed.

EXPERIMENTAL

N-methyl-[$\left.{ }^{3} \mathrm{H}\right]$ scopolamine ($72 \mathrm{Ci} / \mathrm{mmole}$) was obtained from "Amersham". Atropine, N-methylatropine, scopolamine and benzoylcholine were commercial products from "Sigma" and they were used without any additional purification. N-Methylquinuclidinyl benzilate, choline benzilate, N,N-dimethylaminoethyl benzilate and choline ester of phenylcyclopentylhydroxyacetic acid were synthesized and kindly donated for kinetic studies by Prof. N.Godovikov, the Institute of Elementoorganic Compounds, Moscow.

Choline ester of phenylacetic acid was synthesized proceeding from dimethylaminoethanole and phenylacetyl chloride and the product was methylated by $\mathrm{CH}_{3} \mathrm{I}$ by conventional procedures ${ }^{5}$. The structure of the compound obtained was verified by the NMR spectrum and its purity was checked by the HPLC analysis (solvent tetrahydrofuran: $\mathrm{H}_{2} \mathrm{O}$ 7:3, column "Zorbax ODS", $4.6 \times 250 \mathrm{~mm}$).

All the other chemicals of analytical grade were obtained from Reachim, USSR.

The membranes from rat cerebral cortex were prepared as 200
described by Langel et al ${ }^{6}$. The membrane-bound radioligand was determined by the filtration method using Whatman GF/B filters. The kinetic experiments were carried out in 0.05 M K-phosphate buffer, pH 7.40 , at $25^{\circ} \mathrm{C}$.

The theoretical background and experimental procedures for kinetic measurements were described in detail by Eller et al ${ }^{4}$. N-Methyl-[$\left.{ }^{3} \mathrm{H}\right]$ scopolamine was used as the "reporter ligand". The experiments were made at the excess of radioligand (InM) over the receptor concentration (50-100 pM) to meet the pseudo-first-order conditions and the kinetic curves were measured at different concentrations of non-radioactive antagonists. These kinetic data were fitted to the rate equation consisting of either one or two exponential terms depending upon the nature of the process:
$B_{t}=B_{n s}+\sum_{i} B_{s p i} \cdot \exp \left(-k_{i} t\right)$
where B_{t} - concentration of the membrane-bound radioligand at time $t, B_{n s}$ - concentration of the non-specifically bound radioligand, $B_{s p i}$ - maximal concentration of the specifically bound radioligand to fraction i and $i=1$ or 2. Further the plots of the observed rate constants against the concentration of non-radioactive antagonist were analyzed to calculate the appropriate kinetic parameters. The experimental data were processed on a PC/XT computer by means of a nonlinear regression program.

RESULTS

1. Kinetic analysis

The non-radioactive antagonists listed in Tables 1 and 2 had two types of effects on the kinetics of binding of N-methyl- $\left[{ }^{3} \mathrm{H}\right]$ scopolamine to membrane-bound muscarinic receptor (Figs. 1 and 2). Some of these antagonists caused the increase in the observed rate of radioligand association that gives evidence of the isomerization of the receptor-ligand complex, as it was shown in ${ }^{4}$. In these cases the kinetic curves were analyzed by rate equation (3) containing two exponential terms.
K inetic data for antagonist interaction with muscarinic reoeptor, $25^{\circ} \mathrm{C}, \mathrm{pH} 7.40$

Antagon ist	$\begin{aligned} & \mathrm{K}_{\mathrm{A}} \\ & \mathrm{nM} \end{aligned}$	$\begin{gathered} 10^{2} \mathrm{k}_{1} \\ \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} 10^{4} \mathrm{k}_{-1} \\ \mathrm{~s}^{-1} \end{gathered}$	$\begin{aligned} & \mathrm{K}_{\mathrm{d}} \\ & \mathrm{nM} \end{aligned}$	K_{1}	MR	MRalk	Notes
$\begin{aligned} & \mathrm{Ph} \\ & \text { 1. } \mathrm{HOCC}(\mathrm{O}) \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \\ & \mathrm{Ph} \\ & \mathrm{Ph} \end{aligned}$	38 ± 13	3.4土C. 6	68 ± 10	9.6 ± 1.7	0.20	87.9	24.9	-
$\text { 2. } \underset{\mathrm{Ph}}{\mathrm{HOCC}(\mathrm{O}) \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}}$	9.2 ± 2.2	3.3 ± 0.5	50 ± 9	2.3 ± 0.2	0.15	92.0	28.9	-
$\begin{gathered} \mathrm{Ph} \\ \text { 3. } \mathrm{Hh}(0) 0-\mathrm{N} \\ \mathrm{Ph} \\ \mathrm{Ph} \\ \end{gathered}$	5.5 ± 3.1	1,4さ0.3	6.7 ± 0.8	0.40 ± 0.03	0.05	95.1	32.1	Ref. ${ }^{2}$
	5.0 ± 2.3	4.6 ± 0.5	14 ± 4	0.13 ± 0.03	0.03	103.3	40.3	Hef. ${ }^{4}$
	1.3 ± 0.5	1.2 ± 0.3	1.3 ± 0.4	-	0.01	97.7	34.7	Hef. ${ }^{9}$
$6 . \mathrm{HOCH}_{2} \mathrm{PHC}(\mathrm{O}) \mathrm{O}-\mathrm{NMe}$	6.3 ± 2.0	6.0 ± 1.0	10 ± 1	0.20 ± 0.03	0.017	82,6	39.3	-
$\text { 7. } \mathrm{HOCH}_{2}^{\mathrm{Ph}} \mathrm{CHC}(0) \mathrm{O}-\sqrt{\mathrm{N}^{+} \mathrm{Me}_{2}}$	3.0 ± 1.0	6.1 ± 1.0	21 ± 3	0.11 ± 0.02	0.034	88.2	44.9	-
$8 . \mathrm{HOCH}_{2} \mathrm{PHC}(\mathrm{O}) \mathrm{O}-\mathrm{NMM}^{2}$	3.7 ± 1.2	3.0 ± 0.5	30 ± 7	0.14 ± 0.03	0.05	84.8	41.5	-
$9 . \mathrm{HOCH}_{2} \mathrm{CHC}(\mathrm{O}) \mathrm{O}-\mathrm{NMe}_{2} \mathrm{O}$	9.7 ± 2.1	11.9+0.6	9 ± 4	0.082 ± 0.008	0.008	90.4	47.1	Ref. ${ }^{3}$

Fig. 1 (left). Influence of scopolamine on the apparent rate constants of N-methyl-[$\left.{ }^{3} \mathrm{H}\right]$ scopolamine binding to muscarinic receptor from rat cerebral cortex, 0.05 M K-phosphate buffer, $\mathrm{pH} 7.4,25^{\circ} \mathrm{C}$.
Fig. 2 (right). Influence of choline ester of phenylcyclopentylhydroxyacetic acid on the apparent rate constants of N -methyl-[$\left.{ }^{3} \mathrm{H}\right]$ scopolamine binding to muscarinic receptor from rat cerebral cortex, 0.05 M K -phosphate buffer, pH $7.4,25^{\circ} \mathrm{C}$.

The hyperbolic plot of the rate constant obtained from the first exponential term against antagonist concentration,
$k_{1}=\frac{k_{i}[A]}{k_{A}+[A]}$
allows the calculation of the K_{A} and k_{i} values. The second exponent allows the estimation of the k_{-i} values ${ }^{4}$. The results obtained by this method are listed in Table 1.

Some other antagonists caused the inhibition of radioiigand (A^{*}) binding, resulting in the decrease in the apparent rate constānts as shown in Fig. 2. In this case only the reversible binding constant for non-radioactive antagonist A can be calculated ${ }^{4}$:
$k_{1}^{\prime}=\frac{k_{i}\left[A^{*}\right]}{\left(1+[A] / K_{d}\right) K_{A}^{*}+\left[A^{*}\right]}$
The results obtained are listed in Table 2.

Table 2
Binding data for antagonist interaction with muscarinic receptor, $25^{\circ} \mathrm{C}, \mathrm{pH} 7.4$.

Antagonist	K_{A} nM	$\begin{aligned} & \mathrm{K}_{\mathrm{d}} \\ & \mathrm{nM} \end{aligned}$	MR	Notes
$\text { 10. } \underset{\substack{\mathrm{Ph} \\ \mathrm{CyCC}_{5} \mathrm{H}_{9}}}{ } \mathrm{O} \mathrm{OC}_{2} \mathrm{HI}_{4} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	$8,5 \pm 0,8$	9.0 ± 0.3	90.2	-
11. $\mathrm{PhC}(\mathrm{O}) \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	3760 ± 540	$3550+160$	63.0	-
12. $\mathrm{PhCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	4530 ± 380	4010 ± 730	67.7	-
13. $\mathrm{PhCH}_{2} \mathrm{C}(0) \mathrm{O}-\mathrm{N}^{+} \mathrm{Me}_{2}$	-	457	74.9	Ref. ${ }^{9}$
	-	1.0	99.2	Ref. ${ }^{9}$
$\begin{aligned} & \mathrm{Ph} \\ & \text { 15. } \mathrm{HOCC}^{\mathrm{CYC}}(\mathrm{OH}) \mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{~N}^{+} E t_{2} \mathrm{Me} \\ & \mathrm{CyC}_{6} \end{aligned}$	-	0.26	105.6	Ref. 10

2. Structure-Activity Relationships

Besides the compounds studied in the present report the binding data for some other esters were compiled from literature (see Table 1 and 2). Among these compounds there are several radioligands for which the direct kinetic analysis of the binding mechanism was made previously ${ }^{1,2,3}$.

The molecular refractivity parameters were applied for correlation of the binding data for muscarinic antagonists. These parameters for the whole ester molecule as well as for

Fig.3. The plot of $\mathrm{pK}_{\mathrm{d}} \bigcirc$ and pK_{A} (benzilates).

(tropates) for muscarinic antagonists upon the parameter of molecular refractivity, MR. Numbers of the points corvespond to Tables 1 and 2.
its alkyl part were calculated by making use of the appropriate fragmental constants ${ }^{8}$ (see Tables 1 and 2).

The correlation of the pK_{d} values with the MR-constants yields linear dependences as shown in Fig. 3 ,
$\mathrm{pK} \mathrm{K}_{\mathrm{d}}=$ cons $+\psi \mathrm{MR}$

It can be seen that three different groups of antagonists are revealed from the pK_{d} vs MR plot, which involve tropic esters $(\psi=0.046 \pm 0.004)$, benzilic esters $(\psi=0.14 \pm 0.02)$ and the rest of esters involved in this analysis $(\psi=0.10 \pm 0.01)$. Further constants pK_{A} were built up into the analysis. In the case of benzilic esters these data fit the correlation between pK_{d} and MR for other esters, while the data for tropates still form a separate series pointing to the fact that the affinity of these ligands is almost independent of their structure.

The muscarinic antagonists which initiate the isomerization of the receptor-iligand complex are characterized also by the second equilibrium constant, $K_{i}=k_{-1} / k_{i}$. This parameter, which was calculated from the rate constants k_{1} and $k_{\text {-i }}$ also depends upon the ligand structure. However, in this case a more clear picture was obtained if the pK_{1} values were
analyzed by making use of the MR values for the alkyl groups of these esters (Fig.4). It can be seen that for smaller substituents a linear dependence can be obtained while beginning from some MR-value this parameter has no influence on the pK_{1} values and a clear break reveals in the plot. Application of same parameters $\mathrm{MR}_{\mathrm{al}} \mathrm{k}$ for correlation of the pK_{A}-values yielded a rather similar plot.

In both directions the rate of the conformational isomerization process of the receptor-ligand complex achieves minimum and the further inrease in the bulkiness of the substituent leads to some increase in the values of rate constants k_{1} and k_{-1} (Fig.5). In summary, these effects are similar in the case of both rate constants.

Fig.4. Dependence of $\mathrm{pK}_{\mathrm{A}} \bigcirc$ and $\mathrm{pK}_{i} \bigcirc$ upon structure of the alkyl part of the ester antagonists. Numbers of the points correspond to Table 1.
Fig.5. Effect of structure of alkyl groups of ester antagonists upon the rate of the conformational isomerization of the receptor-ligand complex, $k_{1} \bigcirc$ and k_{-1}. Numbers of the points correspond to Table 1.

DISCUSSION

In the present study the kinetic data for seven muscarinic antagonists were obtained by making use of a single radioactive ligand as proposed by Eller et al4. The results obtained allow to differentiate the classical muscarinic antagonists by the kinetic mechanism of their binding to the receptor site. At least two subclasses can be found. For the first group of antagonists the kinetic evidence of the isomerization process of the receptor-antagonist complex can be easily obtained and dissociation constant \mathbf{K}_{A} as well as the isomerization rate constants can be calculated from these data.

In the case of the second subclass of antagonists the overall process of ligand association can be fitted to a simple binding isotherm formally corresponding to a singlestep mechanism of ligand association.

There can be two explanations for such a kinetic behavior of the muscarinic antagonists of the latter type. Firstly, it is possible that these ligands do not initiate the isomerization process and thus the formation of the receptor-ligand complex obeys the simple mechanism,
$R+A \xlongequal{K_{d}} R A$
where $K_{d}=k_{-1} / k_{1}$. on the other hand, the mechanism of binding of these compounds may involve also the isomerization step, which is, however, too fast to be followed by the experimental methods used. In the latter case the observed dissociation constant K_{d} is a complex parameter having the same meaning as given by Eqn (2).

As these two possibilities cannot be differentiated proceeding from the results of direct kinetic experiments, quantitative structure-activity relationships were used as tools to analyze the mechanism of ligand binding to muscarinic receptor in the present study. Some additional kinetic data from previous publications on the same topic were also involved in the analysis.

It can be seen in Fig. 3 that the constants p_{d} and pl_{A}
for benzilic esters form two separate lines of different slopes, corresponding to different mechanisms of the recep-tor-ligand interaction: the single step binding (K_{A}) and the two step scheme involving isomerization (K_{d}). The pK_{d}-values for the esters $\# 10,11$ and 12 fit the plot for pK_{A}, giving evidence of a single-step binding mechanism (8) for these esters.

The picture is more complex in the case of tropic esters, for with the plots of pK_{d} and pK_{A} vs the MR-constants have slopes, different from that obtained for other esters. This means that the effects, which seem to be governed by the ligand volume as the specificity determining factor, are saturated in the case of these ligands. The apparent binding effectiveness of these ligands, quantified by the constant K_{d}, can be, however, remarkably increased through the isomerization steps, shifted to the right. The difference between the pK_{d} and pK_{A} values, equal to the value of pK_{1} (see Eqn(2)), clearly points to the importance of the isomerization process in the case of these specific muscarinic antagonists.

Until now the isomerization step has been detected in the case of benzilates and tropates. Even a small modification of the acyl part of these ligands results in the alteration of this binding mechanism. At the same time the alkyl group of the ester antagonists can be widely varied without alteration of the reaction mechanism. These variations in ligand structure result in a change of binding affinity as well as the isomerization equilibrium. The latter correlation can be analyzed if the MR-constants for the alkyl part of esters are used. In this case the data for the tropic and benzilic esters can be analyzed within the framework of a common reaction series.

It is noteworthy that the same specificity determining factor, quantified by $M R$, is revealed two-fold in the following each other steps of the receptor-ligand interaction. Previously similar phenomena were found in the case of enzyme reactions where the same structural factor of substrate (hydrophobicity) reveals in both non-covalent binding and
following reaction steps, pointing most probably to some conformational changes of the enzyme molecule in the bondbreaking step of catalysis. However, until now we can point only to a formal similarity between the processes of ligand binding to receptor and enzyme catalysis, because there is no solid explanation of the LFE relationships between the binding affinity and the MR-constants as structural parameters. Thus the physicochemical background of the phenomemon of "double specificity", described in the present study, is not clear yet.

The latter part of this discussion concerns the struc-ture-activity relationships for the rate constants k_{1} and k_{-i}. It can be seen in Fig. 5 that a clear minimum appears in the $\log k_{i}$ and $\log k_{-i} v s M R_{a l k}$ plots pointing to the importance of structural fit of the ester alkyl group to the receptor site. For quinuclidinyl moiety the rate of the conformational transition of the receptor-ligand complex is the smallest in the reaction series studied. On the other hand, this means that for this structure the activation barrier of the conformational transition is the highest.

The isomerization step of the receptor-antagonist complex involves most probably a conformational change of the system, for which the following schematic representation can be proposed.

R

RA

(RA)

In these Schemes the main difference between the receptor-ligand complexes $R A$ and (RA) is the "depth" of uptake of the ligand molecule into the receptor molecule. We propose that this principle of receptor-antagonist interaction can have a more general meaning and lead to the "isomerization" of the complexes of other cellular receptors with their specific ligands. The site, responsible for the
"uptake" of ligand molecule, can be either the ordinary binding site of the receptor or a putative channel system integrated with the receptor. In the latter case the recep-tor-bound antagonist also inhibits the process of signal transmission by the receptor.

REFERENCES

1. J.Jarv, B.Hedlund, T.Bartfai, J.Biol.Chem., 254, 5595 (1979).
2. J.Järv, R.Sillard, T.Bartfai, Proc.Acad.Sci.Estonian SSR Chemistry, 36, 172 (1979).
3. M.Eller, J.Jarv, Neurochem.Int., in press (1989).
4. M.Eller, J.Järv, P.Palumaa, Organic Reactivity, 25, 372 (1988) .
5. Organikum, Mir, Moscow, 1979.
6. せ.Langel, A.Rinken, L.Tähepold, J.Järv, Neirokhimiya, 1, 343 (1982).
7. C.Hansch, A.Leo, S.H.Unger, K.H.Kim, D.Nikaitani, E.J.Lien, J.Med.Chem., 16, 1207 (1973).
8. R.Sillard, J.Järv, T.Bartfai, Biol.Membrany, 2,426 (1985).
9. E.C.Hulme, N.J.M.Birdsall, A.S.V.Burgen, B.Mehta, Mol.Pharmacol., 14, 737 (1978).
10. K.Ensing, R.A.DeZeeuw, Pharmaceut.Res., 3, 327 (1986).

Organic Reactivity

Vol.26, 3(95)-4(96) 1989

QUANTUM-CHEMICAL INVBSTIGATION OF THE RBACTION FIELD bFFBCTS ON tHE POLAR RESONANCE IN DISUBSTITUTED BTHYLENBS.

Toonas Tann and Mati Karelson

Laboratory of Chenical Kinetics and Catalysis, Tartu University, 2 Jakobi St, 202400 Tartu, Estonian S.S.R.

Received August 29, 1989

A quantun-chenical study of four model disubstituted ethylenes was carried out using the AM1 SCF and SCRF seni-empirical models. Renarkable dependance of the resonance energies on the polarity of solvent was observed.

1. Introduction.

Polar resonance plays an important role in the explanation of such phenonena as chenical structure and reactivity, various spectra of nolecules and polarity of compounds. In recent years certain experinental evidence has been collected, indicating that polar resonance is not purely an intranolecular electronic effect, but it also depends on the mediun. For instance, the cross terns between the solvent and electronic resonance paraneters appear in the fornal schenes based on linear free energy relationships (LFER), showing that the resonance and solvent effects are not independent of each other /1/. Therefore a theoretical study of the solvent effects on the electronic structure of nolecules is of essential inportance.

In this paper we present the results of the quantumchemical study of solvent effects on the polar resonance energies in model disubstituted ethylenes. The solvent influence on the molecular electronic structure was simulated theoretically using the seIf-consistent reaction field (SCRF) model /2,3/.

The essence of the SCRF quantum-chemical method is summarized in the use of a modified Hamiltonian A° in the Schroedinger equation for the polar solute molecules in the following form /2/:

$$
\begin{equation*}
\hat{\mathrm{H}}^{\cdot}=\hat{H}_{0}+\Gamma\langle\Phi| \hat{\mu}|\Phi\rangle, \tag{1}
\end{equation*}
$$

where Φ is the electronic wave function of the molecule, $\hat{\mu}$ is the dipole monent operator and \hat{H}_{0} - the Hamiltonian for the isolated molecule. The multiplier Γ in the last term (the reaction field tensor) is a function of the dielectric properties of the solvent and the size of the solute molecule. According to the Kirkwood-Onsager theory /4,5/:

$$
\begin{equation*}
\Gamma=\frac{2(\epsilon+1)}{(2 \epsilon-1) V_{0}} \tag{2}
\end{equation*}
$$

where ϵ denotes the dielectric constant of the medium and V_{0} is the volume of the cavity into which the solute nolecule is embedded. The use of the macroscopic dielectric constant of the solvent in the last formula is justified in the case of the time-averaged orientational polarization of the solvent molecules in the field of solute molecule.

The electronic energy of the solute molecule in the dielectric mediun is calculated then by the solution of the respective one-electron Fock equations

$$
\begin{equation*}
\hat{h}_{i} y_{i}=e_{i} y_{i} \tag{3}
\end{equation*}
$$

using the self-consistent field procedure [2,3]. Here y_{i} denotes a molecular orbital of the energy e_{i}, and \hat{h}_{i} is the one-electron Hamiltonian corresponding to the $\hat{H}^{\text {}}$. The electronic energy of the molecule is given by expression

$$
E_{e l}=\sum_{i j} P_{i} H_{i j}+1 / 2 \quad \sum \underset{i j k l}{P_{i j}} P_{i j}(\langle i j \mid k l\rangle-1 / 2\langle i k \mid j l\rangle),(4)
$$

where $P_{i j}$ and $P_{k l}$ denote the corresponding density natrix elenents, $H_{4 j}$ is the one-electron nodified core haniltonian element, and 〈ij|kl> and <ik|jl> - the two-electron repulsion integrals. The total energy is calculated as follows:

$$
\begin{equation*}
E_{\text {tok }}=E_{01}+\sum_{k\rangle 1} \frac{Z_{k} * Z_{1}}{R_{11}}+\Gamma \sum_{k} Z_{*} * R_{k} *\langle\Phi| \hat{\mu}|\Phi\rangle \tag{5}
\end{equation*}
$$

where the suns are taken over all the nuclei in the nolecule, Z_{k} and Z are the core charges of the nuelei, $R_{k r}$ internuclear distance, and $\&$ denote their radius-vectors.

The nethod described above was realized by us as a nodification of the MOPAC progran package /6/.

2. The systen used.

We chose one of the simplest objects where polar resonance is involved: 1,2-disubstituted ethylenes. The substituents used were -OH and $-\mathrm{NH}_{2}$ representing +R and -CHO and
 following four compounds involving polar resonance at the double bond: $\mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}, \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}, \mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CN}$, and $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$. Since intranolecular hydrogen bonds nay be present in the cis-forns of the compounds, only trans-forns were investigated for the sake of elinination of this side effect difficult to take into account in the resonance energy analysis.

Recent quantun-chenical calculations of sone substituted ethylenes /7-10/ have been published, however due to the different quantun-chenical methods used, and to the exclusion of solvent effects in study, these results are not directly comparable to ours.

Resonance energy in disubstituted ethylene is defined by us as the change of enthalpy in the following hypothetic reaction:

$$
1 / 2 \mathrm{X}-\mathrm{CH}=\mathrm{CH}-\mathrm{X}+1 / 2 \mathrm{Y}-\mathrm{CH}=\mathrm{CH}-\mathrm{Y}=\mathrm{X}-\mathrm{CH}=\mathrm{CH}-\mathrm{Y}
$$

where X and Y are any of the substituents quoted previously.

The definition of the polar resonance energy is given then by formula

$$
E_{R, X Y}=H_{f, X Y}-1 / 2\left(H_{f, X X}+H_{f, Y Y}\right) \text {, (6) }
$$

where $F_{R, X y}$ is the resonance energy, H_{f} is the calculated heat of formation of a compound, and X and Y represent different substituents.

A separate problem arises with this definition of resonance energy: the homosubstituted ethylenes (XX or YY in our notation) may be composed by "cutting" the heterosubstituted one (XY) into two parts along the $\mathrm{C}=\mathrm{C}$ bond and adding a mirror image to the half of the molecule obtained so. The XX and YY compounds' energies are then calculated using optimized bond lengths and angles for heterosubstituted compounds. Another possibility is to optimize further also the geometries of the homosubstituted ethylenes and use their calculated entalphies of formation in evaluation of the resonance energy. The first definition proposed here should give a more "theoretical" view on the resonance as no geometric stabilization effects are encountered. On the other hand, definition of resonance on the basis of optimized geometries should yield results more comparable to the experimental data. Both variants were used in this study and the results are given in parallel. They will be referred to, as "symmetric", and "optimized", respectively.

In order to investigate the solvent effects, two calculation series were carried out. In the first of them the standard SCF procedure (gas-phase calculation) was used, the second one involved the reaction field model with the solvent dielectric constant $\epsilon=78.5$. The latter will be referred to below as the "solution" calculation. The AM1 semiempirical parametrization for the elements by Dewar /11/ was used in calculations. The cavity volumes V_{0} (cf. Eq.2) were calculated from the additive molecular refractions R_{p} of the bonds present in the molecules. Geometries were optimized for each molecule both in the gas and solution phases, except for the homosubstituted ethylenes used in the calculation of the "symmetric" resonance energies.

3. Rasults and discussion

The heats of formation, dipole moments, cavity radii used, and optimum geometries of the compounds investigated are given in Table 1. The conformational (dihedral) angle between bonds was defined as follows:

Dihedral angle
$A-C_{1}-C_{2}-B$

All unspecified dihedral angles were set to 0 or 180 degrees in order to guarantee the complanarity of the molecule.

These results indicate significant solvent influence on the electronic structure of several molecules. In all compounds, where a substantial redistribution of electron density is possible, i.e. in the heterosubstituted compounds, the dipole moments tend to increase in polar solvent, resulting also in a lower heat of formation than in the gas phase. In most cases the geometrical variables (bond lenghts and bond angles) of the molecules are rather insensitive to the change of environment into which the molecule is embedded. However, the geometries of some molecules tend to change in solution towards the more polar conformations, resulting in an additional increase of the dipole soment and consequent decrease of the heat of formation due to the so-lute-solvent polarization effects, e.g.

gas phase

It could also be noticed, that while in the gas phase the NH_{2}-group is almost in the tetrahedral form (sp hybridization), in the solution the optimal geometry is planar (sp). Various geometric effects can also be observed in homosubstituted ethylenes, if the geometries are optimized. A trend towards more asymmetric geonetries in solution can be observed, compared to the symmetric ones in gas phase.

One can also see in Table 2 that the resonance energies tend to increase with the increase of the dielectric constant of the solvent. This should be considered as one of the main results of this work: enercies of polar resonance are substantially different in the gas phase and in a solution of hich dielectric permittivity. In various formal solvent effect theories /11-15/ a linear relationship between the reaction energies, free energies or activation energies and the observable solvent polarity parameters is postulated. Our calculations indicate that this assumption may be acceptable for resonance energies in substituted ethylenes only if the "symmetric" geometries are assumed for the reference compounds (see Fig. 1). However, if the optimal geometries for the reference compounds are used ("experimental" situation), no smooth dependence between the resonance energies in different phases for à series of compounds can be observed (Fig. 1). This also means, that any predictions of the electronic effects in compounds with direct polar resonance by the quantum-chemical calculation should involve solvent effects (e.g. SCRF procedure should be used instead).

Another important question is the validity of the linear relationships between the resonance energies in series of compounds with one constant substituent (e.g. $X_{1} Y$ and $X_{2} Y$). If entropy effects are small enough, which should be the case for our model compounds, the free energy relation= ships för different reactions involving these compounds should also look quite similar. To test this assertion, the following procedure was carried out: using different values
of ϵ, enthalpies of formation of the compounds were calculated for both gas-phase and solution geometries without additional optimization. The lower of these two values was used for each compound to calculate the resonance energy. The resonance energies for different compounds were then compared to each other (see Fig. 2). Each point on these graphs refers to a pair of calculations with different \in (and, consequently, Γ) value. It can be seen even on the basis of the small set of compounds used, that the relationships can be either linear (Fig. 2a) or nonlinear (Fig. 2b). Consequently, the use of linear relationships on Kirkwood-Onsager parameters for description of experimental solvent effects in resonance-affected systems is unjustified in some cases.

In order to generalize the conclusions obtained in this paper, more extensive investigation of other systems (e.g. disubstituted benzenes and 1,3 -butadienes) is needed.

Table 1: The AM1 Calculated Heats of Formation (H_{\uparrow}, kcal/mol), Dipole Moments (D), and Geometries of Disubstituted Ethylenes.

Note: all unspecified dihedral angles are set to 0 or 180 degrees in order to keep the molecule planar.
$\mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}$

[^0]
$\mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$

$\mathrm{H}_{2} \mathrm{H}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$

Variable	Gas	Solution
Heat of formation	-25.73	-33.30
Dipole moment	4.30	6.94
Cavity Radius, A	n/a	3.158
bond leneths. A		
$\mathrm{C}=\mathrm{C}$	1.36	1.36
C - H (at NH_{2})	1.10	1.10
C - H (at CHO)	1.11	1.11
$\mathrm{C}-\mathrm{N}$	1.36	1.36
$\mathrm{N}-\mathrm{H}$	0.99	0.99
$\mathrm{N}-\mathrm{H}$	0.98	0.99
C - C (at CHO)	1.45	1.46
C - H (in CHO)	1.12	1.12
C - 0 (in CHO)	1.24	1.23
bond anales, der		
$\mathrm{C}-\mathrm{C}-\mathrm{H}\left(\right.$ at $\left.\mathrm{NH}_{2}\right)$	121.8	122.2
C - C - H (at CHO)	119.3	120.3
C-C-N	125.6	126.0
C - N-H	120.6	120.0
C - N - H	119.6	122.7
C - C - C (at CHO)	121.6	124.0
C - C - H (in CHO)	114.8	111.3
0-0-0	124.7	127.7
dihedral ancles, der		
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	-175.2	0.0
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	163.9	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ (in CHO	1.2	180.0

$\mathrm{HC}-\mathrm{CH}=\mathrm{CH}-\mathrm{CN}$

Variable	Gas	Solution
Heat of fornation	76.03	76.09
Dipole monent	0.03	0.06
Cavity Radius, A	n / a	2.500
bond lengths. A		
C $=$ C	1.34	1.34
C - H ethylene	1.11	1.11
C - H hydrogens)	1.11	1.11
C - C	1.42	1.42
C - N	1.16	1.16
C - C	1.42	1.42
C - N	1.16	1.17
bond_angles, deg		
C - C - H	122.5	123.3
C - C - H	122.6	122.6
C - C - C	122.2	122.1
C - C - N	178.4	179.8
C - C - C	122.9	121.1
C - C - N	178.4	179.4

$\mathrm{OHC}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$

Variable	gas		
	symnet for NH_{2}	geonetries for OH	optinal
Heat of fornation	-47.20	-47.16	-47.47
Dipole moment	0.00	0.00	0.84
bond lengths. A	0.00	0.00	0.00
$c=c$	1.34	1.34	1.34
C - H (ethylene	1.10	1.10	1.10
C - H hydrogens)	1.10	1.10	1.10
C-C	1.47	1.48	1.47
C - H	1.11	1.11	1.11
C-0	1.23	1.23	1.23
c - C	1.47	1.48	1.48
C - H	1.11	1.11	1.11
C-0	1.23	1.23	1.23
bond antles, det			
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	121.2	121.3	122.6
C-C-H	121.2	121.3	122.6
C-C-C	122.6	122.3	122.2
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	115.1	115.4	115.4
$\mathrm{C}-\mathrm{C}-\mathrm{O}$	123.5	123.1	122.8
$C-C-C$	122.6	122.3	121.8
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	115.1	115.4	115.6
C-C-O	123.5	123.1	122.6
dihedral angles, ded			
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	180.0	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$	0.0	10.1	168.2
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$	180.0	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	180.0	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$	0.0	-10.1	164.1
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$	180.0	180.0	180.0

$\mathrm{OHC}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$ (continued)

Variable	solution	
	synnetric for both	optinal
Heat of formation	-47.62	-50.43
Dipole monent	0.00	4.44
Cavity Radius, A	3.224	3.224
bond lensths. A		
$\mathrm{C}=\mathrm{C}$	1.34	1.34
C - H (ethylene	1.10	1.10
C - H hydrogens)	1.10	1.11
C - C	1.47	1.47
C - H	1.11	1.12
C-0	1.23	1.24
C - C	1.47	1.48
C - H	1.11	1.12
C - 0	1.23	1.24
hond ancles. deg		
C - C-H	122.6	122.6
C - C-H	122.6	120.3
C-C-C	122.2	124.4
C - C - H	115.4	116.4
C-C-0	122.8	121.0
C-C-C	122.2	121.5
C - C - H	115.4	115.3
C-C-O	122.8	121.6
dihedral andles.ded		
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$	180.0	166.4
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$	180.0	15.2
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$	180.0	180.0

$\mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$

Variable	gas			solu- tion
	flat geometries		optimal	
Heat of formation	-75.48	-79.78	-78.73	-79.63
Dipole moment	0.00	0.00	0.12	2.77
Cavity Radius, A	n/a	n/a	n/a	2.852
bond lenaths. A				
$\mathrm{C}=\mathrm{C}$	1.35	1.35	1.35	1.35
C - H (ethylene	1.10	1.10	1.10	1.10
C - H hydrogens)	1.10	1.10	1.10	1.10
C - 0	1.38	1.37	1.38	1.38
O-H	0.97	0.87	0.97	0.97
C - 0	1.38	1.37	1.37	1.37
O-H	0.97	0.97	0.87	0.97
bond angles, der				
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	124.2	126.2	126.0	124.5
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	124.2	126.2	126.2	124.4
C-C-O	117.4	123.8	123.3	117.8
C - O-H	106.2	108.7	108.4	106.1
C-C-0	117.4	123.9	123.9	124.1
C-O-H	106.2	108.7	108.6	108.5
dihedral ancles der				
$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}$	0.0	180.0	-173.4	0.0
$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}$	0.0	180.0	178.1	180.0

$\mathrm{H}_{2} \mathrm{I}-\mathrm{CH}=\mathrm{CH}-\mathrm{HH}$

Variable	gas	
	symnetric (for both)	optimal
Heat of formation	13.13	8.63
Dipole noment	0.00	0.09
band lengths, \&		
$\mathrm{C}=\mathrm{C}$	1.36	1.36
C - H (ethylene	1.11	1.11
C - H hydrogens)	1.11	1.11
$\mathrm{C}-\mathrm{N}$	1.38	1.40
$\mathrm{N}-\mathrm{H}$	0.88	1.00
$\mathrm{N}-\mathrm{H}$	0.98	1.00
$\mathrm{C}-\mathrm{N}$	1.38	1.40
$\mathrm{N}-\mathrm{H}$	0.98	1.00
$\mathrm{N}-\mathrm{H}$	0.98	1.00
bond ancles, deg		
C - C H	121.6	121.7
C - C - H	121.6	121.6
$\mathrm{C}-\mathrm{C}-\mathrm{N}$	124.2	124.4
$\mathrm{C}-\mathrm{N}-\mathrm{H}$	118.8	112.3
$\mathrm{C}-\mathrm{N}-\mathrm{H}$	118.7	113.8
$\mathrm{C}-\mathrm{C}-\mathrm{N}$	124.2	124.2
$\mathrm{C}-\mathrm{N}-\mathrm{H}$	118.8	113.8
C-N-H	118.7	111.9
dihedral aneles, dea		
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{N}$	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	-174.0	36.4
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	162.0	127.5
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{N}$	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	174.0	-165.6
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	-162.0	126.4

$\mathrm{H}_{2} \mathrm{H}-\mathrm{CH}=\mathrm{CH}-\mathrm{EH}_{2}$ (continued)

Variable	solution	
	symmetric for CN	optinal
Heat of formation	13.75	8.31
Dipole monent	0.00	3.24
Cavity Radius, A	3.090	3.090
bond lensthres		
$\mathrm{C}=\mathrm{C}$	1.36	1.36
C - H (ethylene	1.11	1.11
C - H hydrogens)	1.11	1.11
C-N	1.38	1.40
$\mathrm{N}-\mathrm{H}$	0.98	1.00
$\mathrm{N}-\mathrm{H}$	0.98	1.00
C - N	1.38	1.41
$\mathrm{N}-\mathrm{H}$	0.98	1.01
N - H	0.98	1.01
bond andles, det		
C - C - H	121.7	121.8
$\mathrm{C}-\mathrm{C}-\mathrm{H}$	121.7	121.9
$\mathrm{C}-\mathrm{C}-\mathrm{N}$	124.1	123.7
C - $\mathrm{N}-\mathrm{H}$	118.1	111.7
$\mathrm{C}-\mathrm{N}-\mathrm{H}$	120.5	113.0
$\mathrm{C}-\mathrm{C}-\mathrm{N}$	124.1	125.0
$\mathrm{C}-\mathrm{N}-\mathrm{H}$	118.1	108.3
C - N - H	120.5	111.7
dihadral ancles der		
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{N}$	180.0	180.0
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	12.0	17.6
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	169.0	125.2
$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{N}$	180.0	180.0
H-C-N-H	-12.0	52.2
$\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$	-189.0	118.0

Table 2: Heats of Formation H_{f}, Resonance Energies E_{R} and the Dipole Monents μ of the Conpounds.

		ϵ	$\begin{gathered} \mathrm{H}_{f} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{aligned} & \mu \\ & \mathrm{D} \end{aligned}$	$\begin{array}{r} \text { E }\{\text { sym) } \\ \text { kcal/nol } \end{array}$	$\begin{aligned} & E_{R}(\text { opt }) \\ & \text { kcal/nol } \end{aligned}$
-OH	-CN	1.0	-2.5	3.60	-2.8	-0.6
		78.5	-8.6	3.69	-6.7	-6.8
$-\mathrm{NH}_{2}$		1.0	37.7	5.14	-6.9	-4.7
		78.5	28.7	6.84	-16.4	-13.5
	-CHO	1.0	-68.5	3.10	-5.0	-4.9
		78.5	-71.5	5.81	-10.0	-6.5
$-\mathrm{NH}_{2}$	- CHO	1.0	-25.7	4.30	-8.7	-6.3
		78.5	-33.3	6.94	-17.6	-12.2

Figure 1: Gas Phase Resonance Energies vs. Solution Resonance Energies in 1,2-Heterosubstituted Ethylenes.

Figure 2: Dependence of Resonance Energies in Different Dielectric Media.

References.

1. V.A.Paln: The Fundamentals of the Quantitative Theory of Organic Reactions (in Russian). "Khinija", Leningrad 1977, oh. 7.
2. O.Tapia and O.Goscinski Mol.Phys. 1975, 29, 1653
3. M.M.Karelson Organic Reactivity (Tartu) 1980, 17, 383.
4. L.Onsager J.An.Chen.Soc. 1936, 58, 1486.
5. J.G.Kirkwood J.Chen. Phys. 1939, Z, 911.
6. J.J.P.Stewart MOPAC Progran Packase, QCPE, 1983, No 455.
7. M-H.Whangbo and K.R.Stewart J.Org.Chen, 1982, 47, 736.
8. N.Heinrich; W.Koch; G.Frenking. and H.Schwarz J.An. Chen. Soc 1986, 108. 593.
9. D.A.Dixon; T.Fukunaga and B.E.Snart J.An.Chen.Soc 1986, 108, 1585.
10. D.A.Dixon and J.S.Miller J.An.Chem.Soc 1987, 109, 3656.
11. M.J.S.Dewar; E.G.Zoebisch; E.F.Healy and J.J.P.Stewart J.An.Chen.Soc. 1985, 107. 3902.
12. Advances in Free Linear Energy Relationships. Eds. N. B. Chapnan, J.Shorter. Plenun Press, London - N.Y., 1372.
13. C.Reichardt : Solvent Effects in Organic Chenistry, Verlag Chenie, Weinhein, 1979.
14. M.J.Kanlet; J.L.M.Abboud and R.W.Taft Progr. Phys. Org. Chen. 1981, 13, 485.
15. M.Chastrette; M.Rajzmann; M.Chanon and K.F.Purcell J.An.Chen.Soc. 1985, 107, 1.
16. M.Kupfer; A.Henrion and W.Abrahan Z.phys.Chen., 1986, 267. 705.

Organic Reactivity
Vol.26, 3(95)-4(96) 1989

KINETIC STUDY OF BENZOATE HYDROLYSIS
XVII aLKALINE HYDROLYSIS OF O-SUBSTITUTED BENZOATES IN CONCENTRATED AQUEOUS $n-\mathrm{Bu}_{4}$ NBr SALT SOLUTION
V. B , Nummert and A, Bogdanov

Laboratory of Chemical Kinetics and Catalysis, Tartu University, Tartu 202400, Estonia, USSR

Received November 2, 1989

The kinetics of the alkaline hydrolysis of five o-substituted phenyl benzoates $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{6} \mathrm{H}_{4}-\mathrm{X} \quad\left(\mathrm{X}=2-\mathrm{NO}_{2}, 2-\mathrm{Cl}, 2-\mathrm{F}, 2-\mathrm{CH}_{3}\right.$, $2-\mathrm{OCH}_{3}$) in 1 M and $2.25 \mathrm{M} \mathrm{n-Bu} 4^{\mathrm{NBr}}$ solutions has been studied at $50^{\circ} \mathrm{C}$.

The statistical treatment of the log k values for the alkaline hydrolysis of o-substituted phenyl benzoates in the case of 1 and $2.25 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ solutions and water at different temperatures as performed with simultaneous use of the data o. m - and p substituted đerivatives.

Besides 6° constants, additional inductive σ_{I} and steric \mathbb{E}_{g}^{B} scales were usod as substituent paremeters in the case of o-substituted derivatives $\left(\mathrm{E}_{\mathrm{S}}^{\mathrm{B}}=\log \mathrm{k}_{\mathrm{H}^{+}}^{\mathrm{K}}-\log \mathrm{k}_{\mathrm{H}^{+}}^{\mathrm{H}}\right.$ where $\mathbf{k}_{\mathrm{H}+}$ is the rate constant of the acidic hydrolysis for o-substituted phenyl ben. zoate in water at $50^{\circ} \mathrm{c}$).

In the previous papers it was found on the bases of the drta of the acidic dissociation of benzoic scids and an
kaline hydrolysis of phenyl tosylates ${ }^{1,2}$, that the ortho-effect considerably decreases and the difference $\log k_{0} / k_{p}$ becomes minimal (k_{0} and k_{p} denote the rate constants for ortho-and para-substituted derivatives) when passing from water to the concentrated $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ solutions.

The purpose of the present study was to check whether an analogical situation can take place also in the case of the alkaline hydrolysis of substituted phenyl benzoates.

In the previous paper ${ }^{3}$ on the same theme we presented the values of the rate constants $k\left(M^{-1} \cdot s^{-1}\right)$ for the alkaline hydrolysis of phenyl benzoates with substituents in metha- and para-positions, in 1 and 2.25 molar tetra-n-butylammonium bromide solution at $50^{\circ} \mathrm{C}$.

In the present paper the values of $\log \mathrm{k}$ for the alkaline hydrolysis of five ortho-substituted phenyl benzoates in 1 and $2.25 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ solution at $50^{\circ} \mathrm{C}$ are given. The reaults of the statistical treatment of $\log k$ values and the data for ortho-, metha-, and para-substituted derivatives, using the method of multiple regression analysis, are also reported.

Experimental

The kinetics of the alkaline hydrolysis of substituted phenyl benzoates $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{COOC}_{6} \mathrm{H}_{4}-\mathrm{X}\left(\mathrm{X}=2-\mathrm{NO}_{2}, 2-\mathrm{Cl}, 2-\mathrm{F}, 2-\mathrm{CH}_{3}\right.$, $2-0 \mathrm{CH}_{3}$) was investigated in 1 M and 2.25 M tetra-n-butylammonium bromide solution at $50^{\circ} \mathrm{C}$. In the case of $2-0 \mathrm{CH}_{3}$-phenyl benzoate the kinetics was measured for water solution at $50^{\circ} \mathrm{C}$ as well.

As alkali, 0.0223 molar tetra-n-butylammonium hydroxide was used.

The purification of alkali and tetrabutylammonium bromide, the preparation and the characteristics of phenyl benzoates studied (besides the $2-0 \mathrm{CH}_{3}-$ substituted one) have been given in our previous publications ${ }^{4,5}$.
$2-0 \mathrm{CH}_{3}$-phenyl benzoate was synthesized from benzoyl chloride and guaiacol in the aqueous NaOH solution. The substance was recrystallized several times from 50% aqueous
ethanol and dried in vacuo over $P_{2} \mathrm{O}_{5}$ m. p. $57-57.5^{\circ} \mathrm{C}$. Kinetic measurements were carried out under pseudomonomolecular conditions with alkali excess. For the kinetic measurements the spectrophotometric method was applied using a device equipped with a photoelectric multiplier and a. recorder of the LP-type.

Second-order rate constants k_{2} were calculated dividing pseudomonomolecular rate constants by the alkali con centration. The measurements at each salt concentration were repeated and the arithmetic means of the corresponding second order rate constants \mathbf{k}_{2} were calculated. The \mathbf{k}_{2} values found like this and the number of measurements at each salt concentration are given in Table 1.

Fig. 1. Relationship between k_{1} and $\mathrm{C}_{\mathrm{OH}^{-}}$for 2-methoxyphenyl benzoate at $50^{\circ} \mathrm{C}$ in water.

The kinetics of the alkaline hydrolysis of $2-0 \mathrm{CH}_{3}$-phenyl benzoate in water without salt additions, was measured at three alkali concentrations at $50^{\circ} \mathrm{C}$ (see Fig. 1). The second order rate constant was calculated from relationship (1)

$$
\begin{equation*}
k_{1}=k_{2} \cdot c_{\mathrm{OH}^{-}}+\text {const } \tag{1}
\end{equation*}
$$

where k_{1} is the rate constant of the pseudomonomolecular reaction and k_{2} - the second order rate constant (see Table 2).

Table 1
Rate Constants $k\left(M^{-1} \cdot s^{-1}\right)$ for Alkaline Hydrolysis of 2-Substituted Phenyl Benzoates $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-X in Presence of $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ Additions $\left(\mathrm{C}_{\mathrm{OH}^{-}}=0.0223\right.$) at $50^{\circ} \mathrm{C}$

X	Salt (M)	$\mathrm{k}\left(\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}\right)$	$\mathrm{n}^{\text {¹ }}$	$\Lambda_{n m}$
$2-\mathrm{NO}_{2}$	2.25	2.32 ± 0.04	6	427
	1.00	1.21 ± 0.02	6	
2-C1	2.25	0.471 ± 0.006	5	303
	1.00	0.295 ± 0.008		
$2-\mathrm{F}$	2.25	0.422 ± 0.004	6	292.5
	1.00	0.272 ± 0.005		
$2-\mathrm{CH}_{3}$	2.25	0.0633 ± 0.0019	6	298
	1.00	0.0721 ± 0.00016		
$2-\mathrm{OCH}_{3}$	2.25	0.0416 ± 0.0008	4	298
	1.00	0.0509 ± 0.0008		
3-C1	2.25	1.31 ± 0.04	6	303
		$1.08 \pm 0.13^{\text {ᄑㅍI }}$		
	1.00	0.622 ± 0.013		
		$0.749 \pm 0.080^{\text {FFIF }}$		

$\mathrm{n}^{\text { }}$ - Number of measurements of the salt concertretion considered; इت - in paper ${ }^{3}$.

Table 2
Values of $k_{1}\left(s^{-i}\right)$ at Various $n-B u_{4} N O H$ Concentrations and $k_{2}\left(M^{-1} \cdot s^{-1}\right)$ for Alkaline Hydrolysis of $2-0 \mathrm{CH}_{3}$-Fhenyl Benzoate in Water at $50^{\circ} \mathrm{C}$

$\mathrm{C}_{\text {OH }}{ }^{-}$(M)	$\mathrm{k}_{1} \cdot 10^{3} \cdot \mathrm{~s}^{-1}$	$\mathrm{n}^{\text {3 }}$	$\mathrm{k}_{2}\left(\mathrm{M}^{-\hat{1}} \cdot \mathrm{~s}^{-1}\right)$
0.0116	6.82 ± 0.19	4	0.668 ± 0.032
0.0256	17.80 ± 0.44	3	
0.0640	42.13 ± 1.14	3	

n - Number of measurements at alkali concertration con-

Fig. 2 illustrates the plots of log k values vs. tetrabutylammonium bromide concentration at $50^{\circ} \mathrm{C}$. During transition from water to 1 M tetrabutylammonium bromide solution, negative salt effect was discovered in the case of all phenyl benzoates studied. But in the case of ortho-substituted

Fig. 2. Dependence of $\log k_{2}$ on $\sqrt{\mu}$ for alkaline hydrolysis of substituted phenyl banzoates at $50^{\circ} \mathrm{C}$.
derivatives the negative salt effects are stronger than in the case of the corresponding metha and para-substituted derivatives. An analogous situation was observed in the case of the alkaline hydrolysis of substituted phenyl tosylates ${ }^{2}$. In the case of the alkaline hydrolysis of phenyl tosylates, the positive ortho effect detected for water solution, decreases considerably during transition to 1 and $2.25 \mathrm{M} \mathrm{n}-\mathrm{Bu} u_{4} \mathrm{NBr}$ solutions. When studying the alkaline hydrolysis of ortho-substituted phenyl benzoates in water, such negative ortho effects were observed which did not weaken during transition to the concentrated tetrabutylammonium bromide solutions but became even stronger.

The same phenomenon demonstrate the $\sigma_{\text {ortho }}^{\circ}$ values calculated from the $\log k$ for the alkaline hydrolysis of ortho-substituted phenyl benzoates (Table 3).

Using the method of multiple regression analysis, the common treatment of $\log k$ values for the alkaline hydrolysis of ortho-substituted and metha- and para-substituted phenyl benzoates in 1 and 2.25 molar $n-\mathrm{Bu}_{4} \mathrm{NBr}$ solution at $50^{\circ} \mathrm{C}$ as well as in water at various temperatures was carried out according to the equation:

$$
\begin{align*}
\log k_{m, p(\text { ortho })}^{X}= & \log k_{0}^{H}+\rho_{m, p(\text { ortho })}^{0} 6^{\circ}+\rho_{I(\text { ortho })} \sigma_{I}+ \\
& +\delta_{(\text {ortho })} E_{s}^{B} \tag{2}
\end{align*}
$$

Table 3
Values of ortho $_{0}$ Calculated from $\log \mathrm{k}$ Values for Alkaline Hydrolysis of Substituted Phenyl Benzoates $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{X}$ at 50° C

Substituent X	$\mathrm{H}_{2} \mathrm{O}$	1 M $\mathrm{Bu}_{4}^{\mathrm{NBr}}$	2.25 M $\mathrm{Bu}_{4} \mathrm{NBr}$
$2-\mathrm{NO}_{2}$	0.628	0.414	0.504
$2-\mathrm{Cl}^{2}$	0.171	0.079	0.162
$2-\mathrm{F}_{3}$	0.312	0.060	0.137
$2-\mathrm{CH}_{3}$	-0.539	-0.251	-0.272
$2-\mathrm{OH}_{3}$	-0.441	-0.338	-0.360
$\left.2-\mathrm{N}_{3} \mathrm{CH}_{3}\right)_{2}$	-0.486	236	-

In the data processing we also included the term ρ_{R}° (ortho) σ_{R}°, but afterwords it was excluded as an insignificant one.

For comparison the data treatment was carried out according to the following equations as well:
$\log k_{\text {ortho }}^{X}=\log k_{0}^{H}+\rho_{I(\text { ortho })} \sigma_{I}+\rho_{R(\text { ortho })}^{\circ} \sigma_{R}^{\circ}+$

$$
\begin{equation*}
+\delta_{(\text {ortho })} \mathrm{E}_{\mathrm{s}}^{3} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\log k_{m, p}^{X}=\log k_{0}^{H}+\rho_{m, p}^{o} \sigma^{0} \tag{4}
\end{equation*}
$$

The treatment of the $\log k$ values according to Eq. (4) also embraced the $\log k$ value for an unsubstituted derivative.

The results of the statistical data treatment according to Eqs. (2)-(4) are given in Tables 4 and 5.

The statistical data processing was carried out on a "Nord-100" computer. The program of multiple regression analysis composed by V. Palm ${ }^{7,8}$ was used. The "recommended" σ° values from Tables ${ }^{9}$ and the σ_{I} and σ_{R}^{0} constants from publication ${ }^{10}$ were used. In the case of $2-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$-substituent it was assumed that the resonance term was absent and in the common data treatment for this derivative the correction for $\rho_{\mathrm{p}}^{\circ} \mathrm{O}_{\mathrm{R}}^{\circ}$ was included.

For ortho-substituted derivatives the corresponding 6° values for para-substituents were used.
 $\log k^{\mathrm{H}} \mathrm{H}^{+}$was used, where k^{K}
acidic hydrolysis for H^{+}ortho-substituted phenyl benzoate in water at 50° and $\mathrm{k}^{\mathrm{H}} \mathrm{H}^{+}$is the same constant for unsubstituted derivative ${ }^{11}$.

In the statistical data treatment we used the $\left(\mathbb{E}_{\mathrm{S}}^{\mathrm{B}}\right.$) calc values, calculated from the linear relationship between the log k values for the alkaline hydrolysis of phenyl tosylates and values of $\left(\log k_{\mathrm{OH}^{-}}^{X}-\log \mathrm{k}_{\mathrm{H}^{+}}^{\mathrm{X}}\right.$) ${ }_{\mathrm{m}, \mathrm{p} \text { (ortho) }}$ for the alkaline hydrolysis of phenyl benzoates at $50^{\circ} \mathrm{C}^{11}\left(\mathrm{k}_{\mathrm{OH}^{-}}\right.$and
$\mathrm{k}_{\mathrm{H}}{ }^{+}$are the rate constants for the alkaline and acidic hydrolysis, respectively).

Substituent		E_{8}^{B}
$2-\mathrm{NO}_{2}$	-0.374	$\left(E_{\mathrm{S}}^{\mathrm{B}}\right)_{\text {calc }}$
$2-\mathrm{Cl}$	-0.378	-0.374
$2-\mathrm{F}$	-0.155	-0.243
$2-\mathrm{CH}_{3}$	-0.264	-0.155
$2-\mathrm{OCH}_{3}$	-	-0.264
$2-\mathrm{N}_{3}\left(\mathrm{CH}_{3}\right)_{2}$	-	-0.308
H	0	-0.425
		0

It follows from the results of the statistical data treatment given in Tables 4 and 5 that the $\log k$ values for 2.25 and $1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ solutions as well as for water could be satisfactorily correlated by equations (2)-(4).

During transition from water to the $2.25 \mathrm{Mn}-\mathrm{Bu}_{4} \mathrm{NBr}$ solution term $\rho_{m, p(o r t h o)}^{\circ}$ increases by about one unit but the contribution of the $\rho_{I(o r t h o)} \sigma_{I}$ term became insignificant. Since the contribution of the steric term practically does not depend on the nature of the solvent, the negative ortho effect still increases during transition to the 2.25 M solution of $\mathrm{n}-\mathrm{Bu} 4^{\mathrm{NBr}}$. When passing from water to the concentrated tetrabutylammonium bromide solution the total effect of ortho-substituents $\left(\mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{F}\right)$ is twice smaller than that in the case of metha- and para-substituents.

It was found that in the case of alkaline hydrolysis of phenyl benzoates the effect of ortho-substituents $\Delta l o g$ ⿺ ${ }^{X}$ changes equally to that in the case of the alkaline hydrolysis of phenyl tosylates when passing from water to the $2.25 \mathrm{Mn}-\mathrm{Bu}{ }_{4} \mathrm{NBr}$ solution. It should be remembered that a similar situation has already been observed in the case of metha- and para-substituents ${ }^{2}$.

In Fig. 3. the relationship between the values of $\Delta \log _{k} k^{X}\left(2.24 \mathrm{M} \mathrm{Bu} 4^{\mathrm{NBr}}\right)-\Delta \log k^{X}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (where $\Delta \log k^{X}=$ $\log k^{\mathrm{X}}-\log \mathrm{k}^{\mathrm{H}}$) for the alkaline hydrolysis of phenyl tosylates and the same values for the alkaline hydrolysis of phenyl benzoates at $50^{\circ} \mathrm{C}$ is presented. One can see that the

Results of Statistiosl Deta Traetment of log k Values at $50^{\circ} \mathrm{C}$ fccor the Following Equations:$\begin{aligned} & \log k_{m, p}^{X}=\log k_{0}^{H}+\rho_{m, p}^{\circ} \sigma^{\circ} \\ & \log k_{m, p(o r t h o)}^{X}=\log k_{0}^{H}+\rho_{m, p(o r t h o)}^{\circ} \sigma^{\circ}+\rho_{I(\text { ortho })} \sigma_{I_{i}^{+}}^{+} \\ & \log k_{(\text {ortho })}^{X}=\log k_{0}^{H}+\rho_{I(\text { ortho })} \sigma_{I^{+}} \rho_{R(\text { ortho })}^{\circ} \sigma_{R}^{\circ}+\delta_{(\text {or }}^{\circ} \end{aligned}$				
Equation	Parameters	$\mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{M} \mathrm{Bu} 4{ }_{4} \mathrm{NBr}$	2.25 M
1	2	3	4	
(1) (2)	$\log _{\mathrm{k}_{0}^{\mathrm{H}}}$$\rho_{\mathrm{m}, \mathrm{p}}^{\circ}s\mathrm{s}_{0}$$\mathrm{n} / \mathrm{n}_{\mathrm{O}} \mathrm{H}_{\mathrm{H}}$$\log \mathrm{k}_{0}$$\rho_{\mathrm{m}, \mathrm{p}}^{\circ} \mathrm{ortho)}$$\rho_{\mathrm{I} \text { (ortho) }}$$\delta_{\text {(ortho) }}$	0.242 ± 0.024	-0.680 0.068	-0.6
		0.945 ± 0.047	1.84 ± 0.13	2.0
		0.995	0.990	0.9
		0.039	0.089	0.0
		0.099	0.141	0.0
		5/5	5/5	5/5
		0.246 ± 0.020	-0.602 ± 0.049	-0.6
		$0.246^{ \pm} 0.022^{\text {5 }}$		
		0.939 ± 0.028	1.65 ± 0.088	
		$0.936 \pm 0.030^{\text {m }}$		
		0.562 ± 0.055	0	0
		$0.544{ }^{+} 0.062^{*}$		
		1.41 ± 0.084	$1.57+0.21$	

Table 4 continued

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& 2 \& 3 \& 4 \& 5

\hline \multirow[t]{20}{*}{(3)} \& \multirow[t]{3}{*}{r} \& $1.37 \pm 0.11^{\text {\# }}$ \& \multirow[t]{3}{*}{0.991} \& \multirow[t]{3}{*}{0.997}

\hline \& \& 0.998 \& \&

\hline \& \& $0.997^{\text {7r }}$ \& \&

\hline \& \multirow[t]{2}{*}{s} \& 0.031 \& \multirow[t]{2}{*}{0.094} \& \multirow[t]{2}{*}{0.060}

\hline \& \& $0.032^{\text {Fr }}$ \& \&

\hline \& \multirow[t]{2}{*}{s_{0}} \& 0.056 \& \multirow[t]{2}{*}{0.136} \& \multirow[t]{2}{*}{0.080}

\hline \& \& $0.072^{\text {Fr }}$ \& \&

\hline \& \multirow[t]{2}{*}{n / n 。} \& 10/10 \& \multirow[t]{2}{*}{10/10} \& \multirow[t]{2}{*}{10/10}

\hline \& \& 9/9 ${ }^{\text {T }}$ \& \&

\hline \& \multirow[t]{2}{*}{$\log \mathrm{k}_{0}^{\mathrm{H}}$} \& \& \multirow[t]{2}{*}{-0.657 ± 0.089} \& \multirow[t]{2}{*}{-0.641 ± 0.074}

\hline \& \& $$
0.199 \pm 0.055^{\#}
$$ \& \&

\hline \& \multirow[t]{2}{*}{$\rho_{\text {(iortho) }}$} \& 1.69 ± 0.063 \& \multirow[t]{2}{*}{1.79 ± 0.14} \& \multirow[t]{2}{*}{2.39 ± 0.12}

\hline \& \& $1.70 \pm 0.088^{\text {FI }}$ \& \&

\hline \& \multirow[t]{2}{*}{$\rho_{\mathrm{R}}^{\circ}$ (ortho)} \& 0.781 ± 0.061 \& \multirow[t]{2}{*}{1.41 ± 0.15} \& \multirow[t]{2}{*}{1.66 ± 0.12}

\hline \& \& $0.801 \pm 0.090^{\text {FIF }}$ \& \&

\hline \& \multirow[t]{2}{*}{$\delta^{\text {(ortho) }}$} \& 1.59 ± 0.12 \& \multirow[t]{2}{*}{1.81 ± 0.31} \& \multirow[t]{2}{*}{2.18 ± 0.25}

\hline \& \& $1.63 \pm 0.19^{\text {亚 }}$ \& \&

\hline \& \multirow[t]{2}{*}{r} \& 0.997 \& \multirow[t]{2}{*}{0.989} \& \multirow[t]{2}{*}{0.995}

\hline \& \& $0.993^{\text {T }}$

3.040 \& \&

\hline \& \& . 040 \& 0.078 \& 0.065

\hline
\end{tabular}

Table 4 continued

1	2	3	4	5
		$0.0 \dot{4} 8^{\text {FI }}$		
	s_{0}	0.075	0.159	0.101
		$0.113^{\text {F }}$		
	n / n_{0}	$\begin{aligned} & 7 / 7 \\ & 6 / 6= \end{aligned}$	6/6	6/6

Table 5 continued

1	2	3	4	5
(3)	${ }^{\text {s }}$	$0.057^{\text {mi }}$	$0.057^{\text {m }}$	$0.058^{\text {7 }}$
		0.097	0.116	0.089
		$0.136^{\text {FI }}$	$0.134^{\text {Tr }}$	$0.124^{\text {Fr }}$
	n / n 。	10/10	10/10	10/10
		9/9 ${ }^{\text {F }}$	9/9 ${ }^{\text {T}}$	9/9 ${ }^{\text {F }}$
	$\log \mathrm{k}_{0}^{\mathrm{H}}$	0.037 ± 0.071	-0.391 ± 0.013	-0.717 ${ }^{ \pm} 0.095$
		$0.022 \pm 0.004^{\text {\# }}$		-0.655 ${ }^{ \pm} 0.07{ }^{\text {¹ }}$
	$\rho_{\text {I (ortho) }}$	1.66 ± 0.12	1.76 ± 0.020	1.86 ± 0.15
		1.85 ± 0.06^{3}		$2.09 \pm 0.12^{\text {FI }}$
	ρ_{R}° (ortho)	$\begin{aligned} & 0.889 \pm 0.125 \\ & 1.18 \pm 0.08{ }^{\text {F }} \end{aligned}$	0.952 ± 0.021	$\begin{aligned} & 0.984 \pm 0.158 \\ & 1.33 \pm 0.16^{\# \#} \end{aligned}$
	δ (ortho)	1.47 ± 0.24	1.45 ± 0.04	1.38 ± 0.30
		$1.08 \pm 0.014^{\text {F }}$		$1.98 \pm 0.28^{\text {K }}$
	r	0.991	0.999	0.988
		$0.999^{\text {F3}}$		$0.995^{\text {F }}$
	s	0.077	0.013	0.097
		$0.025^{\text {F }}$		0.049^{38}

Table 5 contimued

1	2	3	4	5
	s_{0}	$\begin{aligned} & 0.13 .4 \\ & 0.059^{\mathrm{IK}} \end{aligned}$	0.028	$\begin{aligned} & 1.154 \\ & 0.102^{\text {² }} \end{aligned}$
	n / n_{0}	$\begin{aligned} & 6 / 6 \\ & 5 / 5^{\text {II }} \end{aligned}$	6/6	$\begin{aligned} & 6 / 6 \\ & 5 / 5^{\text {k }} \end{aligned}$

Fig. 3. Relationships between $\Delta \Delta \log k$ (Toss) $)_{m, p(o r t h o) ~}^{\text {(ort }}$ and $\Delta \Delta \log k$ (Benz) m, p (ortho) at $50^{\circ} \mathrm{C}$. $\Delta \Delta \log k^{X}=\Delta \log k^{X}\left(2.25 \mathrm{MBu} 4^{\mathrm{NBr}}\right)-\Delta \log k^{\pi}\left(\mathrm{H}_{2} 0\right)$ $\Delta \log k^{X}=\log k^{X}-\log k^{H}$ 。
points for ortho-substituents fall onto the same straight line with metha- and para-substituents,

$$
\Delta \Delta \log k^{\mathrm{X}}(\text { Tos })_{(\text {ortho })}=0.042(-0.013)+
$$

$$
+1.16(\pm 0.17) \Delta \Delta \log k^{X}(\text { Benz }) \text { (ortho) }
$$

$$
s=0.132
$$

$$
\begin{aligned}
& \Delta \Delta \log \mathrm{k}^{\mathrm{X}} \text { (Toss }_{\mathrm{m}, \mathrm{p} \text { (orth) }}=0.060\left({ }^{+} 0.07\right)+ \\
& +1.09(\pm 0.08) \Delta \Delta \log k^{X} \text { (Benz) }{ }_{m, p} \text { (orth) } \\
& s=0.126
\end{aligned}
$$

Fig. 4. Relationship between ($\log k-1.4 E_{S}^{B}$) for alkaline hydrolysis of substituted phenyl benzoates and log k for alkaline hydrolysis of substituted phenyl tosylates in wator and 2.25 M $n-\mathrm{Bu}_{4} \mathrm{NBr}$ solution at $50^{\circ} \mathrm{C}$.

In the case of phenyl tosylates both the experimental values of log k and those calculated from the activation parameters were embraced ${ }^{12}$.

Fig. 4. presents the dependenes of $\Delta \log k-1.4 \mathrm{~F}_{\mathrm{s}}^{\mathrm{B}}$ values for the alkaline hydrolysis of substituted phenyl benzoates on the log k values for the alkaline hydrolysis of
substituted phenyl tosylates in the case of water and the 2.25 M solution of $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ at $50^{\circ} \mathrm{C}$.

While in the case of water solution the points for ortho substituents fall on the same straight line with metha and para-substituents, then passing to the 2.25 M solution of $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ the points for ortho substituents to some extent deviate from the straight line for metha- and para-substituents.

For water at $50^{\circ} \mathrm{C}$ we have (see Table 6):
$\frac{\Delta \log k^{X}(\operatorname{Tos})_{m, p}}{\Delta \log k^{X}(\text { Benz })_{n i, p}}=\frac{\rho_{m, 2}^{0} p}{\rho_{m, p}^{0}(\operatorname{Tos})} \frac{1.840}{(\operatorname{Benz})}=\frac{1.95}{0.945}=1$
$\frac{\Delta \log \mathrm{k}^{X}(\text { Tos })(\text { ortho })}{\left(\Delta \log \mathrm{k}^{X}-1.4 \mathrm{E}_{\mathrm{S}}^{\mathrm{S}}\right) \text { (Benz) (ortho) }}=$
$=\frac{\left(\rho_{m, p}^{\circ} p(\text { ortho })^{\circ}+\rho_{I(\text { ortho }} \sigma_{I}\right)(\text { Tos })}{\left(\rho_{m, p(\text { ortho })}^{\circ} \sigma^{\circ}+\varphi_{I(\text { ortho })} \sigma_{I}\right)(\text { Benz })}=\frac{1.886^{\circ}+0.98 \sigma_{I}}{0.9456^{\circ} 0.55 \sigma_{I}}=$
$=\frac{1.88\left(\sigma^{0}+0.521 \sigma_{I}\right)}{0.945\left(\sigma^{0}+0.55 \sigma_{I}\right)}=1.99$
where $\Delta \log k^{X}=\log k^{X}-\log k^{H}$
When passing to 2.25 M solution of $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBr}$ the slopes of straight lines in Fig. 4. somewhat change:

$$
\begin{equation*}
\frac{\Delta \log k^{X}(\operatorname{Tos})_{m_{2} p}}{\Delta \log k^{X}(\operatorname{Benz})_{m_{2}}}=\frac{3.01}{2.02}=1.49 \tag{7}
\end{equation*}
$$

$\frac{\Delta \log k^{X}(\text { Tos }) \text { (ortho) }}{\left(\Delta \log k^{X}-1.4 E_{s}^{B}\right) \text { (Benz) (ortho) }}=\frac{3.116^{\circ}+0.59 \delta_{I}}{1.936}=$
$=1.60\left(\sigma^{\circ}+0.19 \sigma_{I}\right)$
If $\sigma_{I} \longrightarrow 0$, then the points for ortho substituents fall on onc and the same straight line with metha and para substituents.
Table 6
Values of $\log k_{o}^{H}, \rho_{m, p}^{o}, \rho_{m, p(o r t h o)}^{\circ} \rho_{I} \rho_{\text {(ortho) and }}^{0}$ for Alkaline Hydrolyais
of Substituted Fhenyl Benzoates and Phenyl Tosylates at $50^{\circ} \mathrm{C} 13$

Farameters	Phenyl benzoates		Phenyl tosylates	
	$\mathrm{H}_{2} \mathrm{O}$	$2.25 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBr}^{\text {N }}$	$\mathrm{H}_{2} \mathrm{O}$	2. $25 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBr}$
$\log k_{0}^{\mathrm{H}}$	0.242 ± 0.024	-0.654 ± 0.030	-2.917 ± 0.013	-3.361 ± 0.109
$\rho_{m, p}^{\circ}$	0.945 ± 0.047	2.02 ± 0.06	1.84 ± 0.04	3.01 ± 0.19
$\rho_{m, p}^{0}$ (ortho)	0.939 ± 0.028	1.93 ± 0.06	1.88 ± 0.04	3.11 ± 0.17
ρ_{I} (ortho)	0.562 ± 0.055	0	0.98 ± 0.07	0.59 ± 0.29
δ^{δ} (ortho)	1.41 ± 0.08	1.42 ± 0.13	0	0

1. J. Steigman and D. Sussman, J. Am. Chem. Soc., 89,6406 (1967).
2. V. Nummert, K. Ojassalu, and A. Bogdanov, Organic Reactivity, 26, 83 (1989).
3. V. Nummert, R. Pärismaa, and M. Piirsalu, Organic Reactivity, 21, 83 (1984).
4. V. Nummert, M. Eek, and M. Piirsalu, Organic Reactivity, 18, 363 (1981).
5. T. Puissa, V. Nummert (Maremäe), and V. Palm, Organic Reactivity, 2, 697 (1972).
6. B. Capon and B.C. Choch, J. Am. Chem. Soc, (B), 472 (1966).
7. A. Uri, A. Tuulmets, and V. Palm, Organic Reactivity, 20, 122 (1983).
8. V. Nummert, Organic Reactivity, 18. 268 (1981).
9. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol. 5 (II), Moscow, 1979.
10. V. Palm, Uspekhi Khimii, 9, 1069 (1961).
11. V. Nummert and M. Piirsalu, Organic Reactivity, 11,921, (1975).
12. V. Nummert, K. Ojassalu, and M. Piirsalu, Organic Reactivity, 23, 83 (1986).
13. V. Nummert, K. Ojassalu, and A. Bogdanov, Organic Reactivity, 26, 92 (1989).

Organic Reactivity
Vol.26, 3(95)-4(96) 1989

CODING OF BENZENOID AROMATIC COMPOUNDS AND THEIR DERIVATIVES

M.E. Dokhtmanov and Yu.A. Kruglyak
"Konservpromkompleks", Odessa Odessa M.V. Lomonosov Institute of Food Industry Technology

Received August 3, 1988

Technique for canonical coding of benzenoid aromatic compounds, their substituents and heteroderivatives is suggested. It is relatively simple, compact and universal to be applied in relation to the indicated class of compounds. The procedure of obtaining the canonical code is described. Examples of codes for a series of compounds of this class are given. The suggested coding technique is compared to those used before.

The progress made in the chemical information theory has called for working out the coding system of chemical canpounds. Unfortunately, there are several problems to be solved yet in connection with coding of polycyclic compounds?.

The present paper deals with a rather important group of polycyclic compounds - benzenoid aromatic compounds (BAC), their substituted and hetero derivatives. The structures of the BAC molecules can be well described on a hexagonal network by means of polymino hexagons ${ }^{2}$ (which is a contiguous part of a planar hexagonal mosaic). For the computer input, storage and processing of the information on polyminos, we need such a method of their formal description
which would satisfy all the following requirements: 1) unambiguity of polymino restoration from the description;
2) compactness of description; 3) relatively simple and structurally understandable description; 4) convenience of its input, storage and processing.

In order to identify the polyminos it is necessary to introduce a canonical description which would adequitely correspond to the polymino. It is suggested that there is a certain formal description (one of polymino determiners) that can be built using conventional means, while the more complicated task of canonization of the description should be performed automatically, using a computer.

Here we give a possible formal description of hexagonal polymino embracing all these requirements. The sides of an equal-sided hexagon corresponding to the bensene ring are marked as follows:

Certainly, this is not the only possibility or marking.
A random hexagon in the polymino is chosen as the starting point; then the graph of continuity of the hexagons is built as an oriented tree with its roots at the initial hexagon chosen. ${ }^{\text {F }}$

When proceeding along the tree, we mark each hexagon with a letter corresponding to that inside the previous one to which the next one is connected. The branching routes, with an exception of the last one, will be put into the brackets. As a result, we get linear succession of letters a,...., f and brackets, which is actually meant to be the formal description of polymino.

Such a description depends on the orientation of the polymino of the plane, choice of the route covering the tree, as well as on the way of passing through it, and there certainly are several possibilities for doing it.

[^1]Thus, for instance, anthracene can be described as aa, (d) $a,(a) d$, $d d ;$ triphenylene - $a(f) b, e(f) d, c(d) b$, but also (f)(d)b, $a(b) f, e(d) f, c(b) d,(f)(b) d,(b)(d) f,(b)(f) d,(d)$ (f) b, (d) (b) 1 .

One way for obtaining the canonical description of the hexagonal polymino can be created as follows. Polymino is orientated on a surface in accordance with the nomenclature of IUPAC ${ }^{4}$. For cases when those regulations do not ensure the unambiguity of the orientation, we have worked out an algorithmic modification of the nomenclature regulation A22, guaranteeing the unambiguity of the BAC orientation on the plane ${ }^{5}$.

As the root, the first hexagon on the left in the basic horizontal line is taken. In order to create the covering tree, first, we number, from left to right the adjacent hexagons of the basic horizontal line. After that the hexagons adjacent to the first root that have not been numbered jet, will be numbered and connected to it in the lexicographical order of the side of adjacency. The procedure is repeated for the second, third, etc. hexagons until all the hexagons are connected to the tree. The branchings will be written in the order which is contrary to the lexicographical one. The canonical descriptions of a few BAC are given in Table 1.

The derivatives of BAC can be coded as follows. The vertices of an equilateral hexagon, corresponding to the benzene ring are marked as:

4
In the case of homo substitution (substituents of a similar type) the code of the BAC derivative will be obtained by insertion of the set of numbers corresponding to the places of substitution of the benzene ring into the fragment of the BAC code that represents this ring. At the same
time we suppose that the substitution type is known from the context, otherwise one must follow the procedure of hetero substitution described below.

In the case of hetero substitution (the substituents belong to different types), in the code of a derivative the substituted atom (group) should be marked after each number.

Caconical descriptions (codes) of a set of baC are given in Table 2.

In comparison with the line-formulae of Wiswesser ${ }^{1}$ that have been applied for BAC our canonical descriptions meant specially for BAC, are to our mind more definite, sasier to use in automatic treatment, as well as more descriptive.

Parametrio coding is an even aimpler and more compact coding technique ${ }^{6}$. Nevertheless, the means of coding that wo have suggested can have a wider range of application. Unlike perimetric coding, this technique enebles one to code quite easily the compounds with "holes", i.e. non-contiguous compounds (e.g. circulenes), as well as any substituents and hetero derivatives (it does not depend on the closeness oi the atom to the perimeter). This can be explained by the fact that, when moving along the covering tree, we can choose any hexagon of polymino (which would not be possible in the case of moving along the perimeter).

The method of coding of cycling systems by E.A. Geivandov ${ }^{7}$ appeals because of its stmplicity, although unjike our method, it does not ensure the canonical character of the code.

The canonical description of polimino can be used for solving the problems of isomorphism ${ }^{8}$. It can be used quite successfully in the case of computerized creation of the structural formulae of BAC. We have worked out a computer program that allowa us to oweate a canonical description of a benzenoid aromatic compound from its formal description, which is also checked against being unrealistic, during the coding process.

Canonical Description of Some Benzenoid Aromatic Compounds

BAC Canonical descrip-	
tion	
1	2

Anthracene

Phenanthracene

Priphenylene

Pyrene
(b) ab

Chrysene
aba

Table 1 continued
12

Benzo[c]phenathrene

Benz [a] anthracene
aab

Waphthac ene
ase

$\begin{array}{ll}\text { Picene } & \text { abab } \\ \text { Perylene } & \text { (1)a(b)a }\end{array}$

Benzo[e]pyrene
$a(f)(b) a$

Pentacene
saea

Dibenzo[c,g]phenanthrene

Dibenz $[a, j]$ anthrecene

Dibenzo[a,k]perylene

abcd

(c)aab

Canonical Description of Some Substituted and Hetero Derivatives of BAC
BAC and its canonical deacription

References

1. J.E. Banks, Naming Organic Compounds, Moscow, Chemistry, 1980, p. 280 (Russian translation).
2. P. Harari and A. Palmer, A List of Graphs, Moscow, Mir, 1977, p. 278 (in Russian).
3. O. Ore, Theory of Graphs, Moscow, Nauka, 1980, p. 77 (in Russian).
4. Chemical Nomenclature Regulations of IUPAC, Vol. 2., issue 1, Moscow, PIK VINITI, 1979, p. 41 (in Russian).
5. M. B. Dokhtmanov and Yu.A. Kruglyak, ZhOKh (in print).
6. M.Yu, Kornilov and V.I. Zamkova, Teoretitch. i eksperimentalnaya khimiya, 23, 54 (1987).
7. G.E. Vladuts and B.A. Geivandov, Automatic Information Systems for Chemistry, Moscow, Nauka, 1974 (in Russian).
8. A.A. Zykov, Foundations of the Graph Theory, Moscow, $\mathrm{Na}-$ uka, 1987, p. 15 (in Russian).

CONTENTS

P.D. Kartashova, A.I. Glaz, and S.S. G 1 t 1 s, Study of Medium Effect onto the Sate of Potassium 1,1-Dimethoxy-2,4-Dinitrocyclo- hezi-2,5-Dienste 147
T.P.Kulishova, G.D. Titakij, S.G. Sheiko, and B.S. Mitchenko, Influ- ence of Leaving Group Nature and Mechanisms of Organic Bace Catalysis in Reactions of 1-X-2,4- Dinitrobenzenes with Piperidine in Benzene 155
A.N. Gaidukevich, E.N. S vechni- n a, Reactivity of Derivatives of Phenylanthrani- lic Acid. VIII. Kinetics of Alkaline Hydrolysis of 2^{1}-Derivatives of B-Dimethylaminoethyl Bster of 4-Chloro-NT-Phenylanthranilic Acid in Binary Dioxan-Water Solvent 170
J. J \& r and M.E \mathcal{I} ler, Effect of Ligand Volume on Affinity of Muscarinic Antagonists. 188
 Kinetic Analysis of Interaction of Bster Antago- nists with Muscarinic Receptor. 199
T. Tamm and M. Kareleon, Quantum- Chemical Investigation of the Reaction Field Ef- fects on the Polar Resonance in Disubstituted Ethylenes 211
V.M. Nummert and A. Bog danov, Ki- netic Study of Benzoate Hydrolysis. XVII Alke- line Hydrolysis of o-Substituted Benzoates in Concentrated Aqueous $n-\mathrm{Bu}_{4} \mathrm{NBr}$ Salt Solution...... 231
M.B. D okhtmanov and Yu.A. Krugl- y a k, Coding of Benzenoid Aromatic Compounds and Their Derivatives 250

РЕАҚЩИНННА СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕПИНЕНИИ.
Tом ХХУI. Вып. 3(95)-4(96). Июль-декабрь 1989.
На английском язнке.
Тартускии университет.
ЭССР, 202400, г.Тарту, ул. Фликооли, I8.
Vastutav toimetaja V. Palm.
Paljuadamisele antud 20.02.1990.
Pormest 60x84/16.
Kirjutuspaber.
Masinakiri. Rotaprint.
Tingtrükipoognaid 6,74.
Aryestuspoognaid 6,29. Trükipoogeaid 7,25. Trukiarv 350.
Tell. nr. 116.
Hind rbl. 1.30.
TU trükikode. BNSV, 202400 Tartu, Tiigi t. 78.

[^0]: " n / a " means that cavity radius is not applicable for $₫$ as phase.

[^1]: For explanations of theoretical and graph terms, see Ref.3.

