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ABSTRACT

Proteins are one of the most important molecules of an organism. Their struc-
ture is coded in the DNA. By investigating the abundance of different proteins,
it is possible to get information about the current state of the organism. Modern
technologies allow to collect a large amount of data related to proteins in a short
period of time. Analyzing high-throughput data needs different technical skills
and has created a new field of science—bioinformatics.

The aim of the dissertation is to describe problems and solutions related to
statistical analysis of multivariate data. It is shown that this type of data can be
presented as a matrix. A pan-European consortium is described where data is
collected from many partners, and it is also important to gather metadata in a
structured way. Different studies are described where data analysis was needed.
Web tools with a graphical user interface were created to reduce the amount of
technical skills required for the analysis and make some types of analysis available
to the people who do not necessarily have experience with data analysis.

Both biological and statistical background are introduced. An overview is
given about different sources of multivariate data. Analysis methods are described
which are divided into exploratory methods that are useful to discover general pat-
terns, and confirmatory methods that aim to answer a particular research question.

It is shown how sources of data and analysis methods are used in practice.
A pan-European project PREDECT is described. An overview is given about
collecting metadata from multiple partners, and about web tools created for initial
data analysis. An analysis concerning a novel breast cancer model is described,
and a comparison of tissue slices in different cultivation conditions is made. A
freely available web tool is introduced which allows to perform exploratory data
analysis.

Next chapters describe data analysis in various projects. Multiple novel genes
were found in the human placenta that have an allele-specific expression. Molecu-
lar mechanisms of atopic dermatitis are examined, more specifically the influence
of the protein IFN-γ. MicroRNAs are found that can be used as markers for
endometriosis, and a classifier is built to differentiate people with endometriosis
from healthy people.
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INTRODUCTION

The amount of data collected is larger than ever before. Many services have be-
come electronic, needing well-structured databases to be established. The cost of
gathering data from some biological experiments has even decreased faster than
the cost of storing the data, driving the need for faster algorithms and better stor-
age solutions. These trends, colloquially called information revolution, have also
created the need for people who can analyze large amounts of data.

In this thesis, we describe the analysis of data originating from molecular bi-
ology, called bioinformatics. Most of these data sources can be converted into
the multivariate form, presentable as a numeric table. We give basic knowledge
about essential biological and statistical concepts and an overview of the data
sources, ranging from different platforms for measuring gene expression to de-
tecting genome variants and measuring protein expression. We introduce differ-
ent analysis methods, covering both exploratory analysis methods that are used
without a clear hypothesis in mind, and confirmatory analysis methods that give a
score to each specific hypothesis.

In the following chapters, we give an overview of the articles included in
the thesis. Three papers are covering PREDECT project about developing novel
biological models for three frequent human cancers. The first article proposes a
novel model for breast cancer, and the second article compares different tissue
slice models. The third article describes a web tool for visualizing user-uploaded
data using principal component analysis and heatmap.

Three remaining papers describe three topics regarding applied data analysis.
First of them searches for novel imprinted genes, the second one describes molec-
ular mechanisms of a disease called atopic dermatitis, and the last article describes
how microRNA expression can be used to diagnose endometriosis.

The thesis has multiple goals.

• Describe data sources and analysis methods in bioinformatics. It is shown
that any data source under consideration can be converted to a numeric
matrix;

• Show concrete cases how these methods were applied to real datasets;
• Describe web tools that were developed for analyzing the data.
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CHAPTER 1

PRELIMINARIES

1.1 Biological background

Hereditary information of living organisms is stored in the genome that consists
of a long double-stranded molecule called deoxyribonucleic acid (DNA). Human
DNA consists of 46 chromosomes. There are 22 different types of autosomes, all
of them present as two copies and marked with sequential numbers 1, 2, . . . , 22.
Two remaining chromosomes are called allosomes (or sex chromosomes) and are
marked with X and Y. Males have one X and Y chromosome whereas females
have two X chromosomes. Both mother and father give one chromosome from
each pair to the offspring.

DNA RNA protein 

replication 

transcription translation 

Figure 1.1: The main principles of transmitting hereditary information.

Information is coded in the DNA by four nucleic acids: adenine (A), cytosine
(C), guanine (G) and thymine (T). The two strands are complementary: A is al-
ways paired with T and C with G. Therefore, only one strand of each chromosome
is sufficient to determine the genome. The other strand can be synthesized using
complementarity. This principle is the basis for the process called DNA replica-
tion where two identical copies of the initial DNA are created (see Figure 1.1). It
starts with unwinding the strands and then synthesizing complementary sequence
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for both strands.
A portion of the genome has known to have a highly important biological

meaning. Gene is a region (or locus) of the genome that codes a functional bio-
logical object. Different variants of the same gene or part of the gene are called
alleles. Gene products are produced during a synthesis process called gene ex-
pression. During transcription, the information from DNA is transferred into
messenger ribonucleic acid (mRNA, see Figure 1.1).

The initial RNA (pre-mRNA) contains both coding regions–exons–and non-
coding regions–introns. During RNA splicing, introns are cut out and mature
mRNA is formed. Transcription is often followed by translation where mature
mRNA is used for coding a protein. During translation, each nucleotide triplet
encodes one amino acid—a building block for the protein.

Proteins are the most important gene products. They perform many of the
functions within living organisms, including catalyzing chemical reactions, cell
signaling, forming a solid structure and other. Another type of gene product is
called a microRNA (miRNA, see Bartel (2004) for a review). These are small
RNA molecules that act as post-transcriptional regulators of gene expression and
are not translated into protein.

Genes are often categorized into groups based on function or general behav-
ior. For example, a genetic pathway (or gene regulatory network) is a set of genes
that regulate each other and other substances, dictating a specific gene expression
pattern. Another way to classify genes is based on the origin of the expression.
Usually, autosomal genes are expressed randomly from one or the other chromo-
some. A small number of genes express only from one of the alleles; this process
is called allele-specific expression (ASE). A special type of this process where the
expression is specific to the parent of origin is called genomic imprinting. The
genes that behave according to this process are called imprinted genes.

To draw conclusions about biological experiments, measurements have to be
performed. First, to know the exact structure of a DNA or an RNA, each nu-
cleotide can be read and saved into computer memory using the process called
sequencing. For few decades, Sanger sequencing was the main method to read
DNA sequence (Sanger et al., 1977; Metzker, 2010). Recent development have
led to widespread use of next-generation sequencing (NGS, also called second-
generation sequencing) technologies that have dramatically reduced the cost. Se-
quencing machines have been created by different companies and using various
technical solutions. Compared to Sanger sequencing, all of them can process mul-
tiple samples in parallel with a fully automated workflow, resulting in a greatly
decreased sequencing time. Nowadays, sequencing-based methods are used in a
broad range of applications (Metzker, 2010).

Individuals from the same species have large amount of the genome in com-
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mon. Therefore, it is often reasonable to only measure the nucleotides that are
known to differ the most among individuals—single nucleotide polymorphisms
(SNPs). Usually, at each SNP position, two alleles can appear, identified by A
and B. If the pair of nucleotides in one position, called genotype, is AA or BB,
the SNP is called homozygous. In case AB or BA happens in a particular position,
it is called heterozygous.

Besides genetic information, it is also important to know the abundance of
gene products in the organism. The amount of proteins is often of great interest.
Although there are recently developed large-scale methods to measure it directly
(Vogel and Marcotte, 2012), there has long been a common practice to use mRNA
expression as a proxy for protein expression. Measuring mRNA abundance is
called gene expression profiling.

1.2 Statistical background

Data analysis often starts with exploratory analysis. The analyst takes a first look
at the data by calculating summaries and making some general visualizations of
the data. This step can discover problems with data quality and generate ideas for
further analysis. Visualizations are suitable to get the first overview, but in many
cases, it is quite subjective to draw final conclusions. For example, there can be
borderline cases where point clouds on the plot are nearly overlapping, and it is
hard to tell whether they are separate or not. In this case, a confirmatory analysis
method such as a statistical test can help to make an objective decision.

Statistical testing uses concepts from probability theory. Random variable
is a function that is defined on sample space (a set of all possible outcomes of
an experiment) and has undetermined output. Distribution of a random variable
describes the behavior of the output by assigning a probability to each possible
event (the measurable subset of the sample space). If random variable R has
distribution D, it is written as follows:

R „ D.

The probability of an event A is denoted with P pAq.
If sample space is finite or countable, the random variable is called discrete.

In this case, it can be described with probability mass function that assigns a
probability to each outcome. If sample space is uncountable, the random variable
is called continuous. A continuous variable can be described with a probabil-
ity density function and non-zero probability can only be assigned to (unions of)
intervals.

Statistical testing starts with formulating a pair of competing hypotheses. The
alternative hypothesis proposes a potential novel finding whereas null hypothesis
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Null hypothesis rejected Null hypothesis accepted

Null hypothesis invalid
Correct decision
True positive

Type II error
False negative

Null hypothesis valid
Type I error
False positive

Correct decision
True negative

Table 1.1: Possible outcomes of hypothesis testing.

states that there is no finding. The null hypothesis is often a simplified version of
the alternative hypothesis where one or more parameters are omitted (set equal to
zero). A test statistic is created, which is a formula that measures the deviation
from the null hypothesis, given a sample. The test statistic is often defined in such
a way that null distribution—the distribution of the test statistic if null hypothesis
holds—has some well-known form. If this is not possible, null distribution can
also be estimated from the data, for example by permuting sample labels.

Test statistic value is calculated from the data. We can then find how probable
it is to observe the test statistic value or more extreme value assuming null distri-
bution. This probability is called p-value. If extremality means both left and right
tail of the distribution, the p-value (and the test itself) is two-sided. Otherwise,
if only left or right tail is considered, the p-value is one-sided. If the p-value is
smaller than a particular constant called significance level, the null hypothesis is
rejected. The significance level is chosen before seeing the data; typical choices
include 0.05 or 0.01.

The test can result in one of four possible outcomes (see Table 1.1). If the null
hypothesis is valid and accepted or invalid and rejected, the decision is correct.
If the null hypothesis is invalid but accepted, the decision is called type II error.
The fourth possibility to reject valid null hypothesis is called type I error. When
a single test is made, the significance level is equal to the probability of making
type I error. Thus, statistical testing methodology sets the upper limit only to type
I error, because this error suggests a potential new finding whereas there is no
actual signal. This limitation should be kept in mind in the applications where
type II error is also important.

In bioinformatics, hundreds or thousands of tests are made in parallel. Let
us assume that we have a dataset where there is no real signal, and we use 5%
significance level. Approximately 5% of the tests would end up rejecting the null
hypothesis and, therefore, get a false positive result. It is important to take the
number of tests we make into account. This operation is called multiple testing
correction.

There are different ways to correct for multiple testing. A popular choice is
called false discovery rate (FDR) which converts the p-values into corrected p-
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values called q-values. The expected proportion of false positive findings among
all positive findings (with the q-value less than the significance level) is not more
than the significance level.

Besides statistical testing, there are other types of useful confirmatory data
analysis methods. For example, one can build regression models for predicting a
continuous outcome, or classification models (classifiers) for predicting a discrete
outcome. These methods are called supervised learning methods because both
input and output are given to the algorithm. Unsupervised learning methods are
another type of methods that do not use the output for learning. These methods
are useful for generating new hypotheses.

When building complex models, it should be made sure that the model does
not overfit. This situation happens when the model has too many parameters and
works well on the data where it is trained, but does not generalize well to the
unseen data (gives poor performance). To avoid overfitting, a common strategy is
to split the data into independent training and validation set. The first set is used
for building multiple models and the second one for evaluating the performance
and choosing the best model. For smaller datasets, the data can be re-used by
doing multiple randomized splits into training and validation set and reporting the
average performance. This method is called cross-validation.

15



CHAPTER 2

SOURCES OF MULTIVARIATE DATA

Multivariate data appears in our everyday life, although we might not directly
notice it. Big companies are constantly collecting and storing lots of information
needed for their business. This data can be stored in different forms. In this thesis,
multivariate data means a dataset that can be presented as a numeric table with
features (attributes) measured on multiple objects (e.g. individuals).

Height (cm)
Alice 165

Height (cm) Weight (kg) Foot length (cm) Arm span (cm)
Alice 165 67 25 167

Height (cm) Weight (kg) Foot length (cm) Arm span (cm)
Alice 165 67 25 167
Bob 182 82 29 185

Charlie 185 87 31 190
Dave 178 95 27 179
Erin 162 61 24 165
Frank 181 97 31 183

Figure 2.1: Collecting multivariate data by performing single measurements in a struc-
tured way.
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A convenient way to think about collecting multivariate data is to make mul-
tiple single measurements. For example, let us say we want to compare persons
with each other based on the size of their body. First, we can measure the height
of Alice and thus get one object with one feature (see Figure 2.1). If we now
make some more measurements, e.g. measure weight, foot length, and arm span,
we get multivariate data, but only about one object. By repeating this procedure
for multiple individuals, we get a multivariate dataset (see Figure 2.1).

Conventionally, features are listed in columns and objects in rows. This way,
when measuring new objects, we need to add new rows rather than columns. For
practical reasons, especially when there are many more features than objects, it
may be more convenient to present the data in a transposed form—it depends on
the situation. One such example in bioinformatics where objects can be presented
in columns and features in rows is measuring the expression of every gene in a
small number of samples.

Both features and objects can be divided into groups based on some proper-
ties. For example, we can divide male and female individuals into two groups, or
separate length measurements from weight measurements.

Collecting the data and transforming it into a suitable format can be quite chal-
lenging. In the next section, we will describe different ways to collect multivariate
data from biological experiments.

2.1 Gene expression microarray

Measuring gene expression (mRNA abundance) is in practice easier than measur-
ing protein levels. Since mRNA is used to create protein, gene expression is often
used as a proxy for protein activity, although the correspondence is not perfect
(de Sousa Abreu et al., 2009; Vogel et al., 2010). A platform called gene expres-
sion microarray allows to measure tens of thousands of genes simultaneously.
Although this method was invented in the last decade and is nowadays often re-
placed by sequencing-based methods, it is still relatively popular because of its
lower cost (Mantione et al., 2014).

The main working principles of microarrays have been described by Heller
(2002) as follows. From each gene, some probes (short oligonucleotides) are
taken and attached to a slide in multiple copies. The sample of interest is marked
with a color, converted to complementary DNA (cDNA) and put on the slide so that
it can hybridize with the probes. After washing, only pairs with full complemen-
tarity will stay attached. The intensity of the color is measured using a scanner
and converted into numeric scale so that it will represent relative abundance of
each probe in the sample.

These numeric values have to be normalized to take potential variability in the
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background intensity into account. Often, probe level values are converted into
probeset or gene values. From data analysis perspective, it should be kept in mind
that microarray only measures the relative abundance of the mRNA. Comparing
absolute values of samples from different microarray platforms is complicated if
not impossible (Kawasaki, 2006).

2.2 Tissue microarray

Proteins are common targets of interest in molecular biology because of their
importance in molecular machinery. A popular method for detecting proteins in
a sample is called immunohistochemistry (IHC). A carefully chosen antibody—a
special type of immune system protein—binds to a protein of interest and labels
it with some color (Dabbs, 2013). Taking an image of the processed sample will
show the places with lower and higher abundance of this protein (see Figure 2.2).

Figure 2.2: An example of antibody staining. Darker coloring shows the places with more
abundance of the protein (Veta et al., 2014, Figure 1b, © 2014 IEEE).

Using this method on single samples is very time-consuming. Therefore a
high-throughput technology called tissue microarray (TMA) has been developed
(Kononen et al., 1998; Kallioniemi et al., 2001; Jawhar, 2009). Small cylindrical
pieces of tissue are cut out and arranged to form a regular array called TMA block.

18



Figure 2.3: An example of a tissue microarray slide. Human thumb gives an intu-
ition about the size of the tissue spots (Wikipedia, https://en.wikipedia.org/
wiki/Tissue_microarray, January 12, 2016).

Multiple TMA slides can be constructed by cutting thin slices from the block (see
Figure 2.3). Hundreds of samples can be placed on a single slide and analyzed in
one run.

To convert an image of a stained TMA slide into a numeric matrix, some
features of interest should be extracted (see Gurcan et al. (2009) for a review).
Two popular features are as follows (see Figure 2.4).

• Percentage of positive cells—how many percent of all cells have staining
intensity above a specified threshold;

• Staining intensity—the average staining intensity among all cells with the
intensity above a threshold.

These two measures are complementary to each other. First of them characterizes
the level of intensity globally, whereas the other measures the average intensity
inside each cell.

The scores can be manually estimated by a professional pathologist or using
some image analysis algorithm. The latter variant is often preferable to get the
results faster and avoid human bias.

Repeating the same procedure with multiple proteins results in a full data ma-
trix. Though, adding new proteins is not always straightforward. Some antibodies
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Figure 2.4: Illustration of the variation in percentage of positive cells (first row) and
staining intensity (second row). If there are no positive cells, the intensity is not defined.

can nonintentionally interact with multiple proteins, causing unexpected results.
Therefore, antibodies have to be carefully tested for cross-reactivity before using
them in the study.

2.3 SNP array

Single nucleotide polymorphisms (SNPs) can also be detected using microarray
technology (see LaFramboise (2009) for a review). It assumes that for all SNPs,
possible alleles are known. This is often accomplished by sequencing a panel of
individuals and finding more frequent changes before constructing the microarray.
Usually, each SNP position has two possible alleles, identified by A and B.

SNP arrays are produced by different companies, but their technologies share
the general principles. Probes complementary to genomic regions of interest are
constructed by attaching both possible alleles separately to its flanking region.
Samples are fragmented, labeled and hybridized with the array probes. Label
brightness of A and B probes is converted into a numeric scale and perfectly
matching fragments should have brighter labels. Each SNP from each sample
can be assigned to a genotype call (AA, AB or BB) or no call (NC) if the signal is
not strong enough.

2.4 RNA sequencing

RNA sequencing (RNA-seq) is a state-of-the-art method for large-scale gene ex-
pression profiling (see Wang et al. (2009) for a review). Instead of construct-
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ing probes for detecting different sequences, mRNA is sequenced directly. This
causes higher cost but allows much more precise measurement. RNA-seq also
allows to conduct studies that were not possible using microarrays, for example
predicting new genes or measuring allele-specific expression. One dataset can be
re-used and converted to a different kind of numeric matrix by extracting other
types of features. RNA-seq needs much more computational resources, and anal-
ysis methods are not yet so well matured compared to microarrays. Despite that,
it seems probable that RNA-seq will replace microarrays in the future (Mantione
et al., 2014).

Figure 2.5: Principles of RNA-seq (Wikipedia, https://en.wikipedia.org/
wiki/RNA-Seq, January 12, 2016).

The output of an RNA-seq experiment consists of short nucleotide sequences
called reads. For almost any type of analysis, these reads should be mapped (or
aligned) to the genome to get genomic coordinates and make sense of the data (see
Figure 2.5). Many different mapping programs have been developed (Grant et al.,
2011). Some analysis pipelines need mapping to multiple genomes. For exam-
ple, when studying allele-specific expression, mapping to only reference genome
would favor the reference allele and can produce artificial bias (Stevenson et al.,
2013).

After mapping the reads to the genome, most types of analysis use additional
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information such as gene coordinates to group the data according to known func-
tional units. Various algorithms have been developed to count the reads and find
differentially expressed genes (Rapaport et al., 2013). If studying allele-specific
expression, reads can be counted for both alleles of each SNP. In any case, raw
RNA-seq reads will be converted to a numeric matrix for further analysis.

2.5 Reverse transcription quantitative PCR

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an-
other method for measuring RNA abundance in the cell (Mullis et al., 1986; Ku-
bista et al., 2006). It is a low-throughput method, measuring from few up to
hundreds of genes. Since the technology is relatively robust, it is often consid-
ered a "gold standard" for measuring RNA expression and used to validate results
from high-throughput experiments. It can be used to measure different types of
RNAs, including mRNA and miRNA. The method relies on working principles of
polymerase chain reaction (PCR).

Time

Te
m
p
e
ra
tu
re

Denaturation at 94 − 96 °C

Annealing at ~68 °C

Elongation at ~72 °C

Figure 2.6: Principles of PCR (Wikipedia, https://en.wikipedia.org/wiki/
Polymerase_chain_reaction, adapted, January 12, 2016).

PCR is a technology for amplifying fragments of DNA (Kubista et al., 2006).
It is performed in a cyclic way by changing the temperature (see Figure 2.6).
First, double-stranded DNA is denaturated (separated into single strands) by ap-
plying high temperature. Then, the temperature is lowered to allow primers (short
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nucleotide sequences) to anneal (attach) to each of the sequences. Finally, the
temperature is raised a bit to make optimal conditions for DNA polymerase—a
DNA building enzyme. Polymerase attaches to the primer and starts building the
second strand based on complementarity. When it is completed, we have two
identical copies of the initial fragment of double stranded DNA. By repeating all
the steps multiple times in a row, the number of identical DNA fragments grows
exponentially, causing a chain reaction.

To use RNA as the input in this process, it should first be converted into com-
plementary DNA (cDNA). This is performed using reverse transcription, lead by
an enzyme called reverse transcriptase. To quantify the abundance, the input
DNA should be labeled. Different techniques of fluorescent labeling can be used
for this purpose (Kubista et al., 2006; Wong and Medrano, 2005). Specific dyes
or probes are introduced into the reaction that emit fluorescence when attached
to target DNA sequence. Signal and background DNA are labeled differently,
and one can approximate the abundance of RNA by the difference between the
intensities of the fluorescent dyes.

It may seem enough to measure the label intensity on one specific point in
time. However, this can lead to serious bias since the process saturates at some
point. The saturation happens due to exhaustion of some essential component
needed for the reaction, for example, primers or nucleotide triphosphates that are
used by the polymerase to build the strands (Kubista et al., 2006). Thus, the rela-
tionship between cycle number and time is not linear. To overcome this problem,
quantitative PCR (which is also called real-time PCR) measures the intensity on
each step of the cycle. A threshold is set, and the number of cycles needed to
reach this threshold is found for both signal and background curves, denoted by
CT. The relative expression can be obtained using the difference between CTs.

2.6 Summary

In this chapter, we have covered sources of multivariate data used in the thesis.
Tissue microarray is the platform for measuring protein expression in PREDECT
project (see Chapter 4). Multiple technologies for measuring gene expression
were described. Each of them has its advantages (see Table 2.1). RT-qPCR is con-
sidered a gold standard for measuring gene expression, but it is a low-throughput
method for up to hundreds of genes. Both gene expression microarray and RNA-
seq are high-throughput methods. RNA-seq has many more applications besides
simple gene expression analysis, but it is still more expensive than gene expres-
sion microarray.

Besides expression, we also described a platform for measuring genome vari-
ation (SNPs). As described before, SNP array internally produces a continuous
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Number of genes Cost per gene Reproducibility
RT-qPCR „200 eee good
Microarray „20000 e average
RNA-seq 8 ee average

Table 2.1: Comparison of platforms for measuring gene expression.

scale of brightness, but in the further analysis, genotype calls are used. In this
thesis, we use results from the SNP array to categorize SNPs into groups based on
zygosity (whether an individual is homozygous or heterozygous). This informa-
tion is used for finding allele-specific expression (see Chapter 5).
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CHAPTER 3

ANALYSIS METHODS

All methods described in this thesis are applied to multivariate data (see Chap-
ter 2). In general, there are two popular types of approaches how to analyze this
kind of data.

• Apply a multivariate analysis method and report the results.

• Split the data, then apply some univariate analysis method on each piece
and show all results or top ones in an ordered list.

Whether to choose one or the other strategy or a hybrid thereof depends very much
on the situation.

A convenient way to present multivariate data is a table form called a matrix.
Throughout this chapter, we denote the numeric dataset by a matrix X : n ˆ p
where rows represent n objects (e.g. samples), and columns represent p features
(e.g. genes):

X “

¨

˚

˚

˚

˝

x1,1 x1,2 ¨ ¨ ¨ x1,p
x2,1 x2,2 ¨ ¨ ¨ x2,p

...
...

. . .
...

xn,1 xn,2 ¨ ¨ ¨ xn,p

˛

‹

‹

‹

‚

. (3.1)

In many cases, it is also important to take sample grouping (annotations) into
account. We denote this by a vector y:

y “

¨

˚

˚

˝

y1
y2
¨ ¨ ¨

yn

˛

‹

‹

‚

. (3.2)

For convenience, we use condition on grouping to subset the data matrix. For
example, Xy“”normal” means all rows from X with sample group "normal" and
Xy“”normal”,1 means applying this condition to the first column.
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3.1 Exploratory analysis methods

3.1.1 Principal component analysis

Principal component analysis (PCA) is a multivariate analysis method to reduce
the dimensionality of the data (Pearson, 1901; James et al., 2014, p. 374–385).
Geometrically, a p-dimensional point cloud is rotated until the largest variance is
found. The projection of the data in this direction is called the first principal com-
ponent. Next, the point cloud is rotated again to find the second largest variance,
but keeping the orientation of the first component fixed. The projection on the
axis with the second largest variance is called the second principal component.
This process is repeated for all components so that the next component is found
under the following conditions.

• The directions of all previous components are fixed;

• The new direction is perpendicular to all previous directions.

We can now reduce the dimensionality by removing some number of the last
components which only explain a small amount of the variability. Since the shape
is retained after finding the components, first few components can also be used
to approximate the distances between objects. By plotting two first components
on the scatterplot, we get the most informative two-dimensional view of the data,
explaining as much variance as possible. On the other hand, there are situations
where first components show uninformative variation such as batch effect (Leek
et al., 2010). In such cases, it makes sense to look at further components that can
explain more informative sources of variability.

Results of the PCA depend on the scale of the input variables. If one of the
variables has much higher variance than all others, the direction of the first com-
ponent will almost overlap with the axis of this variable. To avoid this problem,
all variables can be standardized (mean subtracted and divided by standard devia-
tion) before applying PCA. This procedure is equivalent to using correlation ma-
trix instead of covariance matrix as input for PCA if a method called eigenvalue
decomposition is used for finding the components. We prove it by the following
lemma.

Lemma. Correlation between two variables is equal to the covariance between
respective standardized variables (mean subtracted and divided by standard de-
viation).

Proof. Let EX and V X denote expected value and variance of the random vari-
able X , respectively. Let A1 and A2 be random variables and B1 and B2 respec-
tive standardized variables:

Bi “
Ai ´ EAi
?
V Ai

, i “ 1, 2.
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Using definition of correlation and covariance, we get

corrpA1, A2q “
covpA1, A2q
?
V A1V A2

“
ErpA1 ´ EA1qpA2 ´ EA2qs

?
V A1V A2

“ E

„

A1 ´ EA1
?
V A1

¨
A2 ´ EA2
?
V A2



“ EpB1 ¨B2q

“ ErpB1 ´ EB1qpB2 ´ EB2qs

“ covpB1, B2q

since EB1 “ EB2 “ 0.

Computationally, a more efficient way for finding the components is using a
matrix factorization called singular value decomposition (SVD) (Jolliffe, 2002,
p. 44–46). The following matrix operations are used:

• Multiplication of matrices A : r ˆ s and B : s ˆ t is defined as a r ˆ t
matrix calculated using the formula

AB :“

¨

˚

˝

řs
k“1 a1,kbk,1 ¨ ¨ ¨

řs
k“1 a1,kbk,t

...
. . .

...
řs
k“1 ar,kbk,1 ¨ ¨ ¨

řs
k“1 ar,kbk,t

˛

‹

‚

(3.3)

where aij and bij are the elements of row i and column j from matrices A
and B, respectively;

• The transpose of a matrixA (created by reflectingA over its main diagonal)
is denoted by AT .

SVD divides the data matrix into three matrices:

X “ ULAT (3.4)

where

• U : n ˆ r and A : p ˆ r are matrices with orthonormal columns (perpen-
dicular to each other and having unit length);

• L : rˆ r is a diagonal matrix where the diagonal elements are square roots
of the eigenvalues of XTX , in descending order.
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The eigenvalues of XTX are the values λ that satisfy the equation

XTXv “ λv (3.5)

for a non-zero vector v. These eigenvalues define the contribution of each princi-
pal component—the amount of variability explained.

3.1.2 Clustering

Multivariate data often has some objects or features that are highly similar to each
other. Grouping them together will make the data more understandable and easier
to interpret. This result can be achieved using clustering (or cluster analysis) that
aims to form clusters (or groups) with high similarity using unsupervised learning
approach.

Many clustering methods have been developed, for reviews see Aggarwal and
Reddy (2013); Thalamuthu et al. (2006). In this thesis, we consider two most
popular methods.

k-means clustering

A popular clustering method where the number of clusters is given as a parameter
is called k-means (Lloyd, 1982; James et al., 2014, p. 386–390). Assuming that all
observations belong to a cluster, cluster centers are calculated. Each observation
is then re-assigned to the cluster with the closest center. This process is repeated
until the cluster centers do not change anymore.

There are multiple ways for initialization; random selection is often involved
(Celebi et al., 2013). Random initial choice can lead to poor quality clusters.
Therefore, it is often recommended to run k-means repeatedly with different initial
configuration and report the result with the best quality clusters according to some
information criterion.

It is not guaranteed that the algorithm gives optimal division. It can converge
to a local optimum that is not necessarily optimal globally. In practice, though,
k-means has shown to give acceptable results and run in a reasonable amount of
time (Aggarwal and Reddy, 2013).

Choosing an appropriate number of clusters is usually not trivial. Several
strategies have been proposed (Yan, 2005; Kodinariya and Makwana, 2013). There
are also extensions of the algorithm proposed which run k-means iteratively to find
the optimal number of clusters (Likas et al., 2003; Pelleg and Moore, 2000; Ray
and Turi, 1999).
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Hierarchical clustering

Hierarchical clustering is a clustering method where a dendrogram (tree-like
structure) is generated with original objects as leaves (Sneath, 1957; Ward Jr,
1963; James et al., 2014, p. 390–399). It can be built bottom-up (agglomerative)
or top-down (divisive). We consider the first type.

First, all pairwise distances are calculated. Two objects with the smallest dis-
tance are merged, and distance from this pair to all other objects is re-calculated.
This step is repeated until all objects belong to one large cluster.

Two important parameters determine the behavior of hierarchical clustering.
We need to decide how to calculate the distance between clusters and which
linkage method to use. We denote indicator function (resulting in 1 if the con-
dition is met and 0 otherwise) by Ip¨q, arbitrary vectors of length n by a “
pa1, a2, . . . , anq

T and b “ pb1, b2, . . . , bnq
T . Distance between these vectors is

denoted by dpa, bq.
Some examples of the distance measures are as follows.

• correlation distance—Pearson correlation subtracted from 1.

dpa, bq “ 1´

řn
i“1pai ´ āqpbi ´ b̄q

a

řn
i“1pai ´ āq

2
b

řn
i“1pbi ´ b̄q

2
(3.6)

where

a :“
1

n

n
ÿ

i“1

ai,

b :“
1

n

n
ÿ

i“1

bi.

• Euclidean distance—the square root of the sum of square distances.

dpa, bq “

g

f

f

e

n
ÿ

i“1

pai ´ biq2 (3.7)

• maximum distance—the greatest absolute difference between coordinates.

dpa, bq “ max
i
|ai ´ bi| (3.8)

• Manhattan distance—the sum of the absolute differences.

dpa, bq “
n
ÿ

i“1

|ai ´ bi| (3.9)
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• Canberra distance—weighted Manhattan distance.

dpa, bq “
n
ÿ

i“1

|ai ´ bi|

|ai| ` |bi|
(3.10)

• binary distance (or Jaccard distance)—the number of a/b pairs that have
exactly one non-zero divided by the number of pairs that have at least one
non-zero.

dpa, bq “

řn
i“1 Ippai ‰ 0^ bi “ 0q _ pai “ 0^ bi ‰ 0qq

řn
i“1 Ipai ‰ 0_ bi ‰ 0q

(3.11)

This distance is more meaningful for binary vectors that can be interpreted
as sets. It is the ratio of the size of the symmetric difference to the union.

The linkage method defines how the distance between objects is generalized
into the distance between clusters. Popular linkage methods include the following.

• Single linkage—using two closest objects from two clusters to be merged.

• Complete linkage—using two farthest objects.

• Average linkage (or UPGMA—unweighted pair group method with averaging)—
the average distance of all possible pairs.

• McQuitty linkage (or WPGMA—weighted pair group method with averaging)—
the average distance between both clusters to be merged and the cluster of
interest.

• Median linkage (or WPGMC—weighted pair group method using centroids)—
the median distance of all possible pairs.

• Centroid linkage (or UPGMC—unweighted pair group method using centroids)—
the distance between cluster means.

• Ward linkage—using the sum of squared differences from points to cen-
troids as the distance.

The choice of both distance and linkage method heavily influence the result.
Euclidean and correlation distance are the most popular distance measures. Eu-
clidean distance measures the absolute deviance between vectors whereas corre-
lation compares the trends. The latter option may be more meaningful in gene
expression measurements since the changing pattern of the expression is usually
more informative than the absolute level.

The most often used linkage methods include complete and average linkage.
Compared to the single linkage method, they tend to produce a more balanced
clustering tree (James et al., 2014, p. 394–395).
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Heatmap

The heatmap is a color coded data matrix that allows to easily detect patterns and
outliers (Loua, 1873; Sneath, 1957). It is one of the most popular visualizations in
bioinformatics (Wilkinson and Friendly, 2009). Optionally, rows and/or columns
can be clustered using hierarchical clustering to group similar rows and columns
together (see Figure 4.4 right for an example). If one of the dimensions is huge
(this is common for gene expression datasets, measuring tens of thousands of
genes), hierarchical clustering would be slow. In this case, k-means clustering can
be used first to decrease the dimensionality, followed by hierarchical clustering on
k-means cluster centers (Metsalu and Vilo, 2015; Kolde, 2015).

3.2 Confirmatory analysis methods

3.2.1 Differential expression

A frequent task in gene expression studies is to find genes that behave differently
in two conditions. For example, we can study which genes are up-regulated (have
higher expression) or down-regulated (have lower expression) among disease pa-
tients compared to healthy ones. A test can be made for each gene and the results
ordered based on it. It should be noted that differential expression is always rela-
tive, there has to be some baseline expression to compare with.

Student’s t-test

Student’s t-test is a popular statistical test where a decision is made based on
t-distribution (Student, 1908). It has multiple different versions; here we are de-
scribing two-sample unpaired t-test that is used in the Chapter 6. It is used to
compare means of two sample groups by taking both mean and standard devia-
tion into account, and assumes that both groups have equal variances.

For example, we may be interested whether men and women have different
height on average. We can take a sample (e.g. ten people) from both groups and
measure them. As a result, we may find out that average height in the sample is
180 cm for men and 170 cm for women. By looking at means only, it is hard to
decide whether this difference holds in general or is caused just by the random
fluctuation due to small sample size. In this situation, t-test can be used to find the
probability to see such difference or a larger one in the sample, assuming that the
null hypothesis of having no actual difference in the whole population holds.

Mathematically, for each j “ 1, . . . , p, we use the vectors

a :“ Xy“”group1”,j ,

b :“ Xy“”group2”,j .
(3.12)
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We denote length of a and b by na and nb, respectively, and calculate the t-statistic:

t “
a´ b

c

´

1
na
` 1

nb

¯

¨
pna´1qs2a`pnb´1qs

2
b

na`nb´2

(3.13)

where

a “
1

na

na
ÿ

i“1

ai,

b “
1

nb

nb
ÿ

i“1

bi,

s2a “
1

na ´ 1

na
ÿ

i“1

pai ´ aq
2,

s2b “
1

nb ´ 1

nb
ÿ

i“1

pbi ´ bq
2.

(3.14)

Next, two-sided p-value is calculated based on the number of degrees of freedom:

p “ P pT ě |t| _ T ď ´|t|q “ 2 ¨ P pT ě |t|q (3.15)

where
T „ tpna ` nb ´ 2q. (3.16)

This way, we can calculate a p-value for each feature and then rank them based
on that.

Linear models

Linear models can be used to answer the same question as t-test, but they are
applicable in a broader range of applications. They allow multi-factored design
(multiple levels for grouping) that is not possible with a simple t-test. For exam-
ple, it is possible to remove the batch effect by including the batch identifier in the
model.

Linear models are implemented in the software package limma that is written
using R statistics language (Smyth, 2004; Ritchie et al., 2015). It allows to fit
various linear models to test for differential expression of genes and also perform
supporting analysis steps. It was originally written for microarray data, but was
extended with later developments to work with RNA-seq data as well.

An important improvement compared to simple linear models is the property
that the models of different genes are not entirely independent. Limma borrows
information across genes by modifying gene variances towards the global vari-
ance. This strategy gives more robust variance estimates resulting in less false
positives and false negatives.
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3.2.2 Gene set analysis

Some methods take a gene set as input. This set can have a biological meaning
like a genetic pathway, or come as an output gene list from some other analysis
step such as differential expression analysis. Compared to single gene analysis,
taking gene set as a whole increases the statistical power and can make the results
easier to interpret.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a method for finding whether a given list
of genes, such as a pathway or other annotated group, is significantly related to a
binary phenotype of interest (Subramanian et al., 2005). For example, this method
can reveal which pathways behave differently when comparing normal and tumor
samples.

The method starts with calculating a statistic that shows how well the expres-
sion of each gene relates to the phenotype. Some options for this measure include
t-test or linear models. Genes are ranked based on the statistic. Walking through
the sorted list, the running sum is increased if the gene is in the list and decreased
if it is not. The extent of the change is calculated based on the same measurements
that were used for ordering the genes. An enrichment score (ES) is calculated as
the maximum deviation of the running score from zero.

To estimate whether the deviation is significant, a permutation test is used.
Labels of the samples are randomly shuffled, and ES is calculated. This step is
repeated many times to generate null distribution. If multiple gene sets are tested,
the enrichment scores are normalized, and results are corrected for multiple testing
using FDR.

Hypergeometric test in g:Profiler

A set of tools for analyzing gene lists is called g:Profiler (Reimand et al., 2007,
2011). One part of the toolset called g:GOSt allows to perform functional enrich-
ment analysis based on different types of biological evidence. It finds whether
the given gene list is significantly overlapping with any functional category using
hypergeometric test.

In the gene list Not in the gene list Total
In the category a11 a10 a1`
Not in the category a01 a00 a0`
Total a`1 a`0 a``

Table 3.1: Input for hypergeometric test.
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The test takes a 2ˆ 2 contingency table as input (see Table 3.1). Given fixed
marginal frequencies (a1`, a``, a`1), we formulate the null hypothesis that being
in the gene list is independent of being in the functional category. In this case, the
number of common genes in the category and in the gene list (denoted by A) has
hypergeometric distribution:

A „ HGpa1`, a``, a`1q. (3.17)

We can calculate one-tailed p-value by using probability mass function of hyper-
geometric distribution:

p “ P pA ě a11q. (3.18)

If many categories are tested, multiple testing correction is needed. In g:Profiler,
a tailor-made algorithm called g:SCS is used by default for correcting p-values
(Reimand et al., 2007). Other popular methods, such as Bonferroni correction
and FDR, are also available.

3.2.3 Support vector machine

Support vector machine (SVM) is a supervised learning method to find optimal
classifier (Vapnik and Lerner, 1963; Cortes and Vapnik, 1995; James et al., 2014,
p. 337–372). The aim of the original SVM is to find the best linear separation
between two groups by fitting an optimal hyperplane. There are several extensions
for more than two groups and non-linear separation. We describe only the original
linear SVM.

SVM takes data matrixX and annotation vector y as input. For simplicity, we
assume that annotation groups are coded with `1 and ´1. Linear SVM solves an
optimization problem

max
β0,β1,...,βp,ε1,...,εn

M (3.19)

subject to
p
ÿ

j“1

β2j “ 1,

yipβ0 `

p
ÿ

j“1

βjxijq ěMp1´ εiq,

εi ě 0,
n
ÿ

i“1

εi ď C

(3.20)
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for i “ 1, . . . , nwhereM is the width of the margin to be maximized, β0, β1, . . . , βp
are classifier coefficients, ε1, . . . , εn measure how much each observation violates
the margin, C is a constant that determines how many violations we tolerate. The
constant C is typically chosen based on cross-validation by performing a grid
search and choosing the constant that gives the lowest cross-validation error. The
prediction for a new data vector x˚ “ px˚1 , . . . , x

˚
pq is given by

ŷ˚ “ signpβ0 `

p
ÿ

j“1

βjx
˚
j q. (3.21)

3.2.4 Binomial test

Binomial test is a statistical test where the decision is made based on binomial
distribution (Clopper and Pearson, 1934). For example, if we flip a coin 100
times, the total number of tails has a binomial distribution. If we get 55 tails, it
is not clear whether the coin is biased (the proportion of tails is different from
50%). It is hard to intuitively draw the line between random fluctuation and clear
difference. The test allows us to assign a statistical score.

Mathematically, let us assume that we are trying to detect allele-specific ex-
pression and for each gene and for each sample, we count the number of maternal
reads nm and paternal reads np. In case of biallelic expression, they should be
similar. We can calculate the p-value using binomial distribution:

p “ P pB ď minpnm, npq _B ě maxpnm, npqq (3.22)

where
B „ Bpnm ` np, 0.5q. (3.23)

3.3 Summary

As described, there are multiple exploratory and confirmatory analysis methods
available. Which one to use in a given situation depends on the data type, the
amount of data and other factors. In the next chapter, we describe how these
methods were applied to multivariate datasets.
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CHAPTER 4

COMPARISON OF CANCER MODELS

4.1 Overview of PREDECT project

I have been involved in the project about new models for Preclinical Evalua-
tion of Drug Efficacy in Common solid Tumours (PREDECT). It is a collabo-
rative project between academic partners, small and medium-sized enterprises
(SMEs) and pharmaceutical companies from European Federation of Pharma-
ceutical Industries and Associations (EFPIA) funded by Innovative Medicines
Initiative (IMI). The aim of the project is to develop novel cancer models for test-
ing potential drugs before allowing them to be used on humans (see Figure 4.1).
Three pathologies are considered: breast, prostate and lung cancer that form three
separate work packages (WPs), respectively. The fourth work package (WP4) is
responsible for managing and analyzing the material and data produced by the
first three. The University of Tartu takes part in WP4 and is mainly involved in
collecting metadata and performing the bioinformatic analysis.

In the early days of cancer research, the only way to study cancer and search
for potential drugs was using hand-cut pieces from a human tumor. This method
needs much patient material that is not always available. There emerged a need for
imitating human cancer that would still be as similar to the original tumor as pos-
sible. Non-perfect resemblance leads to a major concern about drug development
efficacy: the majority of potential new medicines passing preclinical studies do
not succeed in the following clinical trials made on humans (Voskoglou-Nomikos
et al., 2003; Kamb, 2005; Cook et al., 2012). To overcome this problem, PRE-
DECT aims to develop novel models that better represent human cancer. Models
imitate cancer in varying levels of complexity.

The simplest models are cell lines where cells originate from human cancer
but are immortalized to keep proliferating. Researchers can grow them without
the need for steady inflow of biological material. Cell lines can be cultured on a
simple glass or plastic slide (called 2D models) or in a more complex setting where
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Figure 4.1: Model systems used in PREDECT project (PREDECT homepage, http:
//www.predect.eu/about/project_overview/, January 12, 2016).

the natural spatial shape of the tumor is retained (3D models). Specific control
mechanisms can be added, which keep the biological conditions (e.g. nutrients,
temperature, pressure) constant over time. This type of artificial environment is
called bioreactor.

Models described above are called ex vivo or in vitro models because they
grow outside the living organism, on an artificial platform ("in the tube"). An
overview of such models is given in a review by Hickman et al. (2014). Another
class of models is so called in vivo models where tumor cells grow in the living
model organism (Frese and Tuveson, 2007). The most popular host is a mouse be-
cause of its fast breeding times and relatively good resemblance to human (de Jong
and Maina, 2010). Therefore, in vivo models are often called mouse models. A
mouse is clearly different from a human in many ways, and we should be careful
when translating results from mouse studies into human (Wall and Shani, 2008;
Barrett and Melenhorst, 2011).

There are several subclasses of in vivo models. Genetically engineered mouse
models (GEMMs) are mice grown with a modified genome to grow cancer (Politi
and Pao, 2011). Often, this is accomplished by making one or few tumor sup-
pressor genes non-functional (gene knock-out). Another class is called xenografts
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that are normal mice where a piece of cancer cell line or human tumor is injected
(grafted) into a mouse. The tumor is then growing in a microenvironment similar
to original location (Frese and Tuveson, 2007).

A separate class of models that complexity-vise lies between cell lines and
mouse models is called tissue slices. These slices are cut from human tumor or
mouse model and cultivated in a separate growth medium. The main advantage
compared to the original tumor is a more economical use of the material. This im-
provement is following the widely adopted 3R’s principles of animal experiments
(Workman et al., 2010; Russell et al., 1959).

• Replace living organisms with non-living biological material where possi-
ble;

• Reduce the number of animals needed while keeping the required accuracy;

• Refine the procedures so that they cause less harm and pain for the animals.

4.2 Centralized data collection and analysis

The main platform for model comparison in PREDECT consortium is tissue mi-
croarray (see Section 2.2). Tissues are punched into small cylindrical pieces and
arrayed into a paraffin block. This block can be sliced and put onto multiple glass
slides. Slides are first stained with hematoxylin and eosin (H&E) which is a pop-
ular way to visualize the histological structure of a tissue. Additionally, slides
are stained with different antibodies. Areas with higher expression of the target
protein will appear with more intense stain (see Figure 2.2).

Both biological material and sample annotations are collected centrally. For
the latter, University of Tartu has developed a web-based database system (MBase—
Metadata Database) in co-operation with other PREDECT partners and Quretec
Ltd. The model management and analysis process looks as follows.

• Laboratories participating in model development send their latest models to
WP4 and annotate them in MBase.

• Samples are punched, and TMAs constructed centrally in WP4.

• H&E staining is made, and bad quality samples are reported to the partners
to get them replaced.

• TMA slides are stained with selected antibodies.

• Stainings are converted into digital images.
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• Images are converted into numeric data using image analysis methods or
estimates from a professional pathologist.

• Image analysis results (scorings) are analyzed using heatmap and PCA plot
to compare cancer models.

Figure 4.2: Spreadsheet form to facilitate sample submission in batch. Coloring refers to
different data types. Where only a specified number of options is available, these are also
shown to the user.

For data analysis, it is essential to collect good quality annotations about each
sample. MBase uses Qure Data Management Platform (QDMP) as data input
interface (Jäger et al., 2008). It has a secure web-based system to make it com-
fortable to use for all partners. Users can download and fill a form in a spreadsheet
program. They can then easily upload annotations in batch to the database (see
Figure 4.2). During the process, the data format is validated to make sure that the
structure of the data is correct.

Building a unified annotation format for different types of models (cell lines,
xenografts, GEMMs, human material, slices from different material) was not
straightforward. It was evolving during the project as we faced new problems with
some of the samples. Initially, we had a separate structure for samples from cell
lines and tissues, but this division was not sufficient for collecting detailed and
structured data about each platform. Therefore, the structure was later changed
into platform-based classification (2D/3D/bioreactor, tissue slice, in vivo, breast
human reference, prostate human reference, lung human reference).

MBase has multiple supporting tables besides sample annotations (see Fig-
ure 4.3). Samples are linked to TMAs, table of stainings is linked to both TMAs
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Figure 4.3: Structure and interfaces of MBase.

and antibodies. There are also multiple supporting tables that give input to sam-
ples, such as the list of partners, small hairpin RNAs, drugs, models, and model
modifications. At the moment of writing (January 12, 2016), there are 2061 sam-
ples annotated.

MBase data is used in both human-readable form as tables and summary plots
and machine-readable form for giving input to other PREDECT tools (see Fig-
ure 4.3). A custom heatmap tool (see Section 3.1.2) is developed where samples
can be clustered based on different antibodies. The resulting plot is interactive;
the user can click on it to visualize a row or column separately on violin plot or
one specific cell of the heatmap on barplot. The user can further click on sin-
gle bars on the barplot to go to WebMicroscope—a collection of digitized images
about PREDECT samples. This tool provides access to images of digitized TMA
spots stained with different antibodies.

The same data can be visualized on another tool using PCA plot (see Sec-
tion 3.1.1). It is also interactive; sample groups can be removed separately, and
each spot has a tooltip with additional information and link to WebMicroscope.
Both heatmap tool and PCA tool can also be used to visualize gene expression
microarray data collected from public sources and PREDECT partners.

4.3 Improved breast cancer xenograft model (paper I)

Breast cancer is a major cause of cancer-related deaths among women. Most
patients with breast cancer are estrogen receptor positive (ER+), meaning that
they have receptors for estrogen and can potentially respond to hormonal therapy.
So far, there has been more success in growing estrogen receptor negative (ER-)
xenografts (Zhang et al., 2013; Cottu et al., 2012). In this paper, the consortium
developed a novel breast cancer ER+ xenograft model where tumor cells are in-
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jected directly into mouse milk duct system as opposed to the fat pad injection
that is commonly used.

First, six different breast cancer cell lines were injected into mouse milk ducts
to confirm that appropriate microenvironment is provided. All except one grew
without estrogen supplementation. Intraductally grafted xenografts showed a re-
semblance to the clinical tumor in terms of histology and tissue morphology. Cell
line MCF7 had the highest ER expression and was chosen for further analysis.

Tumor appearance and progression in the MCF7 intraductal model were more
similar with ER+ than in the fat pad model. The intraductal model also responded
to endocrine therapy, showing decreased proliferation index after treatment.

Comparison of these two models was also done on the molecular level by
measuring gene expression using microarray (see Section 2.1). We found many
differentially expressed genes (see Section 3.2.1). First components from PCA
(see Section 3.1.1) showed that intraductal model is more close to luminal subtype
that tends to be ER+. This subtype is highly heterogeneous, consisting of different
gene expression profiles, mutational repertoire and histological characteristics,
with very different clinical outcomes and responses to systematic treatments. The
name of the subtype comes from the fact that cancer has originated from luminal
cells, one of the two epithelial cell types that the main tissue (parenchyma) of the
breast is made of.

Pathway analysis with g:Profiler (see Section 3.2.2) confirmed the changes in
the genes related to proliferation. The genes most extremely downregulated in
the intraductal model were also related to epithelial to mesenchymal transition
(EMT) as discovered by GSEA (see Section 3.2.2). This finding suggests that
microenvironment plays an important role to keep luminal characteristics of the
cells.

The suitability of the proposed model was confirmed by growing xenografts
using nine patients with ER+ breast cancer. All patients retained luminal charac-
teristics after grafting.

My contribution was to collect publicly available gene expression data about
patient tumors (Guedj et al., 2012, ArrayExpress ID: E-MTAB-365) and cell lines
(Neve et al., 2006, ArrayExpress ID: E-TABM-157) from ArrayExpress database
(Brazma et al., 2003). I analyzed it together with private data using heatmap, PCA,
g:Profiler and GSEA, helped to interpret the analysis results and participated in
writing the article.
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4.4 Tissue slices in different cultivation conditions
(paper II)

Tissue slices are thin slices cut from mouse or human tumor. They allow us to
get more study material from a single tumor, but can potentially lead to changes
related to the response to stress and cultivation. In this paper, we investigated dif-
ferent culturing conditions on three pathologies (breast, prostate, and lung tumor).

Both IHC (see Section 2.2) and qPCR (see Section 2.5) were used to evaluate
the culture induced changes from the parental tumor. Measurements were done
immediately after cutting (day zero) and then after culturing on low or atmo-
spheric oxygen. The slices were either floating inside the media or supported by
the filter on the media. qPCR data was analyzed using PCA (see Section 3.1.1),
heatmap (see Section 3.1.2) and linear models (see Section 3.2.1) showing the
number of differentially expressed stress-related genes. This study showed that
filter support with atmospheric oxygen is the optimal condition to keep the model
as close as possible to the parent tumor.

Using immunohistochemical staining (see Section 2.2), it was also shown that
the cells are not equally viable throughout the slice. Cells were found to be more
viable the closer they were to the air interface of the slice. The viability gradient
was coincident with HIF1α and γH2AX , related to hypoxia and stress, respec-
tively. Testing with two other types of filter systems showed similar results. We
also tested a new technique called incubation unit that allows oxygen to access
both sides of the tissue. It showed two-sided gradient going from both sides to the
center, confirming the importance of oxygen supply.

My contribution was to perform differential expression analysis and PCA
plots, help to interpret the PCA results and participate in writing the article.

4.5 ClustVis web tool for matrix visualization (paper III)

Considering the efforts needed to produce publication quality PCA plots (see Sec-
tion 3.1.1) and heatmaps (see Section 3.1.2), we developed a separate web tool
for custom data. This tool makes exploratory analysis easier for other scientists.
Users can upload their data and interactively change the appearance of the plot us-
ing graphical control elements (widgets). The aim was to make it easy to use and
not require any scripting experience. The tool is freely usable and downloadable
at http://biit.cs.ut.ee/clustvis/.

Users have multiple options during the analysis.

1. Different data input options allow to upload custom data or choose one
of the sample datasets. It is also possible to load one of the large gene

42

http://biit.cs.ut.ee/clustvis/


●

●
●

●

●

●

●

●

●
●

●
●

−5

0

5

−10 −5 0 5
PC1 (60.7%)

P
C

2 
(1

7%
) TISSUE

●
●

breast
prostate

NORMAL_TUMOR
● normal

tumor

G
S

M
662771.C

E
L

G
S

M
662779.C

E
L

G
S

M
662775.C

E
L

G
S

M
662776.C

E
L

G
S

M
662772.C

E
L

G
S

M
662774.C

E
L

G
S

M
662773.C

E
L

G
S

M
662770.C

E
L

G
S

M
662768.C

E
L

G
S

M
662765.C

E
L

G
S

M
662769.C

E
L

G
S

M
662777.C

E
L

G
S

M
662778.C

E
L

G
S

M
662767.C

E
L

G
S

M
662763.C

E
L

G
S

M
662756.C

E
L

G
S

M
662761.C

E
L

G
S

M
662762.C

E
L

G
S

M
662766.C

E
L

G
S

M
662759.C

E
L

G
S

M
662764.C

E
L

G
S

M
662758.C

E
L

G
S

M
662757.C

E
L

G
S

M
662760.C

E
L

Cluster 20 (1998 genes)
Cluster 12 (1080 genes)
Cluster 14 (651 genes)
Cluster 29 (1718 genes)
Cluster 15 (312 genes)
Cluster 9 (1562 genes)
Cluster 11 (1936 genes)
Cluster 13 (1370 genes)
Cluster 4 (243 genes)
Cluster 10 (270 genes)
Cluster 27 (698 genes)
Cluster 7 (439 genes)
Cluster 26 (1711 genes)
Cluster 19 (2586 genes)
Cluster 6 (169 genes)
Cluster 16 (474 genes)
Cluster 18 (340 genes)
Cluster 3 (3264 genes)
Cluster 17 (2718 genes)
Cluster 25 (3245 genes)
Cluster 2 (3588 genes)
Cluster 24 (3798 genes)
Cluster 8 (4184 genes)
Cluster 1 (3268 genes)
Cluster 22 (4307 genes)
Cluster 21 (4397 genes)
Cluster 23 (1989 genes)
Cluster 28 (570 genes)
Cluster 30 (1088 genes)
Cluster 5 (702 genes)

NORMAL_TUMOR
TISSUE

NORMAL_TUMOR
normal
tumor

TISSUE
breast
prostate

−2

0

2

4

Figure 4.4: PCA plot and heatmap of stromal molecular signatures of breast and prostate
samples. Ellipses and shapes on PCA plot and annotations on top of the heatmap show
clustering of the samples.

expression microarray datasets from Multi Experiment Matrix (MEM) web
tool (Adler et al., 2009).

2. Observations can be filtered and, in case of gene expression data, one path-
way can be selected or all genes clustered into specified number of clusters.

3. Data transformations and method for calculating principal components can
be chosen.

4. Appearance of the generated PCA plot and heatmap can be modified in
many ways.

5. The plot can be exported in multiple file formats. The data and intermediate
results can be exported as a text file.

To illustrate the output of ClustVis, we consider a gene expression microarray
(see Section 2.1) dataset. It is about stromal molecular signatures of breast and
prostate cancer samples (Planche et al., 2011, GEO ID: GSE26910) downloaded
from Gene Expression Omnibus (GEO) database (Edgar et al., 2002). There are
54675 probesets measured in 24 samples, constituting equal groups of six samples
from the breast tumor, normal breast, prostate tumor and normal prostate. We ag-
gregate the probesets into 30 clusters using k-means clustering (see Section 3.1.2).

PCA plot of the two first components shows that ~78% of the variation is ex-
plained by them, leaving 22% for all other components (see Figure 4.4 left). This
proportion is enough for drawing preliminary conclusions. The hidden variability
can be explored by looking at further components.
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When looking at the ellipses, we can see that breast and prostate tumor form
separate clusters. We cannot differentiate normal from tumor samples inside these
groups, but we can see that tumor samples vary more than normal samples. This
property called tumor heterogeneity (Cusnir and Cavalcante, 2012) is common for
cancer and is one of the leading causes why cancers are not easy to cure.

From the annotations of the heatmap, we can also recognize the clusters of
breast and prostate samples (see Figure 4.4 right). Two samples on the heatmap
(GSM662767 and GSM662773) seem different from others and are worth further
investigation. In particular, cluster 7 consisting of 439 genes could be explored
further to find out which genes are overexpressed in the sample GSM662767.

As described, ClustVis provides a comfortable way to perform exploratory
analysis that can later be extended by confirmatory analysis using other tools.
According to Google Analytics (http://www.google.com/analytics/,
January 12, 2016), there have been 500 unique ClustVis users last month visiting
the website. My contribution was to implement the web tool and write the article.
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CHAPTER 5

IMPRINTED AND MONOALLELICALLY
EXPRESSED GENES IN THE HUMAN

PLACENTA (PAPER IV)

Each human starts the development in the uterus, connected to the mother through
the placenta. This temporary organ supports the growth of the fetus by mediating
nutrients, oxygen and waste products between the mother and the child. The
development of the placenta is controlled by a specific gene expression pattern
that is crucial for a normal pregnancy.

Most genes express equally from the maternal and paternal copy of the gene.
There is a small group of genes that violate this general behavior. These constitute
imprinted genes where expression depends on the heritage of the allele, and other
monoallelically expressed genes that preferentially express from one allele but the
parent of origin is not always the same. Dysregulation of such genes is a possi-
ble cause for fetal growth abnormalities and pregnancy complications (Piedrahita,
2011). The aim of this study was to find novel monoallelically expressed genes
using a genome-wide approach.

We used placentas from ten family trios. The analysis pipeline was adapted
from AlleleSeq (Rozowsky et al., 2011) and is shown in Figure 5.1. SNP array
(see Section 2.3) was used on the DNA of all participants (mother, father, and
child) to detect maternal and paternal alleles of the child. RNA of the placenta
was sequenced (see Section 2.4). Sequence reads were mapped to constructed
maternal and paternal genome, and the best mapping from the two was taken into
account. Subsequently, we created a data matrix so that for each informative SNP,
the number of maternal and paternal RNA-seq reads were counted. The counts
were aggregated to gene level, and imbalance in the read count was tested using
binomial test (see Section 3.2.4). The p-values were corrected using FDR (see
Section 1.2), genes with significant corrected p-value (q ă 0.05) were defined as
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Illumina SNP array 
of mother, father and child

Finding maternal and paternal 
coverage of each gene using 

SNPs on the array

Phased and homozygous 
SNPs of the child

Construction of maternal
and paternal reference 

sequence

Mapping reads to maternal
and paternal reference 
sequence (SHRiMP2)

Filtering low quality reads,
retaining best mapping reads

Finding genes with
unbalanced coverage

(Table 1)

Filtering using all SNPs 
from selected genes

Human reference genome
version hg19

RNA sequencing
from placenta

UCSC 
gene coordinates

dbSNP database
build 137

Imprinted and mono-
allelically expressed genes

(Table 2)

Figure 5.1: Pipeline for finding imprinted and monoallelically expressed genes (Metsalu
et al., 2014, Figure 1).

having an allele-specific expression (ASE).
We used another filtering step to keep more confident genes. Besides SNPs

on the microarray, we used all SNPs available in dbSNP database (Sherry et al.,
2001). A similar pipeline was reused with the exception that SNPs were not ag-
gregated to the gene level. The final list was made of genes where at least 75% of
the SNPs showed significant ASE.

The list of 12 genes was further analyzed for differences between trios. Due to
the low number of samples, a simple approach was used. The genes were consid-
ered having random monoallelic expression pattern if they had evidence for both
maternal and paternal expression in at least one trio, and imprinted otherwise. Six
genes (LGALS14, SPTLC3, AIM1, PEG10, RHOBTB3, and ZFAT-AS1) showed
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the preference towards paternal expression, two (PAPPA2, LGALS8) towards ma-
ternal expression. Four genes (ABP1, BCLAF1, IFI30, and ZFAT) had random
monoallelic expression pattern. The main functions of these genes include the
following (see Metsalu et al. (2014, Table 3)).

• Mediating cellular apoptosis and tissue development;

• Regulating inflammation and immune system;

• Facilitating metabolic processes;

• Regulating cell cycle.

In general, results from high-throughput experiments should always be con-
firmed using some other method. Here, we chose three genes—PEG10, RHOBTB3,
and PAPPA2—for further validation. Regions with multiple SNPs were found
from each gene and sequenced using Sanger sequencing (see Section 1.1). All
genes showed homozygous RNA expression where the DNA of the newborn was
heterozygous, confirming the allele-specific expression. Other genes that we found
but were not taken to the validation set need further confirmation by future studies.

My contribution was to implement the whole pipeline for finding imprinted
and monoallelically expressed genes, help to interpret the results and participate
in writing the article.
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CHAPTER 6

MOLECULAR MECHANISMS OF
ATOPIC DERMATITIS (PAPER V)

Atopic dermatitis (AD) is an inflammatory skin disease that causes a dry, red, scaly
and itchy skin on distinct areas of the human body (Bieber, 2010). Most people
with AD get the disease before the age of five, but in some cases, it can also start
during adulthood. There is no known cure for AD, but there are treatment plans
that can alleviate the symptoms and avoid AD from getting worse.

AD is related with apoptosis of keratinocytes—a type of skin cells dying in a
controlled way. Enhanced apoptosis is a leading cause of eczema and spongiosis.
In this article, we studied the molecular mechanisms of this process.

We showed that patients with AD have increased apoptosis of keratinocytes
induced by IFN-γ, a characteristic cytokine for T cells. Also, several IFN-γ-
inducible genes are upregulated in chronic AD lesional skin, and there are also
differentially expressed genes related to apoptosis. Some genetic markers in the
proximity of IFN-γ-inducible genes and apoptosis-related genes were also found.
These results propose potential novel targets for developing new drugs against
AD.

My contribution was to download and analyze a publicly available gene ex-
pression microarray dataset (Nograles et al., 2008, GEO ID: GSE12109) from
GEO database (Edgar et al., 2002) for supporting the discussion. Primary ker-
atinocytes treated with IFN-γ were compared with untreated keratinocytes using
t-test (see Section 3.2.1). Resulting p-values were corrected for multiple testing
using FDR (see Section 1.2). All probesets with q-value less than 0.05 were con-
sidered significantly differentially expressed.
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CHAPTER 7

MICRORNAS AS DIAGNOSTIC
MARKERS FOR ENDOMETRIOSIS

(PAPER VI)

Endometriosis is a chronic gynecological disease where endometrium—a tissue
that will normally be found only inside the uterus—will grow outside the uterus.
Typical symptoms include pain and infertility, but the disease can also progress
without symptoms. The biological mechanism is still obscure; different theories
have been proposed for the cause of the disease (Hickey et al., 2014).

Multiple studies have shown that some microRNAs (miRNAs) have altered
expression profile in endometriosis. However, most of these studies have analyzed
a predefined subset of miRNAs using microarray or qPCR. In our paper, we used
RNA sequencing (see Section 2.4) to study peritoneal endometriotic lesions. Eight
potential new miRNA candidates were found, and two known miRNAs (miR-34c,
miR-449a) showed significant differential expression in peritoneal endometriotic
lesions compared to healthy controls.

These two differentially expressed miRNAs were selected for further experi-
mental validation using quantitative PCR (see Section 2.5). Three more miRNAs
(miR-200a, miR-200b, and miR-141) were added to the validation set since they
showed a similar trend in one of the patients and have been found as differen-
tially expressed in previous studies. Experimental validation was done using 22
endometriosis patients and 24 controls. For all five miRNAs, the differential ex-
pression was confirmed.

Based on validated results, my contribution was to create a clinical score for-
mula (CSF) that can be used to evaluate biopsied samples without the need for
healthy controls. Three miRNAs showing the best discrimination power were
used to train a linear soft-margin SVM classifier (see Section 3.2.3). The CSF
allows to classify the samples with more than 95% accuracy.
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CONCLUSIONS

The fast developing field of bioinformatics offers us multiple sources of high-
throughput data. Analyzing this data presents major challenges. In the first chap-
ter of this thesis, we presented relevant biological and statistical background. In
the next two chapters, we thoroughly described different data sources and analy-
sis methods. Following chapters described the articles included in the thesis. My
scientific contribution of them is, in general, twofold.

First, I was involved in data analysis of multiple projects to contribute to
novel scientific discoveries. I analyzed data from a novel breast cancer model
(paper I), compared tissue slices to find most optimal conditions (paper II), imple-
mented and used a pipeline for finding imprinted and monoallelically expressed
genes in the human placenta (paper IV), analyzed mechanisms of atopic dermati-
tis (paper V), and created a model for predicting endometriosis based on micro-
RNAs (paper VI). All these projects presented different challenges for data pre-
processing and analysis.

Second, I created a web tool with an intuitive user interface that can be used by
other scientists without necessarily having programming skills. ClustVis was built
and made publicly available that allows to upload any dataset and visualize the
data using PCA plot and heatmap (paper III). This tool was inspired by analysis
and tools built during PREDECT project.
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KOKKUVÕTE
(SUMMARY IN ESTONIAN)

MITMEMÕÕTMELISTE ANDMETE
STATISTILINE ANALÜÜS

BIOINFORMAATIKAS

Organismi ühed tähtsaimad molekulid on valgud, mille ehitus on kodeeritud pä-
rilikkusaines – DNAs. Erinevate valkude kogust uurides on võimalik saada infot
organismi seisundi kohta. Tänapäevased seadmed võimaldavad valkudega seotud
andmeid koguda lühikese aja jooksul väga suurel hulgal. Suuremahuliste andmete
analüüs vajab erinevaid tehnilisi oskusi ja sellega seoses on tekkinud uus teadus-
haru – bioinformaatika.

Dissertatsiooni eesmärgiks on kirjeldada mitmemõõtmeliste andmete statisti-
lise analüüsiga seotud probleeme ja nende lahendusi. Näidatakse, et sellised and-
med on esitatavad maatriksina. Kirjeldatakse üleeuroopalist konsortsiumit, kus
andmeid kogutakse paljudelt parnteritelt ja väga tähtis on koguda ka metaand-
med struktureeritud kujul. Vaadeldakse erinevaid uuringuid, kus on tekkinud va-
jadus andmeid analüüsida. Luuakse graafilise kasutajaliidesega veebitööristad, et
vähendada andmete analüüsiks vajalikku tehniliste oskuste hulka ja teha mõned
tüüpanalüüsid kättesaadavaks ka nendele, kes pole andmete analüüsiga varem
kokku puutunud.

Esimeses peatükis tuuakse lühidalt välja vajalikud taustateadmised. Bioloogi-
lises osas kirjeldatakse inimese genoomi ülesehitust ja selle funktsioone. Tutvus-
tatakse väga lühidalt päriliku info masinloetavale kujule viimise põhimõtteid. Sta-
tistilises osas tehakse ülevaade andmeanalüüsi etappidest ja statistilise testimise
metoodikast. Muuhulgas kirjeldatakse bioinformaatikas tihti esinevaid probleeme
nagu mitmene testimine ja ülesobitamine.

Teises peatükis tehakse ülevaade erinevatest andmeallikatest. Koe mikrokiibid
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võimaldavad mõõta korraga ühe valgu ekspressiooni paljudes proovides. Geeni-
ekspressiooni on võimalik mõõta erinevate platvormidega nagu geeniekspressioo-
ni mikrokiip, RNA sekveneerimine ja pöördtranskriptsiooniga kvantitatiivne polü-
meraasi ahelreaktsioon. Kõigil neist on oma eelised ja puudused ning platvormi
valikul tuleb arvesse võtta, mitut geeni soovitakse analüüsida, kui palju on ana-
lüüsiks võimalik raha kulutada ning kui hästi peavad tulemused olema korratavad.
Kirjeldatakse ka ühenukleotiidiliste erinevuste tuvastamiseks mõeldud mikrokii-
pi.

Kolmandas peatükis tutvustatakse statistilisi analüüsimeetodeid. Need jaga-
takse kirjeldavateks, mille abil on võimalik saada andmetest ülevaade ilma konk-
reetseid hüpoteese püstitamata, ja kinnitavateks, mille korral otsitakse vastust konk-
reetsele küsimusele.

Kirjeldavate meetodite hulka kuulub peakomponentide analüüs, mis võimal-
dab teisendada andmeid nii, et võimalikult suur hulk varieeruvusest oleks kirjel-
datud väikese arvu esimeste komponentide abil. Klasterdamine võimaldab objek-
te sarnasuse põhjal rühmitada. Erinevatest klasterdusmeetoditest vaadeldakse k-
keskmiste klasterdamist, kus klastrite arv peab olema varasemalt teada, ja hierar-
hilist klasterdamist, kus luuakse objektidest sarnasuse põhjal puukujuline struk-
tuur. Populaarne viis klasterduse joonisel näitamiseks on soojuskaart, kus arve
näidatakse erinevate värvitugevuste abil ning read ja/või veerud on tavaliselt klas-
terdatud.

Kinnitavatest meetoditest vaadeldakse diferentsiaalse ekspressiooni meeto-
deid, mis aitavad leida, kas ekspressioon on konkreetse geeni korral rühmades
erinev. Kahe rühma võrdlemiseks sobib t-test, suurema arvu rühmade jaoks li-
neaarsed mudelid. Binoomtestiga saab samuti leida, kas ekspressioon jaguneb
kahe grupi vahel võrdselt, kuid see eeldab, et suudame seda täisarvuliselt loen-
dada. Tugivektormasinaga on võimalik leida teatud mõttes parim klassifitseerija,
mis võimaldab kahe rühma objekte eristada. Üksikute geenide asemel on võima-
lik analüüsida ka geenigruppe. Geenigrupi rikastatuse analüüs leiab, kas geeni-
grupp käitub kahes rühmas erinevalt. Hüpergeomeetriline test võimaldab leida,
kas konkreetne geenigrupp kattub oluliselt mõne varem teada oleva grupiga.

Neljandas peatükis tutvustatakse üleeuroopalist vähiuuringute projekti PRE-
DECT. Tehakse ülevaade metaandmete kogumisest ja andmete esmaseks analüü-
siks loodud tööriistadest. Kirjeldatakse uue rinnavähi mudeliga seotud analüüsi
ning samuti koelõikude mudelite võrdlust erinevates laboritingimustes. Tutvusta-
takse vabalt kasutatavat veebitööriista, mille abil on peakomponentide analüüsi
joonise ja soojuskaardi tegemine lihtsam.

Järgmised peatükid kirjeldavad andmeanalüüsi erinevates projektides. Viien-
das peatükis tuvastatakse mitmeid uusi geene, mille korral esineb inimese plat-
sentas alleelispetsiifiline ekspressioon. Kuuendas peatükis vaadeldakse atoopili-
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se dermatiidi molekulaarseid mehhanisme, täpsemalt valgu IFN-γ mõju. Seits-
mendas peatükis leitakse mikroRNAd, mis sobivad endometrioosi markeriteks, ja
luuakse klassifitseerija endometrioosihaigete eristamiseks tervetest.
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