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2Ok  oxygen mass transfer rate between the flowing liquid and sensor 

surface 
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INTRODUCTION 

Milk and dairy products, generally considered to be healthy and nutritionally 
balanced natural food comprise essential nutrients for all age groups and are an 
important part of our everyday diet. However, the use of veterinary drugs, in 
particular antibiotics for the treatment of food-producing animals generates the 
risk to human health due to the transmission of the residues and metabolites of 
these compounds into food chain. In addition, scientists and health experts are 
also concerned that wide application of antimicrobial agents is contributing to 
the rise and spread of antibiotic-resistant bacteria. Penicillins, which belong to 
the group of β-lactam antibiotics, are bactericidal antibiotics and act by 
disrupting peptidoglycan synthesis in actively multiplying bacteria. Although 
penicillins have several clinical limitations, as instability in the presence of 
gastric acids and ineffectiveness against many Gram-negative bacteria, they are 
still considered to be the best antibiotics to use against most Gram-positive 
organisms. At present, strict regulations have been established for the levels of 
antibiotic residues and metabolites in food of animal origin.  

Antibiotic residues in food are commonly determined chromatographically 
and with the help of special tests. The application of biosensors for the detection 
of antibiotic residues is a good alternative to traditional methods. The benefits 
of biosensors are their low cost, simplicity and possibility for rapid real-time 
analysis. Nowadays, the critical problems of biosensing antibiotic residues are 
the reliability of results and time required for analyses enabling automatic on-
line control of production. 

The main goal of the present work was to introduce a rapid method for real-
time detection of penicillins’ residues in milk, to propose a simple and effective 
model to describe the response of enzymatic bio-optrode operating in flow 
regime and to study the possibilities of amplifying the biosensor signal to 
reduce experimental noise and accelerate the acquisition of results. We used a 
dual-sensor system consisting of glucose and reference oxygen optrodes, 
enabling to eliminate the fluctuations in the initial dissolved oxygen concent-
ration, temperature and fluidic flow as a robust standard system for model 
development. The modulation of the catalytic properties of glucose oxidase with 
different metal cations was studied to amplify the characteristic calibration 
parameters of glucose and cascaded lactose biosensors based on glucose 
oxidation in order to accelerate the rate and improve the quality of milk 
analysis. The effect of sample flow rate on different biosensor calibration 
parameters, calculated from the biosensor transient phase signal, was also 
studied. Finally, the dual optrode glucose biosensing system was used for the 
determination of the effect of penicillins on the biosensor signal in milk and the 
assessment of substandard milk, collected from cows undergoing treatment with 
penicillin antibiotics.  
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1. LITERATURE OVERVIEW 

1.1. The use of antibiotics in dairy farming 
The use of antibiotics in dairy farming includes not only the treatment of 
various inflammatory processes, but also the prophylaxis and addition of sub-
therapeutic doses into feed to promote growth and improve production 
efficiency in some countries [1–3]. The occurrence of antibiotic residues in milk 
can lead to health problems in humans and risks of developing microbial 
resistance [2]. In addition, the presence of antibiotics in milk impairs fermen-
tation processes during cheese and yoghurt production [4]. 

The overall sales of veterinary antibiotics, used in food-producing animals, 
including dairy farming, were 8 122 tonnes in EU and 13 600 tonnes in U.S., 
whereas in Estonia veterinary antibiotics sales number was 8.7 tonnes as of pure 
ingredients in 2013 [5,6]. The highest proportion of the sales constituted 
penicillins, which belong to the group of β–lactams; and tetracyclines; whereby 
the use of the first is prevailing in Nordic countries [5–8]. 

Due to their lipophilic properties, penicillins accumulate in milk. Taking into 
account the widespread consumption of milk and the high potential of 
accumulation of antibiotic residues in it, milk is one of the most heavily regu-
lated food products [9]. In EU, the Maximum Residue Limits (MRLs), which 
are not to be exceeded in milk, are set to 4 µg/L (ppb) for benzylpenicillin, 
amoxicillin and ampicillin and 30 µg/L (ppb) for cloxacillin [10]. 

Since the introduction of EU regulations on MRLs of pharmacologically 
active substances in foodstuff of animal origin (Commision Regulation 
37/2010), it has been clear that the concept of regulating MRL values in foods 
can be implemented successfully only if methods for quantification of these 
substances are available for on-site use for rapid monitoring and testing of 
production [10]. 
 
 

1.2. Methods for the detection of antibiotics in milk 
At present, there are two major methods applied for the assessment of antibiotic 
residues in milk: various chromatography-based techniques and qualitative milk 
screening tests [11–14]. 

High-performance liquid chromatography in combination with mass 
spectrometry (HPLC/MS) is considered to be the most reliable technique for 
quantitative detection of antibiotic residues [11,14], and more than 80% of the 
analyses of veterinary drugs are carried out using this technique [14]. The 
detection limits for penicillins in milk with HPLC/MS are usually well below 
1 ppb [14,15]. However, chromatography based methods require expensive 
equipment and trained personnel and therefore do not enable to discover the 
antibiotic residues in milk in farm, prior to the contamination of subsequent 
food chain with polluted milk. In addition, HPLC techniques demand laborious 
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pre-treatment of samples like extraction of the analyte from sample matrix and 
derivatization [11,14]. β-lactams can also degrade if methanol and/or 0.1% 
formic acid are present in the extraction solvent [15]. 

Qualitative microbial inhibition tests comprise spores of specific bacteria, 
sensitive to particular antibiotics on agar gel including nutrients for bacterial 
growth and a pH indicator. These commercial tests include Delvotest, BetaStar 
Plus, Charm Farm Test, Eclipse test, Arla test, Copan test, Disc assay, Diffusion 
test, Valio 101 test, etc [12,14–15]. The main advantages of these tests are their 
low cost, simple performance, and broad selection towards different antibiotics, 
e.g. Diffusion test and Delvotest for the determination of β-lactams, Lumac test 
for the determination of penicillins, Charm Farm Test for the determination of 
aminoglycosides and tetracyclines [12]. As a rule, the detection limits of these 
tests for specific compounds are in the range of the established MRL values 
[11,12,15,16]. Although microbial inhibition tests are considered to be rapid, 
they take 3 to 24 hours to perform in an incubator [12]. Another problem is that 
the bacterial strains (Streptococcus thermophilius, Bacillus subtilis, Bacillus 
stearothermophilus var. calidolactis, Sarcina lutea, Escherichia coli) used in 
tests should be constantly monitored to ensure that they have not become 
resistant to the analyzed antibiotics. The interpretation of test results is quite 
subjective and may lead to false negative or positive results. The presence of 
natural inhibitors in abnormal milk (e.g. milk of mastitic cows or colostrum) 
can be the cause of false positive results [11–13]. In addition to microbial 
inhibition tests; there are different rapid tests, based either on immunoassay or 
enzymatic operation, available for screening of a number of antibiotic residues 
in milk [15,17]. These tests can provide preliminary results within 15 minutes, 
although the reliability of these tests is not very high as several components in 
mastitic milk (e.g. somatic cells, lactoferrin, lysozyme, microbes, and free fatty 
acids) may have a major impact on the outcome of the test and cause elevated 
false non-compliant/compliant results [15,18]. 

In spite of detection limits in the range of established MRL values, none of 
the abovementioned technologies are suitable for on-line analytical arrange-
ments. 
 
 

1.3. Biosensors for the detection  
of antibiotic residues in milk 

The application of biosensors for milk analyses is a good alternative to tra-
ditional methods, as biosensors enable the development of equipment for real-
time analysis in complex matrixes, operating in fully automatic or manual 
mode. Biosensors are compact devices transferring selective biochemical re-
cognition into a measurable physical signal. This signal can be translated into an 
indicator of the safety or quality of milk. Due to the large number of different 
principles used, biosensors can be classified according to the bio-recognition or 
signal transduction technologies employed [19].  
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The most common biosensors, developed for the detection of antibiotic 
residues in milk are immunosensors, based on immunochemical biorecognition 
reactions and electrochemical and optical signal transduction, the latter most 
often being a Surface Plasmon Resonance (SPR) biosensor. The application of 
SPR technology secures low detection limits even below the established MRL 
values [20–22]. The main drawbacks of SPR biosensors are high cost and time, 
required for the preparation of specific biorecognition chips and system 
regeneration [21]. Detection limits of the majority of current immunosensors 
[IV], which are, designed for the determination of β-lactam antibiotic residues, 
vary in a broad range: from 10–6 ppb to 14.6 ppb [22–30]; and the detection 
limits are in the similar range for other antibiotics [31,32]. Although immuno-
sensors are very selective, the speed of analysis depends on the incubation time 
required to form antigen/antibody complex, which can be several hours [26,33]. 

The second most common group of biosensors is receptor or enzyme-based 
biosensors, where specific receptors or enzymes interact with the antibiotic 
molecules and the substrates or products of the bio-recognition reaction are 
determined directly with a suitable transducer [IV]. These biosensors have been 
designed for the determination of β-lactam residues with the limit of detection 
(LOD) ranging from 4×10–8 ppb to 9×103 ppb [21,34–46]. Receptor or enzyme-
based biosensors like immunosensors usually employ optical (mainly SPR) or 
electrochemical signal detection principles [11,21,34,37,47].  

There are a few biosensors for detecting antibiotic residues in milk based on 
the application of enzymatic activity of microorganisms [48–50]. These 
microbial biosensors are based on the measurement of the inhibition of bacterial 
growth due to the presence of antibiotics [11–14]. For instance, systems for the 
monitoring of β-lactams are based on similar principles as microbiological 
inhibition tests for milk [12,14] with the difference that the bio-recognition 
reaction signal is detected quantitatively or semi-quantitatively. Detection limits 
in both cases are at the MRLs levels [48]. 

During last years aptamer-based biosensors have been proposed for the 
detection of antibiotic residues in milk [51–55]. Aptamers are oligonucleotide 
or peptide molecules that bind to a specific target molecule. Specific three-
dimensional aptamers, fold into well-defined structures, are produced using 
Systematic Evolution of Ligands by EXponential enrichment (SELEX) method 
[56,57]. Aptamers are quite stable and are not affected by reasonable tem-
perature or pH fluctuations, at optimal conditions they can restore their original 
conformation. Aptamers are smaller in size compared to antibodies enabling to 
reach previously blocked or intracellular targets [58]. The detection limits of 
common aptasensors [IV] are varying in the range of 3.5×10–2 ppb to 350 ppb 
for the detection of β-lactam residues [53]. A serious disadvantage using 
aptamer-based biosensors for milk analyses is the presence of milk proteins and 
fat; and the non-transparency of the samples, which hamper the application of 
optical detection methods. Pre-treatment of milk samples is commonly required 
for the analyses with aptamer-based biosensors [54,55,59–64].  
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A recent development in the biosensing of antibiotic residues in milk is the 
application of molecularly imprinted polymer sensors (MIPs) for biorecognition 
[65–67]. Molecular imprinting is a technique for the creation of synthetic 
materials containing specific receptor sites having high affinity towards the 
target molecule [68]. MIPs are effective alternatives to the natural biorecog-
nition compounds in biosensor assays. Unfortunately, so far there are no MIPs 
for the determination of β-lactam residues. Current MIP sensors have been 
mostly designed for the detection of aminoglycosides [IV]. These sensors are 
very sensitive with LOD varying in the range from ≤ 1 ppb to 6 ppb [66,69], 
which is far below of the allowed MRL values, so dilution of samples is 
required for their practical applications.  

A condensed overview of currently available different biosensor platforms, 
used for the detection of β-lactam antibiotic residues in milk, is given in Table 1.  

Table 1. Currently available biosensor platforms for the detection of β-lactam antibiotic 
residues in milk. 

Biosensing 
principle 

Detection 
range, ppb 

Advantages Disadvantages Ref. 

Immuno-
sensors 

10–6–14.6 • High 
selectivity 

• High cost 
• Time consuming 

biosensor production  
• Slow regeneration  

[22–30] 

Receptor 
or enzyme-
based 
biosensors 

4×10–8–9×103 • Low LOD • High cost  
• Possible non-specific 

binding  
• Long time required for 

analyses 

[21,34–46] 

Microbial 
biosensors 

At MRL 
levels 

• Similar to 
microbio-
logical tests

• Low sensitivity 
• Semi-quantitative 

detection  
• Time of analysis over 120 

min 

[48–50] 

Aptamer-
based 
biosensors 

3.5×10–2–350 • High 
affinity  

• Stable  
• Enabling to 

reach 
intracellular 
targets 

• Application of optical 
detection methods is 
problematic (non-
transparency of the 
samples) 

• Pre-treatment of the 
samples is required 

[51–55]  



13 

1.4. Problems with practical biosensing  
of antibiotic residues 

Concerning the practical application of biosensors, there are several problems to 
be solved. One of the major problems is time required to get reliable results, 
especially in case of on-site analyses. The average detection time (excl. pre-
treatment) is usually 30–40 minutes or even up to 2 hours if a longer incubation 
period for bio-recognition is required [29,37,70]. Moreover, some complex 
biosensing systems require additional pre-treatment of milk samples to remove 
fat and proteins [54,55,60,62].  

The other drawback is that most antibiotics’ biosensors have been used for 
the “proof of concept” and the validation of the proposed technology has been 
carried out with only spiked milk samples. However, studies using real milk of 
animals undergoing antibiotic treatment are scarce, although this can be a key 
factor to indicate the applicability of biosensor technology, as “natural” samples 
can additionally contain different metabolites of antibiotic compounds, which 
have a major effect on the measured biosensor signal [15]. 

1.5. Data acquisition for obtaining rapid results  
The crucial assignment of on-line measurements is to obtain reliable results as 
quickly as possible, which requires exact modelling of the processes taking 
place in the system and smart management of data. Commonly the only 
information used in obtaining results with biosensing systems, is the steady 
state output (or the presumed 95% of it) [71]. The main problems with 
measuring the experimental steady state signal is time, required to reach this 
state and the imprecision of estimating the attainment of steady state [71–73]. 
Therefore, for real-time measurements it is unavoidable to develop methods for 
the determination of the characteristic parameters of the biorecognition reaction 
from early pre-steady state signal. 

Carrying out measurements in flow systems enables further reduction of 
analysis time allowing high sample throughput and the possibility to work with 
small volumes of analytes [72,74,75]. Flow arrangements present a wide 
response range and high sensitivity, but measurements in continuous flows 
require consideration of the flowing effects, both laminar and turbulent, in the 
biosensor output signal. Most modelling efforts dealing with biosensor per-
formance in flow regime are made for amperometric signal transducers [76–81]. 
There is only very few information about detailed signal analyses of optical 
biosensors, which are working in continuous-flow or flow-through systems. For 
SPR biosensors, calculation of the two-compartment model had been used in 
order to determine accurate values of the rate constants and transport coeffi-
cients for data that are influenced by flow and diffusion [82]. In comparison 
with amperometric biosensors, optical biosensors have several advantages as 
they are resistant to electrical and electrochemical interferences, allow non-
contact sensing or transmission of parallel sensor signals over optical fibres, and 
have relatively long service interval [83]. 
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2. EXPERIMENTAL 

2.1. Dual-optrode biosensor system and flow cell 
The system comprises of flow cell, heater, opto-electronic unit, control unit and 
two oxygen optrodes, one of which is covered with biorecognition layer to form 
a biooptrode and the other forms a reference optrode [III]. The optrodes (30 mm 
long optical quarz fibres with diameter of 1 mm, dip-coated with oxygen-
sensitive Pd-tetraphenylporphyrine-containing polymethylmethacrylate film) 
were placed into identical isolated flow channels (l=50 mm; Ø=3 mm) of the 
carefully thermostated at 37.0±0.1 °C flow cell. To minimize the accidental 
forming of microbubbles in flow channels, the inflow was in the bottom and the 
outflow in the upper part of the cell (Fig. 1). 
 

 
Figure 1. The dual-optrode biosensor system set up: 1–sample inflow; 2–flow channels; 
3–outflows; 4–glucose bio-optrode; 5–reference oxygen optrode; 6–temperature sensor; 
7–cylindrical messing oven for the stabilization of temperature. 
 

The opto-electronic unit provided optical excitation (λ=405 nm) as well as the 
detection and amplification of luminescence signals (λ= 690 nm). The control 
unit was connected to personal computer via USB interface and included 
analog-to-digital signal converter, input/output ports for switching the light-
emitting diodes for luminescence excitation, and heater regulator. 
 
 

2.2. Immobilisation of glucose oxidase and  
preparation of glucose bio-optrode 

The glucose bio-optrode was produced by coiling 19 cm of nylon-6,6 thread 
with covalently immobilized glucose oxidase (GOD, EC1.1.3.4) [III] around the 
oxygen-sensitive surface of the oxygen optrode, where it formed a bio-
recognition layer for glucose [84–86]. The initial catalytic activity of the thread 
was 0.016 U/cm and this was tested before each series of measurements. If the 
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activity dropped below critical (80% of its initial value) during measurements 
[III], the GOD-containing thread was replaced. The reference oxygen optrode 
was covered with 19 cm of identical “blank” thread to eliminate diffusion 
effects. 
 
 

2.3. Measurement procedures and data acquisition 
2.3.1. Measurements in flows 

All kinetic studies were carried out in air-saturated solutions at 37 °C varying 
the flow rate from 0.8 mL/min to 13.0 mL/min for model development [III] and 
using an optimal flow rate 3.3 mL/min for the studies with milk samples [V].  

The output signals of optrodes were recorded with the interval of 1 second. 
Original software Oxysens 2.0 was developed for the automatic data acquisition 
and calculation of the dissolved oxygen concentration (DOC) using Stern-
Volmer relationship; but also for the automatic control of the system's working 
parameters. The change of oxygen concentration due to glucose oxidation, 
catalyzed by glucose oxidase, was calculated as the DOC difference between 
glucose bio-optrode and reference optrode at every time moment measured, so 
minimizing the impact of experimental noise; and normalized to bring the data 
from different sensors onto common scale. Each experimental result was an 
average of at least 3 identical measurements and consisted of at least 300 data 
points. After each measurement the system was washed with 0.1 mol/L 
phosphate buffer (PB, pH 6.50) until the sensors’ signals reached their initial 
values. 
 
 

2.3.2. Assessment of enzyme activity in glass cell 

The kinetic measurements for the assessment of modulating and inhibiting 
effects of different compounds on enzyme activity were performed in an airtight 
temperature regulated glass cell at constant stirring with an oxygen optrode 
[I,V]. The oxygen-sensitive film of the optrode was additionally covered with a 
thin black silicone coating to eliminate the effect of divergent light.  

The oxygen optrode was plunged into air-saturated reaction medium, 
containing substrate or a definite amount of enzyme. The reaction was initiated 
by injecting soluble enzyme or substrate, initiating the decrease of DOC.  

The reduction of DOC in the course of the biorecognition reaction was 
characterized using 2 independent parameters: the total signal change parameter 
(A) and the kinetic parameter (B), calculated from the biosensor transient signal 
using a modified dynamic biosensor model [87]. 

The activity of soluble β-galactosidase (β-gal, EC3.2.1.23) was determined 
also spectrophotometrically, following the formation of optically active product 
of the hydrolysis of glucoside bond in o-nitrophenol-β-D-galactoside [88].  
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2.4. Milk samples 
Milk samples were collected in the Dairy Research Farm of the Estonian 
University of Life Sciences in Southern Estonia. The collected milk samples 
were kept under moderate stirring at room temperature. To prepare milk samples 
spiked with benzylpenicillin, this antibiotic was added to the milk of healthy 
cows.  

The milk samples from two cows undergoing mastitis treatment with 
penicillin antibiotics (Norbrook® Lactaclox intramammary infusion, a single 
dose containing 75 mg of ampicillin and 200 mg of cloxacillin; or Bimoxyl 
intramuscular injections, a single dose containing 150 mg of amoxicillin per 
10 kg animal bodyweight) were immediately freezed at –20 °C after collection 
and melted at +4 °C before testing. The treatment of cows with antibiotics was 
administered for 3 days followed by a 3-day withdrawal period. 

Before injection into the flow cell, milk samples (5 mL) were diluted (1:4) 
with 0.1 mol/L PB (pH 6.50; 0.01% Tween 20) and aerated with air for 5 
minutes at 37 °C. 
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3. RESULTS AND DISCUSSION  

3.1. Modulation of the catalytic properties  
of glucose oxidase 

First we studied the possibilities of modulating the glucose oxidase catalytic 
properties with metal cations: Na+, Mg2+ and Al3+ [I]. The enzymatic oxidation 
of glucose was characterized using two different signal parameters, calculated 
from the transient phase data of the reaction: total signal change parameter and 
kinetic parameter [89]. The values of these reaction parameters at different 
concentrations of different chlorides are shown on Figure 2 [I]. NaCl at 
concentrations below 0.5 mol/L increased the value of the total signal change 
parameter from its initial value of 0.82 in salt-free solutions to its limiting 
maximum value 1.00 (Fig. 2(A1)). Magnesium chloride (MgCl2) caused a 1.3-fold 
essential increase of the total signal change parameter in concentration range 
from 0.1 to 0.4 mol/L. At lower concentrations, the value of parameter A was 
slightly reduced, and at concentrations above 0.4 mol/L, parameter A main-
tained its maximum value (Fig. 2(A2)). At MgCl2 concentrations greater than 
1 mol/L, the glucose oxidation reaction was slow; thus, although the maximum 
value for the signal change parameter was observed (meaning that at the 
reaction steady state DOC equals zero), the experimental determination and 
interpretation of steady state was problematic. 

In the presence of aluminium chloride (AlCl3) the total signal change 
parameter was decreased (Fig. 2(A3)).  

As for the practical applications of biosensors, the slope and linear range of 
the calibration curves, based on biosensor signal parameters, determine the 
quality of the results – the amplification of the measured values of these para-
meters enables to increase the accuracy and sensitivity of the analysis. The 
modulation of the GOD-based biosensor signal parameters with NaCl and 
MgCl2 at concentrations below 0.5 mol/L increased the calculated total signal 
change parameter and the slope of the calibration curve by nearly 20% 
compared to its initial value. At the same time, the kinetic parameter showed 
decrease in the presence of all three salts (Fig. 2(B1,B2,B3)), so it is not 
possible to amplify the modulation of this parameter in order to get rapid results 
with metal cations.  
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Figure 2. The dependence of biosensor signal parameters on the concentrations of 
different chlorides. (A) Total signal change parameter; (B) kinetic parameter. All 
measurements were carried out in air-saturated 0.1 mol/L acetic buffer (pH 5.60) at 
25 °C; [glucose]=3mmol/L, [glucose oxidase]=1.3 U/mL. 
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3.1.1. Enhanced detection of glucose in cascaded lactose biosensor 

Cascaded lactose biosensors usually integrate two consecutive catalytic 
processes: (1) the hydrolysis of lactose into galactose and glucose, catalyzed by 
β-gal and (2) the successive oxidation of the produced glucose, catalyzed by 
GOD [90]. These cascaded biosensors are commonly not applicable for quick 
analyses due to the relatively low speed of lactose hydrolysis [91]. However, it 
might be possible to detect smaller quantities of the produced glucose and 
obtain faster results if the sensitivity of glucose measurements is increased [I]. 

NaCl caused a similar modulation of the total signal change parameter in 
lactose cascaded biosensor as in glucose biosensor and as expected, this 
parameter increased for 20% compared to its initial value. MgCl2 increased 
values of both parameters A and B, as Mg2+ is supposed to activate also β-gal 
[92,93]. Reaction parameters A and B for the detection of lactose were increased 
by 1.2 and 1.5 times, respectively, at MgCl2 concentrations below 5 mmol/L 
(Fig. 3).  
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Figure 3. Lactose biosensor signal parameters at different MgCl2 concentrations  
(● Total signal change parameter A; ○ Kinetic parameter B). All measurements were 
carried out in air-saturated 0.1 mol/L phosphate buffer (pH 6,50) at 25 °C; 
[lactose]=0.14 mol/L, [β-galactosidase]=10.08 U/ml, [glucose oxidase]=1.3 U/ml.  
 
 
The addition of 5 mmol/L MgCl2 was optimal to achieve the highest ampli-
fication of the lactose biosensor calibration parameters, hence could be used for 
the acceleration of lactose analyses. The amplification of the signal parameters 
is vital for analyses conducted at low temperatures, like in cooled milk, where 
lactose hydrolysis and glucose production are slow. 
 
 



20 

3.2. Modelling the bio-optrode signal in flows 
In order to develop a model, which enables to calculate relevant parameters of 
the bio-recognition reaction in flows from the pre-steady state biosensor signal 
and reduce the effect of side processes, we studied the oxidation of glucose by 
dissolved oxygen, catalyzed by glucose oxidase as a model reaction: 
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oxidase    Glucose
2glucose-D- OHlactoneO +−⎯⎯⎯⎯⎯ →⎯+ δβ  (1) 

 
In flow cells, there are two general processes governing oxygen concentration at 
optrode surface: 
1) enzyme-catalyzed reaction in the enzyme containing layer; 
2) transport of oxygen and the second substrate into and in the flow cell. 
 
The studied reaction (1) is of ping-pong type [94] and can be described in the 
quasi-steady state approximation as following: 
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where s(t) is the substrate concentration and c(t) is DOC at time moment t; SK  

and 
2OK  are Michaelis’ constants for substrate and oxygen, respectively; and 

MAXV  is the ultimate reaction speed.  
 
If the following condition is fulfilled: 

 
c

K

s

K OS 21+>> , (3) 
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For the reaction of glucose oxidation 
2

>> OS KK  [94], and therefore condition 

(3) is fulfilled in a quite wide range of glucose and oxygen concentrations. The 
upper limit of oxygen concentration in water solutions is generally determined 
by its saturation value (c0 ~ 0.2–0.3 mmol/L at temperatures 20–40 °C) and the 
reaction is described by first order kinetics (4).  
Regarding the transport processes, the addition of substrate and oxygen into the 
vicinity of sensor surface is described with linear kinetic terms. Then the overall 
process can be modelled by two kinetic equations:  
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The rate constants Sk  and 
2Ok  characterise the exchange speed of the con-

centrations of substrate and oxygen, respectively, between the flowing liquid 
and sensor surface (Fig. 4).  
 

 
 
Figure 4. Cross-section of the flow cell and scheme of model processes. 1–flowing 
liquid; 2–flossy coating containing immobilized enzyme molecules; 3–oxygen sensitive 
coating; 4–core of optical fibre. The arrows inside the fibre represent the light involved 
in optical oxygen sensing. 
 
 
Assuming that the oxygen concentration in the flowing liquid entering the cell 

is always 0c , and after passing the initial front, the substrate carried by liquid 

flow has constant concentration 0s . The function F(t) describes the arrival front 

of the substrate into the cell. When the passage of the front is fast compared to 
the reaction and transport processes, then F(t) can be approximated by 
Heaviside function: 
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It is also assumed that there is no substrate present in the cell before t=0. Under 
these conditions the solutions of equations (6) and (7) are: 
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After inserting Eq. (9) into (10) and evaluating the integrals: 
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where 
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The stationary solution for DOC is: 
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The Eq. (11) can be rewritten in a following form: 
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is the normalised function describing the temporal evolution of relative DOC. It 
is a monotonic function changing from zero to unity, i.e. 0)0( =f  and 
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Parameter A gives the relative difference between the initial ( 0c ) and final 

stationary  ( fc ) oxygen concentrations and can be easily determined experi-

mentally as a normalized change of DOC between the initial and final steady 
states: 
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3.3. Fitting of the biosensor response to the model  
Several series of glucose dual optrode responses were recorded at different 
glucose concentrations at flow rate 2.7 mL/min in order to compare the 
biosensor output response with the model [II, III]. Biosensor response at 5 
different glucose concentrations (in duplicate) and recovery curves are shown in 
Figure 5. The arrows mark the time moments, when the substrate was added. 
The duration of substrate injection was 300 seconds and thereafter the signal 
was restored in the flow of pure buffer solution to the initial level. 
 

 
 
Figure 5. Response curves of glucose bio-optrode (black line) and the reference optrode 
(gray line) of consecutive measurements at different glucose concentrations (two at each 
concentration). Measurements were carried out at 37 °C in 0.1 mol/L phosphate buffer 
(pH 6.50) at flow rate 2.7 mL/min. Arrows indicate the time of adding the substrate 
solution. 
  
 
The response of the reference sensor at constant saturated DOC was not 
dependent on glucose concentration. Its signal fluctuations did not exceed 1% 
of the working range of the sensor at any measured glucose concentration. The 
response of the glucose biosensor decreased due to consumption of oxygen 
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according to reaction (1). In order to eliminate all potential experimental noise, 
the difference between the signals of the reference and glucose sensor responses 
was used to determine the normalized output of the system. 

Normalized response curves at four different glucose concentrations together 
with the model curves obtained by fitting with equations (14), (15) are shown in 
Figure 6.  
 

 
 
Figure 6. Fitting the experimental curves (gray) obtained at different glucose con-
centrations (0.2 mmol/L (mM); 0.4 mmol/L; 0.6 mmol/L; 0.9 mmol/L) with the proposed 
model. Theoretical approximations are shown as solid black lines. Measurements were 
carried out at 37 °C in 0.1 mol/L phosphate buffer (pH 6.50) at flow rate 2.7 mL/min.  
 
 
Parameter A and two rate constants, 

2Ok  and SRk , were determined for each 

curve. The application of the model for the characterization of the biosensor 
output signal resulted in good correlation (coefficient of determination–99%, 
standard deviations from the model–0.00077, P < 0.0001). The relatively slow 
signal decrease at the beginning of the response curves (Fig. 6) is caused by the 
lack of substrate in the enzyme-containing layer at the initial moment, what is 
accurately described by the model. The fitting of temporal response curves, as 
demonstrated in Fig. 6, provides not only more accurate way of determining 
parameter A, but also valuable information included in rate constants. 
 
 

3.4. Practical aspects of model application 
The important aspects of practical applications of biosensors are: i) the time 
required for the acquisition of the results – it should be as short as possible; 
ii) the repeatability of the experimental measurements; iii) quick regeneration of 
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bio-sensing system, what is of most importance in real-time analysis; and 
iv) operational stability and sensitivity of the biosensor system.  

In continuous-flow biosensor set-ups the choice of optimal flow rate is an 
additional presumption of accurate and reliable results. The dependence of 
parameter A on flow rate at different glucose concentrations was studied in the 
range of flow rate varying from 0.8 to 13.0 mL/min (or 0.3–5.1 cm/sec) [II,III]. 
It was not possible to carry out experimental measurements at flow rates under 
0.8 mL/min due to the accumulation of air bubbles in the flow cell. The value of 
parameter A was practically independent on the flow rate in the studied range of 
glucose concentrations (0.2 to 1.5 mmol/L), and was also indifferent towards 
the determination of time, at which the analyte front reaches the biosensor, as it 
is defined as a biosensor total signal change in steady state conditions (t → ∞) 
[II,III]. This allows constructing the universal glucose calibration curves, not 
dependent on the flow rate in the system. The results obtained at a medium flow 
rate of 2.7 mL/min were used as examples of calibration parameters, as this 
flow rate offered acceptable response time and sufficient sensitivity [III].  

The repeatability of the experimental measurements was studied at glucose 
concentration of 0.5 mmol/L (15 experiments per day and four days in a row) 
[II]. Repeatability of the measurements was very good considering that the 
standard deviation was 0.0051 and the coefficient of determination was 98%. 
The results showed that the biosensor exhibited a fairly analytical feature of 
repeatability [II]. 

Regeneration of bio-sensing continuous-flow system involves passing a 
background flow of fluid without reactive components through the flowing 
system. This was controlled by varying the flow rate between 0.8 to 13.0 
mL/min. As expected, the washing of the flow system depended on the flow 
rate and slightly on the substrate concentration [II]. At lower flow rates (0.8 to 
2.1 mL/min) the regeneration time of the system increased with the increase of 
the flow rate and substrate concentration. At higher flow rates the regeneration 
time did not depend on the substrate concentration and flow rate (because of the 
diffusion in the flow channels) any more [II]. The rate for GOD-based biosensor 
system regeneration should be at least 2.1 mL/min. At this flow rate the 
washing time is approximately 4.5–5 min. 

The loss of sensitivity under operational conditions is one of the most 
serious limits of the practical utility of biosensors. Besides leaching of the bio-
selective material, it can be ascribed to inactivation and denaturation of the 
bioactive compound. The operational stability of the present biosensor system 
was assessed by a continuous long-term experiment, in which a 0.5 mmol/L 
glucose solution was repeatedly analyzed [II]. The biosensor system was in 
everyday exploitation – used for about 15 measurements per day – after what it 
was washed with 0.1 mol/L PB (pH 6.50) and left overnight at 37°C. The initial 
activity of the sensor dropped for approximately 20% during the first 3 days; 
afterwards the biosensor response remained constant for over 35 days operation 
period with no significant loss of activity [II].  
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In addition, the actual design of the continuous-flow biosensor enables to 
prolong the effective lifetime of optrodes. For example, if the enzyme activity 
and accordingly the reaction rate decreases by 20%, the sensitivity and equally 
the slope of the calibration curve change just by 1%. Futhermore, the system 
sensitivity does not drop below 90% of the initial one even in case 30% of the 
initial enzymatic activity remaining [III].  
 
 

3.5. Time required for data acquisition 
The proposed biosensor model describes the sensor responses adequately and 
allows clear interpretation of underlying processes and relatively easy biosensor 
calibration from pre-steady state data.  

The temporal responses (shown in Fig. 7) were fitted within different time 
intervals (the curves were fitted between t=0 and t=tF, whereas tF was varied 
from 300 sec to a minimal value of ~ 20 sec) [III]. This allowed simulating the 
situation, where the sensor output value is determined from shorter and shorter 
measurements. The results for parameter A, determined at three different 
substrate concentrations, are presented in Figure 7.  

 

Figure 7. The dependence of the total signal change parameter A on the fitting range 
(measurement time). Measurements were carried out at 37 °C in 0.4 mmol/L, 0.6 mmol/L, 
and 0.9 mmol/L glucose solutions in 0.1 mol/L phosphate buffer (pH 6.50) at flow rate 
2.7 mL/min. At fitting, all three reaction parameters (A, kSR, and kO2; filled dots) or only 
parameter A (open dots) was freely varied. 
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In all cases the value of parameter A was practically constant down to the fitting 
range (measurement time) tF ~ 60 sec. In Figure 7, the data for two fitting 
procedures are presented: the filled dots present the data obtained when all 
parameters (A, kSR, and kO2) in Eqs. (14, 15) were freely varied, whereas the 
empty dots present the data obtained when the pre-calibrated rate parameters 
were fixed and only parameter A was varied [III]. As a result, using the fixed set 
of pre-calibrated rate parameters, the measurement time can even be as short as 
20 sec. In other words, for obtaining the value of parameter A, there is no need 
to record the signal up to 300 sec, but the recording time can be as short as 20 
sec. These concrete time values are related to the parameters of concrete bio-
optrodes and may hence vary between different systems, in particular, the 
optrodes with higher enzyme activity will have higher reaction rate and shorter 
measurement time as well. If we compare the fitting results in Figure 6 and the 
signal changes in Figure 7, more general criteria may be formulated. In Figure 7 
we can see that the relative signal has dropped at 20 and 60 sec by ~ 20% and  
~ 50%, respectively. So, the substrate concentrations can be determined with 
relatively high accuracy by measuring the signal until it drops only by 20–50% 
of its maximal (steady state) change, and not waiting until the signal change has 
reached the 95% level of the presumed final change. This allows significant 
advantages in biosensor analysis speed, as the measurement time can be 
shortened more than by one order in magnitude. 
 
 

3.6. Application of glucose dual-optrode biosensor  
for the determination of penicillins in milk  

The main goal of the present work was to study the possibilities of rapid bio-
sensing of penicillins’ residues in milk and the application of the biosensor for 
the analyses of real milk samples of mastitic cows.  

The excretion of penicillins via milk is dependent on different factors, e.g. 
an animal's individuality, milking interval etc., but as an average 30–40% of the 
total amount of penicillins applied are eliminated from the organism with milk 
as parent compound [15,95].  

Milk is a complex colloid of fat globules within a water-based fluid that 
contains dissolved carbohydrates and protein aggregates with minerals [96]. 
The major carbohydrate in milk is lactose, which controls milk volume by 
maintaining its osmolarity [97]. Lactose concentration in raw bovine milk is 
very stable (around 140 mmol/L), exceeding the typical concentrations of 
glucose and galactose in milk more than 500 times [98,99]. Diet has no effect 
on lactose concentration in bovine milk and the regional and seasonal varieties 
are also very small [98]. As being a highly nutritious food, raw milk contains a 
diverse and complex microbiota, entering milk from contact with the animal 
and/or the surrounding environment [100,101]. Over 250 different bacterial 
species have been found in cows’ raw milk [102]. The dominant microbial 
population in bovine milk are the lactic acid bacteria [103]. In addition, there 
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are also bacteria carrying the structural genes of lac operon, encoding the 
synthesis of β-gal, which is an enzyme required for the transport and meta-
bolism of lactose and catalyzes the hydrolysis of lactose into glucose and 
galactose [102]. So, the amounts of soluble glucose and galactose in raw milk 
are dependent on the activity of β-gal. The presence of antibiotic residues in 
milk affects the production of β-gal by microorganisms leading to reduced 
glucose and galactose concentrations compared to high quality milk. 

At first the effect of benzylpenicillin on the activity of β-gal was determined 
with amperometrical and spectrophotometrical methods [V]. It was found, that 
the catalytic activity of dissolved β-gal (0.1 mol/L PB; pH 6.50) did not change 
over a 48 hour period (Fig. 8). At the same time, the activity of β-gal decreased 
for 51% in 48 hours in case 3.3×103 ppb benzylpenicillin was added to the 
solution. This benzylpenicillin concentration corresponds to the average 
minimum concentration of benzylpenicillin in milk of dairy cows during their 
treatment with procaine-benzylpenicillin, although the actual concentration of 
benzylpenicillin residues in the milk of treated animals can be as high as 
120×103 ppb [95]. Comparable results were obtained with both amperometrical 
and spectrophotometric methods [V]. 

0 5 10 15 20 25 30 35 40 45 50
40

50

60

70

80

90

100

with benzylpenicillin

without benzylpenicillin

β-galactosididase incubation time
with or without benzylpenicillin (h)

N
or

m
al

iz
ed

 s
ig

na
l c

ha
ng

e 
(%

) 
at

 7
50

 s
ec

 
Figure 8. Inactivation of β-galactosidase during its incubation with benzylpenicillin. 
The measurements were carried out under constant stirring at 37 °C in 0.033 U/mL  
β-galactosidase solutions in 0.1 mol/L phosphate buffer (pH 6.50) with (3.3×103 µg/L, ▼) 
or without benzylpenicillin (▲). Lactose concentration in the system was 140 mmol/L, 
the lactose incubation time with β-galactosidase was 480 sec and glucose oxidase 
concentration was 1 U/mL.  
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In order to imitate the conditions in cow’s udder after administration of 
benzylpenicillin, we first studied the effect of benzylpenicillin on glucose con-
centration in milk during incubation, both in pure and spiked milk samples. We 
studied the effect of benzylpenicillin at concentrations 50 ppb and 50 ppm, 
which are quite high in comparison with MRL levels (4 ppb for benzylpenicillin 
in milk). These concentrations were chosen because the applied biosensing 
system enables to analyze the milk of single animals quickly within the early 
milking process and we could focus on analyzing the milk of the treated animals 
before it is “diluted” with the milk of other animals in milk collection tank. The 
determination of antibiotic residues in “undiluted” milk has an additional 
positive effect on the speed of analyses. 

Changes of the glucose levels in milk due to the addition of benzylpenicillin 
were monitored during 5 hours (Fig. 9). 
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Figure 9. The change of glucose concentration in milk samples at different storage 
times. The measurements were carried out at 37 °C in pure milk (■), in milk spiked with 
50 ppm (▲) and with 50 ppb of benzylpenicillin (●). The samples were stored at room 
temperature under constant stirring.  
 
 
Immediately after the addition of benzylpenicillin, there was no detectable 
difference in the measured glucose concentrations (0.35±0.065 mmol/L) in pure 
and in spiked milk samples (Fig. 9). In time course, the differences in glucose 
concentrations in spiked and pure raw milk samples increased and after 5 hours, 
the concentration of glucose had risen almost 7 times from its initial value in 
pure milk and only 3 times in milk spiked with 50 ppm of benzylpenicillin 
causing the deceleration of the increase of glucose concentration for approxi-
mately 66%. The addition of 50 ppb benzylpenicillin leads to rate deceleration 
for roughly 38% (Fig. 9).  
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Finally, the biosensor system was used for the measurement of glucose 
levels in raw milk of cows, which were administered penicillin antibiotics to 
cure mastitis, during the treatment and milk withdrawal periods. As expected, 
the measured glucose concentrations in the milk of the treated animals were 
considerably lower compared to the milk of healthy animals. The unpaired t-test 
indicated that this difference was significant (P<0,001) (Fig. 10).  
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Figure 10. Glucose concentrations in the milk of cows, which had conducted mastitis 
and were treated with penicillin antibiotics. Milk samples were collected in the Dairy 
Research Farm of the Estonian University of Life Sciences in Southern Estonia. The 
milk samples from two cows undergoing mastitis treatment with Norbrook® Lactaclox 
or Bimoxyl LA were immediately freezed at –20 °C right after collection and melted at 
+4 °C just before testing. The treatment was administered for 3 days followed by a  
3-day withdrawal period.  
 
 
To validate the biosensor results, the presence of penicillin residues in the 
collected milk samples were analyzed also with Delvotest (DSM Food 
Specialties B.V.) The Delvotest analyses showed the presence of antibiotic 
residues above MRL levels in milk samples collected during the treatment and 
withdrawal periods, where the glucose levels were very low in comparison with 
glucose levels in pure milk (Fig. 10). Based on these results, the decreased 
glucose level can well serve as a qualitative indicator of the presence of anti-
biotic residues in raw milk similarly to Delvotest. The main advantage of using 
biosensing system for the detection of penicillin residues is time required for 
analyses – it is only 1 minute compared to 2–3 hours required for testing milk 
samples with Delvotest. 

The output signals of reference oxygen optrode were also analyzed in the 
milk samples during the measurements, as the decrease of oxygen concentration 
in time indicates the oxygen demand of the total number of bacteria present in 
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milk samples. The oxygen demand in milk was low (around 15% of DOC in 5 
minutes) and didn’t change within days 1–4 counting from the beginning of 
treatment (slope=0; P=0.17171), but it increased by 5% per day from in days 5–
9 (slope=0.005; P<0.0001). Based on the signal of the reference optrode, the 
total number of bacteria in samples decreased in the course of treatment and 
began to rise during the withdrawal period, indicating that the normal 
microbiota in udder began to recover. 
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CONCLUSIONS 

As a result, a rapid method and a biosensor set-up have been proposed for the 
detection of penicillins’ residues in milk flows.  

A fibre-optical dual-channel glucose biosensor was used as a model set up 
for studying the processes during bio-recognition in flows on the example of 
glucose oxidase catalyzed glucose oxidation reaction. A mathematical model 
involving two-substrate reaction and mass transport of substrates was developed 
for describing the sensor signal. The model is based on a system of rate equations 
and has a relatively simple analytical solution. This facilitated the interpretation of 
the experimental data and allowed to develop a method for determining the 
biosensor output from early pre-steady state signals. It was demonstrated that the 
sensor reading could be obtained when the signal had changed only by 20% 
towards its final steady state value, which reduced the detection time about 10-
fold as compared to standard procedures and gave significant advantage in 
analysis speed. It was found that the sensor parameters did not depend on the flow 
rate in a relatively wide range (0.8–13 mL/min or 0.3–5.1cm/sec) [II, III]. The 
application of the model allowed to predict optimal biosensor parameters for 
obtaining maximal sensitivity and high stability on one hand, and to obtain fast 
results from the initial phase of the reaction on the other hand [III]. 

The modulation of the catalytic properties of glucose oxidase with the aim to 
amplify the characteristic calibration parameters of glucose and cascaded 
lactose biosensors was performed in the presence of different chlorides in order 
to accelerate the rate and improve the quality of milk analysis. It was found that 
sodium and magnesium chlorides at concentrations below 0.5 mol/L increased 
the total signal change parameter, used for the calibration of glucose biosensors, 
up to 20%.[I]. The addition of magnesium chloride gave further acceleration to 
the lactose measurements with bi-enzyme cascaded biosensors, as Mg2+ also 
activates β-galactosidase. The amplification was highest at a magnesium 
chloride concentration of 5 mmol/L [I]. 

The glucose dual-optrode biosensor was applied to detect penicillins’ resi-
dues in the milk of cows with mastitis. The glucose concentration in their milk 
during treatment and withdrawal periods decreased significantly compared to 
glucose levels in high quality milk. This decrease was likely due to the 
decreased activity of β-galactosidase, which catalyzes the hydrolysis of lactose, 
enabling to use glucose concentration as an indicator of the presence of 
penicillins’ residues in milk [V]. 

The studied biosensor set-up has a high potential to serve as a system for 
real-time automatic control of the quality of raw milk in milk production farms. 
The application of this system allows the separation of substandard milk from 
the milk flow prior to milk collection tank. The enzymatic oxidation of glucose, 
going on in the biosensor, can be further accelerated by adding metal chlorides 
for even more rapid analyses. The system can be upgraded by attaching 
additional biosensors to build up a more robust biosensor array, where the 
signals of individual biosensors form a typical pattern of milk sample, which 
changes in the presence of different antibiotics. 
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SUMMARY IN ESTONIAN 

Penitsilliinide jääkide määramine piimas läbivoolulise 
biosensorsüsteemi abil 

Käesoleva doktoritöö eesmärgiks oli välja töötada biosensorsüsteem penitsillii-
nide jääkide kiireks määramiseks toorpiimas, samuti pakkuda välja matemaati-
line mudel läbivoolulistest mõõtesüstemidest saadud eksperimentaalsete and-
mete kiireks analüüsiks ja biosensori kalibratsiooniparameetrite arvutamiseks 
ning uurida võimalusi biosensorites toimuvate äratundmisreaktsioonide kiiren-
damiseks. Töö praktiliseks eesmärgiks oli uurida võimalusi biosensori kasuta-
miseks penitsilliinide jääkide kiireks määramiseks antibiootikumiravil olevate 
lehmade piimas [I–III,V].  

Penitsilliinid on beetalaktaamide hulka kuuluvad antibiootikumid, mida 
kasutatakse peamiselt Gram-positiivsete bakterite poolt tekitatud haiguste 
raviks. Penitsilliini ja teiste antibiootikumide jäägid piimas tekitavad inimestel 
allergilisi reaktsioone ning soodustavad resistentsete mikroobitüvede teket, mis-
tõttu on antibiootikumide jääkide lubatud sisaldus toidus rangelt reguleeritud. 
Penitsilliinide jääkide maksimaalseks lubatud kontsentratsiooniks toorpiimas on 
bensüülpenitsillini, ampitsillini ja amoksitsillini puhul 4 µg/L ning kloksatsillini 
puhul 30 µg/L.  

Tavaliselt kasutatakse antibiootikumide jääkide määramiseks piimas mitme-
suguseid kromatograafial põhinevaid meetodeid ning erinevaid mikroobse inhi-
beerimise ja immuunoretseptor teste. Üheks võimalikuks alternatiiviks tradit-
sioonilistele analüüsimeetoditele on biosensorite kasutamine. Biosensorite eeli-
seks on nende lihtsus, suhteline odavus ning kiirus, mis võimaldab nende kasu-
tamist kiireteks analüüsideks reaalajas.  

Voolavates süsteemides toimuvaid mõõtmisi iseloomustava mudeli välja-
töötamiseks kasutati mõõtesüsteemi, mille keskseks osaks oli kahe voolu-
kanaliga silindriline mõõterakk, millesse oli paigutatud glükoosi biooptrood 
ning hapniku võrdlusoptrood. Mõlemale optroodile, mis kujutavad endast 
hapnikutundliku materjaliga kaetud kvartsfiibrit, oli keritud niit, millele glü-
koosi optroodi puhul oli immobiliseeritud glükoosi oksüdaas. Mõlemad optroodid 
kokku moodustasid diferentsiaalse glükoosi biosensori, mis võimaldas eksperi-
mentaalsete mürade mõju vähendamist biosensoris toimuva äratundmisreakt-
siooni kirjeldamisel hapniku kontsentratsiooni vähenemise kaudu [III].  

Väljapakutud läbivoolu mudeli ja eksperimentaalsete kõverate kokkulange-
vus oli väga hea (R2=0,99). Leiti, et voolukiiruste vahemikus 0,8–13,0 mL/min 
signaali kogumuutuse parameetri väärtus voolu kiirusest ei sõltunud [II]. 
Võrreldes erinevate ajavahemike jooksul saadud andmetest arvutaud reaktsiooni 
parameetrite väärtusi leiti, et usaldusväärsete tulemuste saamiseks vajalik ära-
tundmisreaktsiooni sügavus on ligikaudu 20%. Seega, uus läbivoolu biosenso-
rite jaoks väljapakutud mudel võimaldab saada reprodutseeritavaid ja usaldus-
väärseid tulemusi 10-korda kiiremini kui varem [III]. Samuti selgus, et bio-
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sensoris oleva ensüümi aktiivsuse vähenemine kuni 20% ei mõjuta oluliselt 
saadud tulemusi [III]. 

Piimas tehtavate analüüside kiirendamiseks uuriti ka glükoosi oksüdaasi 
aktiivsuse modulleerimise võimalusi erinevate metallide katioonide abil nii 
glükoosi kui ka kaskaadses laktoosi biosensoris [I]. Signaali kogumuutuse para-
meetri väärtus suurenes kuni 20% naatrium- ja magneesiumioonide mõjul nende 
kontsentratsioonidel üle 5 mmol/L. Lisaks aktiveeris Mg2+ kaskaadses laktoosi 
biosensoris β-galaktosidaasi, suurendades veelgi mõõdetavat biosensori 
väljundsignaali [I]. 

Penitsilliini jääkide määramisel glükoosi biosensoriga selgus, et penitsilliiniga 
ravitavate lehmade piimas on glükoosi kontsentratsioon võrreldes tervetelt loo-
madelt saadava puhta piimaga väga madal ning see erinevus on statistiliselt 
oluline. Glükoosi madal kontsentratsioon on tõenäoliselt tingitud β-galaktosi-
daasi – ensüümi, mis katalüüsib laktoosi hüdrolüüsi piimas, vähenenud aktiivsu-
sest. Töö tulemusena leiti, et glükoosi tase piimas on heaks indikaatoriks 
penitsilliini jääkide määramiseks toorpiimas [V]. 

Kasutatud biosensorsüsteem on rakendatav kiireks penitsillinide jääkide 
määramiseks toorpiimas piimafarmides. Kiire lüpstava piima analüüs võimal-
dab mittekvaliteetse piima õigeaegset eraldamist kvaliteetsest toodangust ning 
kogu toodetava piima kvaliteedi tõstmist. Kasutatud biosensorsüsteemi on 
erinevate antibiotikumide jääkide määramiseks toorpiimas võimalik tulevikus 
modifitseerida täiendavate biosensorite lisamisega.  
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