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Introduction 

Flooding is a global environmental threat, causing large amounts of economic loss every year. 

According to Jongman, et al. (2014), annual economic casualties caused by floods may exceed $1 

trillion by 2050. Recent changes in climate make flood mapping a valuable tool, as floods occur more 

often and cover larger areas than in previous decades (Kogan, et al., 2011). Remote sensing instruments 

provide a possibility to monitor wide-scale flood areas in regions where in situ measurements are often 

difficult to undertake. Optical remote sensing capabilities for flood monitoring are limited, as flooding 

often occurs during rainy seasons when clouds cover the ground. Synthetic aperture radar (SAR) 

provides a capability to monitor floods during virtually all weather conditions, and is therefore superior 

to optical systems (Townsend, 2002). 

Due to its flat terrain and temperate climate, large areas in Estonia are subjects to floods several times 

every decade (Estonian Ministry of Environment, 2007). The flooding occurs mainly in large river 

drainage basins and affects mostly wetland and forested areas. The floods in Estonia have not been 

mapped in terms of remote sensing before, with the exception of Voormansik et al. (2014), where a 

detailed flood map of the drainage basin of river Emajõgi in central Estonia in April, 2010 was 

produced.  

The objective of this study is to map annual floods in Alam-Pedja Nature Reserve in the period of 

2005-2011 using SAR remote sensing imagery. The results of this thesis are based on data collected 

by ASAR, a remote sensing instrument on the European Space Agency’s (ESA) Envisat satellite, which 

was operational from 2002 to 2012 (ESA, 2014a).  

The strategy for algorithm selection for the flood area delineation was to provide a compromise 

between information reliability and rapidity of delivery, to analyse the possibility for rapid flood map 

production during critical flood events. Therefore, a supervised thresholding algorithm, used widely 

for flood mapping (e.g. Bates & De Roo, 2000; Townsend, 2002), was used in this study. 

The paper is structured as follows. Section 1 gives an overview of flood monitoring needs and SAR 

capabilities, Section 2 describes the data and methods used for this study. In section 3, the results are 

presented. Section 4 discusses the results and challenges of the study, and in Section 5, conclusion of 

the study is provided.  
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1. Flood mapping 

1.1. The need for flood mapping 

Flooding is a major environmental threat that has caused wide-scale human and economic casualties 

around the world in the past years (Van der Sande, et al., 2003). Large-scale floods cause destruction 

of man-built infrastructures and limit access to natural resources (Kuenzer, et al., 2013). Documenting 

flood extents can inform communities about local flood risks to help property owners mitigate their 

economic losses, and direct governments into developing disaster mitigation measures and water 

management programs (Smith, 1994).   

Additionally, boreal wetlands play an important role in the global carbon and water cycle, providing 

an important sink for atmospheric CO2 (Griffis, et al., 2000). Global soil carbon represents 60% of total 

carbon on Earth, and approximately one third of the global soil carbon is stored in boreal wetlands. 

General atmospheric circulation models forecast the increase in temperature and decrease in soil 

moisture in high latitudes, which will accelerate the decomposition of organic material and the flow of 

CO2 to the atmosphere (Griffis, et al., 2000). Furthermore, floodplains provide habitat and breeding 

environment for fish and other aquatic species (Kuenzer, et al., 2013). Therefore, providing periodical 

overview of wetlands remains important for conservation of the environment.  

Large-scale flood areas are very difficult to map using in situ observations, and due to time-constraints 

in emergency situations, fast acquisition of information is needed (Martinis, et al., 2009). Increasing 

flood mapping capabilities can be offered by satellite remote sensing instruments, which provide a 

large-scale, near-real time overview of geographical regions. Satellite-based flood maps can be used 

effectively for disaster prediction and mitigation, water management and environmental awareness 

(Smith, 1997). 

1.2. Floods and flood mapping in Estonia 

Estonia is subject to floods several times a decade. There are two types of regions in Estonia which are 

at significant risk of flooding: coastal areas where the risks are associated with rising water levels in 

rivers, lakes or the sea, and mainland areas where extensive amount of water produced by rapid 

snowmelt or heavy rains gets trapped around rivers and reservoirs (Estonian Ministry of Environment, 

2007). 

Flood situations in the risk areas need to be recorded and mapped, as they might endanger the people, 

their property and economy. According to the Estonian Ministry of Environment (2007), in January 
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2005, a storm in Estonia caused damage worth over 47 million euros, of which a large amount was 

caused by floods. To minimize the damage to the economy and environment in the future, the European 

Parliament and European Council developed a flood risk assessment and management directive 

(2007/60/EC) in October 2007. The directive states that flooding in each risk area needs to be assessed 

and the flood areas mapped (Estonian Ministry of Environment, 2007).  

In 2011, the Estonian Ministry of Environment pointed out 20 highly populated areas in Estonia that 

are at significant risk of flooding. For each area, potential flood extents were modelled using the Digital 

Elevation Model (DEM), provided by Estonian Land Board (Estonian Ministry of Environment, 2013). 

However, previous studies (e.g. Nardi, et al., 2013) show that actual floods may differ from the DEM-

based models. This is likely due to the fact that the water level rises and lowers very fast during the 

springtime floods, and can be affected by melting snow, precipitation, wind, porosity of the surface 

and other factors.  

1.3. Flood monitoring with SAR 

1.3.1. SAR overview 

SAR is an active microwave remote sensing instrument, which can provide high-resolution images of 

the Earth’s surface during both day and night and virtually under all weather conditions (Hess, et al., 

1990; Wang, et al., 1995). The sensor’s ability to penetrate cloud cover and detect water under forest 

canopy makes an airborne or satellite SAR system a powerful tool for flood monitoring, as floods often 

associate with heavy rain, and suffuse forested areas around rivers and wetlands, where it is almost 

impossible for optical remote sensing instruments to image the water (Townsend, 2002). Although 

flood and wetland mapping with optical remote sensing has also been very common (e.g. Johnston & 

Barson, 1990; Enslin & Sullivan, 1974), SAR systems are superior to optical systems due to the aspects 

mentioned above. The first algorithms for flood detection with SAR were introduced in the early 1980s 

(e.g. Lowry, et al., 1981) and have been developed further ever since. Nowadays SAR systems are 

widely used for flood mapping (Martinez & Toan, 2007), and prove especially useful in small- to 

medium-sized drainage basins where inundation often recedes before meteorological conditions 

improve (Schumann, et al., 2007; Martinis, 2010). 

1.3.2. Polarization of SAR signal 

The polarization of a SAR instrument refers to the orientation of the transmitted SAR beam’s electric 

field vector. In case of the vector oscillating in the horizontal direction, the beam is said to be “H” 

polarized. In case of oscillation perpendicular to the horizontal direction, the beam is known as “V” 
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polarized. Polarization is measured for both transmitted and received SAR signal, giving it four 

possible combinations (HH, VV, HV, VH) (Centre for Remote Imaging, Sensing & Processing, 2001). 

SAR polarization is a key factor in flood detection. It is proven in several previous studies (e.g. 

Baghdadi, et al., 2001; Henry, et al., 2006) that HH-polarized images are considered more adequate for 

flood detection than VV- or cross-polarized images. This is mostly due to the fact that HH-polarization 

gives the highest distinction in backscatter values between dry and wet forested areas. However, 

combining different polarizations can lead to improved flood maps, as HV polarization is less sensitive 

to surface conditions, especially wind-induced roughness (Henry, et al., 2006). 

Although Envisat ASAR, the instrument used for this study, produced data in several polarization 

configurations (including HH, VV, HH/HV, VV/VH), only HH-polarized images were used in this 

study due to no availability of other data in the focus period.  

1.3.3. Open Water 

Many flood mapping SAR algorithms model open water as a perfect smooth surface which reflects 

most radiance away from side-looking SAR sensors (Figure 1). This generates virtually zero 

backscatter, making open water appear dark on a SAR image (Sarti, et al., 2001; Horritt, et al., 2003). 

Such areas can be detected due to the contrast with the surrounding rougher areas which generate more 

backscatter and therefore appear brighter on the images (Martinis, et al., 2009).  

 
Figure 1. SAR signal scattering mechanism from a perfectly smooth water surface. 

According to Drake & Shuchman (1974), short wavelengths show a higher contrast ratio between land 

and water than longer wavelengths, as the electromagnetic radiation only interacts with objects same 

or larger than its wavelength. Therefore, the longer the wavelength, the smaller the number of possible 

rough features on land that cause backscatter. Therefore, smooth land surfaces appear dark and similar 

to water on longer wavelength images. Consequently, shorter wavelength SAR images appear to be 
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more suitable for open water detection purposes than those of longer wavelength. Envisat ASAR 

provides images in C-band, with wavelength of 5.6 cm. C-band SAR systems are widely used for 

environmental monitoring, and are proven to distinguish dry land from open water (Canada Centre for 

Remote Sensing, 2015).    

1.3.4. Flooded vegetation 

To model the radar backscatter from wetland ecosystems, it is necessary to note that each vegetation 

layer affects the radar signature. According to Kasische & Bourgeau-Chavez (1997), a forested area 

can be divided into three layers (Figure 2): a canopy layer which consists of small branches and foliage, 

a trunk layer consisting of large trunks and branches, and a ground layer, which, in the case of flood, 

may be covered by water.  

 
Figure 2. SAR signal backscatter mechanism from a flooded forest 

Floods under forest canopy can be detected by a strong rise in backscatter values when compared to 

the backscattering from the same forested areas in dry conditions (Zalite, et al., 2013). This is due to 

the reflection of the radar pulse from the horizontal water surface and backscattering from the trunks 

and branches of the vegetation, resulting in strong signal return. Diffuse scattering from the ground 

during dry conditions reduces the corner reflection effect of the pulse, resulting in less signal return 

and darker image tones (Hess, et al., 1990). The backscatter mechanism from a flooded forested area, 

as shown in Figure 2, can be described with an equation:  

  σ0= σc
0+αc

2(σm
0+ σt

0+ σs
0+ σd

0)     (1) 

The total microwave backscatter (σ0) consists of backscattered radiation from the canopy (σc
0), tree 

trunks (σt
0), surface (σs

0), double bounce from the trunks and surface (σd
0), and other multipath 

backscattering (σm
0). According to Townsend (2002), the highest influence on the total backscatter 

from flooded forest areas is given by the water-trunk reflection (σd
0); the difference between 
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backscatter coefficients obtained from flooded and non-flooded conditions under forest canopy can be 

up to 10 dB.  

The canopy and trunk attenuation coefficient (αc) is a function of radar frequency, derived from the 

transmissivity of the crown and trunk layers of the forest. Higher frequencies, for example in X-band 

SAR, refer to higher interference with foliage and canopy than lower frequencies in P- or L-band SAR, 

which results in loss of canopy penetration ability for higher frequency instruments. Therefore, lower 

frequencies like in L-band are generally preferred for forest flood mapping (Kasische, et al., 1997). 

However, due to the fact that SAR image resolution is directly proportional to bandwidth (Voormansik, 

et al., 2014), higher resolution imaging is possible in shorter wavelength bands like in X- or C-band, 

than in L-band. C-band can provide a compromise between spatial resolution and canopy penetration 

for flood mapping.  

 
Figure 3. SAR signal backscatter mechanism from a flooded non-woody shrub area 

According to Kasische & Bourgeau-Chavez (1997), flooded non-woody shrub areas can be modelled 

similarly to flooded forested areas, by eliminating all items on the trunk layer (Figure 3). This leads to 

a simplified equation: 

              σ0= σc
0+tc

2(σ m
0+ σ s

0)                                                              (2) 

Here the elements pertaining to the trunk layer are removed. The transmission coefficient (tc
2) refers to 

the transmissivity of the vegetation canopy layer. 

1.4. Challenges in flood monitoring 

Although the weather conditions generally do not affect the ability for SAR to image the Earth, the 

presence of heavy rain might affect the accuracy of flood monitoring. Strong wind or heavy rain can 

cause roughening of the water surface, resulting in rise of backscatter close to the levels of surrounding 
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dry land or higher. This is most significant in transient areas between the flooded and non-flooded 

zones, where the radar backscatter increases gradually, complicating the accurate delineation of 

flooded areas. In addition, emergent vegetation or buildings in open flooded areas lead to the increase 

of backscatter due to multiple reflections, reducing the accuracy of SAR-based flood maps (Mason, et 

al., 2010). 

Also, it is noted in previous studies (e.g. Koskinen, et al., 1997) that wet snow in open areas causes 

very low backscatter to a C-band SAR, and is therefore difficult to distinguish from open water. In the 

study of Voormansik et al. (2014), it was noted that rough wet fields might produce very high 

backscatter in X-band SAR images, which makes it difficult to distinguish them from flooded forests. 

Due to these effects, weather conditions before and during the image acquisitions need to be known, 

or image interpretation may be prone to misclassification.  

The significance of errors resulting from these challenges depends on the methodology used for flood 

delineation. For the split-based thresholding method used in this study, the significance of errors in 

classification depends on the level of information about weather conditions during the acquisition and 

precision of the manual delineation by the interpreter. The importance of manual (supervised) 

thresholding is confirmed by the study of Matgen, et al. (2011), which states that the accuracy of 

contemporary SAR-based flood detection algorithms is dependent on the operator’s subjective 

impression and fine-tuning of the algorithms, with fully automatic processes still being very rare. A 

recent example of automatic flood detection is the study of Martinis et al. (2014), where a fully 

automated TerraSAR-X based flood mapping service is presented.  

The flood detection mechanisms for open and forested areas, mentioned earlier in this section, were 

used as a base for understanding the flood extraction techniques from radar images. For identifying the 

potential reasons for the presence of water in the radar images, weather data was obtained for each of 

the acquisition dates. Geo-referenced photos, taken in the study area during the acquisition of April 18, 

2010, were used for improving the accuracy of image classification. More elaboration on the 

methodology used in this study is provided in Section 2, and problems encountered are discussed in 

Section 4.  
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2. Input Data and Flood Map Generation 

2.1. Data 

2.1.1. Study Area 

The Alam-Pedja Nature Reserve is situated in the central part of Estonia, north-east of Lake Võrtsjärv. 

It covers an area of 347 km2, and being one of the wettest areas in Estonia, is subject to floods several 

times each decade. The floods in Alam-Pedja occur most often in spring, but in some years the water 

levels have been the highest in December or January. Mires occupy about half of the total area of the 

nature reserve, and rivers Emajõgi, Põltsamaa and Pedja join in the area. The rivers and mires are 

surrounded by deciduous, coniferous and mixed temperate forests. The deciduous forests consist 

mainly of birches, while coniferous forests include mostly spruces and pines. In the surroundings of 

the nature reserve the ground is more elevated and agricultural lands on automorphic soils are found. 

Due to the low population density in the Alam-Pedja Nature Reserve, flooding is not a serious threat 

to the local inhabitants or economy (Aaviksoo, et al., 2000).  

The selected study area is shown in Figure 4. For this study, flood extent values were calculated for 

the area within the borders of the Alam-Pedja Nature Reserve, and additionally for a larger area around 

the reserve (black rectangle in Figure 4), to give an overview of the whole floodplain in the region. The 

total area measured is 1 683 km2, spanning 33 km from north to south and 51 km from east to west.  

 
Figure 4. Location of the Alam-Pedja Nature Reserve (marked in red) with the additional study area shown around it with the black 

rectangle. 
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2.1.2. Water level data 

Water level data used in this study was obtained from three hydrology survey stations around the Alam-

Pedja Nature Reserve – Tartu-Kvissentali, Tõrve and Pajusi, situated on rivers Emajõgi, Pedja and 

Põltsamaa, respectively (Figure 5). The stations are operated by the Estonian Weather Service (EWS). 

Water level data for each day in years 2005-2011 (Figure 6) was provided by EWS, and processed to 

find the maximum water levels in the focus period. A water level rise was of interest for this research 

when the water levels in Tartu-Kvissentali, Tõrve and Pajusi stations were over 200, 150 and 100 cm 

over the local long-time zero, respectively. This happened in a total of 71 days in the focus period, in 

January 2005, December 2008, April 2009, April 2010 and April 2011, with an average of 14 days of 

flood per year. According to EWS, the water level in April 16, 2010 had the third highest value (330.3 

cm over a local long-time minimum) in the measurement history in Tartu since year 1942 (EWS, 2014).  

 
Figure 5. Tartu-Kvissentali, Tõrve and Pajusi hydrological stations 

 
Figure 6. Water levels (cm) measured in the EWS hydrological stations through the years 2005-2011. 
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2.1.3. SAR data 

For this study, Envisat ASAR images were ordered from the ESA. During the flood periods in 2005-

2011, 24 HH-polarized Envisat ASAR images were available. The images acquired were C-band (5.6 

cm wavelength), with pixel spacing of 75 m and spatial resolution of 150 m. The incidence angle of 

the images in the study area varied between 22.3° (April 21, 2011) and 41° (April 24, 2010). The 

acquisition dates along with details of the SAR images are shown in Table 1. Within the periods 

mentioned in the previous section, the floods were mapped on dates when the water level of the river 

Emajõgi was closest to the maximum and HH-polarized ASAR images were available. Due to the lack 

of Envisat coverage in December 2008, the flood in that year was not mapped in this study. 

Table 1. Parameters of the Envisat ASAR images used in this study, along with weather conditions and water levels during the 

acquisitions. 

Acquisition 

date 

Incidence 

angle 

(degrees, left 

to right) 

Track 
Temperature 

(Celsius) 

Total 

precipitation 

1 hour 

before (mm) 

Total 

precipitation 

24 hours 

before (mm) 

Water 

level in 

River 

Emajõgi 

Water 

level in 

River 

Põltsamaa 

Water 

level in 

River 

Pedja 

12.01.2005 33.5-36 ASCENDING 5.7 0 0.6 217 217 158 

21.01.2005 31.0-28.4 DESCENDING -1.1 0 0 249 64 189 

08.12.2009 36-33.5 DESCENDING 0.3 n/a n/a 216 190 90 

15.12.2009 25.42-28.28 ASCENDING -15.5 n/a n/a 221 138 19 

14.04.2010 28.4-25.75 DESCENDING 10.7 0 0 330 239 158 

18.04.2010 28.12-30.86 ASCENDING 7.8 0 1.6 329 222 130 

24.04.2010 38-41 ASCENDING 2.4 0 1.2 315 191 84 

15.04.2011 37.0-34.6 DESCENDING 6.8 0 0 295 226 176 

21.04.2011 22.3-25.7 ASCENDING 10.4 0 0.2 315 224 143 

 

2.1.4. Weather conditions 

The closest weather station to the study area was the EWS Tartu-Tõravere station, located in 

58°15'52.92" of latitude and 26°27'42.12" of longitude, 29 km SE from the centre of the Alam-Pedja 

Nature Reserve. The precipitation, water level and temperature conditions in prior to the acquisition of 

images are also shown in Table 1. No precipitation information was available around the image 

acquisitions in December 2009. Weather conditions during the acquisitions were generally relatively 

dry, with a small amount of precipitation occurring in January 12, 2005, April 18 and 24, 2010, and 

April 21, 2011 (EWS, 2014). 
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2.1.5. Reference data  

For the study of Voormansik et al. (2014), a ground observation campaign had been carried out in the 

Emajõgi drainage basin in March-April, 2010. As the study area of Voormansik et al. covers also the 

Alam-Pedja Nature Reserve and the region around it, the results of the campaign could also be used as 

reference data for this study. The spring flood in 2010 was documented on photos during the ground 

observation campaign through March and April. For this study, in situ photos taken in April 17-18, 

2010 in 40 locations around the flood were used (red dots in Figure 7). An example photo is seen in 

Figure 8. Regarding these photos, training areas were drawn on the April 18, 2010 flood image, shaped 

according to features visible on the photos. Additional orthophotos, provided by the Estonian Land 

Board, were analysed together with in situ photos for providing better understanding of the landscape 

around the locations. 

 
Figure 7. Locations of the reference images taken in April 17-18, 2010, shown on the April 18, 2010 ASAR image. Each red dot 

represents one location where a 360 degree view was documented. 

 
Figure 8. Picture of a flooded field in Laeva, taken on April 18, 2010 (Voormansik, et al., 2014). 
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2.2. Methods 

2.2.1. SAR image processing in NEST 

The images were processed using Next ESA SAR Toolbox (NEST) version 4.1, software developed 

by Array Inc. especially for SAR image processing (ESA, 2014b). To enhance the usefulness of the 

SAR images, a despeckling procedure was performed on each image. Speckle, a signal-dependent 

noise, is natural to any images obtained by coherent radiation, including SAR images. It reduces the 

readability and decreases the usefulness of the images for both human and automatic interpretation 

(Mascarenhas, 1997). 

The acquired Envisat ASAR images were despeckled using a Refined Lee filter, a widely used local 

area statistic filter which eliminates the speckle while preserving the edges, linear features, point targets 

and texture information (Lee, et al., 1994). 

Each SAR image was calibrated to a linear scale, and using a simple equation shown below (3), the 

pixel values were re-calculated to match the scale of the April 18, 2010 ASAR image, which was 

referenced with photos. This was done to remove differences in backscatter values caused by incidence 

angle and therefore make it possible to use the same threshold value levels on each image.  

  𝑌 = 𝛼𝑋 + 𝛽              (3) 

In the equation (3), 𝑋 represents the total set of pixel values in the image processed. 𝑋 is multiplied by 

a coefficient 𝛼 which scales the set of values to match the set of the referenced April 18, 2010 image. 

𝛽 is the free variable, added for shifting the lowest value to the same level with the referenced image, 

and 𝑌 is the new set of pixel values. The values of 𝛼 and 𝛽 were obtained by observing the differences 

in the minimum and maximum values in the pixel sets, and are shown in Table 2. 

Table 2. α and β values for each image. 

Acquisition date 12.01.2005 21.01.2005 08.12.2009 15.12.2009 14.04.2010 18.04.2010 24.04.2010 15.04.2011 21.04.2011 

Coefficient (α) 0.9908 1.7676 1.6652 2.1112 0.8397 1 1.9005 1.4476 0.8217 

Free variable (β) -0.0028 0.0040 0.0019 0.0075 0.0023 0 0.0059 0.0025 -0.0003 

Floods on the SAR images were detected using a manual split-based image thresholding method, used 

widely for flood mapping (e.g. Bates & De Roo, 2000). As noted in previous chapters, water in open 

areas generates virtually no backscatter and appears very dark on SAR images, giving high contrast 

with surrounding forested areas, especially flooded forests, which appear very bright due to double-

bounce scattering. As mentioned earlier in Section 2.1.5, training areas with open water, flooded 

forested and non-flooded regions were selected from the ASAR image of April 18, 2010 (Figure 9). 
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Regarding the data tables, histograms were produced and the flood/non-flood threshold was established 

between two peaks (Figure 10). The threshold was established manually so that the sum of falsely 

classified pixels remained minimal. The size of training areas in pixels and the error percentage in 

classification due to value overlap are given in Table 3.  

 
Figure 9. Training areas on the ASAR image of April 18, 2010. 

 

 
Figure 10. Histograms showing backscatter values of the training areas, with threshold values between flooded open areas/dry areas 

and dry areas/flooded forested areas. 
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Table 3. Number of pixels and error estimates of training areas on the April 18, 2010 ASAR image. 

 Total number of pixels Falsely classified pixels % of false/all 

Open flood 531 30 5.65 

Dry area 908 7 0.77 

Flooded forest 824 4 0.49 

The images were then converted to Boolean images, using the NEST tool “Create Band from Math 

Expression” with pixels fallen within the “flooded” range having the value of 1 and “non-flooded” 

pixels 0. For creating contiguous areas, the images were smoothed using a 3 x 3 pixel median filter 

which removed small isolated pixels with values significantly higher or lower than their adjacent 

pixels. Finally, the images were reprojected to the L-EST’97 coordinate system, and stored in GeoTIFF 

format for easier interoperability between different software.  

2.2.2. Raster processing and vectorization in ArcMap 

 
Figure 11. ArcGIS model developed for conversion of the ASAR-based Boolean images to vector data. Input data are shown in blue 

ovals, processing steps in yellow boxes, and results (including intermediate results) in green ovals.   

The GeoTIFF images were imported to ESRI ArcMap 10.2 software for further processing. Using 

Corine 2006 land cover data (European Environment Agency, 2006) and additional vector data 

provided by Regio Ltd., masks containing permanent water bodies, urban areas and forests were 

created. An ArcGIS Model Builder model, shown in Figure 11, was developed for automatic 

processing and vectorization in ArcMap. The GeoTIFF images imported from NEST were converted 

to integer format, for easier processing in ArcMap. Mask layers representing permanent water bodies 

and urban areas were subtracted from the flood areas, and the remaining pixels were vectorized, using 

the ArcGIS “Raster to Polygon” tool. The polygon edges were simplified to prevent pixelation in final 

images. Due to relatively coarse spatial resolution, polygons and polygon holes smaller than 5 ha were 

considered as noise and removed, using ArcMap’s functions “Aggregate Polygons” and “Select Data 

by Attributes”.  

The resulting polygons were considered as flooded areas in this study, and flood maps were composed. 

Each flood map is presented and described in the next section.  
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Backscatter values on additional pixels were characterised on the April 18, 2010 ASAR image to test 

the accuracy of the classification on the training areas. Regarding the pixel values within the test areas, 

an error matrix, introduced by Congalton (1991), was generated to assess the accuracy of classification. 

Test areas were generated for dry, open water and flooded forested areas (Figure 12), derived from 

photos described earlier in Section 2.1.5. Matching value pixels in both the flood map and the test areas 

were measured against total amount of pixels on the test areas, and a percentage of misclassification 

was calculated. The accuracy measurement in this study was based on a total of 396 pixels within and 

around the flood area, which constituted 1% of the total flood area in April 18, 2010. The results of the 

error measurement are also discussed in the next section.  

 

Figure 12. Test areas selected for assessing the accuracy of image classification. 
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3. Results 

The results of this thesis, the SAR-derived Alam-Pedja flood map images, are shown and discussed 

below. 

 

Figure 13. Flood maps of January 12 (above) and January 21 (below), 2005. 
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Figure 14. Flood of December 8 (above) and December 15 (below), 2009. 
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Figure 15. The flood maps of April 14 (top), April 18 (center), and April 24 (bottom), 2010. 
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Figure 16. Flood maps of April 15 (above) and April 21 (below), 2011. 
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The flood of January 2005 is shown in Figure 13. The Alam-Pedja flood area on January 12 accounted 

for 103 km2, and by January 21, it had swollen to 166 km2. It can be seen that the total flood area in 

the study area also increases, from 124 to 188 km2.  

Figure 14 shows the flood maps from December, 2009. The recorded flood area within the Alam-Pedja 

Nature Reserve was 116 km2 on December 8 and 129 km2 on December 15. The total flood area within 

the study area was 152 km2 on December 8, and had shrivelled to 145 km2 by December 15. The 

difference in water dynamics inside and around the nature reserve could be explained by the flow of 

water from surrounding fields into the lower-elevated nature reserve.  

By December 15, 2009, water level in the river Emajõgi (221 cm) had risen when compared to that in 

December 8 (216 cm), and in the rivers Pedja and Põltsamaa, the water levels dropped. This can be 

seen when comparing the maps, with broader areas around the river Emajõgi being flooded on 

December 15. 

The flood areas of April 2010 are shown in Figure 15. The Alam-Pedja flood area was 175 km2 in April 

14, 180 km2 in April 18 and 169 km2 in April 24. The flood dynamics differ slightly from the water 

level dynamics in 2010. This could be due to precipitation, which was also recorded on April 18 and 

24. The total flood area in the study region was 205 km2 in April 14, 212 km2 in April 18, and 196 km2 

in April 24.  

The flood areas of April 2011 are shown in Figure 16. The extent of the Alam-Pedja flood was 156 

km2 in April 15, and 178 km2 in April 21. The total flood area in the study region was 189 km2 in April 

15, and 214 km2 in April 21.  

The error matrix for April 18, 2010 flood map, generated using test areas, as described earlier in Section 

2.2.1., is shown below in Table 4. It can be seen that the overall accuracy of the classification within 

the test areas was 97.2%.  

Table 4. Error matrix assessing the accuracy of classification in the April 18, 2010 flood area. 

 Test areas 

G
en

er
a
te

d
 f

lo
o
d

 m
a
p

  
Open 

water 
Flooded forest Dry area Row total 

Open water 125 0 0 125 

Flooded forest 0 122 0 122 

Dry area 4 7 138 149 

Column total 129 129 138 396 

     

Open water accuracy 96.9%    

Flooded forest accuracy 94.5%    

Dry area accuracy 100%    

Overall accuracy 97.2%   
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3.1. Summary of results 

Table 5 shows the extent of each flood, with water levels from each of the dates included. Within the 

borders of the Alam-Pedja Nature Reserve, the largest flood was recorded in April 18, 2010, when the 

flood area was 180 km2. Also in 2011, the flood within the borders of the Alam-Pedja Nature Reserve 

was close to the maximum in 2010, accounting for 178 km2 on April 21, 2011. The total flood areas in 

the study area showed similar trends, with the April 21, 2011 being the largest (214 km2), followed 

closely by the April 18, 2010 flood of 212 km2.  

Table 5. Flood extents derived from Envisat ASAR images, and the corresponding water levels 

Acquisition 

date 

Alam-Pedja flood 

extent (sq. km) 

Total study area flood 

extent (sq. km) 

Water level in River 

Emajõgi (cm) 

Water level in River 

Põltsamaa (cm) 

Water level in 

River Pedja (cm) 

12.01.2005 103 124 217 217 158 

21.01.2005 166 188 249 64 189 

08.12.2009 116 152 216 190 90 

15.12.2009 129 145 221 138 19 

14.04.2010 175 205 330 239 158 

18.04.2010 180 212 329 222 130 

24.04.2010 169 196 315 191 84 

15.04.2011 156 189 295 226 176 

21.04.2011 178 214 315 224 143 

It can be seen in Table 5 that in most cases changes in flood areas in the Alam-Pedja Nature Reserve 

have a positive correlation with water level in River Emajõgi  and the the total study area flood extent 

has a  positive correlation with Pedja and Põltsamaa water levels. It can also be seen that by the time 

the flood area in Alam-Pedja has reached its maximum, the water level in River Põltsamaa has already 

dropped. This shows that the floods are caused mainly by water originating from snowmelt and 

precipitation around the floodplain, which flows gradually to lower-elevated areas in the Alam-Pedja 

Nature Reserve from higher-elevated areas around it. 

4. Discussion 

4.1. Uncertainties in classification 

Some uncertainties in classifying the ASAR images arose due to broad spatial resolution and the lack 

of detailed information about conditions on the ground during the image acquisitions. Specific 

fieldwork campaign could have mitigated the uncertainties faced by providing ground truth data and 

therefore possibly increased the accuracy of the maps. Additional classification in training areas could 

also help in increasing the accuracy, i.e. drawing training areas on different forest and bush types and 



24 

 

different classes of open areas (grassland, soil, etc.). Such way the algorithm for flood detection could 

be improved to distinguish between different types of flooded areas. This type of precise classification, 

however, would require extensive field campaign to ensure its correctness.  

It was noted by the author that there was a significant area around the river Emajõgi, completely 

surrounded by flooded areas, which was classified as non-flooded in every case. The area is shown in 

Figure 17. A digital elevation model (DEM) of the region, provided by the Estonian Land Board, was 

examined to find potential physical barriers for the flood. It was concluded that there was no 

justification for the area to be non-flooded, as the terrain in the region was flat and elevation lower than 

surrounding flooded forested regions.  

 
Figure 17. Outtake of the January 21, 2005 flood map, showing the potentially misclassified area around the river Emajõgi. 

A very likely cause for such phenomenon is the broad spatial resolution of the Envisat ASAR images 

(150 m). As noted previously in Section 1.4, flooded pixels that contain both open floods (low 

backscatter) and shrubs or trees (very high backscatter), have their values averaged to a medium level, 

resulting in misclassification as non-flooded. It can also be seen in Figure 17 that there was both 

forested and non-forested regions present in the region. In such regions, manual DEM-based 

corrections could be applied to avoid misclassification due to broad spatial resolution. However, for 

this study, manual DEM-based corrections were out of the scope and were not applied. 

4.2. Reference data 

It should be noted that for improving the accuracy of flood delineation algorithms, optical images have 

been used in previous studies (e. g. Henry, et al., 2006). Optical images could be used to remove 

uncertainties, such as areas with no justification to be non-flooded classified as flooded, described in 

the previous section. However, there were no optical remote sensing images available around most of 
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the SAR image acquisitions used for this study. The only reference data available was in situ imagery, 

provided by Voormansik et al. (2014) for the image of April 18, 2010, and the rest of the images were 

scaled to have the value ranges match those of the April 18, 2010 image. In such cases the only 

significant difference in backscatter values in the images used should be caused by the presence of 

water, which was studied for flood detection, as the terrain in the region is flat and urban areas were 

subtracted from the images. Additional reference images could also have allowed the generation of 

additional test areas for accuracy assessment to enhance the representative value of the test areas. 

Currently the accuracy was assessed on test areas constituting 1% of the flood area.  

One can argue that optical reference imagery is necessary for each SAR image to prove the validity of 

any SAR-based flood maps. However, SAR-based flood mapping is a developed field (Wang, et al., 

1995; Townsend, 2002; Martinez & Toan, 2007; Martinis, et al., 2009) and SAR imagery is in many 

cases the only source of remotely sensed data for floods, as cloud cover and vegetation may cover the 

floodplain, making optical data inferior to SAR. In emergency situations, the rapidity of delivery is 

necessary, so it is important to provide possibilities for mapping floods using SAR data independently 

of other imagery (Martinis, et al., 2009). Using existing layers of geographical information data, such 

as weather and land cover data, can provide some reference and therefore can significantly improve 

the accuracy of SAR-based flood maps. In this study, Corine land cover data and precipitation data was 

used for such purposes.  

4.3. The future of SAR flood detection 

As the Envisat mission ended in 2012, a new satellite providing C-band SAR imagery, Sentinel-1a, 

was launched by ESA in April 2014. An additional satellite of the same mission, Sentinel-1b, is 

currently scheduled to launch in 2016 (ESA, 2014c). The new mission provides images in 4 imaging 

modes with spatial resolution down to 5 meters. The revisit time for Sentinel-1a, combining the 

ascending and descending pass, is down to 6 days, and with the launch of Sentinel-1b, it will be possible 

to bring the revisit time down to 3 days (ESA, 2013). The increased revisit time will highly improve 

the capability to rapidly map floods, and finer spatial resolution can help improve the accuracy of flood 

maps. Such data can also be combined by data from earlier sensors such as the Envisat ASAR, to 

generate flood timelines over long-term periods, and develop models for predicting potential future 

floods.  

There is currently a trend towards the development of fully automated flood detection algorithms. In 

recent years, several works have been published (e.g. Martinis, et al., 2009; Martinis, 2010; Matgen, et 

al., 2011), discussing the state of development, opportunities and challenges of such tools. Martinis et 
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al. (2014) present a model for fully automated flood detection using X-band SAR, opening a new 

perspective for disaster monitoring. Such development makes it possible to map vast numbers of 

threatened areas very rapidly and provides the potential to develop near real-time flood monitoring 

capabilities, crucial for crisis management and other applications requiring timely information. 

Currently, flood mapping services are provided mostly on-demand (Martinis, et al., 2014); fully 

automatic procedures combined with quick revisit satellites will provide the capability to run near real-

time databases, providing more timely and lower-cost services to anyone in need.  
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5. Conclusion 

This study demonstrated the capability to map floods in the Alam-Pedja Nature Reserve in Estonia, 

using SAR imagery. Water level data was analysed to detect the potential floods in the focus period of 

2005-2011, and a total of 24 Envisat ASAR C-band HH-polarized SAR images with spatial resolution 

of 150 m were acquired for the study, out of which nine images proved suitable. The results of the 

study were nine SAR-based flood maps of the Alam-Pedja Nature Reserve from January 2005, 

December 2009, April 2010 and April 2011. 

These images were first processed in Next ESA SAR Toolbox. A despeckling procedure was held to 

remove the speckle noise in the images. On the image of April 18, 2010, training areas of flooded open 

areas, non-flooded areas, and flooded forested areas were created, using geo-referenced photos taken 

for a previous study by Voormansik et al. (2014) as reference data. The rest of the images were 

calibrated to match the values of the April 18, 2010 ASAR image, to remove differences in backscatter 

values caused by differences in incidence angle. A split-based manual thresholding algorithm was then 

used on each image, creating Boolean images of flooded and non-flooded regions. The resulting 

Boolean images were transferred to ESRI ArcMap software, where the images were vectorized, and 

composed into flood maps. The flood extents were then calculated both within the Alam-Pedja Nature 

Reserve and in an additional 1951 km2 study area around it. Test areas were selected on the ASAR 

image of April 18, 2010, constituting 1% of the total flood area. An error matrix was generated to 

assess the accuracy of the classification.  

The results showed that the largest floods within the Alam-Pedja Nature Reserve occurred in April 18, 

2010 and April 21, 2011, when the flood areas were sized 180 km2 and 178 km2, respectively. In the 

surrounding study area, the largest areas considered as flooded were recorded in the same dates, with 

floods extending to 212 and 214 km2, respectively. According to the error matrix generated from the 

test areas, the overall accuracy of the classification was 97.2%.  

It could be seen that in most cases changes in flood areas in the Alam-Pedja Nature Reserve had a 

positive correlation with water level in River Emajõgi and the total study area flood extent was in 

positive correlation with Pedja and Põltsamaa water levels. It could also be seen that by the time the 

flood area in Alam-Pedja had reached its maximum, the water level in River Põltsamaa has already 

dropped. This shows that floods were caused mainly by water originating from snowmelt and 

precipitation around the floodplain, which flowed gradually to lower-elevated areas in the Alam-Pedja 

Nature Reserve from higher-elevated areas around it. 
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The broad resolution of Envisat ASAR images caused some errors in classification. The presence of 

shrubs or trees in the same pixels with open flooded areas, had their values averaged to a medium level, 

resulting in misclassification as non-flooded areas, although there was no justification of the regions 

to be non-flooded, as they were surrounded by higher elevated areas being flooded. Such errors can be 

mitigated by DEM-based corrections in future works. 

Specific fieldworks on each acquisition period would have helped to decrease uncertainties and 

increase the accuracy of the flood maps. However, as the used SAR imagery was obtained from 

archives, specific fieldworks were not conducted.  

With the new capabilities of the ESA Sentinel-1 mission, C-band SAR-based flood mapping can be 

improved a lot in the near future. The new mission provides improved spatial and temporal resolution, 

resulting in higher accuracy flood maps and providing the possibility to map the temporal dynamics of 

each flood more accurately.  

Currently, the development of fully automated flood monitoring algorithms for X- and C-band SAR is 

in progress. Such development makes it possible to map vast numbers of inundated areas very rapidly 

and provides the potential to develop near real-time flood monitoring services, crucial for crisis 

management and other applications requiring timely information.    
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Üleujutuste kaardistamine tehisava-radari mõõtmiste baasil Alam-Pedja looduskaitsealal 2005-

2011 aastatel 

Martin Jüssi 

Kokkuvõte 

Käesoleva magistritöö eesmärgiks oli kaardistada üleujutusi Alam-Pedja looduskaitsealal 2005-2011 

aastatel tehisava-radari (i k synthetic aperture radar - SAR) mõõtmiste baasil. Töö esimene peatükk 

tutvustab üleujutuste kaardistamise vajalikkust ning radarkaugseire sobivust selleks tööks. Teises 

peatükis kirjeldatakse antud magistritöös kasutatavaid andmeid ja metoodikat. Kolmandas peatükis 

esitatakse saadud tulemused ning neljandas peatükis tulemuste arutelu koos uurimisteema 

tulevikuvõimaluste tutvustamisega. Viiendas peatükis esitatakse töö kokkuvõte. 

Töö teostamiseks analüüsiti uurimisperioodi veetasemeandmeid Eesti Ilmateenistuse Tõrve, Pajusi ja 

Tartu-Kvissentali mõõtmisjaamadest ning telliti huvipakkuvatest perioodidest tehisava-radari pildid. 

Kasutatud pildid pärinesid Euroopa Kosmoseagentuuri satelliidi Envisat sensorilt ASAR (advanced 

synthetic aperture radar). Huvipakkuvast perioodist oli üleujutuste tuvastamiseks sobilikke pilte 

üheksa. Envisat ASARi andmed olid mõõdetud HH-polarisatsiooniga C-kanalis 5.6 cm lainepikkusel 

ning 150-meetrise ruumilise lahutusega. Töö tulemuseks oli üheksa üleujutuskaarti, neljast perioodist 

2005. aasta jaanuaris, 2009. aasta detsembris ning 2010. ja 2011. aasta aprillis. 

Tellitud radaripilte töödeldi esmalt rasterkujul Next ESA SAR Toolbox tarkvaras. 2010. aasta 18. 

aprillist pärit pildilt, mis oli varasematel välitöödel tehtud fotodega dokumenteeritud, tuvastati 

treeningalad kuiva, üleujutatud lageda ala ning üleujutatud metsa jaoks. Saadud väärtuste võrdlemisel 

tuvastati piirväärtused kuivade ning veega üleujutatud pikslite vahel ning koostati Boole’i kaardid. 

Klassifitseerimistäpsust kontrolliti testalade abil, mis moodustasid kogu üleujutusest 1%. Ülejäänud 

uurimistöös kasutatud Envisat ASARi pildid viidi lineaarse skaleerimise abil dokumenteeritud fotoga 

samale skaalale, et välistada pildistamisnurgast tulenevaid erinevusi pikslite heleduses ning koostati 

samuti Boole’i kaardid.  

Saadud Boole’i kaardid vektoriseeriti ESRI ArcMap tarkvaras ning koostati üleujutuskaardid. 

Üleujutuste ulatus arvutati Alam-Pedja looduskaitseala piires. Esitati ka tulemused laiemast 1951 km2 

suurusest alast Alam-Pedja looduskaitseala ümber, kuid neid tulemusi ei saanud referentsandmete 

puudumise tõttu kinnitada. Tulemustest selgus, et suurimad üleujutused Alam-Pedja looduskaitsealal 

olid 2010. aasta 24. aprillil, kui üleujutatud oli 214 km2 suurune ala ning 2011. aasta 15. aprillil, kui 

üleujutuse suurus oli 203 km2. Testaladel kirjeldatud kaardistamise täpsuseks oli 97.2%.  
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2009. aasta detsembris ja 2010. aasta aprillis erines üleujutuste dünaamika Alam-Pedja 

looduskaitsealal samal ajal ümbritsevatel aladel toimunud üleujutuste dünaamikast. 8. ja 15. detsembri 

vahel kasvas üleujutusala looduskaitseala piires 116-st 129 km2-ni, vähenedes samal ajal kogu 

uurimisala piires 152-lt 145 km2-ni. Sellist muutust põhjendati vee kokkuvoolamisega Alam-Pedja 

looduskaitseala ümbritsevatelt aladelt madalamale.  

Probleemina ilmnes ASAR-piltide jäme ruumiline lahutus. Madalat radarisignaali tagasihajumist 

tootvate tasaste üleujutatud aladega samadesse pikslitesse langevad puud ja põõsad, mis toodavad 

veega koosmõjus väga kõrget signaali tagasihajumist, jäid keskmistamise tõttu „märjaks“ 

klassifitseeritud pikslite hulgast välja. Selliseid vigu saaks vähendada manuaalse kõrgusmudelil 

põhineva paranduse abil, mida selle töö mahus ei tehtud.  

Kaartide täpsust oleks aidanud suurendada välitööde tegemine kõigil uuritavatel perioodidel. Kuna 

töös kasutati arhiiviandmeid, siis spetsiaalseid välitöid ei tehtud ning kasutati saadaval olevaid varem 

tehtud välitööde andmed 2010. aasta 18. aprilli üleujutusest.  

Seoses Euroopa Kosmoseagentuuri uue Sentinel-1 missiooni algusega paranevad lähitulevikus C-

kanali SAR-il põhinevad üleujutuste tuvastamise võimalused oluliselt. Missioon võimaldab saada 

täpsema ruumilise ja ajalise lahutusega radarimõõtmisi, võimaldades kaardistada üleujutuste 

dünaamikat kuni 3-päevaste vahedega ning kuni 30-meetrise ruumilise lahutusega. Samuti on praegu 

käimas täisautomaatsete SAR-il põhinevate üleujutuste tuvastamise algoritmide väljatöötamine. Uute 

ja paremate instrumentide ning uudse metoodika abil on tulevikus võimalik üleujutusi kaardistada 

oluliselt kiiremini ja efektiivsemalt kui seniste manuaalsete protseduuride abil.   
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Annexes 

In this section, pre-processed Envisat ASAR images, used in this study, are presented. White areas 

correspond to flooded forest and black areas to open water, grey areas are typically non-flooded. 

 
Annex 1. ASAR image of January 12, 2005 
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Annex 2. ASAR image of January 21, 2005 

 
Annex 3. ASAR image of December 8, 2009 
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Annex 4. ASAR image of December 15, 2009 

 
Annex 5. ASAR image of April 14, 2010 
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Annex 6. ASAR image of April 18, 2010 

 
Annex 7. ASAR image of April 24, 2010 
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Annex 8. ASAR image of April 15, 2011 

 
Annex 9. ASAR image of April 21, 2011 
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