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1. INTRODUCTION 

The grey wolf Canis lupus L. 1758 was historically widespread across Europe, 
however, the species was progressively eradicated from most of the continent 
between the 18th and 20th centuries (Chapron et al., 2014; De Groot et al., 
2016). Once viewed primarily as a threat to public safety and livestock, but also 
as a competitor on wild game, the grey wolf (henceforth ’wolf’) has recently 
become recognized as an apex predator that plays a key role in ecosystems 
(Bruskotter, Enzler & Treves, 2011). Ongoing protection of European wilder-
ness zones, socio-economic changes, innovative laws, public and political com-
mitment, recovery of wild ungulate species and wolf dispersal ability have 
enabled the species to recolonize many parts of its former range in Europe 
(Boitani, 1992; Musiani, Boitani & Paquet, 2009, 2010; Randi, 2011; Chapron 
et al., 2014; Leonard, 2014; Gilroy, Ordiz & Bischof, 2015; López-Bao et al., 
2015). Currently, ca 12 000 wolves occupy over 800 000 square kilometres in 
28 European countries, with 9 900 individuals present in 22 countries belonging 
to the European Union (Chapron et al., 2014).  

Anthropogenic activities are one of the key factors influencing wildlife 
populations, and probably the most important among them are overexploitation 
and habitat destruction or fragmentation, which cause a considerable range of 
problems for wildlife (Allendorf & Luikart, 2007). However, despite recoloniza-
tion processes going on in a number of European wolf populations, there are 
populations that have dramatically decreased in size and have become increas-
ingly fragmented. In addition to reduction in population size and density, which 
are usually considered, severe hunting pressure can lead also to population frag-
mentation, increased immigration from other populations, disruption of social 
systems (e.g. Allendorf et al., 2008) and can increase the potential for hybridiza-
tion between wild and closely related domestic animals, which is especially 
relevant for domesticated dogs and wild canids.   

Wolf has long been a subject of scientific curiosity. In recent decades, 
application of genetic methods has greatly broadened our understanding of 
processes underlying wolf population structure, dynamics, phylogeography, 
hybridization with other canids (especially dogs) and domestication, to name 
the most important.  
 
 

1.1. Genetic markers used in European wolf 
populations 

Six main types of genetic markers have been used to study wolves: (1) auto-
somal microsatellites, (2) autosomal single nucleotide polymorphisms (SNPs), 
(3) major histocompatibility complex (MHC), (4) mitochondrial DNA (mtDNA), 
(5) Y chromosome microsatellites and (6) Y – SNPs (Fig.´s 2, 3 in III; note that 
marker types 3 and 6 are not shown in figures). While mtDNA was initially the 
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most frequent choice, autosomal microsatellites quickly gained popularity due 
to their superior power of identifying individual animals and for assessing popu-
lation genetic diversity, population structuring and rates of gene flow between 
populations. Recently, the depth of population analysis has been increased 
further by large-scale genome-wide SNP data (vonHoldt et al., 2011; Stronen et 
al., 2013; Pilot et al., 2014b). As a general rule in mammals, mtDNA is 
maternally inherited and cannot alone represent all historical and contemporary 
processes acting upon populations. Nuclear data derived from biparental auto-
somal loci or from the paternal Y chromosome are thus required to gain more 
complete understanding of evolutionary and contemporary population processes 
of wolves across Europe. Contrary to mtDNA and SNP data that can be com-
bined between studies to cover large areas, the use of microsatellites has an 
important shortcoming: the data cannot be easily compared between different 
studies (De Groot et al., 2016). Thus, some microsatellite data sets have been 
used for specific countries or for a limited region (Flagstad et al., 2003; Jędrze-
jewski et al., 2005; Fabbri et al., 2007; Jansson et al., 2012, 2014; Moura et al., 
2014), with few used to characterize wolf populations from wider areas (Pilot et 
al., 2006, 2014a; Aspi et al., 2009; Sastre et al., 2011; Fabbri et al., 2014). The 
genetic diversity of wolf populations which have suffered demographic bottle-
necks and recoveries has also been investigated at the level of loci encoding 
proteins for the major histocompatibility complex (Seddon & Ellegren, 2004; 
Arbanasić et al., 2013; Galaverni et al., 2013; Niskanen et al., 2014). In 
addition to the maternal and biparental markers, investigations of the paternal 
lineage (Y chromosome) have become also increasingly frequent, though the 
majority have focused primarily on wolf-dog hybridization (Sundqvist et al., 
2001; Vilà et al., 2003b; Iacolina et al., 2010; Godinho et al., 2011; Fabbri et 
al., 2014; Randi et al., 2014). 
 
 

1.2. Population structure  
Grey wolves are capable of adapting to a wide range of ecological conditions. 
Recent evidence suggests that the social organisation of wolves into packs 
might be one of the reasons explaining the evolutionary success of the species; 
packs enable wolves to effectively use a wide range of resources to feed and 
guarantee better survival of their young (Stahler et al., 2006; Sand et al., 2006; 
vonHoldt et al., 2008). Under natural conditions, i.e. in the absence of strong 
hunting pressure, wolves generally live in kin-based packs containing a dominant 
pair of adults, their offspring and close relatives (Mech & Boitani, 2007; 
Jędrzejewski et al., 2005). Packs are usually nomadic within territories (Mech 
& Boitani, 2007). When the offspring mature, they mostly disperse and live 
solitarily for a period before finding a mate and territory and producing off-
spring (Mech & Boitani, 2007) but vonHoldt et al. (2008) has described several 
other mechanisms for finding a mate. Severe hunting pressure can, however, 
break up this natural social structure into smaller entities (Valdmann, Laanetu & 
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Korsten, 2004; Moura et al., 2014) with the adoption of unrelated individuals 
into packs, resulting in low kinship (Jędrzejewski et al., 2005; Rutledge et al., 
2010) and sometimes territory abandonment (Brainerd et al., 2008) and hy-
bridization with dogs (Vilà & Wayne, 1999; Andersone et al., 2002; Randi, 
2008). Although it has been proposed that wolf populations compensate for 
human exploitation via adjustments in dispersal, including immigration (Jędrze-
jewska et al., 2006; Adams et al., 2008), a strong association has been found 
between human offtake and total mortality rates of wolves in North-America 
(Creel & Rotella, 2010).  

The need for genetic studies of Estonian and Latvian wolves became urgent 
when in short time period (2008–2009) altogether six wolves with unusual 
coloration (black and yellow) were shot by hunters and suspected as putative 
hybrids. Rapid development of several genetic methods in wolf population 
studies (Vilà et al., 1997; Randi & Lucchini, 2002; Vilà et al., 2003b; Fabbri et 
al., 2007; Pilot et al., 2006, 2010) made approaches using genetic material most 
appropriate to confirm the hybrid status of these animals. Until this point, 
mainly ecology of wolves had been studied in Estonia and Latvia, including wolf 
diet (Kübarsepp & Valdmann, 2003; Andersone & Ozolins, 2004; Valdmann et 
al., 2005), prey selectivity (Valdmann, Koppa & Looga, 1998) or parasites 
(Moks et al., 2006). Besides identification of hybridization in the Estonian and 
Latvian wolves, genetic methods would be most appropriate also for studying 
population structure, connectivity with neighbouring populations and spatial 
patterns that were unknown in this part of Baltic wolf population. 

Wolf populations in Estonia and Latvia are believed to be part of the 
continuous Baltic wolf population which extends through all three Baltic 
countries Estonia (200−260 individuals), Latvia (200–400) and Lithuania (300–
400) and northeastern Poland (270−360), comprising 900−1400 animals in total 
(III and Fig. 1). The Baltic population is connected to wolf populations in 
eastern Poland (Czarnomska et al., 2013), western continental Russia, northern 
Ukraine and Belarus (Boitani & Ciucci, 2009). As in other parts of Europe, the 
Baltic wolf population experienced near-extermination in the 1970s and 1980s 
(Jędrzejewski et al., 2005; Baltrūnaitė, Balčiauskas & Åkesson, 2013) leaving 
signs of genetic bottlenecks in wolves from Estonia (Plumer et al., 2016) and 
neighbouring Russia (Sastre et al., 2011). Estonian and Latvian populations, to 
be specific, went through severe decline around the mid-1960s, when the 
estimated average population size was in some years as low as 13 individuals in 
Latvia and nine in Estonia. Populations in both countries started to recover in 
the second half of the 1970s and reached their maximum in the middle of 1990s, 
when in Estonia and Latvia the population census sizes were about 700 and 
900–1000 animals, respectively. During that period, hunting pressure also 
escalated, with annual harvests constituting from one third to nearly half of the 
population census in both countries. Most probably as a result of the severe 
hunting pressure putative wolf-dog hybrids started to appear in both countries, 
and the hybrid status of several individuals has been verified with genetic 
analysis in Latvia (Andersone et al., 2002).  
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Figure 1. Wolf populations in Europe according to Chapron et al. (2014). Different 
colours indicate wolf permanent occurrence and dark grey sporadic occurrence 
(modified from Chapron et al., 2014). Wolf occurrence in Russia, Ukraine and Belarus 
is not marked on the map. 1 – Scandinavia; 2 – Karelia; 3 – Baltic; 4 – Central 
European Lowlands; 5 – Carpathian; 6 – Dinaric-Balkan; 7 – Italian peninsular; 8  ̶  
Alpine; 9 – North-west Iberia; 10 – Sierra Morena. 
 
 
In general, the Baltic population exhibits relatively high levels of heterozygosity 
compared with many other European wolf populations (Jędrzejewski et al., 
2005; Baltrūnaitė, Balčiauskas & Åkesson, 2013; Czarnomska et al., 2013). 
Currently, Estonian wolf population is expanding and has recently (presumably 
in 2010–2011) re-colonized the two largest islands of the country, Saaremaa 
and Hiiumaa (Plumer et al., 2016). 

Detecting genetic structure is of major importance for the effective conser-
vation and management of wolf in multiple scales from local population inside 
one country borders to  biologically determined populations such as Baltic 

 



11 

population to across European scale including altogether ten wolf populations in 
Europe. However, while population structuring on a local populational scale 
provide important information on processes of population dynamics and 
demographic history (Aspi et al., 2006), genetic viability (Jansson et al., 2012, 
2014), inbreeding (Liberg et al., 2005), large-scale patterns such as genetic 
consequences of glaciations (Pilot et al., 2010), population connectivity and 
admixture (Stronen et al., 2013), mechanisms of gene flow, long-time popu-
lation isolations or range expansions (Pilot et al., 2014b) or ecological factors 
influencing population structure (Pilot et al., 2006) are adequately revealed in 
studies including wolves all over Europe. However, so far, main studies on wolf 
population structure have been performed on local populations (Jędrezejewski 
et al., 2005; Liberg et al., 2005; Aspi et al., 2006, 2009; Fabbri et al., 2007; 
Jansson et al., 2012, 2014; Baltrūnaitė, Balčiauskas & Åkesson, 2013; Moura et 
al., 2014; Karamanlidis et al., 2016), while studies on a wider scale and data 
from across Europe have been lacking until recent years (Pilot et al., 2006, 
2010, 2014b; Stronen et al., 2013). While De Groot et al. (2016) provided a 
review of genetic markers used and emphasized a harmonization of methods, 
publication III represents an analytical summary of the main findings from wolf 
population genetic studies in Europe, covering major studies from the ‘pre-
genomic era’ and the first insights of the ‘genomics era’. 
 
 

1.3. Wolf-dog hybridization 
There is growing evidence that many animal species can hybridize: Mallet 
(2005) has proposed that at least 6% of European mammal species undergo some 
degree of hybridization. Usually, the population level impact of hybridization is 
believed to be minor; however, where introgression occurs, a substantial 
number of maladapted genes or alleles can enter parental populations (Leonard 
et al., 2014). A classic example of the conservation implications of this process 
is the hybridization between wolves and its domestic form, the dog. Phylo-
genetic studies place dogs and wolves as sister taxa (Lindblad-Toh et al., 2005; 
Wayne & Ostrander, 2007). Dogs were the first domesticated species, originating 
at least 15 000 years ago from Eurasian grey wolves (Shannon et al., 2015), but 
simple scenarios of dog domestication are confounded by extensive admixture 
(Zhenxin et al., 2016). Moreover, no single wolf population is more closely 
related to dogs, supporting the hypothesis that dogs were derived from an 
extinct wolf population (Zhenxin et al., 2016).  

As grey wolves and domestic dogs possess identical karyotypes and can 
hybridize to produce fertile offspring in the wild (Vilà & Wayne, 1999), the main 
conservation concern is the significant reduction or loss of specific adaptations 
that could lead to the extinction of already small and fragmented wolf popu-
lations if introgression is sufficiently frequent. Hybridization may be followed 
by introgression, a process through which maladapted genes may enter in wild 
populations: the gene pool of each species is the result of thousands to millions 
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of years of selection and adaptation to specific environmental conditions and a 
rapid influx of genes from another species, that evolved under different con-
ditions can result in a depression of fitness (Leonard et al., 2014). Such genes 
could reduce the population’s chances of long-term survival and in case of high 
frequency of hybridization and introgression, a major conservation threat is the 
potential for the loss of the genetic integrity of a species (Caniglia et al., 2013; 
Leonard et al., 2014).  

Grey wolves are not the only wild species that can hybridize with dogs. All 
wolf-like canids (Canis spp. and Lycaon) have the same number of chromo-
somes (n = 78) (Leonard et al., 2014) and may have the capacity to interbreed 
and produce viable offspring (Vilà & Wayne, 1999), indicating incomplete re-
productive isolation. Moreover, hybridization coupled with subsequent intro-
gression is a documented threat to a number of canids, including the the red 
wolf (C. rufus) (Wayne and Jenks, 1991; Adams, Kelly & Waits, 2003), 
Ethiopian wolf (Canis simensis) (Gotelli et al., 1994) and the dingo (C. lupus 
dingo) (Elledge et al., 2008; Stephens et al., 2015). Although hybridization can 
affect wild canids in a number of ways, the negative impacts are better known, 
including loss of reproductive potential or genetic integrity of a population, 
lowered fitness of hybrid individuals or introduction of maladaptive alleles into 
wild populations (Leonard et al., 2014). 

Although there are great examples of European wolf populations that are 
increasing their area, there are populations that have dramatically decreased in 
size and have become fragmented (like some parts of Iberian wolf population, 
MAGRAMA, 2016) or isolated (Scandinavian population, Seddon et al., 2006; 
Laikre et al., 2013), mainly due to extensive hunting pressure and habitat loss 
during recent centuries. Remaining populations are exposed to increasing 
numbers of humans and dogs (Boitani, 2003). In Europe, there is genetic evidence 
of hybridization from Scandinavian (Vilà et al., 2003b), Baltic (Andersone et 
al., 2002; Stronen et al., 2013), Dinaric-Balkan (Randi et al., 2000; Vilà et al., 
1997; Stronen et al., 2013; Moura et al., 2014; Majić-Skrbinšek, 2014), Italian 
peninsular and Alpine populations (Randi et al., 2000; Randi & Lucchini, 2002; 
Verardi, Lucchini & Randi, 2006; Iacolina et al., 2010; Caniglia et al., 2013; 
Boggiano et al., 2013; Randi et al., 2014; Lorenzini et al., 2014) and in Iberian 
population (Godinho et al., 2011, 2014). This evidence has most often been based 
on mtDNA (Vilà et al., 1997; Randi et al., 2000), autosomal microsatellite 
variation (Randi et al., 2000; Randi and Lucchini, 2002; Verardi, Lucchini & 
Randi, 2006; Lorenzini et al., 2014; Godinho et al., 2014) or in combination of 
these markers (Boggiano et al., 2013; Moura et al., 2014) with only small 
number of studies additionally using Y chromosome data (Vilà et al., 2003b; 
Ciucci et al., 2003; Iacolina et al., 2010; Godinho et al., 2011; Caniglia et al., 
2013) to investigate the role of both genders in the hybridization process. 
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1.4. The objectives of this thesis 

Publications I and II provide previously unknown information about wolves in 
Estonia and Latvia, for there has been no study that has looked into the fine 
scale wolf genetic structure of any Baltic country before. Although Estonian 
and Latvian wolves show high levels of genetic variation (I and II) and the 
number of wolf packs has stayed between 15 to 31 during last 10 years, this part 
of the Baltic population faces pressing conservation threats. The recent 
decreasing trend in census size together with increasing pressure within local 
communities due to predation on domestic animals (Plumer et al., 2016), 
identification of wolf-dog hybrids and arrival of golden jackal (C. aureus) in 
Estonia warrants a more detailed and science-based wolf management practices. 
This is particularly relevant within the context of population connectivity inside 
Baltic population because uncoordinated management in neighbouring countries 
facing similar problems may result in harmful effects on population-level 
genetic viability and health.  

The main objectives of this thesis were: (1) to analyse hybridization between 
wolves and dogs in Estonia and Latvia; (2) to use novel spatial genetic 
approaches to analyse population structure and patterns of gene flow in the wolf 
population in Estonia and Latvia, and (3) to analyse general large-scale trends 
and patterns of genetic variation in European wolf populations, and to provide 
comprehensive overview of wolf population processes in Europe, based on the 
results derived from three lineages  ̶ maternal (mtDNA), paternal (Y-chromo-
some microsatellites) and biparental (autosomal microsatellites and single 
nucleotide polymorphisms or SNPs)  ̶  in Europe.    

The hypotheses were: (1) hybridization has occurred in Estonian and Latvian 
wolf population and the direction of these events has been between male wolves 
and female dogs; (2) Estonian-Latvian wolf population is panmictic and without 
genetic clustering; (3) general large-scale trends and patterns of genetic 
variation in European wolf populations reach beyond the country borders, 
involving multiple countries. 

To achieve these aims, we used: (1) combined genetic analysis of mtDNA, bi-
parental autosomal and Y chromosome-specific microsatellite loci for identifi-
cation of wolf-dog hybrids (I); (2) two novel methodological approaches that 
further the analytical possibilities of the programme Structure, and spatially 
explicit individual-based method DResD (distribution of residual dissimilarity) 
to analyse structure and migrations in wolf  population in Estonia and Latvia. 
We applied DResD for the first time to microsatellite data, revealing a migration 
corridor and barriers, and several contact zones (II); (3) results of previous 
microsatellite-based studies and also included  new data (III) to describe 
general large-scale trends and patterns of genetic variation in European wolf 
populations, we analysed.   
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2. MATERIAL AND METHODS 

2.1. Samples for DNA analysis 
Muscle tissue samples of 266 grey wolves were collected across the species 
range in Estonia and Latvia between the 2001/2002 and 2009/2010 hunting 
seasons (I–II). 74 samples (I) and 116 samples (II) were used for microsatellite 
analysis. All samples were collected from animals legally harvested by hunters 
for other purposes than these studies, including the muscle tissue samples from 
eight shot putative wolf-dog hybrids (I). Blood samples analysed from dogs 
(21) were obtained from local veterinarians (I). Samples were stored in 96% 
ethanol at –20 ˚C prior to extraction of genomic DNA. Total genomic DNA was 
extracted either from muscle tissue or blood using High Pure PCR Template 
Preparation Kit (Roche Diagnostics) following manufacturers´ protocols.  
 
 

2.2. Genetic analyses 
Microsatellite genotyping was performed on 11 (I) or 16 (II) autosomal loci and 
7 Y-chromosome specific loci (I) using primer pairs previously described in the 
literature. Autosomal loci used were as follows: (1) for I: FH2001, FH2010, 
FH2054, FH2079, FH2088 (Francisco et al., 1996), vWF (Shibuya et al., 1994), 
AHT130 (Holmes et al., 1995), M-CPH2, M-CPH12 (Fredholm and Winterø, 
1995) and C20.253, CXX22 (Ostrander, Sprague & Rine, 1993); (2) for II: 
FH2001, FH2010, FH2017, FH2054, FH2079, FH2088, FH2096 (Francisco et 
al., 1996), vWF (Shibuya et al., 1994), AHT130 (Holmes et al., 1995), M-CPH2, 
M-CPH4, M-CPH12 (Fredholm and Winterø, 1995) and C466, C09.173, 
C20.253, CXX22 (Ostrander, Sprague & Rine, 1993). Y choromosome specific 
loci used in I were as follows: MS34A, MS34B, MS41A, MS41B (Sundqvist et 
al., 1991), 990–35, 650–79.2 and 650–79–3 (Bannasch et al., 2005). For pub-
lication I, additionally 1673 bp of mitochondrial DNA control region (mtDNA 
CR) was sequenced, using newly developed primers. Reaction conditions and 
primer sequences can be found in Materials and Methods of I–II. 

Amplified products for microsatellite analyses (I–II) were diluted in distilled 
water (5x dilution) and separated on an ABI 3130xl automated sequencer 
(Applied Biosystems) in three capillaries as described in I–II. Sequences of 
mtDNA were resolved on ABI PRISM 377 or 3130xl automated sequencers 
(Applied Biosystems). For fragment sizing in articles I–II, a GeneScan 500 LIZ 
size standard (Applied Biosystems) was used and microsatellite alleles were 
sized and genotyped with Gene Mapper v4.0 (Applied Biosystems). 
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2.3. Statistical analyses 
2.3.1. Identification of wolf-dog hybrids 

2.3.1.1. Analysis of autosomal and Y chromosome microsatellite loci 

Biparental multilocus genotypes and Y-chromosome haplotypes in article I 
were analysed with: 
A)  Structure v2.2 (Pritchard, Stephens & Donnelly, 2000) was used to evaluate 

the number of genetic clusters (K) in the data and to assign individuals to 
their likely origin. For identification of hybrid samples, the dataset consisted 
of all 103 individuals, including wolves (n= 74), dogs (n =21) and eight 
hybrids from Estonia (n= 6) and Latvia (n= 2). The parameters used to run 
Structure can be found in Material and Methods section of article I. We 
estimated the number of clusters K as suggested by Evanno, Regnaut & 
Goudet (2005).  

B)  a Bayesian model-based clustering method for identifying hybrids was 
performed with Newhybrids v1.1 beta (Anderson & Thompson, 2002). The 
method identifies hybrid individuals on the basis of the posterior probability 
of belonging to different pure parental or hybrid categories generated during 
n = 2 or n = 3 generations of potential interbreeding. Four distinct genotype 
frequency classes were simulated using Hybridlab v1.0 (Nielsen, Bach & 
Kotlicki, 2006) on the basis of pure species I (Wolf) and pure species II 
(Dog): F1 wolf-dog hybrids (n= 100) and F2 hybrids (F1 hybrid x F1 
hybrid; n= 100), including backcrosses with pure species (F1 hybrid x wolf; 
n= 100) and (F1 hybrid x dog; n= 100). Parameters for simulations can be 
found in the Material and Methods section of the article I. Sibling relation-
ships and relatedness among hybrids was investigated using Kingroup v2.0 
(Konovalov, Manning & Henshaw, 2004) and the relatedness estimator 
according to Konovalov & Heg (2008). 

C)  Factorial correspondence analysis (FCA) implemented in Genetix v4.05.2. 
(Belkhir et al., 2004) was used to distinguish wolves, dogs and wolf-dog 
hybrids on the basis of microsatellite data. 

D)  Based on microsatellite data from the Y-chromosome loci of wolves, dogs 
and hybrids (n = 45), a median joining network was calculated with the 
program Network v4.510 (Bandelt, Forster & Röhl, 1999) in I.  

 
 

2.3.1.2. Mitochondrial DNA analysis 

A minimum spanning network was calculated with Network v4.510 using a 
median-joining approach (Bandelt, Forster & Röhl, 1999) in publications I and 
III. The network in publication I was based on partial mtDNA control region 
(the final length after alignment and trimming was 1134 bp) and included wolves, 
dogs and hybrids from Estonia and Latvia (I, Table S3). For further analysis of 
phylogenetic relationships between hybrids, wolves and dogs, the dataset was 
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expanded by including additional 95 dog and eight wolf homologous 1134 bp 
mitochondrial control region data from GenBank (only those that had complete 
1134 bp sequence available without ambiguous sites) (Arnason et al., 2007; 
Bjornerfeldt, Webster & Vilà, 2006; Kim et al., 1998; Webb & Allard, 2009), 
thus, in the final analyses 213 sequences were used (I; Table S3). In  publi-
cation III, 160 publicly available 609 bp mt DNA control region sequences 
covering all wolf populations in Europe and geographically close populations in 
West Asia.  

In publication I, the appropriate model of sequence evolution was calculated 
with jModeltest v1.0.1 using the Bayesian Information Criterion (Posada, 
2008). Phylogenetic trees were generated using Bayesian inference (BI) imple-
mented in MrBayes v3.1.2 (Ronquist & Huelsenbeck, 2003). The parameters 
used for MrBayes can be found in Material and Methods section of article I. To 
ensure that the BI was not trapped in local optima, the analysis was performed 
three times. Phylogenetic trees were visualized with FigTree v1.3. 
(http://tree.bio.ed.ac.uk/ software/figtree). 
 
 

2.3.2. Population structure analysis 

In publication II: Bayesian assignment tests were performed with Structure v2.2 
(Pritchard, Stephens & Donnelly,  2000) to evaluate the number of genetic 
clusters (K) and to assign individuals to their likely origin. Assignment of 
individuals into genetic clusters was performed with Structure (methodology 
was identical with the ones in I). FCA implemented in Genetix v4.05.2 (Belkhir 
et al., 2004) was additionally used to investigate population sub-structuring. 

The data set was tested for IBD (isolation-by-distance) as shown in the 
Material and Methods of article II in this dissertation. For estimating the ranges 
of the genetic groups, grid points were classified according to three alternative 
hypotheses (see Materials and Methods in Meta-analysis in III). To identify 
potential regions of the study area that might represent corridors or barriers to 
migration, as well as core, transition and blending areas of population sub-
groups, we performed DResD analysis, which is a recently introduced spatially 
explicit, individual-based approach that is based on IBD modelling and pairwise 
geographic and genetic distances (Keis et al., 2013). For the DResD procedure 
applied in this study, see  II (Information S1 for the full script in R 2.14 
language). 
 
 

2.3.3. Meta-analysis of European populations 

To describe general large-scale trends and patterns of genetic variation in 
European wolf populations, we analysed the results of previous microsatellite 
studies and included new data, which altogether covered nine European wolf 
populations in 19 countries: Russia, Norway, Sweden, Finland, Estonia, Latvia, 
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Lithuania, Poland, Germany, Czech Republic, Slovakia, Belarus, Italy, Croatia, 
Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal (Appendix S4; 
Fig. 5 in III) (note that the Sierra-Morena population is missing due to a lack of 
data, while data for Russian populations are included). Observed and expected 
heterozygosities (HO, HE), inbreeding coefficient (FIS), allelic richness (RA) that 
uses a rarefaction on the minimum number of samples per populations in the 
study, and the number of alleles per locus (NA), were extracted.  

Linear trend surface analysis was applied to each variable to determine the 
presence and direction of a gradient (Fortin & Dale, 2005), followed by a test of 
the spatial trend. The analysis calculated spatial autocorrelation (SAC) structure 
via variogram modelling and spatial weighting. The program R function gls 
with spherical SAC structure in the package nlme (Pinheiro et al., 2013) with 
rotated geographic coordinates along the gradient direction. The details for 
determing the constant azimuthal direction can be found in the Materials and 
Methods section of the publication III. Due to a relatively small number of 
data-points, we focused on general patterns and did not test non-linear effects, 
but analysed the pattern in the ten European populations separately. After the 
trend surface analysis, the presence of residual spatial autocorrelation was tested 
using Moran’s autocorrelation index (I) and the compatible test of significance 
in the R package ape (Paradis, Claude & Strimmer, 2004). 
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3. RESULTS 

3.1. Detecting wolf-dog hybridization  
in Estonia and Latvia (I) 

Based on allele frequencies at 11 autosomal microsatellite loci, (1) eight wolf-
dog hybrids carried several alleles that were also found in wolves but were absent 
in dogs or vice-versa and (2) clear distinction of wolves, dogs and hybrid animals 
from each other in the FCA analysis appeared. The wolf-dog hybrids from 
Estonia and Latvia were assigned into two clusters according to their geo-
graphic location, and all eight hybrids were placed between dogs and wolves. 

Assignment tests were carried out to determine whether the eight hybrids 
differed significantly from wolves and dogs in Estonia and Latvia. In different 
runs (with allele frequencies correlated or independent) used to identify putative 
hybrids, the number of genetic clusters estimated was always two (K = 2). With 
‘parameter set A’, hybrids from Estonia were assigned with somewhat higher 
values to the wolf cluster, whereas hybrids from Latvia had similar probability 
values of belonging to wolf and dog clusters. However, with ‘parameter set B‘, 
all eight hybrids from Estonia and Latvia were assigned with similar probability 
values to both wolf and dog clusters. Estonian-Latvian wolves exhibited 
membership coefficients (q ≥ 0.72 (90% credible regions 0.62–1.00) of be-
longing to the wolf cluster. 

According to the kinship analysis, some of the Estonian hybrids were full 
siblings, while others were more distantly related. Therefore, it is possible that 
Estonian hybrids were not descendants of same parents. The Latvian hybrids 
were full siblings. 

Matrilineal phylogenies based on mtDNA control region haplotypes showed, 
that wolves and dogs were clearly divided into two distinct haplogroups. All six 
hybrids from Estonia carried sequences identical to the major wolf haplotype, 
while the two hybrids from Latvia shared a unique haplotype and grouped 
together with dogs. The larger phylogeny (included homologous wolf and dog 
sequences from GenBank) revealed two large clades: one specific to dogs and 
another that included both wolves and dogs. Both hybrids from Latvia were 
positioned in the dog-specific clade, while the six hybrids from Estonia were 
positioned in the wolf-dog clade. Network analysis of Y chromosome micro-
satellite loci demonstrated that both hybrid male individuals were more closely 
related to dog than wolf haplotypes, suggesting that their paternal lineage was 
most likely of dog origin. 
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3.2. Detection of cryptic population structure  
in Estonian and Latvian wolf population (II) 

Allele frequency distributions revealed some evidence of recent population 
bottlenecks in the Estonian-Latvian wolf population: in the sign test conducted 
on all 16 microsatellite loci, the signatures of bottleneck were detected with the 
stepwise mutation model (SMM) and two phase model (TPM) models: wolf 
populations were not at mutation-drift equilibrium under SMM (P < 0.0001), 
with 16 loci out of 16 exhibiting heterozygosity deficiency; mutation-drift equi-
librium was also not identified under TPM (P = 0.006; 12 loci with hetero-
zygosity deficiency). Bottleneck was not statistically supported under the 
infinite alleles model (IAM) model (P = 0.045). 

Bayesian clustering analysis using program Structure v2.3.4 (Pritchard, 
Stephens & Donnelly,  2000) (with IBD effect explaining only 6% of the 
variation),  suggested the existence of four different genetic groups A-D (Fig. 2, 
Fig. S2 in II) with all genetic groups comprised individuals with a high average 
estimated membership coefficient for the respective group (Table 1 in II). The 
structuring of the Estonian-Latvian wolf population into distinct genetic groups 
gained further support from FCA analysis (Fig. S4 in II) and from the linear 
interpolation approach, which clearly identified the geographical ranges of the 
groups (Fig.´s 3, 4 in II). According to the range of core (Hyp1A) grid points, 
three of the four genetic groups were geographically well defined: groups A 
(covering 12.3% of the analysed land area) and D (covering 7.9% in two 
separate core areas) were Estonian-based, whereas group B (26.3% coverage) 
was Latvian-based. However, group C was distributed throughout Estonia and 
Latvia, with almost all land area falling within the probable range (Hyp0) of the 
group (and a core area with only 0.1% coverage). The credible range of group B 
(Hyp1B range) also included the majority of Estonia, while western Latvia was 
outside the credible ranges of groups B and D (Fig.´s 3, 4 in II). The DResD 
algorithm provided clear evidence of spatial variation of genetic divergence that 
is likely related to varying landscape resistance to individual movements. At 
each of the three spatial scales analysed, several areas appeared where the 
interpolated pairwise genotype likelihood ratio distance (DLR) value was 
significantly higher or lower than expected from IBD alone (Fig. 5 in II). At the 
smallest spatial scale (20–80 km; Fig. 5a in II) several blending areas of dif-
ferent groups appeared with relatively high genetic distance between otherwise 
geographically closely positioned individuals. At the medium scale (80–140 
km) a putative territory of an expanding pack was detected in the forested area 
in south-west Estonia, coinciding with one of the core areas of group D (Fig. 5b 
in II). At the largest spatial scale (140–250 km) a large area in the north-eastern 
part of Estonia was identified as a migration corridor, where individuals are 
genetically relatively similar over the large geographic distance. Moreover, the 
Gulf of Riga coincided with strong divergence between individuals (Fig. 5c in 
II). 
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3.3 Genetic variation and trends in European  
wolf populations (III) 

We compared four indices of genetic diversity for ten wolf populations in 
Europe (Table 1; Fig. 5; Appendix S4 in III). Averaged genetic diversity was 
lowest in the populations in Iberia and Italy. The Iberian population was also 
characterised by the lowest allelic richness. The highest heterozygosity was 
observed in the largest population (Dinaric-Balkan, see Table 1 in III). 

None of the variables were correlated with the size of the distribution area of 
analysed populations. The sample size was negatively correlated with two of the 
genetic indices (HE: R² = 0.32, p = 0.025; RA: R² = 0.31, p = 0.03). However, the 
observed heterozygosity and inbreeding coefficient had no correlation with 
sample size (HO: R² < 0.01, p = 0.71; FIS: R² = 0.02, p = 0.70). Sample size itself 
had no trend in Europe and was not affected by spatial autocorrelation.  

There was a global spatial genetic trend of heterozygosities (HO and HE) in 
the European wolf population. Heterozygosity values were considerably higher 
towards the north-east and lower in south-western populations (Table 2a; Fig. 6 
in III). The average range of connectedness of populations suggested that the 
mean size of wolf functional subunits is about 770 km, as indicated by the 
extent of significance of spatial autocorrelation on trend model residual values 
of HO (650 km), HE (800 km), and FIS (850 km), (Table 2b in III). The 
reliability of the detected patterns was indicated by zero or near zero nugget 
effects of the variogram models. A small nugget effect indicates low variance 
among independent estimations (different studies) in the same geographic area, 
and, by extension, a robust pattern in the observed variable, and good repeat-
ability of measured values. Allelic richness was distributed relatively evenly 
over Europe, having only a weak signal of spatial pattern and strong nugget 
effect of the variogram. 

Various genetic diversity patterns were detected within the two large distinct 
regions of the wolf European range – Southern Europe (Iberia, Alps, Italy, 
Dinaric-Balkan), and North-East Europe (Russia, Karelia, Baltic, Carpathians, 
Central European Lowland). In the Scandinavian population, only limited data 
were available and it was not possible to include this region in the meta-analysis 
of regional patterns. In southern Europe, a significant gradient of HO and HE is 
directed toward the north-east (Table 3 in III). In the largest continuous popu-
lation in north-east Europe, a significant west-east gradient of expected hetero-
zygosity (HE) was observed (Table 3 in III). The lowest values appeared in 
Germany and the highest in Estonia and Latvia (Fig. 6 in III). The trend model 
residuals of the HE were not spatially autocorrelated (Moran’s I = 0.16, p = 
0.088). The observed heterozygosity (HO), inbreeding coefficient (FIS) and allelic 
richness (RA) did not exhibit significant spatial trends in north-east Europe, and 
were significantly autocorrelated in space. The highest genetic variability (HO and 
RA) was found in Estonia and Latvia, and the lowest in Poland. Despite the 
relatively low heterozygosity in Germany, our results do not indicate significant 
inbreeding.  



21 

4. DISCUSSION 

While some European populations such as Italian peninsular (Dolf et al., 2000; 
Randi & Lucchini, 2002; Verardi, Lucchini & Randi, 2006; Fabbri et al., 2007, 
2014; Lucchini, Galov & Randi, 2004; Scandura et al., 2011; Caniglia et al., 
2013; Randi et al., 2014; Fabbri et al., 2014) and Scandinavian (Ellegren, Savo-
lainen & Rosen, 1996; Ellegren, 1999; Flagstad et al., 2003; Vilà et al., 2003a, 
b; Seddon et al., 2005, 2006; Hagenblad et al., 2009) have been studied using 
genetic methods for number of years, the Baltic wolf population, and specifi-
cally what is concerning Estonian-Latvian wolves have received very little 
attention. Before publications I and II of this thesis, only Andersone et al. 
(2002) had investigated wolf-dog hybridization in Latvia using molecular 
methods. Although Estonian-Latvian wolves are forming only part of the larger 
Baltic wolf population (Chapron et al., 2014), the main results of our studies 
illustrate outstanding population processes occurring at a smaller spatial scale:  
1. Hybridization between wolves and dogs. The first confirmed hybridization 

event between grey wolves and dogs in Estonia (in I) and the second time in 
Latvia: wolf-dog hybridization was previously reported in Latvia in 1999 
and subsequently verified using genetic analysis (Andersone et al., 2002); 

2.  A rare case of direction of hybridization was identified in Latvian hybrids 
(male wolf x female dog) (I); 

3. The Estonian-Latvian wolf population is characterised by relatively high 
genetic diversity (II) despite past bottlenecks and severe hunting pressure. 

4. Our population analysis demonstrated that this relatively small wolf 
population shared between Estonia and Latvia is represented by four genetic 
groups (II). 

 
The appearance of wolf-dog hybrids in both countries can most likely be 
explained by the combined effect of two factors: severe and continuous hunting 
pressure on wolf populations, together with the abundance of stray dogs. Inten-
sive hunting may have the dual effects of reducing wolf population density and 
destroying the structure of wolf packs (Valdmann, Laanetu & Korsten, 2004; 
Jędrzejewski et al., 2005). Where wolf density is low and stray dogs are present, 
the probability of wolf hybridization with stray dogs may be increased. Stray 
dogs have long been present in Estonia and Latvia, reflecting the common 
practice of dog-owners in rural areas to let their dogs roam freely.  

Microsatellites have been particularly useful for detecting genetic admixture 
between wolves and dogs (Andersone et al., 2002; Randi & Lucchini et al., 2002; 
Vilà et al., 2003b; Verardi, Lucchini & Randi, 2006; Munoz-Fuentes et al., 
2010; Godinho et al., 2011) and in the article I hybridization was ascertained 
through combined analysis of biparental genetic markers (autosomal STR), 
paternal (Y chromosome STR) and maternal (mtDNA). Wolf-dog hybrids 
exhibited several alleles that were shared with one of the putative parent species 
but not the other, the mixed origin of hybrids was also indicated by other 
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analyses (factorial correspondence analysis and Structure): the results suggested 
that hybrids from Latvia are most likely F1, whereas generation of hybrids from 
Estonia was unequivocal (F1 or F2). While autosomal microsatellite data 
allowed the presence of wolf-dog hybrids in Estonia and Latvia to be established, 
gender-specific genetic markers were used to evaluate the direction of hybridiza-
tion. According to the network analysis based on Y chromosome microsatellite 
loci and mtDNA analysis, for hybrids collected in Estonia, hybridization took 
place according to the common pattern, i.e. between female wolf and male dog. 
On the other hand, mtDNA haplotypes found in two Latvian hybrids grouped 
with dogs, representing an extremely rare case of hybridization between a 
female dog and a male wolf. This result provides a rare example that violates 
the general rule of sexual asymmetry in mating between wolves and dogs and it 
is the first confirmed case from Europe to demonstrate that hybridization has 
occurred between female dog and male wolf. As the majority of microsatellite 
alleles were of wolf origin and the minority were shared with dogs, the most 
likely scenario to explain those data is that hybridization and subsequent 
introgression had taken place. 

In Europe, introgressive hybridization has been suggested by a study of the 
Italian wolf population (Verardi, Lucchini & Randi, 2006) and in a recent study 
from the Iberian Peninsula (Godinho et al., 2011) and potentially in Estonian-
Latvian wolf populations (I). In Iberian population, a minimum of 4% of the 
wolves showed signals of introgressive hybridization (Godinho et al., 2011). 
Determining introgression in a wolf population is of critical importance because 
first-generation hybrids may backcross and bring maladapted genes in parental 
wolf population (Leonard et al., 2014).  

Conservation and management of large carnivores is a substantial challenge 
for biodiversity conservation due to a strongly established hostility to these 
species, especially to wolf, in human history and culture (Chapron et al., 2014). 
Structuring of wild animal populations due to overexploitation and habitat 
degradation is of increasing conservation and management concern not only in 
Europe but worldwide. Therefore, estimating genetic variation and the degree to 
which populations are genetically structured is important for conservation 
planning. Estonian and Latvian wolves are characterised by relatively high 
genetic diversity (I–II; Plumer et al., 2016) despite past population bottlenecks 
and severe hunting pressure. However, the discovery of cryptic population 
structure in the Estonian and Latvian wolf population (publication II) was un-
expected due to the high mobility that the species exhibits, the relatively small 
geographic area studied, and the lack of obvious movement barriers and eco-
logical specialisation. Several processes might be expected to have promoted 
the emergence of distinct genetic groups following a bottleneck in the study 
area: (1) groups might be formed by immigrant individuals from different parts 
of Lithuania and Russia; or (2) groups might originate from spatially separated 
local wolf packs (with no significant immigration). Considering all the data, the 
most plausible scenario may be a combination of these two processes.  
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The wolf is one of the most mobile terrestrial mammal species, having the 
ability to disperse over long distances – Wabakken et al. (2007) have documented 
a dispersal distance of 1,092 km from southeast Norway to northeast Finland 
and a wolf originating from German-western Polish population was identified 
800 km away in Denmark (Andersen et al., 2015). Thus, one might expect gene 
flow within Estonia and Latvia – a relatively limited geographic area (maximum 
extent 560 km) – to be considerable as there are no obvious movement barriers. 
Furthermore, the results of III suggested that the genetic diversity of a given 
wolf population can be influenced by populations up to 850 km away. The weak 
IBD effect observed in publication II suggests that wolves are capable of 
mixing all over the study area, suggesting that in the absence of hunting, observed 
groupings would probably merge. This has been shown in Italy, where the genetic 
clustering has been also detected at local scales, whereas it occurred due to other 
populational processes, namely high spatial stability of packs, combination of 
long-range dispersal, the preference to mate with unrelated individuals and a 
high young mortality rate (Scandura et al., 2011). Therefore, severe hunting 
pressure is likely the major factor behind (1) population substructuring (II and 
Plumer et al., 2016) and (2) identified hybridization in Estonian-Latvian wolves 
(in I). There are several reasons for this: (1) intensive hunting may have the 
dual effects of reducing wolf population density and destroying the structure of 
wolf packs (Valdmann, Laanetu & Korsten, 2004; Jędrzejewski et al., 2005). Low 
density and fragmented nature of wolf population coupled with the imbalance 
between a number of wolves and stray dogs can lead to increased probability of 
mating between wolves and dogs as shown in several cases (Verardi, Lucchini & 
Randi, 2006; Godinho et al., 2011; Moura et al., 2014). (2) Hunting has without 
doubt been the primary mechanism responsible for reducing the density of the 
Estonian-Latvian wolf population. Under severe hunting pressure, immigration 
rates are highly likely to increase due to appearance of vacant territories (Kojola 
et al., 2006) and hunting, through its effect on immigration rates, almost 
certainly remains the ultimate cause. In Finland (Aspi et al., 2006; Jansson et 
al., 2012, 2014) and Lithuania (Baltrūnaitė, Balčiauskas, Åkesson et al., 2013) 
where hunting pressure is low and immigration moderate or low, no population 
structuring has been observed. Therefore, on the basis of immigration alone, the 
much smaller territory of Estonia and Latvia might be expected to exhibit no 
population structuring at all.  If significant immigration was ongoing, one might 
expect to detect genetic groups or clustering of individuals with relatively high 
genetic distance near border areas in Lithuania and Russia. The very same 
situation in wolf population has been described in Bulgaria, where hybridization 
between wolves and dogs, high genetic diversity and local population structure 
have been documented (Moura et al., 2014). 

Low public acceptance due to livestock depredation, especially in Saaremaa 
and Hiiumaa islands in western Estonia (Plumer et al., 2016) and human-caused 
mortality, including illegal killing, are the biggest threats this part of Baltic wolf 
population is facing. However, large infrastructure developments and frag-
mentation of suitable habitats by intensive forestry can also pose a significant 
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threat. These problems are expected to remain, if not increased in the future, e.g. 
the forthcoming construction of Rail Baltic and new highways. Moreover, the 
new fence currently being built at the Estonian-Russian border will probably 
decrease gene flow between the wolf populations between the countries, though 
complete isolation is unlikely as wolves can cross Lake Peipus during winter-
time. Although gene flow occurs between Latvia and Estonia (II), there is no 
information on the extent of gene flow and directionality in the whole Baltic 
population. Similarly, there is a lack of knowledge on gene flow with neigh-
bouring populations (Central European Lowland population, Carpathian 
popuation, Karelian population and wolves in Western Russia).  

In order to minimize hybridization between wolves and dogs, maintain high 
genetic diversity and gene flow, the most effective strategy would appear to be 
a long-term maintenance of wolf populations at stable densities and with the 
natural social structure preserved. However, despite high hunting pressure, the 
presence of stray dogs and hybridization, the results of publication I show that 
Estonian and Latvian wolves have largely remained genetically distinct from 
dogs, suggesting that introgressive hybridization in nature might be counteracted 
by selection or behavioural factors. Moreover, these wolves have maintained 
high genetic diversity and a degree of substructuring (in publication II). 

The results of meta-analysis (III) confirmed the recorded population 
histories of wolves in Europe: during the period of demographic decline, larger 
populations survived in the Balkans and Eastern Europe, small and fragmented 
populations remained in the Iberian and Italian peninsulas, and the species was 
eradicated from central Europe and Scandinavia.  

Historically, populations in southern Europe have been isolated for long 
periods of time, possibly for several thousands of years in the case of the Italian 
(Lucchini, Galov & Randi, 2004; Fabbri et al., 2007) and Iberian (Sastre et al., 
2011) populations. Population decline, long-term geographical isolation and a 
lack of gene flow into the Italian and Iberian wolf populations explain the low 
genetic diversity and divergence from other European populations, indicated from 
microsatellite (Lucchini et al., 2004; Godinho et al. 2011; Sastre et al., 2011), 
mtDNA (Pilot et al., 2010) and SNP data (vonHoldt et al., 2011; Stronen et al., 
2013; Pilot et al., 2014b). The most effective conservation strategy would require 
an increase in heterozygosity through elevated gene flow and population growth. 
The North-West Iberian population has been expanding naturally eastward and 
southward in Spain (Blanco et al., 1990), however in other areas it has disap-
peared (MAGRAMA, 2016), whereas in Portugal there are no signs of wolf 
population growth, especially in central Portugal, where the wolf may be on the 
verge of extinction (Boitani & Ciucci, 2009). Wolves from the Alpine popu-
lation have reached the Iberian Peninsula in the last decade, but they currently 
remain in the Eastern Pyrenees and Catalonia, with no connectivity to the 
North-West Iberian wolf population (Valière et al., 2003; Lampreave et al., 
2011; Sastre, 2011). Despite the low levels of genetic variability in Italian 
wolves, this population has active internal gene flow between subpopulations, 
in large part directed from the Apennines to the Alps (Fabbri et al., 2007). This 
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population has colonized the Alps, forming a new Alpine wolf population that is 
now coming in contact with wolves of Dinaric-Balkan origin in the east (Fabbri 
et al., 2014; Ražen et al., 2016), which may result in natural gene flow between 
the Alpine and Dinaric-Balkan populations in future.  

The relatively high heterozygosity in north-eastern European populations 
(III) can largely be explained by their demographic connectivity to the large 
metapopulation in western Russia, which has long served as an important source 
of immigrants (Pilot et al., 2006, 2010; Boitani & Ciucci, 2009). Due to gene 
flow between different countries, the Baltic population shows medium to high 
levels of genetic diversity (Jędrzejewski et al., 2005; Czarnomska et al., 2013; 
II), despite strong hunting pressure (Jędrzejewski et al., 2005; II). However, 
despite the relatively high levels of heterozygosity, signs of inbreeding in north-
eastern European wolf populations (Table 1 in III) was found. Signs of recent 
inbreeding have also been detected in eastern European wolf populations by 
Pilot et al. (2014a). Although inbreeding is naturally avoided in a wolf pack 
through wide variety of behavioural mechanisms (vonHoldt et al., 2008), it may 
increase under strong hunting pressure, which decreases population size and 
disrupts wolf social structure (Valdmann, Laanetu & Korsten, 2004; Jędrze-
jewski et al., 2005; Moura et al., 2014), potentially reducing the quality of traits 
that define apex predators (Ordiz, Bischof & Swenson, 2013).  

Lower values of global spatial trends of heterozygosity in south-western 
populations (Table 2 in III) is probably the result of several factors: recent 
population demographic history (hunting pressure and bottlenecks), connectivity 
(isolation in peripheral areas of wolf distribution in Europe) and environmental 
variables. As environmental gradients in Europe have existed for a long period 
of time, they most likely have had an impact on genetic variability. The higher 
levels of heterozygosity in north-eastern Europe may be due to gene flow 
between northern and eastern European and Russian wolf populations (Aspi et 
al., 2009; Pilot et al., 2006). The range of spatial influence of 650−850 km (III) 
is very likely for it has been shown that wolves can disperse as far as 800 km 
and more (Wabakken et al., 2007; Andersen et al., 2015). However, gene flow 
can be restricted due to prey and habitat specialization (Pilot et al., 2006; 
Leonard, 2014) and human-built obstacles (Aspi et al., 2009). Radiotracking of 
wolves has also suggested that few individuals in northern Europe disperse more 
than 400 km (Kojola et al., 2009) – half of the genetic distance of spatial influ-
ence found in our results. Furthermore, few of the dispersal events contribute to 
gene flow because of human-caused mortality (Kojola et al., 2009; Liberg et al., 
2012). These considerations should be taken into account in wildlife manage-
ment plans dominated by anthropogenic landscapes to avoid significant draw-
backs for smaller and more fragmented wolf populations (Delibes, 1990; II), 
particularly in southern regions (Randi, 2011). 

Most of the ten European wolf populations face similar common threats: 
overharvesting (including poaching), low public acceptance and conflicts due to 
livestock depredation (Table 4; Fig. 8 in III), resulting most likely from a lack 
of knowledge and poor management structure, but also from livestock damage 
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and deep fears of wolf attacks on humans and dogs. Interactions with domestic 
dogs leading to disease transfer and/or hybridization have also generated concern 
(Leonard et al., 2014). However, other threats, such as habitat destruction and 
large fluctuations in prey base, are also relevant to the majority of populations. 
Thus, various human-related factors are undoubtedly the main source of threats 
to wolf populations in Europe, and the generally negative human attitude toward 
wolves has been and remains the primary threat to wolf populations. Histori-
cally, even infectious diseases (e.g. rabies, sarcoptic mange) have not had such 
a devastating impact on wolf numbers as negative human attitudes, resulting in 
severe hunting pressure (legal and illegal), which in many areas in Europe led to 
wolf eradication in the past and continues to threaten small endangered popu-
lations (e.g. in Sierra Morena). Hunting, as well as other direct anthropogenic 
threats can have genetic consequences (Allendorf et al., 2008), especially for 
social species such as the wolf (e.g. Creel & Rotella, 2010; Ausband et al., 
2015). 

The genetic-related threats affecting European wolf populations are: 
(1) restriction to gene flow that can result in considerable genetic drift and in-
breeding. Severe reduction or loss of population connectivity inside and among 
European wolf populations is the most challenging factor that requires strong 
measures, especially in areas where hunting pressure on wolves has been strong 
for some time (Kaczensky et al., 2013; Jansson et al., 2014; Chapron & Treves, 
2016; Plumer et al., 2016); (2) Wolf–dog hybridization is the second most 
common genetic-related threat in the majority of European wolf populations 
(Table 4 in III). Hybridization has been shown to increase under strong anthropo-
genic pressure, especially at the population periphery and in areas with high 
human-caused mortality (Andersone et al., 2002; Vilà et al., 2003b; Godinho et 
al., 2011; Leonard et al., 2014). Another factor that can play an important role 
in wolf–dog hybridization is the disruption of social structure due to high 
hunting pressure (Valdmann, Laanetu & Korsten, 2004; Jędrzejewski et al., 
2005), that can potentially increase the risk of hybridization. Moreover, intro-
gression (following hybridization) can bring selective genetic changes by 
introducing maladapted genes into wild populations (Leonard et al., 2014).  

Large carnivores can coexist with humans if a favourable management 
policy is applied (Linnell, Salvatori & Boitani, 2008; Treves et al., 2016), 
however, recent recovery of wolf populations across Europe poses serious chal-
lenges to the management of the species.  
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SUMMARY 

Knowledge of wolf population genetics and hybridization between wolves and 
dogs are of great importance for effective conservation and management of the 
species at both local and global scales. There are numerous studies published on 
wolf population genetics in different countries and regions in Europe, however 
the data on Baltic population, specifically part of the population represented by 
Estonian and Latvian wolves, were lacking. Studies including all European 
countries in a comprehencive analysis of large scale spatial-genetic patterns and 
trends of genetic variation in Europe were also lacking. The goal of this thesis 
was to provide information on wolf population structure and processes in 
Europe with a particular emphasis on Estonia and Latvia, including the wolf-
dog hybridization. 

Hybridization between grey wolf and domestic dog was ascertained in Estonia 
(for the first time) and Latvia using a combined analysis of maternal, paternal and 
biparental genetic markers. Six hybrid individuals from Estonia and two from 
Latvia were initially detected from their atypical morphological traits and their 
hybrid status was subsequently confirmed using genetic analysis. Analysis of 
mtDNA showed that the two hybrids from Latvia represented a very rare case of 
hybridization – the first record from Europe – between a female dog and a male 
wolf.  

Population genetic analysis demonstrated that the relatively small wolf popu-
lation shared between Estonia and Latvia is represented by four genetic groups. 
While three of the four genetic groups were geographically well defined, being 
either Estonian or Latvian based, one of the groups was distributed widely in 
Estonia and Latvia. The spatially explicit DResD analysis provided clear evidence 
of spatial variation of genetic divergence: (a) at the smallest spatial scale (20–80 
km) several blending areas of different groups appeared with relatively high 
genetic distance between otherwise geographically closely positioned individuals; 
(b): at the medium scale (80–140 km) a putative territory of an expanding pack 
was detected in south-west Estonia, coinciding with one of the core areas of 
group D (c): at the largest spatial scale (140–250 km) a large area in the north-
eastern part of Estonia was identified as a migration corridor. 

To describe large-scale trends and patterns of genetic variation in European 
wolf populations, we conducted a meta-analysis based on the results of previous 
microsatellite studies and included also new data, covering all 19 European 
countries for which wolf genetic information is available: Norway, Sweden, 
Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, 
Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, 
Spain and Portugal. We compared different indices of genetic diversity in wolf 
populations and found a significant spatial trend in heterozygosity across Europe 
from south-west (lowest genetic diversity) to north-east (highest). The range of 
spatial autocorrelation calculated on the basis of three characteristics of genetic 
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diversity was 650−850 km, suggesting that the genetic diversity of a given wolf 
population can be influenced by populations up to 850 km away.  

Various human-related factors are undoubtedly the main source of threats to 
wolf populations in Europe: the majority of populations face similar common 
threats such as overharvesting (including poaching), low public acceptance, 
conflicts due to livestock depredation, habitat destruction, barriers to gene flow 
and interactions with dogs leading to possible hybridization. For the long-term 
survival and favourable conservation status of European wolves there is a need to 
increase the overall population size and favour wolf dispersal and connectivity 
among and within populations. For science-based wolf conservation and manage-
ment at regional and Europe-wide scales it was suggested (1) to manage wolf 
populations according to biological units, which requires additional genetic 
analysis covering all wolf populations in Europe to define the exact number and 
spatial distribution of populations; (2) to increase scientific knowledge and 
inform stakeholders and the general public, there is a need to establish a 
European Union Wolf Scientific Committee and a European Union Reference 
Laboratory of Wolf Studies. 
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SUMMARY IN ESTONIAN 

Hundi (Canis lupus) populatsioonid Eestis ja Euroopas:  
geneetiline mitmekesisus, populatsiooni struktuur ja  

-protsessid ning hübridiseerimine koertega 

Teadmised hundi populatsioonigeneetikast ja huntide hübridiseerumisest koertega 
on olulised nii kohaliku populatsiooni tasandil kui ka liigi tõhusa kaitse- ja 
majandamisotsuse tegemiseks kogu Euroopas. Euroopa eri riikides ja piirkon-
dades paiknevate hundipopulatsioonide geneetikat ning huntide-koerte hübridi-
seerumist käsitlevaid uuringuid oli enne doktoritööga alustamist avaldatud mit-
meid, kuid andmed Balti populatsiooni, eriti Eesti ja Läti huntide kohta, puudusid. 
Samuti oli selge vajadus läbi viia uuring, mis analüüsiks suuremastaabilisi 
ruumilis-geneetilise variatsiooni mustreid ja trende üle Euroopa. Selle väitekirja 
eesmärk oli täita eelpool nimetatud tühimikud ja anda teavet hundi populat-
sioonigeneetika kohta Euroopas, rõhuga Eesti ja Läti hundipopulatsioonidele. 

Kasutades kombineeritud analüüsi, mis kaasab nii emaliini, isaliini kui ka 
biparentaalseid geneetilisi markereid, tuvastati Eestis (esmakordselt) ja Lätis 
hübridiseerumine hundi ja koera vahel. Kuus hübriidset isendit Eestist ja kaks 
Lätist tuvastati algselt nende ebatavaliste morfoloogiliste tunnuste tõttu ning 
nende hübriidne staatus kinnitati hiljem geneetilise analüüsiga. MtDNA analüüs 
näitas, et kaks hübriidi Lätist esindasid väga haruldast, Euroopas esmakordselt 
tuvastatud hübridisatsioonijuhtumit – emase koera ja isase hundi vahel.  

Eestit ja Lätit hõlmav hundi populatsioonigeneetiline analüüs näitas, et 
hoolimata asjaolust, et Eesti ja Läti hundipopulatsioonid on väiksearvulised, 
esineb neli geneetilist rühma. Kolm neljast geneetilisest rühmast jaotusid riigiti, 
kaks gruppi olid Eesti- ja üks Läti-keskne, ent neljas grupp esines laialdaselt üle 
Eesti ja Läti. Uudne DResD analüüs tuvastas selge ruumilise erinevuse geneeti-
lises lahknemises: (a) väikseimal ruumilisel skaalal (20–80 km) identifitseeriti 
mitmed erinevate gruppide segunemisalad, millel paiknesid geograafiliselt üks-
teisele lähedased, kuid geneetiliselt suhteliselt kauged isendid; (b) keskmise 
suurusega (80–140 km) skaalal tuvastati oletatav territooriumit laiendav kari 
Edela-Eestis ja (c) suurimal ruumilisel skaalal (140–250 km) määratleti suur ala 
Kirde-Eestis kui hundi rändekoridor. 

Selleks, et kirjeldada laiaulatuslikke trende ja geneetilise variatsiooni must-
reid Euroopa hundipopulatsioonides, viisime läbi meta-analüüsi, kasutades nii 
olemasolevaid mikrosatelliitmarkeritel põhinenud uuringuid, kui ka uusi 
andmeid, hõlmates kokku 19 Euroopa riiki: Norra, Rootsi, Soome, Eesti, Läti, 
Leedu, Poola, Tšehhi, Slovakkia, Saksamaa, Valgevene, Venemaa, Itaalia, Hor-
vaatia, Bulgaaria, Bosnia ja Hertsegoviina, Kreeka, Hispaania ja Portugal. 
Analüüsiti hundipopulatsioonide erinevaid geneetilise mitmekesisuse indekseid ja 
leiti Euroopa-ülene ruumiline heterotsügootsuse trend suunaga edelast kirdesse – 
madalaim geneetiline mitmekesisus esines Euroopa edelaosas ja kõrgeim kirde-
osas. Ruumilise autokorrelatsiooni vahemikuks, mis arvutati kolme geneetilise 



30 

mitmekesisuse tunnuse abil, saadi 650–850 km, mis viitab sellele, et konkreetse 
hundipopulatsiooni geneetilist mitmekesisust võivad mõjutada hundipopulat-
sioonid, mis asuvad kuni 850 km kaugusel.  

Peamised hunte ohustavad tegurid Euroopas on inimtegevusega seotud, mis-
tõttu seisab enamik Euroopa hundipopulatsioonidest silmitsi sarnaste ohtudega: 
küttimine (sealhulgas salaküttimine), inimeste madal sallivus hundi suhtes, 
konfliktid kariloomade murdmise tõttu, elupaikade hävimine ning võimalik 
hübridiseerumine koertega. Liigi pikaaegseks säilimiseks ja soodsa seisundi 
saavutamiseks Euroopas on vaja suurendada populatsioonide üldist arvukust, 
soodustada loomade levikut ja populatsioonide-siseseid ja -vahelisi seoseid. 
Hundi teaduspõhiseks kaitseks ja majandamiseks nii piirkondlikel kui ka üle-
Euroopalisel skaalal on soovitatav hallata hundipopulatsioone kui bioloogilisi 
üksusi, mis nõuab kõiki Euroopa hundipopulatsioone hõlmavaid täiendavaid 
geneetilisi analüüse, et teha kindlaks populatsioonide täpne arv, ruumiline 
jaotus, geenisiirde ulatused ning hübridiseerumise sageduse koertega. 
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