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INTRODUCTION 
 

 

 The subject of this thesis is what is called the 'Ontology Identification Problem' or 

'Ontological Crisis' in computational systems. This is a fairly new area of research in 

computer science that has important implications for building and understanding intelligent 

systems (Artificial Intelligence or 'AI' for short). The central aim of this thesis is to explore 

this new research area using tools from philosophy, in order to better understand the 

underlying issues and inform further research. 

 The 'Ontology Identification Problem' (OIP for short) in its core, is the problem of 

connecting different ontologies1 (or models) to the system’s goals in such a way that a 

change in the system’s ontology does not result in a change in its goal’s effect. Since the 

system models its environment, the goals must necessarily be modeled using the same 

categories that the model uses, i.e. be part of the model. If the underlying model changes 

(through autonomous learning, for example), so must the goals. The problem is, how to 

make sure that the goals still accomplish the same intended outcome in the world, even 

when the underlying categories change. 

 Since the problem itself has so far been only superficially discussed in the literature 

(of which there is little), there has been little work outside of simply trying to understand 

the implications of it, and sketching out possible research questions to move forward. The 

subject itself is complex, touching on a range of issues from the areas of philosophy, 

cognitive sciences, computer science, semantics and mathematics. My aim is to simplify 

further research of the problem, by showing that what we understand as a large and 

complex research question, can actually be divided into several smaller components, each 

requiring a different approach, some easier and some a lot more difficult to overcome. My 

thesis is that the 'Ontology Identification Problem,' which has so far been addressed as a 

single universal problem, can be seen as an umbrella term for a wide range of different 

problems, each of which has a different level of difficulty, and each requires different 

methods of approach, in order to overcome. In each specific computational system, any or 

all of these different problems can arise, and overcoming them might require different 

tools. 
																																																								
1	There is a difference between how the concept 'ontology' is used in computer science and philosophy. In 
philosophy, ontology refers to the study of the nature of reality and deals with very fundamental questions. In 
computer science, the concept of ontology is used to refer to the way representations of reality are built inside 
specific systems and is connected to the areas of knowledge representation and modeling of the systems.	
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 The first part of my thesis will focus on explaining the OIP in detail and its role in 

the more general area of artificial intelligence research, including future implications. The 

aim is to show the importance of this work, and the possible fruitful results for both 

building more stable computational systems that are capable of autonomous behaviour, and 

understanding the nature of category creation and how ontologies are constructed, 

maintained and changed.  

 The second and third part of the paper will focus on decomposing the wider 

problem into different sub-problems. The second part will focus on a wide range of 

examples, where changes in the model are fundamentally changes in the granularity of the 

model - changes where the model becomes either more or less detailed, while still 

modeling the same environment. An example of a change in granularity is the replacement 

of atomic theory by sub-atomic theory in physics. Differences in granularity might be easy 

to solve, or might be incredibly hard. I will focus on situations that can be described 

through simpler reductive theories, multiple realizability and incommensurability. The aim 

is to show how different situations can be solved using different types of approaches, each 

of which has their own advantages and difficulties, and I will argue that differentiating 

between them is useful for future research. 

 In the third part I will focus on examples where the central issue becomes that of 

context. In these cases the level of detail in the model stays the same, but the context 

changes sufficiently as to warrant a re-evaluation of certain categories or goal structures. 

The first sub-category of this type focuses on environmental context, where the larger 

context of achieving a certain goal might change, which warrants an evaluation of whether 

these changes should have an effect on the way the system presently operates. The second 

sub-category of this type of problem is concerned with social context. Different concepts 

have different meanings in different social and cultural contexts, and it is important for the 

model to take that into account. A pointing finger can be either neutral or incredibly 

insulting, depending on the specific culture it is used in. The aim is to show how these 

different problems warrant different types of approaches. 

 In the fourth part of my thesis I will briefly focus on two further problems in AI 

research that are connected to the ontology identification problem. The first is the case of 

warrantless goals, where a system might be given a goal structure that, after learning more 

about the environment, could turn out to be unfounded. For example, the goal of locating 

my sister in the world, when I don't actually have a sister. The second case is what is called 

perverse instantiation, where the goal structure of the system becomes (or is created) so 
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rigid, that in the case of complex goals, the end result can turn out undesirable. For 

example when the system is instructed to make humans happy, it simply puts all humans 

on a continuous dopamine drip. My aim is to explore how these specific problems relate to 

the general OIP and how to approach solving them.  
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ONTOLOGY IDENTIFICATION PROBLEM AND ITS ROLE IN THE 
FIELD OF ARTIFICIAL INTELLIGENCE 
 
 

Defining The Problem 
 
 
 A good way to start understanding the problem is through an analogy with humans. 

The world-view of any single individual is different and constantly changing. An important 

part of this world-view are our values. Some people value democracy, others don't. Some 

people value respectability, others put more value on authority, etc. The way we view the 

world also influences the way we set various goals in our lives (some of them explicitly, 

some implicitly). 

 For example, a devout Christian will be heavily influenced by the Ten 

Commandments and interpret the world around her through the Bible. So we could say in 

this case (simplifying the matter considerably for the purposes of an example) that the 

Bible and more specifically the Ten Commandments inform the model of the world that 

she uses. It's as if it’s the pair of glasses that tints the world she sees through her eyes. 

Since actions are also part of this 'model,' this person will set her goals in a similar fashion 

- they might be, for example, helping the poor, going to church every Sunday, choosing an 

occupation based on what the Bible approves of, etc. 

 Now lets imagine that one day this person stops believing in god. Maybe she finds 

too many inconsistencies in the scriptures, maybe she suffers a crisis of faith because of an 

external event. In any case, as she receives more information from the environment, the 

original model is no longer sufficient enough to support her actions. Eventually, she comes 

to believe the Bible is nothing more than a simple book. This transformation is in no way 

easy - if your world-view is fundamentally altered, you are forced to rethink your goals 

and aspirations because they were at least partly based on an important part of the previous 

model that's now gone. This situation can be called an ontological crisis. 

 This person might find some of the previous goals to still be desirable (e.g. helping 

the poor) and therefore continue with those. What she needs to do in this case, is to 

interpret and ground these goals in the new way she sees the world (i.e. his model). The 

justification through the Bible might be replaced with a justification through a moral 

theory of the common good or decency. The goal stays the same, but the way the concepts 

that she has informed are used, is different. 
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 Or maybe you are someone who has built his/her life around being ecologically 

conscious and the main grounding for that understanding has been that humans are creating 

global warming that must be stopped. What would happen to this person if it (simply 

speculatively) turned out that humans do not influence climate change very much? This 

person might still want to keep being ecologically friendly in his/her behaviour because of 

the positive effects he/she sees in it. He/she would still value these goals and would like to 

keep them. So the basis might change from global warming to respect for the environment 

and any retained goal would be redefined in this way. 

 Identifying and creating this new basis for understanding and motivating the goal 

so that it doesn't change is, in essence, the ontology identification problem - the question of 

how to match the old goals (that are still desirable) to the new model. Of course the 

previous examples were overly simplified, because at least in the case of humans, there are 

several complex processes happening in our mind and most actions are motivated by more 

than one basis. I might have a disdain for stealing because I have been a victim of it, 

because dishonesty is a negative trait for me, because I'm concerned about the possible 

legal and social penalties when I get caught and so on. If one of these motivators would 

disappear, then most probably my stance on stealing would still not change. The above 

examples were simply meant to give an intuitive understanding of what the central issue 

here is. 

 In the case of computational agents (i.e. artificial intelligences, from now on, 

simply referred to as agents), the analogy with humans is insightful, but comes with 

important differences. Humans have evolved over long time-periods whereas agents are 

created in controlled environments. Because of this, at least a certain degree of 

formalization is required in the original programming (this depends on the architecture 

used, but each requires, at least on some levels, a formalized approach, even genetic 

algorithms that mimic evolution). Also in the case of agents, their goals are not free in the 

sense people freely choose their goals, but are based on what the programmer has aimed 

for the agent to accomplish.  

 In these systems goals can be either defined explicitly or implicitly. In some cases 

they might be procedurally defined (e.g. Winikoff et. al. 2002). In other cases they might 

be based on maximizing a certain reward signal (e.g. Mnih et. al. 2015), in other cases the 

original process can be guided by humans, as with supervised learning, etc. Specific goals 

can usually be described in terms of utility functions. A utility function assigns numerical 

values to different outcomes and evaluates them such that higher preferred outcomes will 



	 8	

receive a higher utility value. An agent will try to maximize its use of the utility function 

by implementing outcomes that have the highest utility.  

 This should be taken as an abstract-level description and the way this is 

implemented can be very different depending on the architecture. A neural-net trained 

through reinforcement learning uses its reward signal as a measure of its success - in this 

case maximizing utility is getting the largest reward signal possible. Some mathematical 

models and decision-tree based architectures (e.g. AIXI, Monte-Carlo tree search) try to 

predict future events and choose their actions based on the most probable outcomes - in 

this case maximizing utility can be described as trying to make the best future predictions 

of the input that is possible. In hybrid systems, this becomes even more complicated and 

different interactions of different ways to maximize different utilities create a complex 

web. 

 So what is the ontology identification problem, when talking about computational 

agents? Peter de Blanc was the first person to define it in his 2011 paper:  
An agent with a fixed ontology is not a very powerful agent, so we would like to discuss an agent 
that begins with an ontology that its programmers understand and have specified a utility function 
over, and then upgrades or replaces its ontology. If the agent’s utility function is defined in terms of 
states of, or objects within, its initial ontology, then it cannot evaluate utilities within its new 
ontology unless it translates its utility function somehow (de Blanc 2011: 2).  

  

 A more comprehensive way to look at it comes from Eliezer Yudkowsky, who 

frames it as the problem of creating a preference framework for the agent, so that it 

optimizes for the same external facts (i.e. facts of the real world), even as the agent 

modifies its representation of the world. 'Preference framework' is in this case a more 

general term for complicated interrelations and generalisations of different utility 

functions. Another way to phrase this, is to say that we want to have the same results from 

these preference frameworks when working with different models (Arbital 2016)2. So if we 

have in a simple system, a specific utility function and the agent's model of the world 

changes over time, we need to have some way that allows the agent to reinterpret the same 

function in every new model. 

																																																								
2	The portal Arbital is a new project by Eliezer Yudkowsky that is aimed at building an environment where 
issues connected to AI safety can be discussed and that gives an overview of the latest theoretical research in 
various fields. Since the OIP is a field that is new and has seen little formal work so far, I've had to rely on 
Arbital for an overview of many of the recent theoretical discussions about the issues. Although currently the 
page on the OIP has been written by Yudkowsky and deals with research being done at MIRI that he leads, 
the page is set up in a way that does not identify the precise author and future additions and changes can be 
made by others. Because of this ambiguity, I have decided to reference the page itself and not the presumable 
author in order to be as precise as possible. 
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 Why is this problem important? When we think about different agents that we 

create, they all have specific goals that we would like to be realized. In order for an agent 

to fulfill these goals in the world, we need to give it some model of the necessary objects 

and categories that it needs to know to implement its goal. If we create a program to 

analyse gene sequences for example, we need to give it the necessary information to fulfill 

that goal. It needs to know that there are fundamental base-pairs that operate according to 

certain laws, that genetic information can be changed or destroyed in certain ways, etc. So 

when we give the program the goal of analysing a sequence, that goal will be worded in 

the same language, using the same information that it was already given. There has to be a 

connection from the model to the goal in such a way that it could be implementable from 

the agent's knowledge base. 

 But we also want the program to improve, so that it can do better analysis. So it 

might learn about new discoveries in the field of genetics through the internet, and modify 

its knowledge of genes accordingly. But whatever happens to the model, we want the 

program to still fulfill the same goals. This issue becomes even more important, when we 

start talking about generally intelligent agents with a wide variety of goals.  

 It is an important problem in computer science whether we are talking about simple 

intelligent systems (as exist today) or whether we are talking about generally intelligent 

systems. This is a relatively young area of research that hasn't become an actual practical 

problem in computer science yet, because it can so far be avoided through manual 

approaches. Todays' intelligent agents don't need a system where it is possible to change 

the representation of the world without the programmers involved, because other 

approaches simply work more effectively - the programmer either explicitly designs it all 

and the underlying structure remains static, or he gives some leeway, but is always in 

control of the parameters and uses a test mode (e.g. evolutionary algorithms and neural 

nets). It's easier to interfere manually than to create an autonomous system. 

 It does become more of an issue in the future as computers become more 

intelligent, because the nature of the problem is that it is development phase unpredictable. 

Which means that the specifics of the problem can not be accounted for during the 

development of the agent (2016). If we develop a program to analyse genetic sequences, 

we give it our knowledge of what genes do and our model of how they work and how to 

manipulate them. We can predict what the computer will do when we design it. Ontology 

identification becomes a problem when we can no longer predict, what exactly is going to 

happen. Maybe the agent learns that there are more fundamental parts to genes that we are 
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not even aware of. This unpredictability can result in unintended consequences ranging 

from malfunctions to errors in actions, which can have negative effects. 

 Although Yudkowsky himself has a more narrow view of what type of 

architectures are important and what not (Yudkowsky 2001), the ontology identification 

problem itself is somewhat universal and independent of any specific architecture. In this 

thesis I use the language of utility maximization and preference frameworks, because I 

think that it offers a level of abstraction that is necessary when talking about architecture 

independent problems. Although in contemporary debates, the concept "utility 

maximization" has become associated with a specific approach to building artificial 

intelligence, its underlying definition without the extra baggage of its current practical use, 

is general enough to warrant it. 

 There is a wider issue here that directly connects to the value of this thesis that 

needs to be considered. Although the OIP is defined as architecture-independent, there is a 

counter-argument to be made that it does not apply to all approaches and can therefore be a 

moot question in some contexts. This becomes a critical question especially in the context 

of agents that are designed as 'open-ended intelligences' where the goals of the system are 

not specified and it is given freedom to choose and evolve in its own way (Goertzel 2015, 

2016; Weinbaum, Veitas 2015). To understand this conflict, we have to come back to why 

the OIP arises in the first place. This is connected to intent. If we build an agent, our intent 

is to design it to realize a certain goal (or a complex web of many goals, but each of them 

in some way specified) and we want it to do that as effectively as possible (within the 

parameters). If the agent is intelligent enough to learn more about its external environment, 

then that only helps with our intent because it can make the agent more effective in its 

work. But the problem then is, if it changes its model of the world (on which its original 

goals were based), then we would also want it to continue doing the work that it was doing 

before. 

 When we talk about open-ended intelligent systems or similar approaches, this 

original intent is not there, or at least it is not central. This type of system is designed to 

change its goals, evolve, learn and do new things. In a way, these are two different 

paradigms for approaching the building of generally intelligent agents, and recent debates 

in AI safety have brought this chism into stark contrast (Goertzel 2015, 2016). There have 

not been sufficient advances in building generally intelligent agents, as to offer a finitive 

answer to this question. But even in the case of open-ended intelligences, I would contend 

that the OIP remains an issue, because it is still necessary that the agent be able to navigate 
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between different models with its goal structures remaining intact, even if the specific 

goals are not fixed and can change. Because even if the goal of the agent does not need to 

be preserved and can change, the causal connection from goal to action to result is needed 

to guarantee that the agent is acting in a logical manner.  

 I think that I have shown that where the original intent is present, the OIP is a 

significant problem for preserving the original goal and without that sort of intent, it is still 

necessary for the agent to be able to move between different models. This applies more 

generally than for a specific type of architecture, even if we can not know right now, 

whether it would be completely universal or not. So I would propose to continue from this 

point by using the utility maximization paradigm as an operational definition of the 

problem for talking about the OIP in a context-independent form. Since this is a 

philosophical paper and not a technical one, I will try to make more general arguments that 

may or may not apply to specific architectures or may need a bit of work in redefining the 

core issues to use. 

 I have described how our intent to have control over the results and retain the 

effectiveness of an agent is the underlying reason for talking about the OIP. But in order 

for that problem to arise, there are also some underlying criteria that the system has to 

fulfill to be sufficiently powerful to create this problem. The two most important of these 

are concerned with the level of intelligence (more specifically the learning capacity of the 

agent) and the level of autonomy. 

 As can be seen by the description of the OIP, it becomes more of an issue the better 

the agents learning capacities. This learning can, if sufficiently powerful, take the agent to 

new knowledge that we might not understand and this will require it to re-evaluate its 

model of the world around it, continually optimizing it to better describe what it observes 

in reality. But we don't want it to change its goals while it is doing it. So the question 

becomes - how to link an agents goal (preference framework) to its model of the world, if 

we don't know what that model will eventually look like? Development phase 

unpredictability becomes an issue when sufficiently strong learning capabilities can take it 

to new knowledge and models that we can not predict. 

 The other important capacity is that of autonomy, which is interlinked to learning. 

The OIP becomes more relevant, the more we let the agent act independently of human 
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supervision3. From the one side, increased autonomy is a side effect of increased learning 

capacity, because the more complex the knowledge that the agent learns becomes, the less 

we are capable of understanding it, thus warranting an approach where the agent is capable 

of independent decisions that are based on data and processes that we might not 

sufficiently understand to make those decisions ourselves. For example, the recent results 

demonstrated by Google Deepmind's AlphaGo show, that many of the actions that the 

system takes, are only vaguely comprehensible and often surprising to the scientists and 

engineers who built it in the first place (Russell 2016).  

 The other side of this has to do with trust. If we are sufficently assured that the 

agent is capable of better results in a robust way, we are more inclined to have it make 

decisions for ourselves. This will increase the agents autonomy in achieving its goals and 

necessitates a certainty that it will not go 'off the rails' when it becomes more capable. 

 

 

Practical Issues 
 

 

 There are several practical problems any scientist will be faced with when trying to 

create agents faced with the OIP. In this chapter I will look at some of the theoretical work 

that has been done by mathematicians and computer scientists in this field to give an 

understanding of how this problem is viewed from a technical standpoint. 

 We can be fairly certain we haven't yet discovered the fundamental ontology of our 

universe. The classic example that is used in this research field in the case of physical 

ontologies, is that of diamonds. Lets assume that we want to create a machine that 

produces as many diamonds as possible. For that we might give it an atomic model of the 

universe and then simply describe a diamond as a relation of four carbon atoms that are 

covalently bound. So the goal of the machine would be to find carbon atoms in the world 

and make sure that four of them would be covalently bound in a way as to create diamonds 

(Soares 2014: 4). 

																																																								
3	There is a tension here between wanting to have an autonomous agent but not wanting to allow autonomy 
in choosing its goals. When I am discussing autonomy in this thesis, I am referring to autonomy in the way 
that the goals are achieved. There is a wider issue here that deserves its own separate analysis, of whether 
systems that have great autonomy and high intelligence but restricted goals can ever be robust enough to 
exist. There is also an ethical question here about whether it is moral to restrict the autonomy of an intelligent 
agent, even if it's a machine. I will not focus on these issues in this thesis. 
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 But lets assume that the machine has a learning algorithm and eventually discovers 

that the world is actually made up of protons and electrons, not atoms. So its model of the 

world changes. But its original goal was worded in a way that connected it to atoms, so a 

problem arises of how to redefine the goal in such a way that the intent of the agent stays 

the same. We can be fairly certain that we have not yet discovered the most fundamental 

basic categories of our universe - therefore we can not be sure that any model that we give 

to the agent will not change with further knowledge (2014: 4). 

 So one important open question becomes, how to identify something without 

referring to only its constituent parts? If we define something only through its smaller parts 

that we consider fundamental and build the system around this, then when we discover 

more fundamental parts, we will be faced with problems relating to the connections 

between the model and the goals. We can't build a model purely from the ground up, 

starting with the assumption that we are describing everything from their smallest 

constituent parts (Arbital 2016). 

 We will also have difficulties understanding a computational agents world model. 

How to identify something in an agents world model without knowing its exact structure? 

A good example used to illustrate this point is AIXI, which is considered to be the most 

powerful theoretical mathematical model currently used to describe computational 

processes. 

 AIXI, in very simple terms, is a system that consists of the agent, environment and 

goal. Its input channel, output channel and reward channel all consist of binary strings, e.g. 

Turing machines. AIXI considers all computable hypotheses of how its output strings 

might be creating its sensory inputs and rewards, and creates probabilistic distributions of 

these hypotheses, continuing at each time step with the ones that have so far been capable 

of  predicting its input and offer the greatest rewards (Legg, Hutter 2006, 2007: 26-27).  

 Rob Bensinger offers a succinct summary of the actions AIXI takes on each time 

step: 

AIXI can take in sensory information from its environment and perform actions in response. On 
each tick of the clock, AIXI... 

... receives two inputs from its environment, both integers: a reward number and an observation 
number. The observation 'number' can be a very large number representing the input from a 
webcam, for example. Hutter likes to think of the reward 'number' as being controlled by a human 
programmer reinforcing AIXI when it performs well on the human's favorite problem. 

... updates its hypotheses, promoting programs that correctly predicted the observation and 
reward input. Each hypothesis AIXI considers is a program for a Turing machine that takes AIXI's 
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sequence of outputs as its input, and outputs sequences of reward numbers and observation 
numbers. This lets AIXI recalculate its predicted observations and rewards conditional on different 
actions it might take. 

... outputs a motor number, determining its action. As an example, the motor number might 
encode fine control of a robot arm. AIXI selects the action that begins the policy (sequence of 
actions) that maximizes its expected future reward up to some horizon. 

The environment then calculates its response to AIXI's action, and the cycle repeats itself on the 
next clock tick. (Bensinger: 2014) 

 

 AIXI, in its essence, is an amalgamate of probalistically tiered Turing machines. 

An AIXI agent might be extremely successful in maximizing the amount of diamonds 

found in the environment, which would lead us to intuitively postulate that there must be 

some category of 'diamond' in its streams. But where exactly in the strings of 1s and 0s is 

the category of 'diamond' located? Without this capability of recognizing the category, it 

might turn out to be extremely difficult to develop algorithms that can effectively help to 

translate goals between different models (Arbital 2016). I discussed before that solutions to 

the OIP can be either implicit or explicit and that will very much depend on the specific 

architecture being used. Here we can see some problems that a successful model that 

implicitly might solve the OIP, can create for us as the original builders of the agent. 

Because of this problem, which can have negative effects on our progress in AI or on 

creating systems that seem safe but can have unintended consequences, because we don't 

understand the basis of its success or robustness in moving between models, it seems that 

architectures, where categories can be located more explicitly by an outside observer, are 

preferrable to systems that act as a black box in this regard. 

 Perhaps working with such a base-level model, even if powerful for describing 

computational processes, is not suited when dealing with issues of ontology identification? 

There is also the possibility of using higher level formalisms and it is one potentially 

fruitful avenue of research to identify a formalizable system that is on the one hand, rich in 

information, and on the other, technically implementable (2016). One option would be to 

look at mid-level formal systems, like predicate logic or second-order logical systems, 

which allow for better understanding than strings of Turing machines. Another option 

would be to try to work with a higher-level system that tries to capture natural categories 

(like 'diamond') and describe the world from a mesoscopic perspective, making it easier for 

us to understand (one source of inspiration would be the Cyc project that tries to map an 

ontology based on human common sense) (2016). 
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 One way that some people have interpreted this issue, is to have some kind of a 

transparent prior, that would actually be capable of connecting the utility function to the 

hypothesis space that an AIXI type system uses. If AIXI's hypothesis space consists of 

Turing machines that consist of binary strings, then the possible content of these can be 

extremely wide and the different ways that it can maximize 'diamonds' can contain 

different categories, some of which don't even create an explicit or implicit representation 

of a diamond. To solve the ontology identification problem, we might need to restrict this 

to something less general than simply a binary string that's capable of calculating the 

correct outputs. This prior would have to bind the description of a diamond to the correct 

strings. So to write a formal utility function would mean in this case, that the function has 

to read the Turing machine, decode the model contained in that string, and identify the 

concept resembling a diamond (2016). 

 These two representation problems - the problem of defining something without 

only using its constituent parts and the problem of locating a category in a system making 

use of implicit and not well-defined categories - are the general technical backdrop for the 

further discussion of various different sub-categories of the OIP.  

 Another important practical consideration is, what might the agent do when it is 

faced with an OIP that it can not resolve? In the case of the diamond maximizer used 

before, Yudkowsky identifies that one probable reaction from the agent would be to 

assume that the world is still based on atoms, but that it is being fed in its input an illusion 

of sub-atomic particles. So it will assume that the world that it views is not real, and tries 

to maximize its utility for other possible worlds (2016).  

 Stuart Armstrong (2011) has postulated that there are different things that might 

happen to an agent’s utility function if it's faced with an ontological crisis: 

 

Figure 1. Dangers of an Ontological Crisis 

 

Type of crisis Notes Danger 

World incomprehensible to AI Very unlikely None 
Utility completely scrambled, AI 

unable to influence it Uncertain how likely this is Low 

Utility scrambled, AI able to influence 
it We may be able to detect change Very 

High 
Lots of noise added to utility Difficult to detect change Maximal 

Some noise added to utility Small chance of not being so bad, some 
precautions may remain useful. High 
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 As seen in the table, he sees the most dangerous effects to be those that we will not 

be able to perceive ourselves, because they get lost in the noise, and therefore several 

safeguards that we develop, might not work. This basic typology of the effects of an 

ontological crisis is useful, but deserves further development. Playing with different toy-

models or situations and trying to understand what goes wrong in each of these, can help 

us better understand how to solve the original problem. 

 A connected area of research is the question of creating world-models that contain 

the agent itself. As the more critical reader might have already seen, one of the most 

glaring problems with AIXI is, that it separates the agent from the environment. This 

makes creating the system a lot easier, but ignores all sorts of problems that are related to 

real-world implementations, where the agent doesn't only have to consider the 

environment, but also its own presence in the environment and therefore the environments 

effect on itself. Soares and Fallenstein have conducted considerable research in these fields 

for the past few years, starting with specifying the problem of naturalized induction and 

giving new insights into concepts like self-reference, self-reflection and self-realizability 

(Fallenstein, Soares: 2014, 2015a, 2015b. Soares: 2015). Many other architectures also 

face similar problems. Advances in this related field will have considerable impact on the 

field of ontology identification, concerning the issue of creating realistic world-models. 

 I will proceed to showcasing different types of the OIP that have currently been 

discussed under a homogenous heading in the literature (or not discussed at all). Each of 

these sub-categories can be solved using different tools and methods, simplifying the 

general problem considerably. 	  
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GRANULARITY 
 

 

 Granularity makes up an important class of problems in the OIP. Granularity is 

defined as the extent to which a system can be described in the context of distinguishable 

smaller parts. This means that there can be different levels of granularity on which a 

particular system can be described. For example, on a molecular level, water is described 

as a collection of water molecules. On an atomic level, each of these molecules can further 

be described as a collection of two hydrogen and one oxygen atom. Through this, water 

can be described as a collection of collections of hydrogen and oxygen atoms. Both 

descriptions give a full description of what water is on a physical level, but one has higher 

granularity (atomic) than the other, because it starts from more basic categories that are 

smaller than in the case of a molecular description.  

 Moving between these different levels of granularity is a major part of the OIP and 

gives us the basis of establishing the first sub-categories in the wider problem, each with a 

rising difficulty in solving in a robust way. Granularity is mainly concerned with models 

that try to describe physical systems but can also include more abstract categories. There 

are different ways of moving between granular models. The distinctions made here of 

simpler reductive theories, multiple realizability and incommensurability play an important 

role in both practical and more fundamental, theoretical ways. 

 The aim of this thesis is not to get involved in the much wider debate on the nature 

of reductionism in scientific theories or in the underlying reality. In this I will reserve 

judgment and ignore the subject as much as possible, because that question in itself would 

need to be addressed on a much more substantive level than a master's thesis permits. 

 Instead, my aim is to show that in the case of the OIP, there is a much more 

practical and nuanced way of approaching the issue by looking at it in different sub-

categories and that what has so far been mainly seen as a homogenous issue can actually 

be considered multiple different issues with very large differences in the difficulty of 

solving them. I argue that in this context, there is enough empirical and theoretical 

justification for each of these approaches to be considered separately and of value in and of 

themselves and each of these approaches has the best explanatory power in the contexts 

that they are applied. 
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 The basis of creating these sub-categories is not a statement of a solution to the 

wider problems of reductionism. By that line of argument, it is also not a stronger 

statement of a definitive stance on the possibility of a general solution to the OIP. A strong 

statement in this case would be, that there actually exist ontologically and 

epistomologically different approaches to different types of problems in changing a model. 

I will suspend judgment on that statement. My claim is of a weaker form. It might very 

well be that future advances in computer science, mathematics, physics or philosophy lead 

us to a unified theory of reductionism or of the OIP . But what seems necessary at this 

point, and what I will try to show in this thesis is, that the present approach can not start at 

the more difficult questions. In order to (possibly) come to a unified theory, we must first 

understand and apply its different parts, and it is easier and more productive to approach 

this very young research field by concentrating on the low-hanging fruit. This will help to 

focus practical research on more specific problems and not presume the solving of larger, 

more complex issues before progress can be made. 

 

 

Simpler Cases of Reduction 
 
 
 

 Examples of the OIP that fall under this heading might be the easiest to solve. 

Ronald Enticott remarks in his essay on reductionism that "discussions of reduction and 

related issues in the philosophy of science are complicated by at least two factors: 

ambiguity, or multiple concepts of reduction, and ambition, or the range of cases to which 

a given concept of reduction is thought to apply" (Enticott 2012: 146). There exist a wide 

range of different reductionist theories in philosophical literature, each with its own 

limitations. For our purposes, it is enough to note, that our aim is not to defend some 

general approach to reduction but to explore different tools that these theories offer to 

solve different problems of the OIP. As Enticott remarks:  
There is a significant difference between providing an account of scientific reduction versus 
defending a broad philosophical vision of physicalistic monism whereby all theories are either 
reducible to or replaceable by theories in the physical sciences. [...] Hence, theoreticians should be 
prepared to apply those concepts of reduction to the appropriate range of cases where the world 
happens to comply even if the world does not always so comply (2012: 147-148). 
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 I will focus on the explanatory power of some of these approaches to different 

examples. Not all of them will be looked at here.  

 The underlying connection in this context will be that all of these theories give us, 

in some way or another, a method of connecting a category in one model to a category in 

another. These methods are called bridge laws, and given that a situation can be identified 

where a particular bridge law applies, the movement between the two models will be 

straightforward.  

 The classical example of a reductionist model is that of Nagel: "A reduction is 

effected when the experimental laws of the secondary science (and if it has an adequate 

theory, its theory as well) are shown to be the logical consequences of the theoretical 

assumptions (inclusive of the coordinating definitions) of the primary science" (Nagel 

1961: 352). For Nagel, if the theories use identical concepts, then they are homogenous, 

whereas, if there are differences in the concepts, you will need the help of coordinating 

definitions, which are his bridge laws. Theories that use the same concepts do not create 

particular ontological problems and therefore are not so interesting in the context of this 

thesis. Fodor describes a general way of looking at the purely reductivist approaches that 

interest us here: 

 

(1) 𝑆!𝑥 →  𝑆!𝑥 

(2a) 𝑆!𝑥 ↔  𝑃!𝑥 

(2b) 𝑆!𝑥 ↔  𝑃!𝑥 

(3) 𝑃!𝑥 →  𝑃!𝑥 

 

 ... where 𝑆! is the reduced theory and 𝑆! is the reducing theory and  𝑃! , 𝑃! are 

sentences in those theories. A necessary condition for the reduction of (1) to a law of a 

more fundamental system (i.e. physics), is that (2) and (3) have to be laws as well. And for 

any general system S, all its laws need to be reducible in such a way. 𝑃! and 𝑃! are meant 

to be as some kind of predicates and (3) the law that connects them. In this example, (2) 

would be what could be characterized as a bridge law that connects two different systems. 

The important part of Fodors definition is that the characteristic feature of these bridge 

laws is that they contain predicates of both the reduced and the reducing system (Fodor 

1974: 98).  
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 Some examples that work well within a simple reductionist model are the 

molecular theory of heat or the physical explanation of the chemical bond (1974: 97). In 

both these cases, you can establish a reductionist connection between the more general and 

the more specific model.  

 The important question that arises from any reductivist approach, as can be seen 

from these previous descriptions, is what kind of knowledge is required to represent the old 

state in the new representation. If the knowledge required to move from one state to 

another can be simply acquired through more information from the environment, then 

moving between these models does not seem too difficult. For simple homogenous 

connections, the only information required is how the specific category fits into the wider 

model, which can be derived from empirical observation. In heterogenous cases, this 

information can be derived with the help of bridge laws and provided some predicates 

from both systems can be established to be present in the bridge laws in a law-like 

formulation. 

 This process becomes more difficult, when in addition to knowledge that can be 

derived from simply observing the environment of the particular category, a different sort 

of more general understanding is also required. For example, moving from a sub-atomic 

model of physics to a quantum level one, will probably require a wider understanding of 

quantum-level effects, which behave in an entirely different way than regular physics. 

Simply reducing a category to a more granular model would not be enough to accomplish 

this and overcome the discrepancy between the model. 

 The basic justification for this sub-category is based on the existence of bridge 

laws. All OIP problems that can be solved by some bridge laws of identity, can be 

analysed in simpler reductive approaches. There are many more reductive approaches that 

I will not go into right now, like Schaffers theory and its many continuations. Suffice to 

say, that if a specific OIP can be overcome with the assistance of bridge laws (or by simple 

homogeneity), it would provide a more straightforward solution than can be found in the 

later chapters.  
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Multiple Realizability 
 

 

 Multiple realizability describes a situation where one category on a certain level of 

granularity gives justification for different categories on another level of granularity. For 

example, in the mental sphere, multiple realizability describes how a psychological kind 

like pain can be realised by many distinct physical kinds. Either two different physical 

systems (like a human being and a chimpanzee) can have the same psychological states or 

a single physical system (like the human brain) can realize the same psychological state 

through different states of the same system (Fodor 1974).  

 Multiple realizability does not only have to apply to the connection of physical and 

mental states. Effects of this kind have also been observed, for example, in biology 

between the relations of molecular level states and higher level states, like in the case of 

Mendelian genetic traits (Hull 1972, 1974, 1976). Because these types of examples offer 

many possibilities for a certain category to realize in a model of another level, these 

problems can not be solved by simple bridge laws because they don't guarantee the use of 

the correct concept. Kitcher (1984) offers an example of an argument for why moving 

between the systems of classical genetics and molecular genetics, it is not possible to 

simply use reduction as the explanation of the connections between these models. Michael 

Strevens notes that Kitchers argument boils down to three central parts: 
1) Classical genetics does not contain the kind of general law's required by Nagel's (1979) canonical 
account of intertheoretical reduction. 
2) The principal vocabulary of classical genetics cannot be translated into the vocabulary of lower-
level sciences; nor can the vocabularies be connected in any other suitable way (that is, by 'bridge 
principles'). 
3) Even if the reduction were possible, it would not be enlightening, because once you have the 
cytological explanation of genetic phenomena, the molecular story adds nothing of further interest. 
(Strevens 2016: 153) 

  

 Bridge laws, in cases of multiple realizability, will no longer be effective and do 

not offer adequate tools for overcoming the problem. In the context of the OIP, it is 

important for the agent to realize that certain higher-level more universal phenomena can 

occur even if the lower-level systems are different. And that these higher-level phenomena 

are very similar or near-identical. For example, if two people are both feeling pain caused 

by the same source (e.g. extreme heat), then although the underlying physical systems 

differentiate (differences in brain activities), the cause of these reactions is the same. We 
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would prefer the agent to recognize that these situations are similar and not different and 

that both people are experiencing what could be described as pain. 

 One obvious idea to solve this issue that comes to mind, is studying peoples 

behaviour and physical facts about them. People react to being burned in a very similar 

fashion and their bodies go through similar injuries. Although humans can exhibit the same 

mendelian traits based on different gene combinations, the fact of having blue eyes, for 

example, is itself information from the environment that can be used to establish 

similarities. But this type of behaviourism can lead astray in the case of cognitive 

phenomena and has been strongly rejected as an explanation for psychological states (e.g. 

Block 1981, Putnam 1963). So depending on the situation, behavioural or other 

information from the environment can offer some clues as to how to identify or solve a 

case of multipe realizability or not.  

 Multiple realizability problems might also be solvable either by using wider 

theoretical knowledge (requiring the agent to understand the theory behind the categories) 

or by some sort of effectiveness evaluator, that looks at the different ways a category in 

one model can give rise to a category in another, and which of these multiple possibilities 

in the new model offers the best explanatory power in a specific situation, or creates a 

more robust system, or is more effective. Theory understanding requires more than simple 

analytical approaches or further empirical knowledge, making higher demands on the 

agents properties. As Kitcher shows, in certain cases the vocabularies of the different 

theories can be untranslatable. This type of problem will become a focus in the next 

chapter.  

 Evaluating the effectiveness of the specific categories would give positive results in 

a very narrow context. For one, it has the problem of requiring complete knowledge of the 

environment in order to work. An effectiveness evaluator is useless if the agent does not 

have enough information as to know that certain gene combinations can give rise to 

different physical characteristics. If the agent only knows that HERC2 gene adjacent to 

OCA2 gene can result in blue eye colour but is unaware of other genes that influence eye 

colour in different ways, it would not even realise that it is faced with a situation of 

multiple realizability. Evaluating effectiveness could also do a poor job in trying to 

generalize mental categories from various physical categories such as in the case of 

realizing that different patterns of brain activity can be a source of pain.  
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 The above discussion seems to point to a direction where a wider solution to 

multiple realizability problems requires theory understanding of the sort discussed in the 

next chapter, making it an extremely difficult problem to solve. But it also seems that in 

certain specific circumstances, multiple realizability problems can be solved through more 

empirical knowledge and might not require understanding of the theory behind it. These 

approaches do not seem to give a guarantee that the system will indeed continue 

accomplishing the original goal and the intent behind it, but do seem to limit the possibility 

of error. 

 In conclusion, multiple realizability problems are by difficulty, somewhere between 

problems that can be solved by analytical methods using bridge laws, and problems where 

there is an incommensurability between the two models, requiring entirely different 

approaches. I've described several ways how these problems can be approached and 

depending on context, the problem might be more easily solvable (further knowledge from 

the environment might contribute towards a solution) or become extremely difficult 

(requiring an understanding of the theories behind the different models).  

 

 

Incommensurability 
	
 

 In this chapter I will look at changes in categorisation between different levels of 

granularity that can not be made compatible with each other through analytical methods 

and therefore there are no straightforward connections. Feyerabend, in his "Explanation, 

Reduction and Empiricism," (1962) asserts that whenever we are talking about universal 

theories, like Newton's theory of gravity or Maxwell's equations, simple replacement 

methods of the type described by Nagel and others, don't offer an adequate account. 

Reductionist methods are capable of addressing the "more pedestrian parts of the scientific 

enterprise" (Feyerabend 1962: 28). But in the case of general theories, there is a complete 

replacement of the ontology of the previous theory by the ontology of the new theory 

(1962: 29). 

 He insulates two key parts of reductionist theories by using Nagel as the example: 

Any reducted theory needs to be deducible and that meanings are invariant with respect to 

the process of reduction (1962: 33). Feyerabend shows that in many cases (e.g. moving 

from Galilean astrophysics to Newton's laws of gravity or from an Aristotelian 
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understanding of inertia to a Newtonian understanding of inertia) the assumptions of 

deducibility and invariability do not hold and can not be true if we wish to make such a 

transition: "An analysis of the character of tests in the domain of theories has revealed, 

moreover, that the existence of sets of partly overlapping, mutually inconsistent, and yet 

empirically adequate theories, is not only possible, but also required" (1962: 67).  

 In most cases of moving from one universal theory to another one, the content of 

the concepts changes (even if the naming of those concepts remains the same) and there is 

no logical relation between them. A reductive approach would require that any new theory 

be connected to the framework of the existing theory, e.g. that all physics would have to be 

complementary to classical physics. But as Feyerabend notes, it is conceivable, and indeed 

probable, that a theory may be found where the conceptual framework would be just as 

comprehensive and useful as the current one, without coinciding with it (1962: 88). 

Newtonian mechanics and Einstein's relativity both do a very good job in explaining the 

motion of planets and the concepts used in both theories are sufficiently rich to formulate 

all the necessary facts - yet the concepts used are very different and bear no logical relation 

to each other (1962: 89). They are only connected by the same empirical knowledge that is 

used to formulate the theories.  

 This incommensurability of certain concepts demands a more liberal approach to 

defining the meaning of them. A movement from one theory to another can not be made 

simply on logical grounds through bridge laws or other analytical methods or by collecting 

more empirical information, but can in certain situations require the rejection of the 

content of the concept. What does it mean for the OIP? It represents a fundamental 

problem that might be extremely difficult to overcome (some would say impossible). The 

question of how understanding is achieved or what understanding is, along with the 

question whether machines can achieve real understanding and if so, what would be the 

necessary and sufficient criteria for such a system, is again a wider topic that deserves its 

own thesis (see for example, the debate around Searle's Chinese room argument, Searle 

1980, Ray 1986, Boden 1988, Chalmers 1996, etc.). As I've noted before, my aim is not to 

offer solutions to the various philosophical problems connected to the OIP that other 

people have spent a lifetime trying to answer. I've simply limited myself to showing how 

answers to these wider questions will have an effect on the OIP and how they can be 

helpful in solving specific sub-problems of the wider problem. 

 In other sub-categories that are described in this thesis, I show that in many cases 

the problem can be overcome (or made easier) by either the use of logical connections or 
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by the use of further empirical data. In the case of incommensurability, this is not the case. 

As Feyerabend shows, incommensurable theories can make use of the same empirical data, 

but use different conceptual frameworks to construct different theories (within a margin of 

error). Invariance of the necessary concepts is not required.  

 From the perspective of the agent, this can possibly be dangerous. 

Incommensurable problems require a degree of freedom in the way that the original model 

is built, so as the specific categories used can make use of different content. Moving from 

a world-model based on Newtonian mechanics to one based on Einstein's relativity 

requires the agent to re-interpret the concepts of mass, light, etc. If these original concepts 

were used as the content of the preference framework of the original goal, this can make 

the preservation of the goal difficult.  

 It seems that this issue can not be solved by simply using analytical methods and 

acquiring new information from the environment. Some kind of understanding of the 

theory behind the concepts is required by the agent, which makes this the hardest problem 

of the OIP to overcome.  
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CONTEXT DEPENDENCE 
 

 

Environmental Context 
 

 

 The first type of contextual OIP problems is something I would call environmental 

context problems. Stuart Armstrong has recently independently followed the same line of 

reasoning, postulating that what is known as 'out of environment behaviour,' is in fact a 

problem of the system going through an ontological crisis. He defines out of environment 

behaviour as a case, where "an AI that has been trained to behave very well in a specific 

training environment, messes up when introduced to a more general environment" 

(Armstrong 2016).  

 Armstrong sees this as an example of a situation where "the AI has developed certain 

ways of behaving in reaction to certain regular features of their environment. And 

suddenly they are placed in a situation where these regular features are absent [...] 

because the environment is different and no longer supports the same regularities (out-of-

environment behaviour)" (Armstrong 2016). This is a concise way of defining problems of 

environmental context. It is important to specify that this problem can arise in both 

directions - either the environment becomes more general and the categories used in the 

specific context are no longer valid to describe the environment, or the environment 

becomes more specific, and the more general categories are no longer enough to support 

the features in those categories. While the former seems to be more prevalent, we can 

identify some specific examples for the latter as well. From here, it is worthwhile to look at 

several examples to see how this problem of context can play out differently in different 

situations.  Reformulating de Blanc's (2011: 5-7) practical example (imagine that we have 

a world consisting of a corridor of four squares and the computer occupies one square at a 

time and can move left and right. The goal of the computer is to reach the right end of the 

corridor.), lets change the world-model and make it a 4x4 square: 
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← AI →  

    

    
 Figure 2. 4x4 square of movement 

 

 The agent is still only able to move left and right but it sees a world much bigger 

than its movement space. In the case of a square, achieving the goal isn't a problem, 

because it can still move to the right end, since it doesn’t matter what row you are moving 

in, you always end up on the square to the right. But what if we make the first row five 

squares long and put the agent on the second row? 

 

    	

← AI →  

    

    
 Figure 3. Irregular movement space 

  

 It is not obvious what would happen, because its movement space no longer allows it 

to move to the square in the right end. The movement space stays the same, but the context 

created by the world-model changes. 

 A more practical example would be an agent that is tasked to carry out simple 

everyday assignments on our planet. These could be building housing for people, driving 

them from point A to point B, etc. The choice of actions would be based on their overall 

effectiveness in improving, for example economic growth in the environment it takes its 

actions in (limited to the planet, a certain city or street, etc.). Now, if it were to discover 

that there is an entire universe out there that makes Earth seem insignificant in size (e.g. by 

learning astrophysics), the utilities it will assign to its present activities might fall 

extremely low and the agent could be led to undesirable actions. What made sense in a 

more specific environmental context (driving someone to work so that they can be more 

productive) might not make sense on a larger scale (what's the effect of one person driving 

from A to B in a cosmic context? Indistinguishable from zero probably). This would be an 

example where moving the model from a specific environment to a more general one 

would be undesirable. 
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 We can also find cases where it might be undesirable to move from a more general 

environment to a specific one.4 For example, if we have an agent that is built to give 

economic advice on the level of macroeconomics, and through that maximize economic 

growth (like in the previous example), it will use as a guideline certain models and theories 

that describe the economies features on a general level. So it might work from the basis of 

different Keynesian or Monetarist theories to predict and describe current macroeconomic 

trends. If we were to restrict its environment to a specific household, its features and 

categories would no longer be sufficient to give effective advice. Any suggestions made 

from such a small sample would probably not be applicable to the wider economy. For 

example, currency prices can have major economic effects on a state, but have less of an 

effect on a single household. This would cause the agent to underestimate the effect of 

currency prices and therefore give advice that can have negative effects. 

 In both of the above cases, the resulting environmental shift was undesirable to 

achieving the goal of the agent. But there are also cases where this shift in environmental 

context can be very important and improve the agents effectiveness. An example of this 

kind can be seen in natural-language processing. Lets assume that we have an agent that 

takes as its inputs only letters. If the original decision-making method is making judgments 

purely based on letters, but the natural-language processor creates a model of language 

(e.g. when analysing natural texts and learning from them) that includes punctuation 

marks, then there would be an ontological crisis.  In this case, the agents model of the 

language environment it works in has expanded beyond its original decision-methods. 

Including punctuation can have drastic effects on the meaning of a text. Here is an example 

of differences in meaning based on one sentence, starting with the sentence without any 

punctuation marks: 

 

1. You know what this is 

2. You know what, this is… 

3. You know what this is? 

4. You: know what this is? 

 

 In each case, the letters in the sentence stay exactly the same, but the different use 
																																																								
4	In all of these cases it is important to remember that we are talking about the problems an agent will face if 
the only change it goes through, is limited to the environmental context. It is obvious that every specific 
example here can be overcome by modifying the system itself in a general way. But how to achieve this 
larger modification in a safe and autonomous way is the entire core of the problem discussed. 	
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of punctuation marks creates entirely different meanings. In this case we could say that the 

expansion of the model to a wider environment can have positive effects (if the resulting 

ontological problems can be resolved), by creating a more nuanced understanding of the 

use of language.5 

 As the previous examples demonstrate, there are two possible ways that the agent 

should react to changes in the context of its environment, depending on the situation: 

 

1. Ignore the added context in its decision-making. 

2. Re-define its preference frameworks to take into account the extended model. 

 

 For both solutions, we can describe situations where they would be the correct 

choices. In our first example of extending the model to cover the universe, it seems 

intuitive that the agent should not extend its considerations to the added part of its model, 

because that part is not relevant. The original intent was to be effective in the context of 

the economic forces in society, and changing that to the context of a wider world would 

change the intent considerably. In the case of language-processing, the opposite seems 

true. The intent of having a language-processor is to have a machine that can understand 

language. Since including punctuation marks in its model improves the systems capability 

of understanding language considerably, the change in the context of its work is still 

connected to the original intent.  

 The basis for choosing between actions one and two would therefore have to be 

connected to preserving the original intent of the goal. One possible approach to solving 

the OIP in the case of environmental context could be connected to using counterfactual 

simulations. Every time the model of the agent changes in a way that its environmental 

context changes, it could run simulations on whether the change in the context makes the 

original goal of the system more or less achievable.  

 This could work because changes in environmental context do not have to imply 

changes of the original categories used to describe its preference framework. If the goal of 

the natural language system is to produce text that is similar to what humans produce, then 

its goal can be described as some kind of percentage of similarity of the averages of its 

																																																								
5	This example also has some qualities that are more akin to a problem in granularity. In most real-life cases, 
more than one of these different subproblems can be present at the same time. But as the main differences in 
the two models can be described as differences in the environment of features the system is working in 
(environment of letters and environment of letters and punctuation marks in the latter case), it is more suited 
here.	
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own texts and those produced by humans. Changing the context by including punctuation 

marks doesn't necessarily imply changes in the way that the success of the system is 

evaluated - it merely implies changes in the actual rate of success of the agent.  

 So the original language processor that only used letters would have a pretty low 

rate of success when compared to human texts, because they would be so much different. 

The inclusion of punctuation marks would make the texts much more similar and therefore 

improve the rate of success for the agent. But in both cases, the evaluation process remains 

the same.  

 It seems this kind of approach can become a basis for determining whether changes 

in environmental context can be good or bad. In the case of these types of changes, simply 

evaluate whether the old or the new model has a better success rate and keep using the 

model that gives a better result. This of course implies that the preference frameworks of 

these agents need to be built in a way that makes them independent of these types of 

changes. And this of course does not solve the original problem of how to identify that a 

change in the model is indeed a change in environmental context and not something else 

(although the previously described method could give one hint - if you're able to determine 

the rate of success in both cases, then you have some reason to believe that the changes 

didn't change the evaluation for the preference framework and therefore these might have 

been changes in environmental context. But this can in no way be used as a definite basis, 

because if the evaluation of the preference framework gets derailed, it is not certain that 

that will result in some kind of error - it might still give results, even if they are skewed.).  

 I have defined changes in environmental context and showed through various 

examples, how these can manifest in agents, and how these can have both positive and 

negative effects. In the previous paragraphs I have shown, through offering possible 

solutions to the problem, how to differentiate problems of environmental context from 

other types of problems in the larger framework of OIP, giving sufficient justification for 

seeing these types of problems as a separate category. 
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Social Context 
 

 

 The second important category of problems related to context, is the extension or 

reduction of some concepts meaning-space. This category would mainly include various 

social and cultural concepts that are dependent on how we define them at every instance. 

These types of concepts derive their meaning in a substantial way by how they are 

connected to other concepts relevant in a particular situation where we use them. 

 For example, the physical exhibition of a middle finger is meant in most Western 

cultures as a sign of disrespect, while in other cultures, the same meaning is conveyed 

either by showing all five fingers, palm in front, or by raising the thumb. Although the 

meaning can stay relatively similar, the physical category by which it is conveyed can 

change considerably. 

 This kind of a problem arises with every category that has a normative component 

attached to it, which can change depending on the time or place that it is used. Categories 

that are connected to normative meanings need to be considered separately, thus 

warranting their own sub-category in our overall classification.6 

 As an example of this problem, we will look at how we define the concept of 

human beings. If we had an agent that was tasked with taking care of our health needs (a 

preference framework with a goal of creating as many healthy humans as possible), we 

would need to give it some sort of definition of a human being - the probable candidate 

would be that humans are biological organisms, with a certain DNA, that have certain 

parameters at different stages of development (certain body parts, height and weight 

limitations, temperature ranges and so on).  

 Now lets imagine that this definition currently works well enough that there are no 

problems. But what would happen if we as humans started to integrate more and more of 

our bodies with technology? We already have heart monitors, prosthetics and so on, so a 

purely biological basis for the concept is already difficult. In the future we may be using 

computer chips in our brain, entire artificial limbs with full functionality, artificially grown 

genetic material, extended cognition, etc. Each of these examples will introduce nuance 

																																																								
6	This comment has been raised before, but deserves to be reminded. The classification system that is the 
core of this thesis should not be taken as a basis of drawing discrete lines between different types of OIP. In 
most cases, more than one type of problem is present and they play a role of different importance. Almost 
any category can be given a normative aspect. In the case of this chapter, I will be looking at examples where 
the normative aspect is the most substantial part of the category.	
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into an already existing concept. Changes in how we define human beings can create a 

schism between how the agent operates and what we define as acceptable. A cyborg 

undergoing surgery under a system that views human beings as a strictly biological 

organism could be almost certain to suffer negative consequences. How to include these 

concepts in a model? Or more generally, how to define a model for a computer that’s based 

on a concept that is very fluid even for ourselves?  

 Another very similar example is the concept of a person as a moral term. Perhaps in 

the future, we will expand or change the concept of a person to include other primates 

because of their similarity? Normative concepts, more generally, are dependent, on the one 

hand, on our understanding of the world, but on the other, also on the way we interpret 

certain other concepts. A few hundred years ago, in several parts of the world, the term 

'person' did not include human slaves. If we had built a machine then on the basis of how 

we viewed a person, we would consider it to be a disaster under modern understandings. 

What might our moral concepts look like in the future? Any system that has to make use of 

moral categories will have to contend that these definitions can change for us, as they have 

in the past.  

 Since these concepts are social and cultural, they are interlinked to our own 

humanity. It seems that language plays another central role here. Since we are talking 

about concepts that are not defined through the physical world (as are cases of granularity 

usually), but through the content that we give them in a particular context, language, as a 

tool of establishing the context and rules for using these concepts, becomes important.  

 Another important aspect of these types of concepts is, that behaviour (together 

with our use of language) becomes an important cue for establishing their content and 

features. For example, personhood is an abstract term that can be given different content at 

different times and situations. In societies with slavery, personhood becomes mainly a 

moral and political concept, differentiating between those who are considered morally 

equal, and therefore applicable to the same freedoms, and those who are not. The content 

of these concepts in the case of, for example the early days of the US, could be pretty well 

established by observing the differences in behaviour towards those that are considered 

persons, and those who are not quite and by looking at the way language is used to 

describe these differences in different situations. The fact that slaves can not vote is an 

important behavioral cue to establishing the content of the concept 'person.' In contrast, 

observing human behaviour could offer very little evidence towards the existence of a new 
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kind of physics that humans have not yet discovered, further separating the problem of 

social context from other types of OIP's.7 

 Several regularities are already starting to come out that separate the problem of 

social context from other sub-categories of the OIP. The concepts in question will always 

have a normative component. The content of these types of concepts is connected to the 

way we use language and how we behave, in a way that is unique to this type of sub-

category.  

 Therefore the agent has to gather empirical knowledge from the presence of 

language and behaviour. What separates this sub-category from others is, that it can be 

described through the use of language, and through the behaviour of the agents that use the 

language. This can be used for creating a more formal basis for separating this sub-

category from other sub-categories in the wider classification. 

 There is also a more fundamental question here, relating to value alignment more 

generally. Would we like the agent to be guided by the way we practically apply one 

concept or another, or would we like it to be guided by the ideal definitions of the 

concepts. If  we let the agent follow (what we think are) idealized and complete versions of 

some concept (e.g. Yudkowsky 2004), the resulting implementation might be foreign to us 

and bring with it unintended negative effects (this cuts into the problem of perverse 

instantiation which I will discuss in a further chapter). Since we ourselves might not be 

capable of visualizing what a world would look like, if for example, some idealized 

concept of a human would be taken in all senses as immutable by the agent, we can not be 

certain that an ideal implementation would be desirable for us. 

 The problem of using behaviour and language as forming the content of a concept 

is that the agent might be subject to extremes of subjectivity (Soares 2014: 2). When we 

break our principle of not harming innocent civilians during a time of war, and therefore 

modify our concepts of morality, value of life and so on, in an extreme case, it brings with 

it negative consequences (loss of human life), but remains a manageable problem. With an 

agent that is more intelligent than us and whose actions have wider-reaching effects on our 

																																																								
7 There is a specific reason why I used here the example of a 'new' kind of physics and not an example of 
physical knowledge that we already have. The point of addressing the OIP is that in the case of sufficiently 
intelligent and autonomous agents, they can be faced with problems of a substance that we are not aware of, 
or are beyond our reach. An observant agent could learn a lot about, for example, nuclear physics, by looking 
at how we talk about it, how we build machines to do experiments in the field and so on. But this type of 
approach would not work on questions of physics that we are not even aware of (human behaviour can be 
correlated with certain physical facts, but is not causally connected to them in such a way), while in the case 
of social context, the content will always be causally connected to the features of our own behaviour and 
language use. 
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lives, the repercussions of following suit would be immense. A superintelligent agent 

following the principle that the concept of innocent civilians has less moral content in a 

war situation than in a peaceful one, could do a lot more harm than humans following the 

same argument. 

 I have offered an overview of the main characteristics of ontological problems in 

social contexts, and discussed some tools for analysing these situations. Any approach to 

the OIP in this context, has to not only take account of how to be able to change the 

content of a normative concept as it changes in practice (for which the described 

characteristics provide a starting point) but also of what the potential effects of any 

implementation might be. This is a separate and much wider problem of AI safety.  
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SPECIAL CASES 
 

  

 In the following chapter I will describe some special cases connected to the OIP. In 

all the previous chapters I have focused on problems that arise when the agent, based on its 

learning capacity and autonomy, changes its model to better represent the environment it 

takes its actions in, and how those changes can have effects on its goals. The types of 

problems described here have more to do with the potential faultiness of how the system is 

built in its original form. These problems in themselves are not problems of ontology 

identification, which is why they are not included in the categorisation system I have tried 

to build on the previous pages. But they do have a substantial effect on how and whether 

the OIP arises. 

 

 

Warrantless Goals 
 

 

 As explained in the introductory chapter, the goals a system is given are described 

in the context of the model that the system uses. In a way, the goal of the model is built on 

the interplay and manipulation of the categories that the system has. What I would describe 

as 'warrantless goals,' are goals that are built on those types of categories in its model, that 

have no causal connection to the success of achieving the goal. 

 If history is to be used as a guide, situations like these can happen often. Since our 

knowledge of the world is imperfect, we can mistakenly see a connection between two 

separate phenomena that actually have no causal connection. For example the connection 

between prayer and some event in the world. If we believed that a persons wealth or health 

was directly connected to his activeness in using prayer as a tool of influencing one's life, 

we might build an agent whose goal it was to better people's health, and the method by 

which this was evaluated, would be through how effective it was in saying prayers. 

 Another historical example of faulty logic is connected to witches. In the Middle-

Ages, it was often believed that witches were the cause of diseases. So if someone from 

those times would have built an intelligent machine with a goal to eradicate disease, he 

would first give it a model that would define witches as the cause of diseases. There is no 
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reason to believe that mistakes of causality do not happen in modern life, and therefore 

creating these types of agents can almost certainly result in it facing this problem. 

 If an agent is given a model that makes its goal to eradicate as many witches as 

possible and measures its rate of success by the level of disease in the world, it will start 

killing witches as effectively as possible. But at one point it will come to a conclusion that 

eradicating witches has no effect on its rate of success. This is the point where the system 

will be faced with the OIP. The way this problem will present itself will be dependent on 

the specific example, and could be solved either through a change in granularity or context 

or both.  

 The problematic part is how and if the agent would actually come to the realization 

that its entire original model is built on faulty premises. An argument can be made that this 

situation does not fundamentally differ from any other OIP situation where the agent has to 

change the content of a category in its system. In a way, if the agent shifts from atomic 

categories of physics to sub-atomic ones, it is also doing so because its original model was 

'wrong' in some sense, i.e. was not capable of fully explaining the phenomena that it 

observed in the environment and was not as effective in achieving its goals. The difference 

might just be in the rate of change, where a change from atomic models to sub-atomic ones 

can improve an already existing rate of success by some margin, whereas a change from a 

model with faulty causal connections to one that works, simply has a more drastic effect on 

the rate of success. 

 I agree with this line of reasoning in the sense that from a wider viewpoint, these 

problems are different variants of a more general one. But the basis of this thesis is not that 

all of the described sub-categories represent discrete and fundamentally different problems, 

but that they can be described and approached from different frameworks, which give us a 

better understanding of the specific problems as well as the general one. In this sense, I 

think it is justified to look at warrantless goals as a separate problem because of the 

potential effects it can have on the models of the agents.  

 In the case of an agent which changes its model from one that works reasonably 

well to one, that works even better, there is usually some substantive basis to draw a 

connection between some old category and a new one. This basis can be any mechanism 

described in the preceeding chapters, for example some sort of bridge law that establishes 

the identity of those two categories. In the case of warrantless goals, this connection does 

not exist or is very difficult to detect. It is hard to imagine how one would justify a change 

from the category 'witches cause diseases' to  a category of  'bacteria and viruses cause 
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diseases.' In this sense, this problem might be akin to problems that deal with 

incommensurability, and the possible solution might come from there.  

 

	

Perverse Instantiation 

 

 

 Perverse instantiation stems from a similar origin as the problem with warrantless 

goals and also touches on the problem discussed at the end of the chapter on social context 

- namely how to guarantee the completeness and robustness of certain concepts.  

 Nick Bostrom defines perverse instantiation as the problem of "a superintelligence 

discovering some way of satisfying the criteria of its final goal that violates the intentions 

of the programmers who defined the goal" (Bostrom 2014: 120). This problem arises from 

the inherent limitations of defining a goal in sufficient detail as to exclude methods of 

achieving that goal that we would deem undesirable.  

 An example that Bostrom brings is the goal: Make us smile (as a way of increasing 

human happiness). A perverse instantiation of this goal would be for the agent to paralyze 

human facial muscles into constantly smiling. This would achieve the original goal in a 

very effective way but would in no way be compatible with our original intent. One may 

think that a better way for defining this goal would be to include descriptions of the sort of 

methods we would not want the agent to use: "Make us smile without directly interfering 

with our facial muscles" (2014: 120).  But this goal could then be undermined by another 

perverse instantiation that would not align with our original intent either. For example the 

agent might stimulate our brain with electric shocks in such a way as to activate the areas 

of the brain that control the muscles that make us smile (2014: 120).  

 You could argue that maybe the goal should be defined through more general and 

abstract concepts that aim at the real end result we want to achieve and be less 

instrumental. For example, because our original intent was to make humans happy, and 

smiling was simply an instrumental way of doing that, then one might want to use as a 

goal: Make us happy. But this too would be faced with similar problems, because again, 

the agent might use electrodes to simulate the areas of the brain that release endorphins and 

make us feel good. This again would undermine our original intent (2014: 121). 
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 The point of these examples was to show that in the case of every goal where we 

are not capable of capturing the entire intent of it, perverse instantiations remain a 

problem.  As Bostrom says:  
These examples of perverse instantiation show that many final goals that might at first glance seem 
safe and sensible turn out, on closer inspection, to have radically unintended consequences. [...] 
Perhaps it is not immediately obvious how [a goal] could have a perverse instantiation. But we 
should not be too quick to clap our hands and declare victory (2014: 122).  

 

 As with warrantless goals, perverse instantiation in itself is not part of the OIP but 

does exacerbate any future ontology problems that might occur.  In this case the problem is 

how to respond if it turns out that the specified goal does not correspond to the original 

intent behind the goal. In a sense, this is the opposite problem to the ones discussed 

beforehand, because here the problem is not so much as to guarantee that the agent will 

carry out fulfilling its goal even if its model of the world changes, but the problem is how 

to modify the goal itself so as to better capture the intent that was originally behind it. Any 

future solutions or mitigations in research of perverse instantiations will also have an effect 

on how we see the OIP. If future research shows that perverse instantiation (which 

currently exists as only a postulated problem) will pose very general difficulties to the 

development of intelligent agents, the methods and tools of the OIP might turn out to be 

useful in these kinds of opposite situations as well. 
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CONCLUSIONS 
 
 

  

 As I have shown in the previous chapters, there are substantive differences in the 

description of the specific problem and possible solutions related to situations of these 

different sub-categories. An agent faced with solving the ontology identification problem 

in the case of biological theories that exhibit phenomena of multiple realizability warrant a 

very different approach than an agent faced with a problem of determining the content of 

the concept of  'showing the middle finger' when moving between the context of different 

cultures. When one moves past the more general (and more daunting) problem of ontology 

identification and starts to look at specific situations, different patterns for solutions 

emerge. Hopefully I have managed to capture some of these patterns in this work and it 

can serve as a guide for future theoretical research (developing each of these categories 

further or looking at the general similarities between them or solving the wider 

philosophical questions behind them) and practical development (being able to use 

appropriate strategies and heuristics for systems that are more likely to face a certain sub-

category of a problem and not another one, or developing algorithms that are able to 

capture these strategies in a robust way). As can be seen, the OIP captures a wide range of 

phenomena, from the physical to the mental, being as diverse as the reality that it is used to 

describe. Because of that, it seems naive that a problem that encaptures the entire 

complexity and nuances of the world around us, would be approached as a monolithic 

problem, looking for  universal solutions. 

 The question of whether the OIP can eventually be solved by universal solutions 

was touched on superficially in this thesis. On the one hand, the substantive differences 

between the sub-categories hint at a wider schism than we might realise. On the other 

hand, these different approaches are still interlinked and share some similarities in their 

most basic constructs. The human brain can be conceived of as a system that is capable of 

solving the OIP in a wide variety of circumstances. If one single discrete system is capable 

of doing this, there is no reason to believe an artificial one would not be, provided we are 

capable of understanding the problem sufficiently as to create one.  

 In any case there is not enough knowledge currently to make any meaningful 

statements here. I am inclined to think that eventually these problems can be unified 

because there seems to be no basis for arguing that each sub-category follows a different 
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reality. For example, the different approaches in granularity might be brought together if a 

more expansive and unified theory of scientific discovery is created. It is only in a few 

cases that the OIP manifests in a pure way of making use of a single sub-category. In most 

real-life cases, more than one is needed to adequately overcome the problem.  

 Although in this thesis all these problems are stated as explicitly as possible for the 

purpose of analysis, it does not imply that they have to be solved explicitly in real AI 

systems. Some architectures can offer implicit solutions that are robust enough to warrant 

trusting them. For example, the recent success of machine learning and artificial neural 

networks has shown that machines are capable of (semi)independently categorising data in 

a way that these categories can not be located as discrete parts inside the system. In the 

future, advances in unsupervised learning could create systems that are capable of 

completely independently identifying new categories in the environment without the need 

of creating discrete representations, much in the same way our brain does. As long as these 

systems are robust and capable enough of overcoming the obstacles presented by the OIP, 

it matters little how their internal architecture looks like. 

 Hopefully, this thesis can act as a guide for further research in an area that has seen 

little of it for the moment, but is becoming increasingly important as we develop more 

intelligent and more autonomous systems.  
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ABSTRACT 

 
 The Ontology Identification Problem is the problem of connecting different 

ontologies to the system’s goals in such a way that a change in the system’s ontology does 

not result in a change in its goal’s effect.	My thesis is that the Ontology Identification 

Problem, which has so far been addressed as a single universal problem, can be seen as an 

umbrella term for a wide range of different problems, each of which has a different level of 

difficulty, and each requires different methods of approach, in order to overcome. One 

wide category of this problem is connected to granularity, where the changes in the model 

are connected to changes in the level of detail. Granularity issues can be divided into cases 

of simpler reductions, multiple realizability and incommensurability. Another wide area of 

the problem is related to context. Contextual problems can be divided into problems of 

environmental context and social context. Special cases of warrantless goals and perverse 

instantiation also have a direct bearing on the ability to solve ontology identification 

problems effectively.	
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