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Using Gromov-Wasserstein distance to

explore sets of networks

In many fields such as social sciences or biology, relations between data or
variables are presented as networks. To compare these networks, a mean-
ingful notion of distance between networks is highly desired. The aim of
this Master thesis is to study, implement, and apply one Gromov-Wasser-
stein type of distance introduced by F.Mémoli (2011) in his paper ”Gro-
mov–Wasserstein Distances and the Metric Approach to Object Matching”
to study sets of complex networks. Taking into account theoretical under-
pinnings introduced in this paper we represent some real world networks as
metric measure spaces and compare them on basis of Gromov-Wasserstein
distance.

Keywords: distance, Gromov-Hausdorff, Gromov-Wasserstein, networks,
metric measure space

Võrgustike kogumite uurimine

Gromov-Wasserstein’i kauguse abil

Leidub palju valdkondi, kus andmestikud on esitatavad võrgustikena (nt. sot-
siaalteadused ja bioloogia). Kahe võrgustiku vahelise sarnasuse mõõtmiseks
on vajalik määrata sisukas võrgustike vaheline kaugus. Selle magistritöö ees-
märk on uurida, implementeerida ja rakendada ühte Gromov-Wasserstein
tüüpi kaugust, mida tutvustas F.Memoli (2011) artiklis ”Gromov–Wasserstein
Distances and the Metric Approach to Object Matching”. Antud kaugus
määrab arvuliselt objektide, mis on esitatud meetriliste ruumidena, millel
on defineeritud mõõt (metric measure spaces), vahelise kauguse/sarnasuse.
Käesolevas töös esitame praktilistes andmetes esinevaid võrgustikke kirjel-
datud ruumidena ning võrdleme neid Gromov-Wassersteini kauguse põhjal.

Märksõnad: kaugus, Gromov-Hausdorff, Gromov-Wasserstein, võrgustik,
mõõduga meetriline ruum
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Introduction

It is estimated that the amount of data produced doubles in size every two
years. Hence, it seems fair to assume that the importance of data analysis
will increase jointly with the volume of data available for researchers.

Nowadays everything is a data source. We can easily download tweets
using specific software or track our heart rate without interrupting our day
to day businesses. Data obtained from these sources have different structures
and sophisticated methods may be needed to extract information from them.
Often the final goal is to compare some objects. In order to compare objects
(are two objects similar or not), one usually needs to define a notion of
distance/similarity between those objects.

In many fields, including social sciences and biology, many data sets are
often presented as networks. Complex networks with non-trivial topological
features such as small-world or scale-free characteristics have been found in
networks of human interactions, internet, or metabolic networks, to put a
few examples. However, it is unclear which measure is more appropriate for
comparing two or more networks. For example, it is difficult to compare two
networks when the number of nodes is different or more generally, when we
lack a correspondence between the nodes of one network and the nodes of
the other. In the past researchers have compared global statistics of net-
works such as their clustering coefficient, their mean degree, or their average
shortest path length. However, ideally one would like to compare different
networks with a measure that takes into account their internal structures
of distance/similarity between nodes. In another words, one would like to
come with a measure of distance between the set of distances defined inside
different networks.

The present work focuses on Gromov-Wasserstein (GW) distance which
allows to compare objects presented as metric measure spaces. Current work
is built on the paper by F. Mémoli [7], where different Gromov-Wasserstein
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type of distances between objects are defined. At the end of the paper a
computational technique is introduced. This thesis focuses on implementing
and applying this technique to study real world network data sets.

The contributions of this thesis are:

1) we implement the computational technique introduced in [7] in the
widely used R programming language [11]. To our knowledge this is
the first open implementation of the algorithm and we have uploaded
it to the Github repository so that anyone can make use of our imple-
mentation. We also give an estimation of memory requirements one
faces when estimating GW distance;

2) we apply GW distance together with clustering methods to real world
network data sets. By that we help to understand the possibilities of
GW distance to discover patterns in multiple networks’ data sets.

The thesis is divided into two chapters. First chapter is devoted to meth-
ods and background theory. Second chapter describes the results of applying
the analysis to real data.

First chapter starts with general definitions like distance and metric and
move gradually toward definition of GW distance. After that we describe
in detail computational technique used for estimating distance (similarity)
between structures called metric measure spaces using GW distance. Since
these techniques can be demanding in computational point of view, we also
give an estimation of computational needs concerning our implementation.
Lastly, we give overview of data sets used in chapter 2.

In second chapter we apply GW distance to different data sets. We use
a 3D Objects data set example from [7, p. 469] to validate our implementa-
tion. Next we use GW distance in combination with clustering and dimen-
sionality reduction methods to explore (dis)similarities between the shapes
of caenorhabditis elegans (roundworm) neurons. We continue examining the
possibilities of GW distance by applying it on Newcomb Fraternity data [10]
and MIT Social Evolution data [5]. Finally we examine world trade flows [3]
in 1963-2000.

6



Chapter 1

Methods

1.1 Distance

The authors of the Dictionary of Distances [2] start their book preface with
the following sentence:

”The concept of distance is one of the basic ones in the whole of
human experience. In everyday life it usually means some degree
of closeness between two physical objects or ideas, i.e., length,
time interval, gap, rank difference, coolness or remoteness, while
the term metric is often used as a standard for a measurement.”

They also acknowledge that the number of distance metrics is infinite and
argue that number of worldwide web entries offered by Google on the topic
distance approach to 300 million. Today1 this number is more than four
times bigger.

This section intends to give a brief overview of some of the most com-
mon distances (metrics) to guide the reader to better understand Gromov-
Hausdorff and Gromov-Wassestein distances discussed on section 1.2. Defi-
nitions and mathematical concepts in this chapter are taken from [2] if not
stated otherwise.

We start with the mathematical definition of the terms distance and met-
ric.

Definition 1. Let X be a set. A function d : X×X → R is called distance
(or dissimilarity) on X if, for all x, y ∈ X, it holds:

1 November 5th, 2015.
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1. d(x, y) ≥ 0 (non-negativity);

2. d(x, y) = d(y, x) (symmetry);

3. d(x, x) = 0.

Definition 2. Let X be a set. A function d : X ×X → R is called metric
on X if, for all x, y, z ∈ X, it holds:

1. d(x, y) ≥ 0 (non-negativity);

2. d(x, y) = 0 if and only if x = y;

3. d(x, y) = d(y, x) (symmetry);

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

As we see, the latter definition has one extra requirement called triangle
inequality and the second requirement is stricter than combination of first
and third requirement of definition 1.

Example 1. Not every distance is metric. Let X = {x1, x2, x3} and function
d : X ×X → R such that after computing d(xi, xj) for every i, j = 1, 2, 3 we
get matrix:

dX =

0 1 5
1 0 2
5 2 0

 .

It is easy to convince yourself that function d is distance. However we can
see that function d is not metric, because triangle inequality is not satisfied:

5 = d(x1, x3) > d(x1, x2) + d(x2, x3) = 3.

Definition 3. An ultrametric d is a metric on X which satisfies the fol-
lowing strengthened version of the triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}

for all x, y, z ∈ X. So, at least two of d(x, y), d(z, y) and d(x, z) are the
same.

Next we will look at distances/metrics defined between different data struc-
tures. Specifically, we will familiarize reader with point to point, point to set
and set to set distances.
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1.1.1 Point to point

As the name suggests, the point-to-point distances are distances defined be-
tween two points.

Probably the most widely used point-to-point distance is Euclidean2 dis-
tance. We can think of Euclidean distance or Euclidean metric as the
straight-line distance.

Definition 4. The Euclidean metric is the function d : Rn × Rn → R
that assigns to any two vectors in Euclidean n-space x = (x1, ..., xn) and
y = (y1, ..., yn) the number:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2.

Another example of point to point metric is city-block3 metric.

Definition 5. The city-block metric is the l1-metric on R2, defined by

‖x− y‖ = |x1 − y1|+ |x2 − y2|.

Figure 1.1: An illustration compar-
ing the taxicab metric versus the Eu-
clidean metric on the plane: In the
taxicab metric all three pictured paths
(red, yellow, and blue) have the same
length (12) for the same route. In the
Euclidean metric, the green path has
length 6

√
2 ≈ 8.49, and is the unique

shortest path.4

2Also known as Phythagorean and as-crow-flies distance.
3Also called taxicab metric and Manhattan metric.
4https://commons.wikimedia.org/wiki/File:Manhattan_distance.svg
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Figure 1.1.1 explains visually differences of the two metrics defined.
The list of metrics (distances) is endless. In this section we introduced two

possibilities to define metrics between two points. We also saw that metric
used has a huge effect on outcome. So one could say that it is a researcher
privilege and curse to find the most appropriate function for his/her problem.

It is also clear that single points are not only objects of interest in our
world. Next we will look at situations where the rational way to solve a
problem is to calculate distance (or dissimilarity) between point and set of
points.

1.1.2 Point to set

Section 1.1.1 gave a brief overview of point to point metrics which are easy to
apprehend. When thinking of distance (dissimilarity) between objects people
often reduce their problem to point to point case. In everyday use when asked
what is the distance between our and our friends house we automatically
think of some point to point distance (we probably use Google Maps for
getting an answer). Or when some stranger stops you to ask how far is
nearest supermarket from here. It is fair to assume that answers provided by
Google Maps or similar systems are the ”right” ones. But in mathematical
sense supermarket or friend house is rather defined by set of points than a
single point. So it is important to understand what exactly is meant when
asked about distance or dissimilarity.

Before giving the definition of point-set distance we will define a structure
called metric space.

Definition 6. A metric space (X, d) is a set X equipped with a metric d.

Example 2. Let X = {x1, x2} and let dX = ( 0 2
2 0 ) be a metric on X. Then

(X, dX) is a metric space.

Definition 7. Given a metric space (X, d), the point-set distance d(x,A)
between a point x ∈ X and a subset A of X is defined as

inf
y∈A

d(x, y).

For any x, y ∈ X and for any non-empty subset A ∈ X we have the following
version of triangle inequality: d(x,A) ≤ d(x, y) + d(y, A)
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Example 3. Lets look at case where we want to know how far is our house
from some point in the sidewalk. See picture56 beside text. Let X = {x, a, b, c, d}
where x is a point in the sidewalk

x

a

b

c

d

and points a, b, c, d ∈ A are points
defining our house. First one has to
decide which metric to use. Lets use
Euclidean metric such that we get

dX =



x a b c d

x 0 30 38 39 29
a 30 0 10 14 10
b 38 10 0 10 14
c 39 14 10 0 10
d 29 10 14 10 0

.

Now we have the metric space (X, dX). Following definition 7 we get point-set
distance

d(x,A) = min {d(x, a), d(x, b), d(x, c), d(x, d)} = 29.

Now after seeing mathematical definition of point-set distance it is clear that
the distance from a point in sidewalk to the nearest supermarket depends
heavily on the points we use when defining the supermarket. Also we see
that in discrete case infimum is replaced with minimum.

In the next section 1.1.3 we define set-to-set distance and introduce one
of the most widely used set-to-set distances, the so-called Hausdorff distance.

1.1.3 Set to set

Section 1.1.2 focused on point-set distance. We start this section with defi-
nition of set-set distance.

Definition 8. Given a metric space (X, d), the set-set distance between
two subsets A and B on X is defined by

inf
x∈A,y∈B

d(x, y).

5http://res.freestockphotos.biz/vectors/16/16114-illustration-of-a-house-ve.svg
6https://pixabay.com/static/uploads/photo/2013/07/12/14/55/racing-car-149034_960_720.png
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Point-set distance is special case of set-set distance where subset A (or B)
has no more than one point. Also we see that the set-set distance would be
zero if two sets intersect or have a common point.

One of most widely used set to set distance is the Hausdorff distance
defined as:

Definition 9. Let X and Y be two non-empty subsets of metric space (M,d).
Hausdorff distance dH(X, Y ) is defined by value

dH(X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
,

where sup represents supremum and inf infinum.

Figure 1.2 explains visually the concept of Hausdorff distance between the
green line X and the blue line Y .

Informally, two sets are close in the Hausdorff distance if every point of
either set is close to some point of the other set. The Hausdorff distance is
the longest distance you can be forced to travel by an adversary who chooses
a point in one of the two sets, from where you then must travel to the other
set. In other words, it is the greatest of all the distances from a point in one
set to the closest point in the other set.[17]

Figure 1.2: Example of Hausdorff distance.7

The purpose of this section 1.1 has been to show readers a variety of
distances/metrics available. Another goal has been to familiarize the reader
with notions of distance between structures more complex than points.

7https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg
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Section 1.2 focuses on Gromow-Wasserstein distances which allow to mea-
sure distance/similarity between structures called metric-measure spaces.

1.2 Gromov-Wasserstein distance

In this section we have a closer look at Gromov-Wasserstein (GW) distance
- the backbone of this thesis. We start by relevant definitions and move step
by step toward the definition of GW distance. After giving all necessary
definitions we look at computational aspects of GW distance. Definitions in
this section are taken from [7].

We start with the definition of a metric-measure space.

Definition 10. A metric measure space or mm-space for short is a triple
(X, dX , µX) where (X, dX) is a metric space and µX is a Borel probability
measure on X.

In the finite case, µX reduces to a collection of non-negative weights, one for
each point x ∈ X, such that the sum of all weights equals 1. The intuitive
interpretation of µX(x) is that it measures the importance of x: points with
zero weights should not matter, points with lower values of the weight should
be less prominent than points with larger values of the weight [8, p. 7].

Definition 11. Let X and Y be sets. A function f : X → Y is surjective
if

∀y ∈ Y there exists x ∈ X s.t. f(x) = y.

Definition 12. [7, p. 426]. Given two metric spaces (X, dX) and (Y, dY ), a
map ϕ : X → Y is a isometry if ϕ is surjective and

dX(x, x′) = dY (ϕ(x), ϕ(x′))

for all x, x′ ∈ X. If X and Y are such that there exists an isometry between
them, then we say that X and Y are isometric.
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Definition 13. Subset of space is called compact if it is closed and bounded.

Example of compact and not compact intervals can be found in figure 1.3.

Figure 1.3: The interval A = (−∞,−2] is not compact because it is not bounded.
The interval C = (2, 4) is not compact because it is not closed. The interval
B = [0, 1] is compact because it is both closed and bounded.8

Definition 14. (Correspondance) For non-empty sets A and B, a subset
R ⊂ A×B is a correspondence (between A and B) if and only if

• ∀a ∈ A there exists b ∈ B s.t. (a, b) ∈ R,

• ∀b ∈ B there exists a ∈ A s.t. (a, b) ∈ R.

Let R(A,B) denote the set of all possible correspondences between sets A
and B.

Definition 15. (Measure coupling) Given two metric measure spaces (X, dX , µX)
and (Y, dY , µY ) one says that a measure µ on the product space X × Y is a
coupling of µX and µY iff

µ(A× Y ) = µX(A), and µ(X ×B) = µY (B) (1.1)

for all measurable sets A ⊂ X,B ⊂ Y . Denote by M(µX , µY ) the set of all
couplings of µX and µY .

8https://en.wikipedia.org/wiki/Compact_space
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1.2.1 From Hausdorff to Gromov-Wasserstein

This section gives all necessary definitions to comprehend the theory behind
computational technique described in 1.2.2. Ideas and definitions in this
section are paraphrased from [7]. Explanatory examples and comments come
from author if not stated otherwise.

Hausdorff distance

We defined Hausdorff distance in section 1.1.3 (see def. 9). Hausdorff dis-
tance was defined between two non-empty subsets X and Y of metric space
(M,d). In practical world there exists many cases where we want to compare
objects which ”live” in different spaces. One way to overcome this problem
is to define a common metric space for those objects. This is exactly the idea
behind Gromov-Hausdorff distance.

Gromow-Hausdorff distance

LetA andB denote two objects. In a nutshell, the idea of the Gromov–Hausdorff
distance is that in the absence of a common metric space where both A and
B are embedded, one first looks for a sufficiently rich, abstract metric space
Z that admits isometric copies A′ and B′ of A and B, respectively. Then,
a notion of dissimilarity D between A and B is computed and the arbitrari-
ness is eliminated by optimizing over the choice of Z, where one informally
calls the process by which this arbitrariness is eliminated gromovization. [7,
p. 435]

In literature one can find many ways to define Gromov-Hausdorff distance
(look [8, p. 8-12] and table 4 in [7, p. 439]). We go with the one relevant for
us. For now on, for metric spaces (X, dX) and (Y, dY ) let

ΓX,Y : X × Y×X × Y → R+

be given by
ΓX,Y (x, y, x′, y′) := |dX(x, x′)− dY (y, y′)| .

Definition 16. [7, p. 437] For compact metric spaces (X, dX) and (Y, dY )
the Gromov-Hausdorff distance is defined as

dGH(X, Y ) =
1

2
inf
R
‖ΓX,Y ‖L∞(R×R). (1.2)
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Gromov-Wasserstein distance

The idea behind Gromov-Wasserstein distance is to substitute the L∞ norm
in (1.2) by Lp norms, and correspondences by coupling measures. The result
of these substitutions will be a distance which is more amenable to prac-
tical computations but retains all desirable theoretical underpinnings. The
reason why optimization becomes easier is cause we pass from a combina-
torial problem to one that takes continues values. So, for p ∈ [1,∞) and
µ ∈M(µX , µY ) (see def. 15) let

Jp(µ) :=
1

2

(∫
X×Y

∫
X×Y

(ΓX,Y (x, y, x′, y′))pµ(dx× dy)µ(dx′ × dy′)
)1/p

(
=

1

2
‖ΓX,Y ‖Lp(µ⊗µ)

)
Definition 17. [7, p. 420] For 1 ≤ p ≤ ∞ one defines (Gromov-Wasserstein)
distance Dp between two mm-spaces X and Y by

Dp := inf
µ∈M(µX ,µY )

Jp(µ). (1.3)

Remark. (Relationship between (1.2) and (1.3)). Theorem 5.1 (b) in [7]
asserts that dGH(X, Y ) ≤ D∞(X, Y ).

Section 1.2.2 introduces computational technique for computing distance Dp.
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1.2.2 Computational technique

This section deals with practical computation of Dp. We used the computa-
tional technique described in [7, p. 466]. Algorithms leading up to estimation
of Dp are implemented in R programming language [11]. Functions used for
solving optimization problems 1.4 and 1.6 are in appendix A and appendix
B, respectively. All relevant functions are formed as R package gwDist which
is publicly available in our GitHub repository9.

Author acknowledges that this section is entirely build on the brilliance
of F. Mémoli whose ideas we are presenting and who helped us to formulate
alternate optimization problem 1.5.

For estimating the GW distance between two metric-measure spaces, fol-
lowing [7, p. 466], one has to solve optimization problem 1.4. The optimiza-
tion problem for computation of Dp is recast as follows:

Assume that finite mm-spaces X = {x1, ..., xn} and Y = {y1, ..., yn} with
metrics dX and dY, respectively, and probability measures µX and µY,
respectively, are given. Let

M :=
{
µ ∈ RnX×nY

+

∣∣0 ≤ µij ≤ 1
}
,

where {∑
j µi,j = µX(xi)∑
i µi,j = µY(yi)

for all 1 ≤ i ≤ nX, 1 ≤ j ≤ nY.

The number of linear constraints in M is (nX + nY). Let p ∈ [1,∞).
Then the problem that needs to be solved is

(Pp)

{
minµ∈MHp(µ)

Hp(µ) :=
∑nX

i,i′=1

∑nY
j,j′=1 µi,jµi′,j′|dX(xi, xi′)− dY(yj, yj′)|p.

(1.4)

Problem (Pp) is a quadratic optimization problem (QOP) with linear con-
straints. For solving this problem we used a technique10 relying on solving
successive linear optimization problems (LOP). After solving (Pp) we denote

9https://github.com/rendrikson/gwDist
10Technique described comes from e-mail exchange with F. Mémoli.
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the measure coupling that one obtains upon convergence of the method with
µ∗ and then estimate

Dp(X,Y) ' 1

2
(Hp(µ

∗))1/p.

Alternate optimization problem

In order to solve 1.4 one has to solve a non-convex optimization problem
with linear constraints:

F = min
{
UTGU, over U

}
,

where G is a fixed square matrix arising from dX and dY. U is a linearly
constrained vector (in our case the constraints are the ones arising from the
fact that U has to be a probability measure on the product space of two finite
spaces with certain marginals). This means that

U = (µ1,1, µ1,2, ..., µnX,nY)T .

For the alternate optimization problem one fixes U0 and for each n computes

Un+1 = arg min
{
UTGUn, over U

}
. (1.5)

Eventually this process should converge to a local minimizer.

We initialize our alternate optimization problem with a solution of (FLBp):

(FLBp)

{
minµ∈M Lp(µ)

Lp(µ) := 1
2

∑nX
i=1

∑nY
j=1 µij|sX, p(i)− sY,p(j)|

(1.6)

where

sX,p(i) :=

(
nX∑
k=1

µX(xk)(dX(xi, xk))
p

) 1
p

, for 1 ≤ i ≤ nX

sY,p(j) :=

(
nY∑
k=1

µY(yk)(dY(yi, yk))
p

) 1
p

, for 1 ≤ i ≤ nY.
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Problem (FLBp) is LOP with linear constraints.
Figure 1.4 describes the steps involved in computing GW distance. Linear

optimization problems discussed in this section were solved using R package
Rglpk11.

estimate

flb := solve((FLBp))
solve linear oprimization problem

initialize U0 := flb
for solving successive LOPs

μ* := solve((Pp))

solve ((Pp)) 
by solving alternate opt. problem 

Figure 1.4: Algorithm flow for estimating GW distance.

11Rglpk is R interface to the GNU Linear Programming Kit. GLPK is open source
software for solving large-scale linear programming (LP), mixed integer linear program-
ming (MILP) and other related problems. For more information look: https://cran.

r-project.org/web/packages/Rglpk/index.html

19

https://cran.r-project.org/web/packages/Rglpk/index.html
https://cran.r-project.org/web/packages/Rglpk/index.html


1.2.3 Estimation of computational needs

This section gives an overview of the computational limits our implementa-
tion of GW distance is facing. As mentioned before, we used R programming
language to implement computational technique described in 1.2.2. In R the
limit of each dimension of an array is set to 231− 1. For solving QOP 1.4 we
solved an alternate optimization problem 1.5. Let nX and nY be the num-
ber of points in mm-spaces X and Y, respectively. We see that matrix G in
optimization problem 1.5 has nX × nY rows and columns. Now considering
dimension limits set by R, we get that inequality n2

X × n2
Y ≤ 231 − 1 has to

hold. We used ATLAS cluster in High Performance Computing Center of the

1000

750

500

250

0

0 250 500 750 1000

size of first mm-space:

si
ze

 o
f 

se
co

n
d

 m
m

-s
p

a
ce

:

Figure 1.5: Computational limits with respect to the sizes of metric measure
spaces. Sizes of metric measure spaces are denoted with nX and nY. The black
curve shows maximum sizes of mm-spaces such that array length limit in R is not
exceeded. Gray line shows maximum sizes of mm-spaces such that memory limit
of 4GB is not exceeded. Table in upright of figure gives an estimations of memory
requirements and elapsed computing time of GW-distance.

University of Tartu for benchmarking our implementation. See figure 1.5 for
details. Time in figure 1.5 is mean elapsed time (over 10 runs) for computing
GW distance with function gwDist (see 2.2.4).
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1.3 Dimensionality reduction methods

For better understanding of the computed distance matrices, it it useful to vi-
sualize them. It helps us to capture emerging structures and clusters. In this
section we give a brief overview of dimensionality reduction and visualization
methods used in following sections.

Classical Multidimensional Scaling

Classical Multidimensional Scaling (cMDS) is a technique that displays the
structure of distance-like data as a geometrical picture. In particular, it
aims to find a configuration of points in a low-dimensional Euclidean space
such that their inter-point Euclidean distance respects as much as possible
their distance/dissimilarity in the original high-dimensional space. It is also
assumed that in the distance matrix there are no missing entries, i.e., the
distances between all pairs are measured. The input data for cMDS may
come as similarity matrix D or as raw data point coordinates. In latter case
Euclidean metric will be used to compute similarities of objects.

Sammon mapping

Sammon mapping [12] is a version of multidimensional scaling and thus an-
other algorithm that maps a high-dimensional space to a space of lower
dimensionality by trying to preserve the inter-point distances during the
projection. In particular, Sammon mapping tries to give more weight (im-
portance) to preserve the smaller distances in the original high-dimensional
space. Thus, Sammon mapping is considered a non-linear approach as the
mapping cannot be represented as a linear combination of the original vari-
ables. Sammon mapping aims to minimize the following error function:

E =
1∑
i<j d

∗
ij

∑
i<j

(d∗ij − dij)2

d∗ij
,

where d∗ij denotes distance between i-th and j-th objects in the original space
and dij denotes the distance between their projections.
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t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) [15] is a technique for
dimensionality reduction. It is a nonlinear dimensionality reduction tech-
nique that is particularly well suited for embedding high-dimensional data
into a space of two or three dimensions. Specifically, it models each high-
dimensional object by a two- or three-dimensional point in such a way that
similar objects are modeled by nearby points and dissimilar objects are mod-
eled by distant points. Examples, references, and details about t-SNE can
be found in t-SNE webpage [14].

Hierarchical clustering

Hierarchical clustering is a method of cluster analysis which tries to build
a hierarchy of clusters. Hierarchical clustering outputs a hierarchy (usually
presented as dendrogram), a structure that is more informative than the
unstructured set of cluster returned by flat clustering. A good overview of
hierarchical clustering algorithms is presented in [6].
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1.4 Data sets and data preparation

3D shape data

3D objects data base [13] contains 72 objects from seven different classes:
camel, cat, elephant faces heads, horse and lion. Each class comprises 10-11
different poses on the same object. These poses are richer than just rigid
isometries. For example, first row of figure 1.6a has two different poses of
class camel. The number of vertices (points) in the models range from 7K to
43K.

(a) poses

7K - 43K initial points

4,000 points

50 points

Euclidean farthest point sampling (fps)

Fps with distance computed using Dijkstra

discrete mm-space

+ Normalized distance metric inherited from Dijkstra
+ Probability measure based on Voronoi partition

(b) work flow

Figure 1.6: (a)12: first row has two poses of class camel. Rows 2-4 have one pose
of each class of objects. (b): diagram describing work flow from initial data to
mm-spaces.

We constructed metric measure spaces by following notes in [7, p. 469]. Fig-
ure 1.6b describes the work flow for obtaining mm-spaces from initial data.
We used R packages igraph to compute shortest paths using Dijkstra algo-
rithm. We made some slight modifications to the function kenStone from R

12Graphics copied from [7, p. 470].
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package prospectr when implementing a farthest point sampling. In particu-
lar, we enabled the function to use a random starting point.

Caenorhabditis elegans

Caenorhabditis elegans is free-living transparent nematode (roundworm),
about 1 mm in length, that lives in temperate soil environments. Its simple
structure, transparency, short life cycle and a small genome have made it one
of the most studied organism. C. elegans was the first multicellular organism
to have its whole genome sequenced, and as of 2012, the only organism to
have its connectome (neuronal ”wiring diagram”) completed. There are 302
neurons in the nervous system of C. elegans.[16]

We used the computational technique described in section 1.2.2 to esti-
mate a distance (GW distance) between the shapes of neurons of C. elegans.
We used publicly available data from [1, 4, 9] which consists of 3D mor-
phology reconstructions of the 302 neurons. Due to computational issues we
excluded neurons named PVDR and PVDL and computed distances between
the shapes of 300 neurons. Neurons in the data set have 9 to 102 sample
points describing their morphology. Each sample point have a structure iden-
tifier (soma, axon, etc.), 3 spatial co-ordinates, radius, and the number of
parent sample.

We used all sample points in the process of obtaining mm-spaces for
neurons Xk, k = 1...300. For acquiring mm-spaces :

• we found Euclidean distance between points defined by 3 spatial co-
ordinates;

• next we used parent sample information to define graph G(Xk) with
vertex set Xk;

• then we found intrinsic distance d(k) using Dijkstra’s algorithm;

• and finally we normalized distance d(k) by dividing it with maximum
value of d(k).

At this point we had metric spaces (Xk, d
(k)), k = 1...300. After that we

equipped each metric space (Xk, d
(k)) with a uniform probability measure

µ(k). As a result we got for each neuron Xk discrete mm-space (Xk, d
(k), µ(k)).
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Newcomb fraternity

Newcomb Fraternity data [10] is publicly available data which consists of
15 matrices. Each matrix represents weekly sociometric preference rankings
from 17 men attending the University of Michigan in the fall of 1956. Each
participant had to rank all other 16 participants from best friend to least
friend. Data was collected from week 1 to week 16 (except for week 9). First
two rows of 3rd matrix can be found in table 1.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 13 14 9 6 4 16 11 8 15 3 7 2 1 12 10 5
2 8 0 13 1 6 10 2 15 14 16 12 5 7 4 11 9 3

Table 1.1: Sample of 3rd matrix of Newcomb fraternity data. We read it as
follows: in 3rd week first participant ranked 14th participant as his best friend,
13th as is second best friend etc. Second participant ranked 4th participant as his
best friend, 7th as his second best friend and 10th as least friend.

Each matrix describes friendship structure of 17 participants. Our goal is to
use GW distance to measure the (dis)similarity of friendship structures over
the 16 weeks period. We assume that weeks that are closer to each other
(e.g week 5 is closer to week 7 than week 2) have more similar friendship
structures and we expect the friendship structure to crystallize after some
time.

We used the Canberra distance for measuring (dis)similarity of subjects
based on the ranks given. The idea is that people who give high and low
ranks to same group of people are more similar to each other. The Canberra
distance d between vectors p and q is given as follows:

d(p,q) =
n∑
i=1

|pi − qi|
|pi|+ |qi|

,

where p = (p1, ..pn) and q = (q1, ..qn). In our case p and q are e.g. two rows
presented in table 1.1. Lets M (k) denote distance matrices computed using
the Canberra distance.

Next we used single linkage hierarchical clustering on each matrix M (k).
Hierarchical clustering methods give outputs in the form of dendrograms.
These dendrograms can be represented as ultrametrics, which are a special
type of metrics (see def. 3). Let d(k), k = 1..15 denote the obtained ultramet-
rics. We used these ultrametrics to form mm-spaces (Xk, d

(k), µ(k)), where
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points Xk are identification numbers of each participant in week k and µ(k)

is the uniform probability measure.

Social Evolution data

MIT Social Evolution13 experiment [5] tracks the everyday life of a whole
undergraduate dormitory with mobile phones. The Social Evolution exper-
iment covered the locations, proximities, and phone calls of more than 80%
of residents who lived in a USA university dormitory used, as captured by
their cell phones from October 2008 to May 2009. This dormitory has a pop-
ulation of approximately 30 freshmen, 20 sophomores, 10 juniors, 10 seniors
and 10 graduate student tutors.

Data collection of this experiment includes 9 data sets (check 13 for de-
tails). We used data set proximity.csv for our analysis.

Proximity data

Proximity data has information about bluetooth signals sent from one mobile
phone to another. Data set originally consisted of 2124564 observations and
4 variables. First three rows of proximity.csv and description of variables
are presented in table 1.2.

user.id remote.user.id.if.known time prob2
58 42 2007-09-05 14:02:11 0.034
58 49 2007-09-05 14:02:11 0.000
58 54 2007-09-05 14:02:11 NA

Table 1.2: First three lines of data set proximity.csv. Bluetooth signal sent
from whose mobile phone (user.id) and received by whose mobile phone (re-
mote.user.id) and time, indicating the sender’s mobile phone was within 10 meters
of the receiver’s mobile phone at the time of the record. Variable prob2 is prob-
ability for the two person to be on the same floor in each record, estimated from
Wi-Fi RSSI to access points.

We used observations between dates 29.09.2008 - 31.05.2009 and times 08:00
- 19:00. Also we excluded cases where prob2 ≤ .5.

Our goal was to form 37 mm-spaces (one for each week). We started by
finding proximity of subjects A and B by counting how many times a signal

13http://realitycommons.media.mit.edu/socialevolution.html. 07.10.2015
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was sent from subject A phone to subject B phone or vise versa. As a result
we got 37 80×80 matrices M (k). Thus, an element m

(k)
ij represents a number

of signals sent from A to B plus signals sent from B to A in week k.
Then columns and rows of matrix M (k) consisting of only zeros (subjects

who have not been close to other subjects) were removed. By then we had
37 similarity (proximity) matrices. To get distance matrices we replaced

elements m
(k)
ij with 1/m

(k)
ij . It is worth noting that relative distance changes

when taking inverse. The difference between 3 & 4 and 4 & 5 is one unit.
The difference between 1

3
& 1

4
and 1

4
& 1

5
is 0.08(3) and 0.05, respectively.

This means that each extra signal sent or received becomes less and less
important.

Next, for computational reasons infinities in the distance matrices (which
emerged from dividing by 0) were replaced by 1.5 ∗max. max in this case is
1. The constant (1.5) was chosen such that distance between subjects who
have not been around each other (proximity = 0) would be 150% of distance
between people who have been around each other in one occasion (proximity
= 1).

Later, we normalized these matrices by dividing each entry of each matrix
with 1.5 (max of each matrix) and used Dijkstra algorithm for getting metrics
out of these distance matrices. We denote these metrics as d(k).

Finally, mm-spaces (Xk, d
(k), µ(k)) were formed, where Xk is a set of ”ac-

tive” subjects identification numbers in week k and µ(k) is uniform probability
measure.

World trade

World trade14 data [3] has information about world trade flows from 1962-
2000. Data set has 23949 rows and 41 columns. Each row has values of
importer, exporter and volume (in thousands of US dollars) for years 1962-
2000 (see Table 1.3).
We reshaped this data into 39 matrices such that each matrix contains
import-export information of one of the year 1962-2000. Each matrix had as
many rows and columns as number of countries whose import + export > 0
in a given year. Our goal was to compare these matrices based on GW-
distance. In order to directly use GW-distance we had to first describe the
data as mm-spaces (def. 10).

14http://cid.econ.ucdavis.edu/data/undata/wtf_bilat.zip. 06.10.2015
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importer exporter value1962 value1963 ... value2000

Estonia Finland - - ... 1377611
Finland Estonia - - ... 940449
Sweden USA 316203 340684 ... 4849563
USA Sweden 169279 181301 ... 9896792

Table 1.3: World trade data example.

When forming mm-spaces our starting point was that countries that have
more impact to each other should be closer (in some sense) to each other.
We started by computing impact of country A to country B using formula
1.7.

impact(A,B) =
import(A,B) + import(B,A)

allT raffic(B)
. (1.7)

As a result we got 39 impact matrices I(k), k = 1962...2000 (see table 1.4).

Estonia Finland Sweden USA

Estonia 0.00 0.03 0.01 0.00
Finland 0.28 0.00 0.05 0.00
Sweden 0.12 0.09 0.00 0.01
USA 0.07 0.07 0.10 0.00

Table 1.4: Submatrix of impact matrix I(2000). We see that in year 2000 Finland
had very big impact to Estonia. 28% of all Estonian traffic in 2000 was with
Finland.

Our aim was to obtain mm-spaces from impact matrices. Specifically, impact
matrices were the source of metrics.

We started by taking inverse of impact matrices, summing lower and
upper matrix triangles, and dividing this sum by 2. This allowed us to get
(in some sense) distances between countries.

Next we replaced infinities (emerging from taking inverse from zero) in
those matrices with 1.05×(maximum value of current matrix). The constant
1.05 was chosen because the distance between countries who do not impact
each other directly and the distance between countries who have very low
impact to each other (in average) should be almost same.

Since the elements of these matrices had big discrepancies (some very big
values) we took logarithm of all elements and normalized them by dividing
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with the maximum value. Let d̂(k) denote these distance matrices.
Next we used Dijkstra algorithm to get obtain a metric distance out of

the distance matrices d̂(k). Finally we normalized these metrics by dividing
by the maximum value of each specific metric. As a result we obtained the
set of metrics d(k)

Finally, mm-spaces (Xk, d
(k), µ(k)) were formed, where Xk is a set of coun-

tries (whose all import plus all export is bigger than 0) in year k and µ(k) is
uniform probability measure.
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Chapter 2

Results

2.1 Validation on 3D Shape Objects

After implementing the computational technique described in 1.2.2 we aimed
to validate our implementation by reproducing results provided in section 8.2
of [7, p. 469]. We used the publicly available triangulated objects database
(see 1.4). This database consists of 72 objects. These objects represent 7
different classes: camel, cat, elephant, faces, heads, horse and lion .
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Figure 2.1: Left panel: Gromov-Wasserstein distance matrix ((dij)). Right panel:
estimated confusion matrix C for the 1-nearest neighbor classification problem.

After forming mm-spaces (see Methods section 1.4) we computed the ma-
trix ((dij)) such that dij = D1(Xi,Yj) and solved the same classification task
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as in [7, p. 470]. Left panel of figure 2.1 represents matrix ((dij)) as estimated
by our implementation. Right panel of figure 2.1 shows our confusion matrix
C, where Cij equals the probability that the classifier will assign class j to
an object when the actual class was i. Results reflecting classification power
of computed distances are in table 2.1.

Pe(((dij))) Pe(FLB1)
Original paper 0.025 0.141

Our results 0.029 0.231

Table 2.1: Comparison of probability of misclassification (Pe). ”Original paper”
indicates to results provided in [7]. ”Our results” are results extracted from our
own analysis using our implementation.

When visually comparing the matrices ((dij)) from the original paper
and from our figure 2.1 one can detect some small discrepancies. The most
eye-catching is the estimated dissimilarities between elephants and camels,
which in the original paper seem to be relatively big, but in our case the dis-
tances seem to be rather medium. Nevertheless, the structures of mentioned
matrices look very similar.

Probability of misclassification computed on ((dij)) (fig. 2.1) differs by
0.004 from probability of misclassification reported in original paper. Clas-
sification power of FLB1 in original paper outperforms our result by 0.09.
See table 2.1 for more detail.

Altogether, it is fair to assume that our implementation of the computa-
tional technique described in [7, p. 466] works as it should.
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2.2 Applications on real world networks

2.2.1 Caenorhabditis elegans

We estimated the GW distance between the shapes of 300 neurons and then
applied multidimensional scaling (MDS) and hierarchical clustering algo-
rithms to inspect for clusters in the shapes of neurons. Precise steps about
how we formed metric measure spaces and the data set in general are pre-
sented in Methods section 1.4.

From the set of mm-spaces (Xk, d
(k), µ(k)) we computed the GW distance

matrix ((dij)), such that dij = D1(Xi, Xj). After acquiring distance matrix

RMFL

RMER

RICR

DD3

DD1

DA7

Figure 2.2: Left panel : GW distance between shapes of different neurons. Num-
bers in each shell represent GW distance between two neurons. On top of distance
matrix is dendrogram showing which neurons are more similar to one another
based of GW distance computed between shapes of neurons. Right panel : shapes
of 6 neurons.

((dij)) we applied hierarchical cluster analysis to explore formed structures.
Figure 2.2 demonstrates a sample of neurons and the GW distance between
them. We observe that neurons that look alike in visual inspection e.g. DD3
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& DD1 have a smaller GW distance than neurons that do not look similar e.g
RMFL & DA7. GW distance between mentioned pairs of neurons is 0.067
and 0.123, respectively.

We also compared these formed structures with known neuron groups.
See figure 2.3 for details.
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IL1VL
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SIBVR
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Motoneuron

Internneuron

Pharyngeal

Figure 2.3: Left : tree of subset of 150 neurons. Five cluster using the clustering
method ”ward.D”. Right : zoom-in to one of the leafs. Colors show neuron types.
There are 10 types of neurons in connectome of C elegans.

Right side of figure 2.3 depicts one leaf of tree obtained using hierarchical
cluster analysis. We also tried different multidimensional scaling algorithms
(cMDS, MDS Sammons, t-SNE) on matrix ((dij)) to explore emerging clus-
ters but we did not discover any explicit cluster by visual inspection. Nev-
ertheless, being able to compare neurons on basis of neurons shape can be a
useful tool in the hands of experts.

2.2.2 Newcomb Fraternity

Newcomb Fraternity data [10] consists of 15 matrices. Each matrix represents
weekly sociometric preference rankings from 17 men attending the University
of Michigan in the fall of 1956. See section 1.4 for a detailed description of
data and how we formed the associated metric measure spaces.

After forming a set of mm-spaces (Xk, d
(k), µ(k)) we computed the GW

distance matrix ((dij)) such that dij = D1(Xi,Yj), where 1 ≤ i < j ≤ 17.
Left panel of figure 2.4 is a representation of ((dij)). GW distance matrix
((dij)) was then given as an argument to solve the single linkage hierarchical
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clustering problem. See right panel of figure 2.4 for a graphical representation
of the dendrogram obtained.
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Figure 2.4: Similarity of friendship structures during 16 week period. Distance
matrices based on different techniques. Left panel : matrix ((dij)). Right panel :
dendrogram of distance matrix ((dij)).

Our hypothesis was that weeks that are closer to each other have a more sim-
ilar friendship structures and we expected the friendship structure to crys-
tallize after some time. Visual evaluation of figure 2.4 seems to confirm our
hypothesis to some extent. We see that weeks 1-5 differ substantially from
later weeks. Also it seems that after week 9 there was a little ”restart” pos-
sibly implying that friendship structures in subjects level were re-evaluated.

2.2.3 MIT mobility data

MIT Social Evolution experiment [5] tracks the everyday life of a whole un-
dergraduate dormitory with mobile phones. The Social Evolution experiment
covered the locations, proximities, and phone calls of dormitory residents. We
used proximity data between dates 29.09.2008 - 31.05.2009 and times 08:00
- 19:00 for our analysis. Proximity data has information about bluetooth
signals sent from one mobile phone to another. Data description of MIT
mobility data and details about how we form the associated metric measure
spaces can be found in Methods section 1.4.
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After obtaining the set of metric measure spaces (X, d(k), µ(k)) matrix
((dij)) was computed such that dij = D1(Xi,Yj). See figure 2.5 for graphical
representation of ((dij)).

To visualize any emerging clusters under our notion of distance, we used
different multidimensional scaling techniques on the GW distance matrix
((dij)). Here, we show the plot produced by using the t-SNE method. Right

Network size:

1-29

30-40

40-50

Figure 2.5: Left panel: matrix ((dij)). Right panel: t-SNE projection of matrix
((dij)). Numbers 39-53 represent weeks 39-53 of year 2008 and numbers 01-22
represent weeks 1-22 of year 2009.

panel of figure 2.5 is a projection of distance matrix ((dij)) using t-SNE
algorithm.

It is also worth considering impact of the mm-space size as a contributor
of forming clusters. Metric measure spaces sizes mainly range from 30-49.
Outliers are weeks 39, 52, 53 and 22 by having 2,3,4 and 18 points, respec-
tively. Network sizes are presented in right panel of figure 2.5.

Visual inspection of right panel of figure 2.5 indicates the presence of two
clearly distinctive cluster. First cluster consists of weeks 52, 53, 6, 7, 8, 9, 11,
14, 17 and 18. The components of this cluster can be labeled as end of year
(52, 53), beginning of new semester (6, 7, 8, 9), spring break (14) and first
finals (17, 18; also Patriots day - official state holiday, was in week 17). It
seems that the weeks in this cluster differ from general study weeks. Second
cluster is fairly broad and we label it as ”general study weeks” cluster.
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2.2.4 World trade data

World trade data contains information about world trade flows from 1962-
2000. Overview of data and details concerning metric measure spaces are
presented in section 1.4. The metric measure spaces (Xk, d

(k), µ(k)) were built
using the GW distance matrix ((dij)) such that dij = D1(Xi,Yj). See left
panel of figure 2.6 for a graphical representation of ((dij)).

Network
size:

Figure 2.6: World trade flows from 1962 to 2000. Left panel : matrix ((dij)).
Right panel : projection of distance matrix ((dij)) using t-SNE. Numbers 62-99
represent years 1962-1999. Number 00 represents year 2000.

Next, we applied cMDS, Sammon mapping, and t-SNE algorithms on
distance matrix ((dij)) to explore emerging clusters in two dimensional space.
t-SNE seemed to do the best job in producing more clearly distinguishable
clusters. See right panel of figure 2.6 for a graphical representation of t-SNE
embeding of the distance matrix ((dij)).

We observe that financial networks from 1962 to 2000 form three clearly
distinguishable clusters:

1) years 1962 - 1983;

2) years 1984 - 1990;

3) years 1991 - 2000.

These clusters make sense since we expect consecutive years to be close to
each other. One can associate these clusters with changes happening in the
world. In 80s and 90s many countries obtained independence. One way to
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monitor the changes happening in world trade networks is to look at networks
sizes. We noted that network sizes differ by clusters. It is fair to assume that
additional countries also change, in many aspects, the internal structure of
networks.

Nevertheless, we also note that the emergence of these clusters could be
affected by data collection or by the technique used for forming the metric
measure spaces. A more thorough analysis will be required to fairly interpret
the results.
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Discussion

In this thesis we introduced one version of the Gromov-Wasserstein (GW)
distance. In particular, we implemented the Gromov-Wasserstein distance
(which bounds the Gromov-Hausdorff distance) in R programming language.
Given the technicalities involved in the implementation, we hope that by up-
loading our implementation we help to add the GW distance to the common
toolkit of distances for data analysis. We also estimated the memory require-
ments of our implementation and benchmarked the time our implementation
takes for computing GW distance between two objects.

In the second part of the thesis we applied the resulting algorithm to-
gether with visualization and clustering techniques to compare and study
the structure of a set of networks.

We successfully discovered some significant patterns when applying the
algorithm to biological, social, and economical data sets.

From the dimensionality reduction methods we compared for visualiz-
ing distance matrices, the t-Distributed Stochastic Neighbor Embedding (t-
SNE) seems to give most desirable results (in sense of clarity of formed clus-
ters). Nevertheless, it is important to remember that different notions of dis-
tance/dissimilarity are possible for any network and that they might change
the results.

A strong limitation when using the strict formalism of GW distance is
that it applies to metric measure spaces. For many networks their internal
notions of dissimilarity or distance do not conform to a metric. However,
numerical experiments suggest that when applied to distance matrices that
do not respect the triangle inequality, the GW formalism still provides a
useful notion to compare and discriminate between them.

In future, it is important to improve our implementation of GW dis-
tance so that larger networks could be compared and studied. For example,
metabolic, proteomic, and other biological networks typically range in the
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few thousand of nodes. Once we can overcome the memory limitations set
by our implementation, we will be able to compare the global internal struc-
tures of any of these types of networks for many different organisms.
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Conclusion

In this thesis we have shown that Gromov-Wasserstein distance is a powerful
tool for determining (dis)similarity of complex networks. When coupling this
notion of distance with clustering and dimensionality reduction techniques
it is possible to visualize the structure of a set of real networks. We applied
our analysis to sets of networks from domains ranging from social sciences,
economics, and biology.

We also noted that in many cases forming objects as metric measure
spaces is not trivial or natural and may require some extra effort from re-
searchers. We also went over the computational issues concerning our im-
plementation which implied that computing GW distance between larger
networks (>200 nodes) is computationally demanding.

In the near future it will be very interesting to apply the GW distance
to larger networks, a challenge that will drive us to improve the numerical
aspects of our implementation.
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A Function for computing GW distance

library(Rglpk)

gwDist <- function(initial_values,d_X,d_Y,mu_X,mu_Y, tol = 0.001, p = 1)

{
# change in objective function

change <- 1

G <- mat_G(d_X = d_X, d_Y = d_Y)

U0 <- initial_values

res <- c()

# first

obj <- G %*% U0

mat <- mu_constraints(mu_X,mu_Y)

dir <- rep("==", nrow(mat))

rhs <- c(mu_X,mu_Y)

bounds <- list(lower = list(ind = c(1:ncol(mat)),

val = c(rep(0,ncol(mat)))),

upper = list(ind = c(1:ncol(mat)),

val = c(rep(1,ncol(mat)))))

result <- Rglpk_solve_LP(obj = obj, mat = mat, dir = dir,

rhs = rhs, max = FALSE, bounds = bounds)

res <- c(res,result$optimum)

# iterative part

while(tol < change)

{
obj <- G %*% result$solution

result <- Rglpk_solve_LP(obj = obj, mat = mat, dir = dir,

rhs = rhs, max = FALSE, bounds = bounds)

res <- c(res,result$optimum)

change <- abs(tail(res,2)[1] - tail(res,2)[2])

}

distance <- 0.5*H_mu(mu = result$solution, X ,Y,d_X,d_Y,mu_X,mu_Y,p = p)

return(list("optimum" = distance, "steps" = res))

}
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B Function for optimizing FLB

require(Rglpk)

?Rglpk_solve_LP

solve_FLB_Rglpk <- function(X, Y, d_X, d_Y, mu_X, mu_Y, p = 1)

{
obj0 <- L_p(X,Y,d_X,d_Y,mu_X,mu_Y,p = p)$obj_coef

mat0 <- mu_constraints(mu_X,mu_Y)

dir0 <- rep("==", nrow(mat0))

rhs0 <- c(mu_X,mu_Y)

bounds0 <- list(lower = list(ind = c(1:ncol(mat0)),

val = c(rep(0,ncol(mat0)))),

upper = list(ind = c(1:ncol(mat0)),

val = c(rep(1,ncol(mat0)))))

result <- Rglpk_solve_LP(obj = obj0, mat = mat0, dir = dir0,

rhs = rhs0, max = FALSE, bounds = bounds0)

# status 0 ==> optimal solution found

return(result)

}
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C Other necessary functions

library(Rcpp)

Rcpp::cppFunction('NumericMatrix mat_G(NumericMatrix d_X, NumericMatrix d_Y) {
NumericMatrix G(d_X.nrow()*d_Y.nrow(),d_X.nrow()*d_Y.nrow());

for (int i = 0; i < d_X.nrow(); i++) {
for (int j = 0; j < d_Y.nrow(); j++) {
for (int ii = 0; ii < d_X.nrow(); ii++) {
for (int jj = 0; jj < d_Y.nrow(); jj++) {
G(i*d_Y.nrow()+j,ii*d_Y.nrow()+jj) = fabs(d_X(i, ii) - d_Y(j, jj));

};
};
};
};
return(G);

}
')

library(Rcpp)

Rcpp::cppFunction('double H_mu_typed(NumericMatrix mu, NumericMatrix d_X,

NumericMatrix d_Y) {
double value=0;

value = 0;

for (int i = 0; i <d_X.nrow(); i++) {
for (int ii = 0; ii < d_X.nrow(); ii++) {
for (int j = 0; j < d_Y.nrow(); j++) {
for (int jj = 0; jj < d_Y.nrow(); jj++) {
value = value + mu(i, j) * mu(ii, jj) * fabs(d_X(i, ii) - d_Y(j, jj));

};
};
};
};
return(value);

}
')

H_mu <- function(mu,X ,Y,d_X,d_Y,mu_X,mu_Y,p = 1)

{
d_X <- as.matrix(d_X)

d_Y <- as.matrix(d_Y)

mu <- matrix(mu, nrow = nrow(d_X), byrow = TRUE)

return(H_mu_typed(mu = mu, d_X = d_X, d_Y = d_Y))

}
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mu_constraints <- function(mu_X,mu_Y)

{
mu <- matrix(NA, nrow = length(mu_X),

ncol = length(mu_Y), byrow = T)

mu_pos <- matrix(c(1:length(mu)), byrow = T,

nrow = length(mu_X), ncol = length(mu_Y))

c_mat <- matrix(0,nrow = length(mu_X) + length(mu_Y),

ncol = length(mu))

for(i in 1:(length(mu_X) + length(mu_Y)))

{
if(i <= length(mu_X))

{
c_mat[i,c(mu_pos[i,])] <- 1

}
else

{
c_mat[i,c(mu_pos[,i-length(mu_X)])] <- 1

}
}
# returns matrix with n_X + n_Y rows (nr of linear constraints) and

# n_X * n_Y columns (nr of mu_ij's)

# each row satifies left side of one linear constraint

# right side = mu_X(1), mu_X(2), ..., mu_Y(1), mu_Y(2), ...

# each column marks one of mu_ij (mu_11,mu_12, mu_13, ..., mu_21, ... )

return(c_mat)

}

L_p <- function(X,Y,d_X,d_Y,mu_X,mu_Y, p = 1)

{

sXY <- s_XY(X,Y,d_X,d_Y,mu_X,mu_Y, p = p)

s_X <- sXY$s_X

s_Y <- sXY$s_Y

S <- matrix(NA,nrow = nrow(X), ncol = nrow(Y))

for(i in 1:nrow(X))

{
for(j in 1:nrow(Y))

{
S[i,j] <- abs(s_X[i] - s_Y[j])

}
}
S <- t(S)

return(list("obj_coef" = c(0.5 * S)))

}
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s_XY <- function(X,Y,d_X,d_Y,mu_X,mu_Y, p = 1)

{
d_X <- as.matrix(d_X)

s_X <- rep(NA,nrow(X))

for(i in 1:nrow(X))

{
s_X[i] <- (mu_X %*% (d_X[,i])^p)^(1/p)

}

d_Y <- as.matrix(d_Y)

s_Y <- rep(NA,nrow(Y))

for(i in 1:nrow(Y))

{
s_Y[i] <- (mu_Y %*% (d_Y[,i])^p)^(1/p)

}
return(list("s_X" = s_X, "s_Y" = s_Y))

}
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