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ABSTRACT / RESÜMEE 

System Architecture and Component Evaluation for ESTCube-2 Electrical Power System 

This thesis is focused on the architecture of the electrical power system (EPS) and 

implementations of the various subsystems within the EPS for ESTCube-2 nanosatellite. The 

main goals are to establish a high level system architecture compatible with the rest of the 

satellite and investigate solutions for the battery management and protection (BMPS) and the 

voltage conversion and power distribution systems (VCPDS). 

In this work, an overview is given of the ESTCube-2 mission and the satellite’s architecture. 

Based on the satellite architecture, requirements are set for the EPS subsystems to be 

investigated. For the BMPS, two hot-swap controller based solutions are investigated, 

prototyped and tested. For the VCPDS, two load switch designs are evaluated, six different 

voltage converters are characterized and solutions for the power distribution system are 

proposed. Based on the testing results, recommendations are made for the final implementation. 

Keywords: ESTCube-2, CubeSat, electrical power system, battery management, hot-swap 

controller, DC/DC converter, component evaluation  

Süsteemi arhitektuur ning komponentide valimine ESTCube-2 toitealamsüsteemi jaoks 

Käesolev lõputöö keskendub ESTCube-2 nanosatelliidi toitealamsüsteemi arhitektuurile ning 

süsteemi jaoks tarvilike komponentide valimisele. Töö peamised eesmärgid on luua kavand 

toitealamsüsteemi ülesehituse jaoks, mis oleks ühilduv ülejäänud satelliidiga, ning arendada 

välja akuhaldussüsteem ning pingemuundamis- ja energiajaotussüsteem. 

Töös antakse ülevaade ESTCube-2 missioonist ning satelliidi arhitektuurist. Viimasele 

tuginedes koostatakse nõuded arendatavate süsteemide jaoks. Akuhaldussüsteemi jaoks 

luuakse kaks prototüüpi, mis põhinevad käigultvahetuse kontrolleritel. Pingemuundamis- ja 

energiajaotussüsteemi jaoks uuritakse kahte erinevat võimsuslülituse lahendust ning 

katsetatakse kuut erinevat pingemuundurit. Samuti pakutakse välja lahendused energia 

jaotamiseks teistele alamsüsteemidele. Testimistulemuste alusel tehakse soovitused 

lõpplahenduse jaoks. 

Võtmesõnad: ESTCube-2, CubeSat, toitealamsüsteem, akuhaldus, impulsspingeregulaator, 

komponendi valik 

CERCS: T120, T170, T161, T320   
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1.  INTRODUCTION 

Space is becoming more accessible by the year and is not no longer limited to large 

governmental agencies or corporations, but is also reachable for smaller research groups, start-

ups and even individuals. Much of this is due to the emergence of the nanosatellites called 

CubeSats [1] in the early 2000s. The design guidelines enabling this revolution were developed 

in 1999 jointly by California Polytechnic State University and Stanford University. The first 

CubeSats were launched in 2003 and more than 400 have been launched since [2]. 

Most satellites need electrical energy in order to perform their mission. The energy has to be 

obtained, stored if needed and distributed to the consumers throughout the satellite. The 

aforementioned functions are usually fulfilled by the electrical power system (EPS). As this 

system is critical to the operation of the satellite, it must be capable of autonomous operation, 

including recovery from faults without suffering permanent damage. Requirements on the 

robustness and reliability are further increased by the fact that it is almost impossible to service 

or repair a spacecraft after it has been deployed into orbit. [3] 

The conquest of space sparked the ESTCube programme, which was initiated at the University 

of Tartu in 2008 with an aim to provide students with hands-on experience in developing 

satellite hardware and software, and increase space technology research and development 

capabilities in Estonia. The first satellite, ESTCube-1 [4] was launched in 2013 into low-Earth 

orbit (LEO) where it successfully operated for two years until the official conclusion of its 

mission in the spring of 2015. The satellite eventually stopped operating due to severe 

degradation of its solar panels. The aim was to test the electric solar wind (E-Sail) technology 

[5]. Unfortunately, due to a malfunction in the tether deployment system, the experiment was 

not successfully completed [6]. 

This thesis focuses on the development of the EPS architecture, the battery management system, 

and the voltage conversion and power distribution system for the next satellite being developed 

within the ESTCube programme – ESTCube-2. The main objectives of this thesis are: 

 List the requirements for the system blocks under study 

 Develop a battery management system 

 Develop a voltage conversion and power distribution system 

 Test and verify the functionality and performance of the two aforementioned systems 

 



This work contains the following sections: 

 Chapter 2 gives an overview of the ESTCube-2 mission and the space environment 

 Chapter 3 describes the proposed system’s architecture of the satellite and the EPS 

 Chapter 4 covers the different measurements taken and methods used to take them 

 Chapter 5 focuses on the battery management and protection system’s design and testing 

 Chapter 6 investigates the voltage conversion and power distribution system 

 Chapter 7 summarises the work covered in this thesis and discusses future development 

plans 

This thesis covers the work done over the past two years.  

  



2. OVERVIEW 

2.1. OVERVIEW OF THE ESTCUBE-2 MISSION 

ESTCube-2 nanosatellite will be three standard CubeSat units in size, measuring  

10 x 10 x 34 cm and weighing a maximum of 4 kg. The spacecraft will be used for technology 

demonstration purposes. The current estimate foresees that the satellite would be completed by 

2018 and launched to LEO soon afterwards. The satellite will use an in-house developed and 

built tightly integrated bus solution that includes all the essential functionalities of the satellite: 

an electrical power system (EPS), a communication system (COM), an attitude determination 

and control system (ADCS), a star tracker (ST) and an on-board computer (OBC). The aim is 

to make the bus as compact as possible in order to leave more room for the payloads. At the 

time of writing this thesis, the payloads for the satellite are not yet fixed. Multiple technology 

demonstration and/or scientific payloads are being considered. [7] 

The first possible payload focuses on testing the E-Sail technology for de-orbiting purposes [8]. 

The experiment would consist of deploying a 300 m long tether and charging it negatively. The 

ionospheric plasma surrounding the Earth would interact with the generated electrical field and 

decelerate the satellite. It is most likely that this payload will be included in the satellite. The 

payload would be jointly developed by the Finnish Meteorological Institute and Tartu 

Observatory. [7] 

The second option being considered is a remote sensing payload that would be developed by 

Tartu Observatory. The main aim of the payload would be to capture images of the Earth in 

multiple specific spectral regions for scientific purposes. Due to this being a recent 

development, the specifics of the system are still under study. [7] 

The third payload under evaluation is a high-speed communication system being developed by 

Ventspils University College in Latvia. The system would communicate in the C-band and be 

capable of data rates higher than 1 Mbps [9]. Should the remote sensing payload be included in 

the satellite, the high-speed communication system would complement it very nicely by 

allowing more images to be transferred.  

The final payload under study at the moment is an optical communication system. This system 

would be used to transfer data from space to ground in a unidirectional manner. A feasibility 

study is currently being conducted by a research group in the University of Tartu. [7] 



2.2. OVERVIEW OF OTHER ELECTRICAL POWER SYSTEMS 

Developments in the field of CubeSat electrical power systems, up to the spring of 2013, were 

given in the author’s Bachelor’s thesis [10]. Since then, to the author’s best knowledge, no 

significant achievements have been published in terms of EPS design, but there have been some 

interesting works nonetheless.  

It is the author’s belief that many satellite teams choose to buy the EPS from a commercial 

provider rather than design one of their own. This is very sensible, if the commercial products 

fulfil the needs of the mission. Generally, it seems that EPSs are custom-developed either to 

meet specific design requirements [11] [12] that the commercial products cannot satisfy, or test 

new technologies [13] [14]. Both aforementioned practices are also often combined with thesis 

works [15] [16] [17]. It would be very interesting to study the implementations of the 

commercial systems, but unfortunately no detailed documentation is available. 

2.3. LESSONS LEARNED FROM ESTCUBE-1 EPS 

In general, the electrical power system [18] on-board ESTCube-1 worked very well and 

exceeded the designers’ expectations in multiple aspects. Electronics of the EPS worked 

without failure and no significant degradation was observed during the day-to-day operations. 

Although the EPS’s electronics performed very well, the satellite eventually stopped working 

due to a lack of sufficient energy production. A very significant drop in the energy harvested 

was observed over the two years in orbit – it was most likely caused by the severe degradation 

of the solar panels. It is suspected that the problem was caused by the lack of cover glasses on 

the cells. Unfortunately, the output voltage and current of the individual solar cells were not 

measured, as this data would have provided very interesting insight into the degradation 

process. [19] [20] 

In terms of novel solutions, SPV1040 (ST Microelectronics) based energy harvesting system 

[18] was successfully tested in orbit at spin rates up to 840 degrees per second [19] without any 

noticeable drop in energy production. 

A firmware update system was implemented for the EPS along with the other systems [19]. 

This proved to be a very useful feature as it helped to fix some critical bugs, add features and 

reduce power consumption significantly in the later stages of the mission. A similar system is 

also planned for the next generation of the EPS. 



For more in-depth information about the design and results of the ESTCube-1 EPS, see [18] 

[10] [21] [20] [19].  

2.4. SPACE ENVIRONMENT HAZARDS 

Designing a system that is intended to function in space is not an easy task by any means. The 

instrument has to tolerate heavy mechanical loads during launch, only to end up in a hostile 

environment. As the system is subjected to vacuum, periodic thermal cycles and cosmic 

radiation, it is very probable that these harsh conditions will degrade both mechanical and 

electrical systems over time. 

Thermal convection is not a viable option for heat transfer in a vacuum environment. The only 

practical way to transfer heat on the component level is conduction. This, however, only 

displaces the energy and eventually the excess energy would have to be radiated away as 

thermal radiation. As off-the-shelf electronic components are thermally designed to be used in 

environments with close to standard ambient temperature and pressure, more thought has to be 

put into the thermal design while using these components. One way to mitigate this issue is to 

use thermally enhanced packages, which feature special thermal pad(s) underneath the devices, 

meant for conducting heat into the printed circuit board (PCB). It is also very important to 

ensure a good thermal contact between the circuit board and the rest of the satellite, most 

importantly, the structure itself. 

Periodic thermal fluctuations (thermal cycles) cause expansions and contractions in the 

components used on-board the satellite. This process can be especially degrading to the solder 

joints and might eventually produce cracks in them [22]. Proper assembly equipment and 

methods have to be used in order to produce high quality solder joints that would be less 

susceptible to this kind of fatigue [23]. 

Radiation can have degrading or damaging effects on electronics. The parameters of electronic 

parts may drift due to long term radiation exposure – as the total ionizing dose (TID) increases, 

the performance of the device usually decreases. Degraded performance may present itself in 

many different ways, ranging from an increase in power consumption and/or dissipation, to 

shift in the voltage levels corresponding to logic states. Yearly TID is highly dependent on the 

orbit parameters, solar activity and satellite construction, and is practically impossible to 

precisely estimate beforehand [24] [25]. Damage to the satellite caused by TID can be reduced 

by shielding the critical components [26]. Aluminium is very widely used for shielding, as it is 

often already being used as the main structural material. 



While TID degrades the system over time, the single event upsets (SEU), single event latch-

ups (SEL) and single event burnouts (SEB) can cause damage to the system instantaneously. 

These effects are caused by heavy ions, protons and neutrons. SEUs can cause flipped bits and 

data corruption, and they are statistically guaranteed to happen in devices susceptible to them 

[27]. The SELs can cause excessive current consumption due to short circuits inside the device. 

This problem mainly affects devices that use complementary metal oxide semiconductors 

(CMOS) [27]. It is usually possible to recover from the aforementioned effects by power-

cycling the affected device. The SEB events, by definition, cause permanent, irreversible 

damage to the affected device. While shielding may be effective for mitigating TID effects, it 

has minimal impact on reducing single event rates. These effects can only be mitigated by 

making the system more redundant, more robust and by adding latch-up protection systems. 

[24] [25] [28] 

If possible, it is always recommended to use components that have been subjected to radiation 

testing. The National Aeronautics and Space Administration (NASA) has a freely accessible 

database that contains radiation tolerance testing results of various electronic components they 

have tested over the past 25 years [29]. 

2.4.1. COMPONENT DE-RATING 

The electronic components used in space applications are almost always de-rated in order to 

improve their reliability. Table 1 has been composed based on the ECSS-Q-ST-30-11C [30]  

de-rating guidelines and summarizes the suggested de-rating levels for the components relevant 

to the system being developed.  

  



TABLE 1. RECOMMENDED DE-RATING OF PARAMETERS BASED ON ECSS-Q-ST-30-11C REVISION 1 

Component type Recommended operating level of the maximum 

Capacitors (ceramic / tantalum) Voltage 60% 

Feedthrough capacitor Voltage 50% 

Inductors Voltage 50% 

Resistors Power 50% 

Voltage 80% 

Diodes Current 75% 

Reverse voltage 75% 

Power dissipation 50% 

Field-effect transistors (FET) Drain-source voltage 80% 

Gate-source voltage 75% 

Drain current 75% 

Power dissipation 65% 

Power related integrated devices Supply voltage 90% 

Applied voltage 90% 

Output current 80%  

 

  



3.  SYSTEM ARCHITECTURE 

3.1. SATELLITE ARCHITECTURE 

ESTCube-2 will be using a very different approach to the system’s architecture when compared 

to most CubeSats. A tightly integrated bus is envisioned instead of the more traditional board-

per-subsystem approach. The aim is to integrate the critical systems of the satellite very tightly 

in order to be more volume efficient. Currently, the aim is to compact all the functionality seen 

in Figure 1 (except side panel systems) so it would occupy less than 0.5 CubeSat units in 

volume. That would include two battery packs occupying a total of 0.15 units. 

 

FIGURE 1. SATELLITE’S SYSTEM ARCHITECTURE OVERVIEW. PAYLOADS ARE EXTERNAL TO THE SYSTEM 



One very important change concerning the satellite’s power distribution architecture is that the 

regulated voltage(s) will be only provided to the bus in contrast to the whole system, including 

payloads, as it was in the case of ESTCube-1. The floating battery bus (6.6–8.4 V) will be made 

available for the payloads through individual current-limited switches. This makes more sense 

as the satellite has increased in size and it is not reasonable to distribute regulated voltages 

throughout the satellite due to the voltage drops and power losses caused by the long 

conductors. This approach also allows more flexibility in terms of payloads because the current 

available is only limited by the battery discharge protection circuitry and current-limited 

switches, and not by the voltage conversion stage. In addition, every payload can optimise the 

converters for its own needs, should it be adjustable output voltage, high efficiency, low output 

ripple, low electromagnetic emissions or something else. Figure 2 shows a concept of the bus. 

 

 

FIGURE 2.  COMPUTER RENDER OF A PROPOSED SOLUTION FOR THE BUS (CREDIT: IAROSLAV IAKUBIVSKYI) 

3.2. EPS BLOCK DIAGRAM 

The EPS consists of four main blocks: energy harvesting, energy storage, voltage conversion 

and power distribution, and a microcontroller for monitoring and control. The system is centred 

around the main power bus (MPB), which is a battery-stabilised floating voltage bus. An 

identical topology was also used on-board ESTCube-1 where it was proven to work remarkably 

well. Figure 3 shows the block diagram of the system. 



 

FIGURE 3. ELECTRICAL POWER SYSTEM BLOCK DIAGRAM. THE BOLD ARROWS REPRESENT CURRENT FLOW 

AND DASHED LINES ILLUSTRATE CONTROL AND MEASUREMENT INTERFACES. 

The energy harvesting circuitry will be an independent system mounted on the side panels of 

the satellite. The harvesting system will be autonomous and will provide power to the MPB 

whenever it is available from the solar panels. As the design will include a reverse voltage 

protection circuitry, there is essentially no limit to how many of these systems could be 

connected to the MPB in parallel. As every side panel will have its own energy harvesting 

circuitry, it also increases the system’s reliability and robustness. The maximum power point 

tracker (MPPT) circuitry will double as a battery charger, so there is no need for a separate 

battery charging system. Although a prototype has been built, it has not yet been tested. 

The energy storage system will be based on two prismatic Lithium-ion cells connected in series. 

This also defines the voltage of the MPB, which will vary from 6.6 V to 8.4 V. Candidates for 

the final cells have been chosen, but they have not yet been tested. In this thesis, the battery 

protection and management system is discussed in detail in chapter 5. 

The voltage conversion and power distribution system is the third major block of the EPS. Its 

task is to provide the satellites bus, described in chapter 3.1, with the required voltages. It also 

has to provide the unregulated battery bus to the payloads. Analysis and implementation of this 

system will follow in chapter 6. 



The final integral part of the system is the microcontroller (MCU). In the spirit of integrated 

systems, the same MCU will manage the EPS’s subsystems and will also handle the low-speed 

ultra high frequency (UHF) communications with the ground station(s). The EPS side of the 

system was prototyped and tested by Martin Põder while working on his Bachelor’s thesis [31], 

which was co-supervised by the author. The dual-processor system described in that thesis will 

not be used because a more capable microcontroller with higher input-output pin count has 

become available since, but the rest of the software and hardware will be used, nonetheless. 

3.3. POWER BUDGET ANALYSIS 

In order to properly estimate the necessary voltage conversion capacity, a power budget has to 

be compiled. Table 2 shows the preliminary power budget based on datasheet data and previous 

experience with similar systems. From these estimated power needs we can derive the rough 

requirements for the voltage conversion system. Peak power shows the maximum consumption 

of the system and average power shows the nominal operating power. 

TABLE 2. THE PRELIMINARY POWER BUDGET OF ESTCUBE-2 BUS 

 

Consumer 
Voltage  

(V) 

Average 

power (mW) 

Peak power 

(mW) 

 

Notes 

EPS / COM 3.3 15 150 Digital segment 

COM RF front end 3.3 10 250  

COM power amp. Battery NA 3000  

Side panels 3.3 20 150 Total for 4 side panels 

On-board computer 3.3 170 850  

Star tracker FPGA Battery 1500 3000 If FPGA is used 

Star tracker M7 3.3 250 1100 If M7 is used 

ADCS sensors 3.3 75 200  

Reaction wheels 3.3 660 2550 Total for 3 wheels 

Magnetorquers Battery TBD TBD  
 

From the power budget it can be seen that all systems in the bus will use either 3.3 V or the 

floating battery bus. This was agreed upon by the subsystem leads in order to minimise the 

amount of different voltage conversions needed and maximise efficiency within the system. 

Should a field programmable gate array (FPGA) be used for the star tracker system, a separate 

power conversion system will be implemented for the exotic voltages required by the device. 



To adequately estimate the minimum and maximum loads that the DC/DC converter will be 

subjected to, operating modes have to be considered. The satellite’s bus will have three main 

operating modes: low power idle, active ADCS control idle and active mission mode involving 

high accuracy pointing. The first mode will be very basic, with only the EPS and COM enabled, 

and would be used to keep the satellite in a stand-by mode to conserve power and/or charge 

batteries. The active ADCS control idle mode will be used when there is a need to maintain the 

satellite’s orientation, for example pointing the deployed solar panels towards the Sun in order 

to harvest more energy, or to keep a payload pointed in some general direction. The third mode 

is very similar to the second one in terms of theoretical peak consumption, but all tasks will be 

run as frequently as possible. For worst case consumption, it is assumed that the star tracker 

will be based on an ARM M7 processor and powered from the 3.3 V supply. 

TABLE 3. SATELLITE BUS OPERATING MODE FOR LEAST POWER CONSUMPTION (LOW POWER IDLE) 

Activity Power consumption (mW) 

EPS / COM system active 25 

COM RF RX standby 10 

Side panels idle 20 

Total 55 

 

TABLE 4. SATELLITE BUS OPERATING MODE FOR HIGHEST POWER CONSUMPTION (ACTIVE MISSION MODE) 

Activity Power consumption (mW) 

EPS / COM system processor active 25 

COM RF RX standby 10 

COM RF TX active 250 

Three side panels active 15 

Single side panel communicating over RS485 150 

ADCS sensor measurements 200 

ADCS attitude calculations running on OBC 350 

Two reaction wheels at 10k RPM 440 

Single reaction wheel breaking 850 

Star tracker based on an ARM M7  1100 

Total 3390 

 



The maximum theoretical consumption, based on the current estimates, is almost 3.4 W. As this 

is a very preliminary estimation, based on datasheet information and experience with similar 

systems, it is sensible to add a margin of 20%. This adds 0.68 W to the previous estimate and 

totals 4.08 W. The power required on the 3.3 V rail amounts to 1.23 A of current. The de-rating 

guide, described in chapter 2.4.1, for power related integrated circuits suggested that the 

maximum output current should be 80% of the converter’s rated output. This means that 

converters with maximum current output of 1.53 A and higher should be considered.  



4. METHODOLOGY AND MEASUREMENTS 

4.1. VOLTAGE CONVERTER PERFORMANCE EVALUATION 

Voltage converters can be characterized based on different parameters, such as: conversion 

efficiency, output voltage stability, output ripple, transient response, radiated emissions, 

thermal performance, etc. 

In the scope of this work, multiple converter candidates were prototyped and evaluated to select 

the best device for the satellite bus. The selection was based on the test-and-eliminate method. 

Following parameters were evaluated or measured: 

 Conversion efficiency 

 Output voltage stability 

 Output voltage ripple 

 Transient response 

 Near-field electromagnetic emissions 

 Number of components required to implement 

4.2. BASE TESTING PLATFORM 

Measuring DC/DC converter performance manually is a tedious and time consuming process. 

In order to speed the process up and test multiple different devices through a repeatable process, 

a testing platform was designed and constructed. The first revision of the platform was designed 

and built by Karl-Indrek Raudheiding while working on his Bachelor’s thesis [32], which was 

co-supervised by the author. An improved second revision of the platform hardware, used in 

this work, was designed and assembled by the author and Mr. Raudheiding. The iteration fixed 

bugs and improved upon the functionality. The block diagram of the measurement platform can 

be seen in Figure 4 along with the 3D render of the physical system in Figure 5. 

 

 

FIGURE 4. BLOCK DIAGRAM OF THE MEASUREMENT PLATFORM 



 

FIGURE 5. COMPUTER RENDER OF THE REGULATOR TESTING PLATFORM WITH CERTAIN DEVICES AND 

MEASUREMENT LOCATIONS HIGHLIGHTED. THE HIGHLIGHTED DARK RED TRACES SHOW THE PATH OF HIGHER 

CURRENT THROUGHOUT THE PLATFORM.  

The platform was designed to emulate, as closely as possible, the voltage conversion system 

(described in chapter 6) that would be used on-board the satellite, while also measuring the 

performance of the devices being investigated. Major parts of the system are the input load 

switches (INSW), the converter module connectors (DUT socket) and the current ORing 

circuitry (IDCNT, IDFET and Diode). The measurement places for a single channel (IR1in, VR1in, 

VR1out, IR1out and VID1in) along with locations common to both channels (VIN, VOUT and IOUT) 

are highlighted in Figure 5. The measurement locations of the second channel are symmetrical 

to the first and are not explicitly shown.  

 

 
 

 

 

 

 



These locations were carefully chosen so that the platform specific losses would not affect the 

final results. There are some additional measurement points for that reason. For example, the 

converter output voltage (VR1out) is measured along with the input voltage (VID1in) of the load 

sharing stage. In the real system, the converter’s output current is not measured, thus there are 

no measurement related losses present. The aforementioned two measurements enable 

calculating the regulator’s efficiency and the output stage losses more precisely.  

All measurement points on the platform were calibrated with a DMM4050 6.5 digit benchtop 

multimeter. Based on the calibration data, a linear regression model was constructed. In order 

to verify the calibration results, the input and output currents were measured simultaneously 

with two DMM4050 multimeters and the platform. Based on the two sets of measured results, 

the conversion efficiencies were calculated. The difference between the two efficiencies was 

within two percent at lower currents (up to 100 mA) and within one percent for the rest of the 

measured range. 

This system was not only used for the final tests, but was an invaluable tool during the 

development of the converter candidate modules. The automated operation of the platform 

enabled rapid development cycles where multiple different component combinations were 

tested to achieve optimum performance. 

4.2.1. CONVERTER EFFICIENCY 

The measurement platform was used to automatically measure parameters needed to calculate 

the converter efficiency: input and output voltage and current. In order to obtain an efficiency 

curve with a good resolution, the parameters needed were measured after every output current 

increment of 10 mA. It took approximately 130 seconds to measure a single converter module 

at a single input voltage at loads up to 1.5 A. After every current increment, ten measurements 

sets were queried from the measurement platform and averaged in order to get a more precise 

and stable result. All parameters were measured at three different input voltages based on 

different battery states: 6.6 V (almost empty), 7.4 V (nominal) and 8.4 V (full). 

4.2.2. OUTPUT VOLTAGE RIPPLE 

A special adapter containing an AC decoupling capacitor, 50 Ω matching resistor and an SMA 

connector was soldered onto every DC/DC module output capacitor. This enabled easy and 

quick connection to the oscilloscope via an SMA cable. Rigol DS1104Z-S oscilloscope with a 

20 MHz bandwidth limit was used for this experiment. The setup was recommended in an 

application note [33] focusing on power converter verification. Figure 6 illustrates the setup. 



 

FIGURE 6. RIPPLE MEASUREMENT SETUP 

The oscilloscope has software built in to automatically measure parameters of interest, such as 

peak-to-peak voltage (VPP) and root mean square voltage (VRMS). The oscilloscope has a built-

in statistics module capable of averaging measurements over time. Prior to measuring the ripple 

voltage of the DC/DC converter output, the measuring script reset the statistic module. 

Measurements were collected for seven seconds before saving the values into the result matrix. 

The seven second threshold was found empirically by evaluating how fast the average value 

stabilised. 

4.2.3. TRANSIENT RESPONSE 

Transient response testing means that the load applied to the converter is changed very rapidly 

with a large amplitude. Typically, the load is increased from zero (or very small) current to the 

maximum output current. The slew rate can vary from 0.1 A/µs to more than 50 A/µs. [34] 

A self-built transient tester was used for testing. It consisted of a low RDSON N-channel metal 

oxide semiconductor field-effect transistor (MOSFET) and a gate driver. A wire wound resistor 

and a rheostat were used as the static loads during testing. The switch was located between the 

load and the ground return (low side switching). Rising and falling edge slew rates of 7.25 A/µs 

were achieved with the device. 

4.2.4. NEAR-FIELD ELECTROMAGNETIC EMISSIONS 

The near-field electromagnetic emissions were measured at Tartu Observatory with an ETS-

Lindgren's near-field probe 7405-903 and a Rohde-Schwarz ESR26 spectrum analyser. All 

measurements were conducted in peak-hold mode by moving the probe around the device under 

test (DUT) as close as possible. The accuracy of the measurements should be within 1 dB. 



4.2.5. TESTING METHODOLOGY AND DATA ANALYSIS 

The measurement platform input was connected to a computer controlled power supply (Rigol 

DP832) and the output was connected to a programmable electronic load (MightyWatt [35]). 

This setup, controlled by a MATLAB measurement script developed by the author, enabled 

performing repeatable automated measurements. 

Two DC/DC converter modules were used to measure the performance of each device. Both 

modules were tested in both channels which amounts to four full measurements (applies to 

efficiency and ripple results). The similarity of the measurements was verified visually and 

afterwards the results were averaged to produce one set of results per converter. 

Multiple automated analysis scripts were developed by the author. These scripts performed 

tasks, such as averaging, calculating various parameters and plotting. This setup enabled 

analysing large amounts of data automatically and provided a quick visual feedback of the 

results. The scripts were developed in the MATLAB environment. 

  



5. BATTERY MANAGEMENT AND PROTECTION 

5.1. REQUIREMENTS 

1. The system shall be compatible with the system architecture described in chapter 3.2 

2. The system shall be capable of bidirectional and unidirectional operation 

3. The system shall be capable of disconnecting batteries from the MPB 

4. The system shall be capable of passing 6 A discharge and 1.5 A charge currents in the 

bidirectional mode 

5. Both directions shall have adjustable current limits 

6. Auto-resettable fault handling system is preferred 

7. Battery cell voltages shall be measured 

8. Instantaneous currents shall be measured in both directions 

9. The system shall be capable of measuring total charged and discharged energy 

10. The system shall have automatic over- and under-voltage protection which can be 

overridden by the microcontroller 

11. It shall be possible to add a system that balances cell voltages (requirement will be 

revised after battery testing campaign) 

12. The quiescent current shall be low enough to ensure a shelf life of one year 

 

5.2. GENERAL SYSTEM DESIGN 

As required, the battery system will have to perform three main tasks: switch between charge, 

discharge and bidirectional modes; provide protection against over- and under-voltage (OV and 

UV), overcurrent (OC) and cell imbalance scenarios; and collect information about the state 

and health of the system.  

The battery protection side was designed so that it would react to most faults automatically and 

require no input from any external systems. For every required functionality multiple 

implementations were considered. The following chapters will describe the operating principles 

of each subsystem, cover the pros and cons of the alternative solutions and make a 

recommendation on which solution to use and why. 

5.3. BATTERY BALANCING 

A battery balancing system is needed in order to balance individual cells in a multi-cell battery 

pack. Should this issue not be addressed, the cells could go out of balance during the charge-

discharge cycles. The imbalance is often caused by the cells having different characteristics at 



the beginning of life or due to degradation at different rates. In practice, this means that one cell 

will end up being at a higher voltage compared to the other one. The battery charging device 

monitors the total voltage of two cells in series and terminates when the voltage rises to around 

8.4 V. This might cause an issue where one cell is being charged to 4.25 V and the other one to 

only 4.15 V. Should the cells not be balanced by an external system, an auto-accelerating 

degradation cycle may begin with the voltage differences rising over time. Lithium-ion batteries 

are very sensitive to over-voltage conditions and can be damaged permanently, if those 

conditions persist. In extreme cases the batteries may rupture or even explode. [36] 

It has to be noted that some CubeSats using two cells in series have not implemented battery 

balancing at all [11]. In this work the balancing system is covered, but battery testing will show, 

whether it is ultimately needed or not. 

The simplest controlled balancing system consists of a switch and a resistor. With this method, 

it is possible to discharge the battery on demand with a very low current and drain the cell with 

the higher voltage enough to achieve balance between the cells. The obvious disadvantage of 

this system is that the discharged energy is turned into heat and wasted.  

Alternatively a charge redistribution system could be used that transfers energy from one cell 

to another. These systems are usually based on capacitive or inductive components and are 

much more complicated to operate and implement [36]. These systems were not considered due 

to their complexity.  

Two solutions for the final implementation were considered: a BQ29209 (Texas Instruments) 

battery balancer based system and an MCU controlled balancing system. 

The former would require some external components in order to function, but it would not 

require any additional software development other than turning the balancer on and off. As the 

logic is integrated into the device, it would turn off automatically after balance has been 

achieved. This system has the required voltage sensing functionality integrated and would only 

require an enable signal (single IO pin) from the controller. As the rated supply current for the 

balancer is very low (6 µA) in standby, it might also be feasible to enable the device 

permanently and not commit any IO pins at all. This however, requires further analysis as it 

would not be possible to turn the device off and might introduce an additional failure mode. 

The MCU based solution would require adding load resistors and switch transistors to the 

system. Since the cell voltage sensing system is required anyway, there is no need for extra 



sensing functionality. The biggest downside is that it would be necessary to develop and test 

additional software in order to achieve the required functionality. Furthermore, two IOs per 

battery pack would be required to control the balancers. 

The author’s recommendation is to use the BQ29209 based system due to implementation 

simplicity and the minimal amount of software development and testing required. 

5.4. UNDER- AND OVERVOLTAGE PROTECTION 

Lithium-ion battery cells are very sensitive to excessive discharging and overcharging. For this 

reason, it is critical that the system includes protection schemes from under- and overvoltage 

conditions. Without this functionality, there is a risk of damaging the battery elements 

permanently. 

On ESTCube-1, this system was not implemented in hardware and the task was performed by 

the software. The system worked and also provided the operators with the flexibility of 

changing the UV/OV thresholds on the fly. The adjusting functionality was used in the last 

stage of satellite operation in order to allow for deeper discharge cycles. This approach, 

however, introduced additional complexity to the software and relied on the analog-digital 

converters (ADC) for measurement data. 

For the next generation system, automatic hardware level implementation with a 

microcontroller override functionality is desired. Originally, two solutions were considered: 

TPS3700 (Texas Instruments) window comparator based system and a custom implementation 

based on discrete Schmitt triggers (essentially building the window comparator from scratch). 

However, after some investigations into the custom implementation were done, the idea was 

dropped. The only benefit would have been customisable hysteresis. In all other aspects 

(expected quiescent current, component count and PCB footprint, amount of time required to 

implement and test) the TPS3700 outperformed the discrete solution. Based on these 

arguments, the author made the decision not to proceed with further investigations into the 

custom design and decided to use the TPS3700. 

5.5. LOAD SWITCH DESIGN 

The main requirement for the system is that it must be capable of switching the charge and 

discharge paths on and off. The system must also be switched off when the current limit is 

exceeded (possibly with auto-reset functionality). On ESTCube-1 the problem was solved with 

two TPS2557 (Texas Instruments) load switches in a special back-to-back configuration [18]. 



As that system was rated up to 5 V and 2 A, it was not possible to use the legacy implementation 

and a new system was needed. 

The proposed load switch designs are based on hot-swap controllers. These devices are 

originally designed to be used in systems which incorporate hot-swappable modules, such as 

data storage systems, servers, telecom equipment, etc. Our system does not include any hot-

swappable modules, but we require very similar functionality. The controllers themselves are 

capable of driving external power MOSFETs and also provide automatic current-limiting and 

circuit breaker functionality with configurable activation and cooldown delays. The ability to 

choose external power switch components enables the use of very low-loss devices, such as 

SiA04DN (Vishay) power MOSFETS. They feature very low RDSON of only 2mΩ at 10 V VGS, 

high current capacity and a compact surface mount package with enhanced thermal contact. 

The automatic current-limiting and circuit breaker functionality is tied to the voltage drop on 

the shunt resistors. Unfortunately, the aforementioned functionalities will be triggered on fixed 

voltage drops and therefore the limits can only be configured with different shunt resistor 

values. Should asymmetric current limits be needed, two different shunts have to be used. Both 

hot-swap controllers have pin-compatible versions with either latch-off or automatic reset fault 

handling capability. 

The following paragraphs mention the term “ideal diode”. As they do not exist in real life, some 

elaboration is required. Controllers, which actively drive a MOSFET in order to achieve a 

diode-like behaviour, are called ideal diodes. The FET is driven to a voltage drop of around 20 

mV until the natural voltage drop due to the RDSON takes over. [37] 

5.5.1.  LTC4226 BASED DESIGN 

The first proposed design is based on LTC4226 (Linear Technology) hot-swap controller which 

is originally meant to be used in a dual current path system, but is also capable of working with 

the MOSFETs in a back-to-back configuration. The specific configuration of the FETs is 

required in order to prevent current flow between the MPB and the battery pack through the 

body diodes when both FETs are turned off. Figure 7 demonstrates the configuration. 



 

FIGURE 7. LTC4226 BASED BATTERY SWITCH. NOTE: THE DIAGRAM ONLY ILLUSTRATES THE MOST CRITICAL 

CONNECTIONS NEEDED FOR UNDERSTANDING THE OPERATION OF THE SYSTEM. THE PHYSICAL 

IMPLEMENTATION IS MORE COMPLEX. 

The bidirectional current flow requirement is achieved easily when both FETs are turned on. If 

one of the switches is turned off, the current will unidirectionally flow thorough the diode 

paralleled with the other switch. This solution, however, comes with obvious drawbacks: some 

of the power is dissipated on the diode and the voltage on the other side of the diode is also 

significantly lower. A similar system for the unidirectional operation was used on-board 

ESTCube-1. The unidirectional mode will not be used during normal operations and will only 

be activated under special conditions, therefore these drawbacks are not considered to be major. 

The circuit breaker and current limiting functionalities are dependent on the voltage drop on 

the shunt resistor. If the voltage drop exceeds 50±5 mV, the device starts charging an external 

fault capacitor with a constant current. If the voltage drop reaches 86±16 mV, the device enters 

active current limiting mode in which the excessive energy is dissipated on the external FET. 

When the device is in current limiting mode, the fault capacitor is charged with a larger current. 

When the fault capacitor reaches a certain voltage level, the device turns off. There are two 

versions of the device available that differ in the way they handle faults. The latch-up version 

of the device remains off, but the auto-reset version starts a 0.5 second timer and tries to turn 

on, after it expires.  

The battery protection system is required to have a shelf life of at least a year because launches 

are often postponed and the satellite might have to be in storage for an extended period of time. 

This requirement makes the quiescent current very important. The controller is not directly 

connected to the battery side, so there is no direct current flow. This might make it possible to 

avoid having a separate switch between the system and the battery. This topic is further covered 

in the testing chapter. 



This implementation has one major downside: the current limit has fixed voltage drop 

thresholds, so if asymmetrical limiting is required, it is not possible to use the same resistor for 

both directions. As the requirement is 1.5 A for charge and 6 A for discharge, the charge resistor 

has four times the resistance of the discharge shunt. Simple calculations show that the resistance 

values should be 8 mΩ for discharge and 33 mΩ for charge. As the current goes through both 

resistors, the worst case voltage drop at 6 A discharge would be in the order of 250 mV. In this 

scenario, 300 mW would be dissipated on the discharge shunt and 1.2 W on the charge shunt. 

The de-rating guide specifies 50% power de-rating for resistors, meaning that the resistor should 

be rated for more than 600 mW and 2.4 W, respectively. Such resistors are available, but they 

are quite large relative to other components. The author had an idea to bypass the charge resistor 

with an ideal diode, but the idea was discarded after further consideration due to added 

complexity. 

As the switch design already includes shunts for the circuit breaker functionality, there is no 

need to add additional resistors for the required diagnostic purposes. INA210 (Texas 

Instruments) and INA213 (Texas Instruments) current sense amplifiers (CSA) and LTC4150 

(Linear Technology) Coulomb counter were chosen to perform the tasks. All the previously 

mentioned devices are capable of bidirectional operation. The INA210, which has a gain of 200 

V/V and ultralow input offset voltage of 0.55 µV typical and 35 µV max, would be used with 

the higher value shunt to enable accurate measurements in the lower current range. The ultra 

low VOS ensures that the maximum offset in terms of current would be around 1 mA. After that 

device saturates at around 220 mA, the INA213 would be used with the discharge shunt to 

measure the higher currents. As the latter device has much larger VOS, the accuracy of the results 

would not be as good. However, if needed, the offset voltage could be calibrated between the 

two devices on-the-fly at the current range common to both devices enabling accurate results 

at higher currents with extrapolation. This holds true only if the offset voltage is constant over 

the whole range. As a 12-bit analog-digital converter with a 3 V reference will be used to 

digitize the results, the expected resolution for the lower range is 100 µA/bit and 1.8 mA/bit for 

the higher range. The Coulomb counter has impulse and direction outputs which are very easy 

to monitor digitally. The counter is connected to the shunt with a lower value to limit the 

maximum VSENSE voltage on the shunt to 50 mV. Calculations based on the datasheet show that 

each impulse would correspond to 1.07 mAh of energy transferred.  



Typical gate-source voltage of the driver is 12 V and is rated to maximum of 16 V. As the 

SiA04DN gate-source voltage is rated to 20 V, the maximum of 16 V slightly exceeds the 

suggested 75% de-rating threshold. This is considered to be acceptable. 

5.5.2.  LTC4228 BASED DESIGN 

The second design is based on LTC4228 (Linear Technology), which is a dual channel ideal 

diode hot-swap controller and is similar in functionality to LTC4226 discussed earlier, but it 

has some key differences. Figure 8 illustrates the second solution. 

 

FIGURE 8. LTC4228 BASED BATTERY SWITCH. NOTE: THE DIAGRAM ONLY ILLUSTRATES THE MOST CRITICAL 

CONNECTIONS NEEDED FOR UNDERSTANDING THE OPERATION OF THE SYSTEM. THE PHYSICAL 

IMPLEMENTATION IS MORE COMPLEX. 

The first difference is that it utilizes ideal diodes (driven MOSFETs) in order to make the 

current path unidirectional. The second key difference is that it is possible to use one channel 

for charge and the other one for discharge. As they are both unidirectional, there is no reason 

to worry about reverse currents. The third difference is that the shunt resistors for circuit breaker 

functionality are not connected inline and the losses inherit to the LTC4226 based design are 

not present. This means that this design is much more efficient under higher loads.  

The circuit breaker and current limiting functionality is similar to the LTC4226, but LTC4228 

features more accurate tolerances for the protection activation thresholds (50±2.5 mV for circuit 

breaker and 65±10 mV for current limit). The auto reset version does not have a fixed delay 



but, the delay is tied to the fault capacitor capacitance. The cooldown delay is approximately 

916 times longer than the circuit breaker delay. 

The major downside of this design is its current draw. The device needs direct connections to 

the battery bus and consumes current through those connections. The input current is rated to 

2.5 mA typical and 5 mA maximum, additionally the shunt voltage sensing pins together can 

draw up to 600 µA. Due to the high current requirements, an additional switchable element is 

required between the battery terminals and the battery bus in order to meet the shelf life 

requirement. 

As the current flows through the shunts in one direction, bidirectional sensing is not required. 

Sensing the instantaneous current at the charge pin is not very complicated due to the limited 

dynamic range required. LT6102 (Linear Technology) CSA features adjustable gain and very 

low VOS (3 µV typical and 35 µV maximum). If the gain is set to 60 and a 12-bit ADC with a 

3 V reference is used, the charge current could be measured with a resolution of 0.37 mA/bit. 

The discharge current measurement is more complicated as the dynamic range is much larger. 

One option would be to use the LT6102 with adjustable gain and use larger gain for smaller 

currents and vice versa. The gain switching could be accomplished with a simple FET and a 

resistor in parallel with the static gain resistor. Gain of 60 could be used for higher range (up to 

6 A) and gain of 250 for lower range (up to 1.5 A). This configuration would result in 

resolutions of 1.5 mA/bit and 0.37 mA/bit. As there is no common resistor for both current 

paths, two Coulomb counters would have to be used. LT4150 would be sufficient for the task. 

The nominal output gate-source voltage is rated to 12 V and to a maximum of 14 V. As the 

SiA04DN gate-source voltage is rated to 20 V, the maximum of 14 V is just under the suggested 

75% de-rating threshold. 

Only dual channel hot-swap controllers were considered for this system because they enabled 

a simpler and a more compact solution. Also, based on the datasheets of the single channel 

devices, no immediate benefits were seen that could justify the increased investment into 

development, both time- and funding-wise. 

5.6. TESTING RESULTS  

Both load-switch architectures were tested: voltage drop was measured over the full operational 

current range in all operating modes (uni- and bidirectional charge and discharge) at three 

different voltages along with the quiescent current. The voltage was measured as close to the 

input and output of the switch as possible in order to minimize the losses caused by the 



prototype PCB design. In bidirectional mode, both directions were enabled simultaneously and 

in the unidirectional mode, one of the directions was forced off. 

First, the dependency between the voltage drop and the applied voltage was investigated. The 

performance was measured over the full current range at three different voltages: 6.6, 7.4 and 

8.4 V. The worst case standard deviation in bidirectional mode was 580 µV for LTC4226 and 

490 µV for LTC4228; in unidirectional mode, 2.08 mV for LTC4226 and 260 µV for LTC4228. 

These results show that the voltage drop is effectively independent of the applied voltage. 

Figure 9 and Figure 10 illustrate the losses of the two topologies dependent on the operation 

mode: either unidirectional or bidirectional. As LTC4228 proved to be independent of the 

operating mode during testing, it is only plotted once. The figures show the loss in percentage 

from the total energy passed. Higher losses are present at lower voltages.   

 

FIGURE 9. CHARGE MODE LOSSES OF POWER SWITCHES. THE THICK LINES SHOW THE LOSSES BETWEEN 

VOLTAGES OF 6.6 AND 8.4 V 



 

FIGURE 10. DISCHARGE MODE LOSSES OF POWER SWITCHES. THE THICK LINES SHOW THE LOSSES BETWEEN 

VOLTAGES OF 6.6 AND 8.4 V 

In the LTC4226 based solution, PMEG3050 (NXP) low-dropout Schottky diodes were used in 

parallel with the MOSFETs to divert the current flow from the FET body diodes in the 

unidirectional operation mode. The diodes are rated to a continuous current of 5 A and to a 

power dissipation of 625 mW with the standard footprint. If the derating recommendations are 

respected, the maximum current is limited to around 1 A due to the 50% de-rating regarding 

the power dissipation. During testing, the diodes were subjected to the maximum rated current 

for the sake of the argument. 

The testing results, unsurprisingly, confirm what was discussed in the design section. While the 

difference in losses is not substantial during battery charging, the difference becomes quite 

large for discharge, especially at higher currents. Efficiency wise, the LTC4228 based system 

noticeably outperforms the LTC4226 based system. 

In order to meet the shelf life requirement of one year, the constant load current has to remain 

below 1401 µA. The quiescent current was measured for both prototypes: LTC4226 with the 

                                                 

1 Calculation based on a fully charged battery with 1800 mAh of capacity and depth of discharge of 70% 



PMEG3050 diodes drew 0.73 mA and the LTC4228 drew 4.1 mA when turned as off as possible 

(it is not possible to turn off the internal voltage regulator). However, when the PMEG3050 

diode was removed, only 34 µA was drawn by the LTC4226. As the current draw of this system 

is mainly dominated by the reverse leakage of the diode and should the diode be replaced with 

another featuring lower reverse currents, the system should meet the shelf life requirement 

without any additional hardware. The LTC4228 based system would definitely require an 

additional switch to meet the shelf life requirement. It is not possible to reduce the power 

consumption in any other way without impacting the functionality of the device. The addition 

of components into this critical current path would of course reduce reliability and increase 

complexity. 

The experience with the ESTCube-1 battery system showed that the unidirectional mode was 

used under special circumstances once or twice during the two years of operations and the rest 

of the time the system was operating in the bidirectional mode. The author believes that this 

will also be the case with the system under consideration and the unidirectional operation mode 

will be used seldom, if at all. 

The 6 A discharge current requirement was set considering the worst possible case: only one 

battery pack is functional and the bus systems plus a high current consumption payload have to 

function at the same time. In reality, the satellite is very likely to include at least two battery 

packs for redundancy and under nominal conditions both of these packs would be turned on, 

thus a single pack would provide only half of the consumed current. This means that under 

nominal operating conditions the difference in the losses between the two proposed solutions 

would be quite insignificant in terms of the whole system.  

Based on the previous discussion, the author would recommend the LTC4226 based system for 

the final implementation. Although the losses inherit to this system are considerably higher at 

larger currents, the possibility to use it without any additional power switching circuitry and 

meet the shelf life requirements outweighs the drawbacks. Fewer components mean higher 

robustness and reliability.  

  



6. VOLTAGE CONVERSION AND POWER 

DISTRIBUTION 

6.1. REQUIREMENTS 

 The voltage conversion circuit design shall meet the following requirements: 

1. Shall provide a regulated output voltage of 3.3 V 

2. The input stage and converters shall operate from 6.6 V to 8.4 V 

3. Shall be capable of providing output current of at least 1.5 A 

4. The converter shall be protected against excessive current draw 

5. It shall be possible to measure input instantaneous current 

6. Output voltage stability shall be better than ±50 mV over the full output current range  

7. The converter shall operate efficiently (>80%) in the discontinuous mode  

8. The system shall be of redundant design consisting of two independent regulators 

capable of operating in hot and cold redundant modes 

9. The converter shall be in a thermally enhanced package 

10. The system shall be designed with high efficiency and low losses in mind 

The power distribution system shall meet the following requirements: 

1. The system shall be capable of operating at voltages up to 9.5 V 

2. The system shall be capable of operating at currents up to 3 A 

3. It shall be possible to switch loads on and off 

4. There shall be an overcurrent protection circuit with an adjustable limit for each load 

5. It shall be possible to configure the system to latch-off or auto-reset with a delay 

6. It shall be possible to measure output instantaneous output voltage and current 

 

6.1.1.  VOLTAGE CONVERSION SYSTEM DESIGN 

The voltage conversion system consists of three sequential stages: input load switch and current 

measurement, voltage conversion, and load sharing system. The last stage has to OR together 

the converter outputs into a single regulated voltage rail. Two separate conversion channels are 

implemented for redundancy. All of the aforementioned functionalities will be covered in the 

chapters to follow. Figure 11 illustrates the system. 



 

FIGURE 11. VOLTAGE CONVERSION SYSTEM DIAGRAM 

6.2. CONVERSION INPUT STAGE DESIGN 

Three functionalities are required from the voltage conversion system input stage: ability to 

switch input current on and off, protection from excessive input current, and instantaneous 

current measurement capability. 

Two input switch designs were chosen for evaluation: a FPF2700 (Fairchild) load switch based 

and an ADM1170 (Analog Devices) hot-swap controller based. The main difference between 

them is that the load switch is a fully integrated device with internal current sensing and 

switching FET while the hot-swap controller based system features an external current sensing 

shunt resistor and an external MOSFET for load switching. Figure 12 illustrates both 

implementations. 

 

FIGURE 12. VOLTAGE CONVERSION INPUT STAGE PROPOSED SOLUTIONS 

There are very few integrated load switches available for higher voltages than 5.5 V and even 

fewer for currents over 1 A. The FPF2700 is the only one (to the author’s knowledge) that meets 

both of the requirements along with auto-reset functionality and a possibility to enable and 

disable the device. This device has also a major advantage as it has been tested for TID tolerance 

up to 24 krad [38]. 

The hot-swap controller basics are covered in chapter 5.5 and will not be repeated here. While 

there are many single channel hot-swap controllers available to choose from, the ADM1170 



offered the best mix: small footprint, low quiescent current, good availability and no unneeded 

functionality or complexity. An alternative candidate could be the MAX5924 (Maxim 

Integrated), however this device was discovered after the ADM1170 had already been 

prototyped and there was no time to experiment with the device. The Maxim Integrated part 

has the advantage of a configurable circuit breaker limit using an external resistor, which means 

that a lower value shunt could be used. The features and parameters of both devices are 

compared in Table 5. 

TABLE 5. COMPARISON BETWEEN THE TWO PROPOSED LOAD SWITCH DESIGNS 

Feature FPF2700 ADM1170 

Maximum current 2 A Not limited 

Current limit accuracy ± 20% ± 12% 

 

Resistance of the switch 

 

88 mΩ (typical)  

140 mΩ (maximum) 

Depends on the current limit 

and the selected MOSFET: 

35 mΩ for proposed solution 

Thermal shutdown YES NO 

Components required 1 IC, 3 passives 1 IC, 1 FET, 4 passives 

External shunt NO YES 

External power switch NO YES 

 

Both devices were prototyped and they performed as expected based on information available 

in the datasheet. In order to measure the instantaneous current, an additional shunt has to be 

added into the system. For example, LT6102 CSA with a 20 mΩ shunt resistor could be used. 

This means that the total resistance of the FPF2700 based system would increase to  

108–160 mΩ. ADM1170, however, already uses an external low value resistor to set the circuit 

breaker limit and the same shunt could be reused for sensing the instantaneous current, thus not 

adding any additional resistance. The ADM1170 based solution would have 3–5 times less 

resistance involved than the FPF2700 based solution, resulting in lower losses and higher 

efficiency. 

It is very difficult to choose between the two solutions as one offers much higher efficiency, 

while the other one has known radiation behaviour. Emphasising reliability, it is the author’s 

recommendation that the FPF2700 should be preferred until radiation testing data becomes 

available for the other device. 



6.3. METHOD FOR VOLTAGE CONVERSION 

The system needs to down-convert voltage from a floating bus varying between 6.6 to 8.4 V to 

a regulated bus of 3.3 V. Generally, there are three types of solutions for lowering voltage: a 

linear dropout regulator (LDO), a buck charge pump and an inductive buck DC/DC converter. 

The linear dropout regulator dissipates the leftover power ((VIN-VOUT)*I) into heat – meaning 

that the efficiency of the conversion drops as the voltage difference increases. Although the 

LDO is a very simple and robust component with high reliability, it would be far too inefficient 

for our application and managing the heat dissipation at higher loads would be challenging. The 

charge pump solution can be ruled out almost immediately because it does not allow for 

sufficient currents. The inductive buck DC/DC converter is much more complicated in nature 

than the previous two, but it is also capable of providing large currents at very high efficiencies. 

The basic inductive switch-mode step-down converter consists of a switch, a diode, an inductor 

and an output capacitor. The basic principle of the converter is that it stores energy in the 

inductor when the switch is closed and then releases it into the load when the switch is open. 

The switch is driven with a pulse-width modulated (PWM) square wave of a varying duty cycle 

(under certain conditions, the frequency can vary also). The output capacitor helps to reduce 

the output voltage ripple and the diode completes the circuit when the switch is open. Figure 

13 shows the connections between the aforementioned components.  

 

FIGURE 13. DC/DC STEP-DOWN CONVERTER BASIC CONSTRUCTION. VIN DENOTES THE INPUT VOLTAGE 

SOURCE AND COUT DENOTES THE OUTPUT CAPACITOR 

The converter generally has two operating modes: continuous and discontinuous. The 

continuous mode means that the inductor current does not drop to zero during the OFF period 

of the switch – this mode occurs when the output currents are larger. During the continuous 

mode, the output voltage is a function of the input voltage and the duty cycle. Should the output 

DC current become lower than the inductor ripple current (this typically happens during light 

loads), the converter starts operating in a discontinuous mode. In this mode, the inductor current 

reaches zero during the OFF period of the switch and it becomes much harder to control the 



output voltage. The output voltage becomes a function of the input voltage, the output current, 

the inductance, the duty cycle and the switching frequency. [39] 

In order to operate with various input and output voltages and supply different load currents 

stably and efficiently, the converter must operate in a closed loop. This requires feedback, 

which is most commonly taken from either the output voltage, the peak switch/inductor current 

or the output voltage ripple (hysteretic control). Each solution has its own pros and cons, which 

are covered in Table 6 [40] [41]. A further detailed description regarding the different feedback 

systems is beyond the scope of this work. 

TABLE 6. OVERVIEW OF THE PROS AND CONS OF DIFFERENT DC/DC FEEDBACK SYSTEMS 

Feedback 

mode 

 

Pros 

 

Cons 

 

Output 

voltage 

 Single simple control loop 

 Short ON-time possible 

 High noise tolerance 

 Slow response to fast changes 

to the input voltage (without 

line feedforward) 

 Complicated compensation 

 

 

Inductor 

current 

 Good response to input 

voltage changes 

 Simpler compensation 

 Highly stable feedback loop 

 Fast transient response 

 Low quiescent current 

 Complicated control due to two 

feedback loops 

 Minimum ON-time limited 

 Sensitive to poor layout 

 

 

 

Output 

ripple 

 Extremely fast transient 

response time 

 No compensation needed 

 Extremely simple and stable 

feedback loop 

 Difficult to achieve constant 

operating frequency  

 Hard to predict EMI 

 Large output ripple 

 Large output jitter 

 Use on low ESR ceramic 

capacitors complicated  

  



6.4. CONVERTER EVALUATION AND SELECTION 

The converters listed in Table 7 were chosen as candidates for the final system. The higher 

output current regulators (LT8614, LTC3603 and TPS51117) were chosen prior to the 

integrated bus concept, but were tested anyway because they had already been prototyped 

during the development of the testing platform by Mr. Raudheiding [32]. All converters exceed 

the required 6.6 to 8.4 V input voltage range with margin and de-rating included.  

TABLE 7. CONVERTER CANDIDATE OVERVIEW 

Parameter LTC3601 LTC3603 LTC3624 LT8614 TPS51117 TPS62110 

Mode Current Current Current Current Hysteretic Voltage 

Rated IOUT 1.5 A 2.5 A 2 A 4 A Ext. limit2 1.5 A 

Max VOUT Vin - 0.1 V Vin - 0.5 V Vin  Vin - 0.5 V 5.5 V Vin - 1 V 

Operating  

frequency 

 

820 kHz 

 

720 kHz 

 

1 MHz 

 

480 kHz 

 

250 kHz 

 

1 MHz 

Adjustable 

frequency 

 

Yes 

 

Yes 

 

No 

 

Yes 

 

Yes 

 

No 

Package QFN-16 QFN-20 MSOP-20 QFN-20 QFN-14 QFN-16 

External 

components3 

 

5–8 

 

8 

 

1 

 

6–7 

 

10 

 

2 

 

During the testing campaign, the converters were tested at the output voltage of 3.3 V. They are 

also capable of providing 5 V, but if the de-rating suggestion is considered, TPS51117 fails to 

meet the requirement. Since the 5 V testing was not required by the bus at the time of writing 

the thesis, it is not included. Should the 5 V rail be required in the future, some components 

would have to be replaced on the prototype boards. As the testing routine and the analysis 

process is automated, it would only take a few hours to get the efficiency, ripple and voltage 

stability results. 

One of the main considerations during the selection was the efficient operation in the 

discontinuous mode (light-load efficiency). As the expected dynamic operating range of the 

converter varies from tens of milliamps to 1.3 A, it is difficult to achieve high efficiency over 

the whole range.  The converters from Linear Technology (LT and LTC prefix) have a special 

                                                 

2 Uses external MOSFETs for switching 
3 Feedback resistors (2), inductor and input/output capacitors not included 



operating mode called burst mode in order to boost the efficiency during light-load operation. 

As the switching frequency and the duty cycle of the converter are quite low in the 

discontinuous mode, the device switches off all of the non-essential internal circuitry between 

the ON periods of the switch. This allows to reduce the quiescent current and increase 

efficiency. TPS62110 has a very similar approach to increasing efficiency. TPS 

The second selection criteria was synchronous operation. This means that instead of a MOSFET 

and a diode, two MOSFETs are used. This reduces the losses during the OFF period and 

increases the efficiency. When comparing synchronous and non-synchronous rectification, it is 

true that synchronous operating mode is not always more efficient. This statement can be true 

during high duty cycle operation, but might not be true during lower duty cycle operation [42]. 

In continuous mode, the duty cycle is defined by the ratio of the input and output voltage and 

can be easily calculated. With a 3.3 V output and a 6.6 to 8.4 V input, the duty cycle would be 

50–40%. As this is not very high, it seemed reasonable to use synchronous rectification. The 

special consideration involved with discontinuous operation and synchronous rectification is 

that the MOSFET is capable of bidirectional current flow. It has to be turned off when the 

current in the inductor reaches zero, otherwise the output capacitor would be drained through 

the inductor and the conversion efficiency would suffer greatly. This means that the converter 

must have additional circuitry to detect this event and take appropriate action in time. All the 

selected devices include this functionality. 

A very important parameter of the DC/DC converters is their operating frequency. Higher 

switching frequencies can improve upon the output performance in terms of ripple voltage and 

transient response and it also allows for smaller inductive and capacitive components. On the 

other hand, the efficiency suffers with increasing frequencies due to switching losses [43]. As 

the application under consideration has a strong emphasis on efficiency, it was decided to rather 

use lower frequencies and larger components than to compromise on efficiency. For this reason 

a 1 MHz limit was imposed upon the maximum frequency. The lower frequency switching can 

mitigate potential electromagnetic emissions (EMI) problems. For adjustable frequency 

converters, the operating frequency was chosen based on the frequency-efficiency curve found 

in the datasheet. 

Another very important criterion for the selection was that the converter had to be in a thermally 

enhanced package, meaning it must have a separate soldering pad underneath. This requirement 



was set in order to reduce the probability of overheating, as the only viable way to transfer heat 

in space is by conduction.  

During candidate selection, all major manufacturers were considered. Apparently, there were 

not many converters that fulfil all of the aforementioned requirements. Out of those that 

remained, some were discarded due to availability issues, others due to lack of in-depth 

documentation. Finally, only converters from Linear Technology and Texas Instruments 

remained. As the engineering team has had good experience with converters from those 

manufacturers on ESTCube-1, it seemed a sensible choice. Furthermore, a NASA compiled 

study of the most used CubeSat components show that Linear Technology and Texas 

Instruments power converters are the most used amounting to a total of 69% of the converters 

[44]. 

Low profile (< 3 mm) inductors were used in all the implementations with very similar DC 

resistance parameters. All chosen inductors have metal powder cores, which unfortunately are 

inferior to the ferrite based cores, but no suitable low profile ferrite core based inductors were 

available at the time of the selection. The 3 mm requirement originates from the system level 

bus design limitation. Should this requirement change, the inductor selection will be revisited.  

All converters used the same amount of input and output capacitance: 30 µF of multilayer 

ceramic capacitors (MLCC) for the input and 100 µF tantalum along with 20 µF of MLCC for 

the output. Ceramic capacitors were in the standard 1210 (imperial) package with nominal 

capacitance of 10 µF.  

All designed modules have components on both sides as this enables to minimize the footprint 

of the converter and reduce the area of the high current loops. All specific design 

recommendations given by the datasheets were respected when possible. 

In the following sections, mainly the results for 8.4 and 7.4 V input voltages are covered, as the 

main operating voltage will vary between those voltages. This is due to intentionally limiting 

the depth of discharge of the batteries. Measurement results not covered in the following 

chapters can be found in the appendix.  

6.4.1.  VOLTAGE CONVERSION EFFICIENCY 

The conversion efficiency is one of the most important parameters of a voltage converter. As 

the energy production on-board the satellite is limited, converters with the highest efficiency 

are obviously preferred. The results in Figure 14 show the calculated efficiency curves over the 



whole measured range. All converters were tested to the same output current regardless that 

some were more capable than others. The values in Figure 15 show how much more efficient 

the converters are at 7.4 V than at 8.4 V. Per regulator comparisons at all three different input 

voltages are available in the appendix. 

 

FIGURE 14. DC/DC CONVERTER EFFICIENCY AT 8.4 V INPUT AND 3.3 V OUTPUT VOLTAGE IN LOGARITHMIC 

SCALE EMPHASISING LIGHT-LOAD EFFICIENCY 



 

FIGURE 15. CHANGE IN EFFICIENCY WHEN INPUT VOLTAGE IS DECREASED FROM 8.4 V TO 7.4 V. LARGER 

VALUES INDICATE LARGER INCREASE IN EFFICIENCY 

In general, most converters exhibit quite similar performance in terms of efficiency. It can also 

be seen that the efficiency increases quite similarly when the voltage is lowered from 8.4 V to 

7.4 V. Based on the efficiency results, the best candidate seems to be LTC3603 as it offers the 

highest performance over the whole range. Closely following are LT8614 and TPS51117. If the 

decision was to be made purely on efficiency, it would be very difficult. 

6.4.2.  VOLTAGE STABILITY 

The output voltage stability of the converters was tested by measuring and logging output 

voltage at the converter feedback point over the full current range. Voltage dependency of the 

converter input voltage was also investigated. None of the converters showed any considerable 

input voltage dependencies. The largest changes in the output voltage were less than 10 mV 

and those were exhibited by the only voltage-mode regulator TPS62110. The changes for the 

other converters were within the margin of error. Figure 16 shows how the output voltages are 

affected by the output current.  



 

FIGURE 16.  DC/DC VOLTAGE STABILITY AT 8.4 V INPUT AND 3.3 V OUTPUT VOLTAGE  

The steps seen in the figure are most likely caused by the transition from the discontinuous to 

the continuous mode. The absolute accuracy of the output voltage is not as important as only 

1% accurate resistors were used for the prototype and there are bound to be small voltage drops 

beyond the feedback measurement location. The most important conclusion is that the 

converters can keep the output stable regardless of the current being sourced. 

6.4.3.  OUTPUT VOLTAGE RIPPLE 

As there was no strict requirement set for the output voltage ripple, it would have been possible 

to skip the measurement. However, this parameter was measured to see whether there are any 

serious issues with the output ripple. The nature of the ripple generally shows if the converter 

output has enough bypass capacitance present with the right equivalent series resistance (ESR) 

present [45]. The results also provide the other subsystems with an indication of what quality 

power supply should be expected and how much power supply filtering would be required on 

their end. 

The input voltage independence was investigated first. For most converters the results showed 

that the output ripple does not depend on the input voltage. The only noticeable difference was 



with the TPS51117 at 6.6 V input voltage. The differences were in the order of 10 mV peak-to-

peak when compared to the results at higher input voltages. As the converter would be operating 

at that low voltage only in case of emergency, it was not considered a major issue. Due to the 

ripple results being effectively independent of the input voltage and consistent in shape, they 

were averaged. 

Next, the results from two different modules were compared. As both modules were tested in 

both measurement channels, a total of four sets of results were measured. The channel-wise 

(same module tested in both channels) results overlapped very nicely and there was no 

considerable difference. However, some modules performed slightly differently – this might be 

due to output capacitor quality, converter internals or some other component tolerances.  

 

Table 8 summarises the worst case performance. The crossover between the discontinuous and 

continuous operating modes can be seen quite clearly from the plots as the ripple performance 

changes significantly. Plots of the results are available in the appendix. 

TABLE 8. WORST CASE RIPPLE PERFORMANCE OF THE TESTED CONVERTER MODULES 

 

Converter 

Discontinuous operation 

Max ripple (mV) 

Continuous operation 

Max ripple (mV) 

 

Crossover 

current (mA) 
VPP VRMS VPP VRMS 

LT8614 11 3 11 3 200 

LTC3601 33 8 16 5 500 

LTC3603 40 15 10 3 500/7504 

LTC3624 52 17 8 2 750 

TPS51117 30 10 29 6 300 

TPS62110 34 10 4 1 500 

 

Based on discontinuous mode results, the top three converters are LT8614, TPS51117 and 

LTC3601; based on continuous mode: TPS62110, LT3603 and LT8614. All around, LT8614 

seems to be the best performing converter ripple wise. It also has the lowest threshold for 

crossing over to continuous operation, which results in stable switching frequency at lower 

output currents. TPS51117 has much higher ripple in the continuous mode compared to other 

                                                 

4 Modules changed operating modes at different frequencies 



converters because it operates based on hysteretic control loop – it uses output ripple as the 

feedback for the internal control loop. 

6.4.4.  TRANSIENT RESPONSE 

Transient response testing can reveal issues in the feedback loop compensation of a voltage 

converter. If the feedback loop is under-compensated, the output of the converter tends to 

oscillate after a transient event. If the loop is over-compensated, it takes a long time to return 

to the nominal output voltage. It is acceptable, if a suddenly changing load causes a small 

overshoot or undershoot in the output voltage, should it smoothly recover from it. [34] 

The converters were subjected to two different tests: increase from zero load to maximum load 

of 1.45 A and increase from 80 mA to 1.45 A. The first test was meant to simulate the worst 

case condition that the converter could theoretically be exposed to. The second test was 

conducted with the purpose of investigating transition between discontinuous mode and 

continuous mode. Voltage over- and undershoots (VOS and VUS) were recorded along with the 

time that it took for the converter to recover (tREC). 

TABLE 9. TRANSIENT RESPONSE MEASUREMENT RESULTS 

 

Converter 

0 A → 1.45 A 1.45 A → 0 A 80 mA → 1.45 A 1.45 A → 80 mA 

VUS tREC VOS tREC VUS tREC VOS tREC 

LT8614 150  60 100  10000 150  60 100  400 

LTC3601 80 25 120 10 -5 110 3 

LTC3603 50 30 100 6000 50 25 100 75 

LTC3624 260 100 150 5000 200 100 150 75 

TPS51117 25 30 200 5000 25 3 100 50 

TPS62110 75 50 150 100 100 50 110 100 

 

The testing did not uncover any serious stability issues with the converters as no ringing was 

observed. Top three converters in terms of response time are: LTC3601, TPS51117 and 

LTC3603. If we look at the voltage deviations from the nominal value, LTC3603, TPS51117 

and LTC3601 have the top performance. 

                                                 

5 No distinguishable transient response was observed. Increased ripple of 50 mV peak-peak was observed for 60 

µs, after that the ripple returned to 30 mV peak-peak. 



6.4.5.  NEAR-FIELD ELECTROMAGNETIC EMISSIONS 

Radiated electromagnetic emissions in the near-field were also measured as part of the testing 

campaign. The aim of these measurements was to get an idea how the converters emissions 

differ and which circuit elements emit the most noise. This information might give critical 

insight later on when planning the system and component level placements inside the integrated 

bus as the components are packed tightly together. The emissions were measured at 8.4 V input 

voltage and three different output currents: 0.1 A, 0.5 A and 1.5 A.  

Largest amount of emissions were given off by the switching elements of the converter, which 

makes sense because the largest current fluctuations happen there. It has to be noted that the 

inductors gave off much weaker emissions than the switching elements, due to being 

magnetically shielded. If similar routing topology is used for the final system (controller on one 

side of the board and inductor directly underneath it), the controller should be on the side that 

is away from the more sensitive parts. If possible, sensitive circuits should be located on a 

different board and ideally in another section of the bus. This definitely applies to the 

communications system. It was also interesting to see how much magnetic energy was radiated 

at the planned communication frequencies. The full measurement results can be seen in 

appendix. 

Based on the measurements around the 430 MHz band (estimated communication frequency), 

top three converters are TPS51117, LTC3603 and LT8614. If the full range is considered, the 

LT8614 outperforms all others, but this is not a surprise as it is advertised as a low EMI 

converter. 

6.4.6. CONVERTER TESTING CONCLUSION 

Based on the testing results discussed earlier, it is the author’s recommendation to use LTC3603 

converter for the final solution. This seems a reasonable choice as the converter has performed 

very well in all of the conducted tests. It can also provide more current than is required (up to 

2.5 A) by the present system. This means that the converter, even at the maximum load, will 

run under lower stress and, should some larger changes be made to the system that increase the 

current consumption significantly, it could still be used as is. 

Should higher level testing reveal that LTC3603 could not be used for some reason, LT8614 

could be considered as an alternative as it also shows very good performance, especially 

electromagnetic emissions and output ripple wise. 



6.5. CONVERTER OUTPUT OR CONNECTION AND LOAD SHARING 

In order to make the system redundant, there have to be two stand-alone converters. With this 

requirement, there is the issue of connecting their outputs to the regulated voltage bus. On 

ESTCube-1 this was done through low-dropout Schottky diodes. The solution worked, 

however, it also had a large impact on the system’s overall efficiency due to the power 

dissipated in the Schottky diodes.  

To improve this system and minimize unnecessary losses, a system based on a specialized load-

sharing ideal diode controller (LTC4370 from Linear Technology) was built and tested. This 

device can work either in a load-sharing mode, in which it distributes the load evenly between 

two converters, or in a more simplified dual ideal diode mode, where it just prevents reverse 

currents. Low-dropout Schottky diodes (DB2430700L from Panasonic) have been implemented 

in parallel with the driven MOSFETs. These are for the sake of redundancy, should the control 

electronics malfunction. Figure 17 illustrates the developed system and Figure 18 compares the 

losses in the Schottky diode operating mode and the ideal diode operating mode. 

 

FIGURE 17. VOLTAGE CONVERSION OUTPUT STAGE 



 

FIGURE 18. CALCULATED LOSSES COMPARISON BETWEEN SCHOTTKY AND IDEAL DIODE BASED CIRCUITS 

(BASED ON MEASUREMENT DATA) 

The previous EPS design envisioned that regulated voltages would be distributed to all of the 

systems at much higher currents. With the load sharing functionality it would have been 

possible to subject the converters to lower loads and even increase upon efficiency under certain 

conditions. The current plan for the EPS foresees that the device would rather operate in the 

basic dual ideal-diode mode and lower the ORing losses substantially. As the load-sharing 

requirement is not present any more, it might be reasonable to swap the dual channel controller 

for two simpler single channel controllers. As this is a quite recent idea, it is not covered in this 

thesis. 

6.6.  POWER DISTRIBUTION CIRCUITRY  
The power distribution circuitry has the task of protecting the consumers from excessive current 

draw and the (un)regulated voltage rails from short circuits caused by the consumers. The point 

is to isolate the faulty system from the others, so it would not affect the power availability for 

the rest of the satellite. The EPS will distribute power to system level consumers (other 

subsystems and payloads) within the satellite – the component level power distribution will be 

handled by the consumers themselves. As covered earlier, the regulated voltage rail will be 



distributed only within the integrated bus, while the unregulated battery bus will be also shared 

with the payloads. As there are two different voltage rails that will be distributed (fixed 3.3 V 

and floating 6.6–8.4 V), they can be viewed separately. 

For the 3.3 V rail it is possible to use lower voltage load switches, such as TPS2553 (Texas 

Instruments) and TPS2557 (Texas Instruments). The former is an improved version of the 

TPS2551 (Texas Instruments) which was successfully used on-board ESTCube-1. The latter 

has direct flight heritage from ESTCube-1 where it was operated 24/7 in the battery protection 

circuit [18]. These devices should easily fulfil the needs of the systems on the 3.3 V rail. 

External current sensing is required in addition to the load switch and depending on the 

accuracy required, can be implemented with either LTC6102 or LTC6105 (flight heritage from 

ESTCube-1). 

The power distribution for the battery bus will use the same solutions discussed in the chapter 

6.2. FPF2700 could be used for the systems with lower current requirements. Beyond 1.5 A, 

the ADM1170 based solution should be used to minimize the losses and voltage drop. The 

previously mentioned current sensing approach would also be adequate for this system.  



7. SUMMARY 

In this thesis, the design for the electrical power system of the ESTCube-2 nanosatellite was 

proposed. The effort was mainly focused on the development of the battery management and 

protection system, along with the voltage conversion and power distribution system. Special 

hardware and software solutions that enabled repeatable and rapid testing were developed by 

the author or under the supervision of the author. 

Most important results of this thesis are: 

 A flight-proven EPS architecture was adapted for the new integrated bus based system 

 A set of requirements was compiled for the battery management and protection system, 

and the voltage conversion and power distribution system 

 Out of the two battery management schemes considered, the LTC4226 based system 

was recommended for the final implementation 

 For the voltage conversion and power distribution system, multiple load switch designs 

were evaluated and recommendations were made when and where to use which devices 

 Out of six voltage converters originally considered, LTC3603 was chosen due to its high 

efficiency, excellent transient response, low output ripple and low EMI emissions in the 

frequency region of interest 

Although two major sections of the EPS were investigated in this work, the system is still far 

from complete. In the next phase of development, the systems discussed in this work will have 

to be integrated onto a single circuit board along with the microcontroller and its peripherals. 

This platform would be a prerequisite for software development and the integration testing 

campaign involving other systems. Additionally, the energy harvesting system, which was not 

covered in this thesis, is still awaiting testing and may need additional development before it 

could be tested with the previously mentioned systems.  



Süsteemi arhitektuur ning komponentide valimine ESTCube-2 toitealamsüsteemi jaoks 

Erik Ilbis 

8. KOKKUVÕTE 

Käesolevas töös esitati süsteemikavand ESTCube-2 nanosatellidi toitealamsüsteemi jaoks. Töö 

põhirõhk on suunatud akuhaldussüsteemi ning pingemuundamis- ja energiajaotussüsteemi 

uurimisele, kavandamisele ning testimisele. Töös kasutatud spetsiaalsed riistvara- ning 

tarkvaralahendused töötati välja autori poolt või autori juhendamisel. 

Töö kõige olulisemad tulemused on: 

 kosmoses töötamise pärandiga toitealamsüsteemi arhitektuur kohandati edukalt uue 

integreeritud baassüsteemi jaoks; 

 koostati nõuete kogum akuhaldussüsteemi ning pingemuundamis- ja 

energiajaotussüsteemi jaoks; 

 kahest kaalutud variandist valiti välja LTC4226-l baseeruv akuhaldussüsteem, kuna 

sellel on vastuvõetavad kaod ning väga madal valmisolekuvool; 

 energiajaotussüsteemi jaoks kaaluti mitut erinevat võimsuslülituse lahendust ning leiti 

sobilikud lahendused erinevate kasutusolukordade jaoks; 

 kuuest testitud pingemuundurist soovitab autor kasutada pingemuundurit LTC3603, 

kuna kõnealusel seadmel on kõrge efektiivsus, madal väljundpinge säbarlainetus ning 

see kiirgab vähe elektromagnetilist energiat huvipakkuvas sagedusvahemikus. 

Hoolimata sellest, et selle töö raames uuriti kahte põhilist toitealamsüsteemi osa, on süsteem 

veel kaugel lõplikust kujust. Järgmises arenduse faasis tuleb käesolevad süsteemid integreerida 

ühele trükkplaadile koos mikrokontrolleril baseeruva juhtimissüsteemiga. Eelmainitud süsteem 

on eelduseks edasisele tööle, mis hõlmab endas nii tarkvaraarendust kui ka integratsiooniteste 

teiste alamsüsteemidega. Lisaks on veel vaja testida energiakogumiseks mõeldud süsteemi, mis 

võib vajada täiendavaid muudatusi enne, kui seda saab katsetada koos ülejäänud süsteemiga.  
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APPENDIX – ADDITIONAL MEASUREMENT RESULTS 

 

FIGURE 19. VOLTAGE CONVERSION EFFICIENCY FOR LT8614 AT THREE INPUT VOLTAGES 

 

FIGURE 20. VOLTAGE CONVERSION EFFICIENCY FOR LTC3601 AT THREE INPUT VOLTAGES 
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FIGURE 21. VOLTAGE CONVERSION EFFICIENCY FOR LTC3603 AT THREE INPUT VOLTAGES 

 

FIGURE 22. VOLTAGE CONVERSION EFFICIENCY FOR LTC3624 AT THREE INPUT VOLTAGES 
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FIGURE 23. VOLTAGE CONVERSION EFFICIENCY FOR TPS51117 AT THREE INPUT VOLTAGES 

 

FIGURE 24. VOLTAGE CONVERSION EFFICIENCY FOR TPS62110 AT THREE INPUT VOLTAGES 
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FIGURE 25. LT8614 PEAK-TO-PEAK RIPPLE MEASUREMENTS 

 

FIGURE 26. LTC3601 PEAK-TO-PEAK RIPPLE MEASUREMENTS 
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FIGURE 27. LTC3603 PEAK-TO-PEAK RIPPLE MEASUREMENTS 

 

FIGURE 28. LTC3624 PEAK-TO-PEAK RIPPLE MEASUREMENTS 
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FIGURE 29. TPS51117 PEAK-TO-PEAK RIPPLE MEASUREMENTS 

 

FIGURE 30. TPS62110 PEAK-TO-PEAK RIPPLE MEASUREMENTS 
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FIGURE 31. LT8614 RMS RIPPLE MEASUREMENTS 

 

FIGURE 32. LTC3601 RMS RIPPLE MEASUREMENTS 
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FIGURE 33. LTC3603 RMS RIPPLE MEASUREMENTS 

 

FIGURE 34. LTC3624 RMS RIPPLE MEASUREMENTS 
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FIGURE 35. TPS51117 RMS RIPPLE MEASUREMENTS 

 

FIGURE 36. TPS62110 RMS RIPPLE MEASUREMENTS 
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FIGURE 37. LT8614 NEAR-FIELD EMI RESULTS (YELLOW 0.1 A, GREEN 0.5 A, ORANGE 1.5 A) 

 

FIGURE 38. LTC3601 NEAR-FIELD EMI RESULTS (YELLOW 0.1 A, GREEN 0.5 A, ORANGE 1.5 A) 
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FIGURE 39. LTC3603 NEAR-FIELD EMI RESULTS (YELLOW 0.1 A, GREEN 0.5 A, ORANGE 1.5 A) 

 

FIGURE 40. LTC3624 NEAR-FIELD EMI RESULTS (YELLOW 0.1 A, GREEN 0.5 A, ORANGE 1.5 A) 
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FIGURE 41. TPS51117 NEAR-FIELD EMI RESULTS (YELLOW 0.1 A, GREEN 0.5 A, ORANGE 1.5 A) 

 

FIGURE 42. TPS62110 NEAR-FIELD EMI RESULTS (YELLOW 0.1 A, GREEN 0.5 A, ORANGE 1.5 A)
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TABLE 10. BATTERY MANAGEMENT SYSTEM CHARGE VOLTAGE DROP MEASUREMENT RESULTS 

Load 

current 

(A) 

Unidirectional (mV) Bidirectional (mV) 

LTC4226 LTC4228 LTC4226 LTC4228 

8.4 V 7.4 V 6.6 V 8.4 V 7.4 V 6.6 V 8.4 V 7.4 V 6.6 V 8.4 V 7.4 V 6.6 V 

0.1 175 172 171 23.7 23.7 23.7 4.5 4.3 4.5 23.7 23.7 23.7 

0.25 206 203 203 23.8 23.8 23.8 11.5 11.5 11.2 23.7 23.8 23.8 

0.5 234 232 232 23.8 23.8 23.8 23 23 23.1 23.8 23.9 23.9 

0.75 256 253 253 29.4 29.3 29.4 34.7 34.8 34.7 29.4 29.4 29.4 

1 267 270 270 39.2 39.2 39.2 46.3 46.3 46.3 39.2 39.2 39.2 

1.25 285 285 285 49.1 48.9 49.2 58 58 58 49.2 49.1 49.1 

1.45 298 297 297 57.1 57.1 57.1 67.3 67.3 67.2 57.1 57.1 57.1 
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TABLE 11. BATTERY MANAGEMENT SYSTEM DISCHARGE VOLTAGE DROP MEASUREMENT RESULTS 

Load 

current 

(A) 

Unidirectional (mV) Bidirectional (mV) 

LTC4226 LTC4228 LTC4226 LTC4228 

8.4 V 7.4 V 6.6 V 8.4 V 7.4 V 6.6 V 8.4 V 7.4 V 6.6 V 8.4 V 7.4 V 6.6 V 

0.1 
177 174 173 28.8 28.6 28.6 4.6 4.6 4.6 28.8 28.8 28.8 

0.25 207 204 203 28.8 28.6 28.7 11.5 11.5 11.5 28.8 28.8 28.8 

0.5 235 232 230 28.8 28.7 28.7 23.1 23.1 23 28.8 28.8 28.8 

0.75 255 253 252 28.8 28.7 28.7 34.8 34.8 34.8 28.8 28.8 28.8 

1 272 270 270 28.8 28.7 28.7 46.4 46.4 46.4 28.8 28.8 28.9 

2 330 330 328 28.9 28.8 28.8 93.1 93 93 28.9 28.9 28.9 

3 380 380 378 41.4 41.5 41.6 140 139 139 41.5 41.3 41.1 

4 427 426 426 55.4 55.9 55.8 187 187 186 55.4 55.3 55.1 

5 475 470 470 70.1 70.3 70.4 234 234 233 70.2 69.6 69.3 

6 0 0 0 85.2 85.1 85.3 277 277 277 85.1 85 84.2 
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