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1. INTRODUCTION 

Drug discovery is an empirical field of science, which identifies a molecule that 
can be a prescribed medicine to create simplified and reproducible biological 
solution. Nowadays, the initial step for identifying a molecule as a potential 
drug candidate is to create a simplified computational model for prediction of 
biological activities and pharmacophoric properties.1 

Computer aided drug design (CADD) methods are mostly categorized into 
(i) ligand-based (LBDD) and (ii) structure-based (SBDD) methods. Ligand-
based methods generally emphasize on comparative analysis of the structural 
similarity or diverse pharmacophore descriptors of experimentally known active 
ligands. The method does not rely on the protein target structural information, 
therefore a knowledge of experimentally characterized active compounds is im-
portant to the success of ligand-based methods.2 On the contrary, SBDD 
methods do not exclusively depend on experimentally active compounds, but 
rather identify new molecules that are corresponding to the protein active site. 
Molecular docking, uses several binding pocket identification algorithms to 
predict the binding mode and the affinity of a given compound towards a target 
receptor, forms the basic outline in receptor-based virtual screening procedures 
and in lead discovery approaches. This allows to considerable savings in re-
sources and material costs as only a small number of molecules of the complete 
library need to be tested experimentally. SBDD has demonstrated to be more 
effective in understanding the molecular basis of a disease and utilizes 3D 
structural data of the biological target. This ensures the reliability of proposing 
new drug chemical more rapidly and cost-efficiently.3 Ligand based de-novo 
design approaches do not require the receptor information but exclusively 
depend on the known active ligands serving as a reference to generate a novel 
chemical entity. The molecules generated by SBDD or LBDD often challenge 
the synthetic feasibility. This problem has limited the success of de-novo pack-
ages, as only a small percentage of molecules are synthesizable with reasonable 
time and cost.4 Many of the recently developed de-novo tools address this 
problem by employing fragment-based drug design methods (FBDD) and using 
linking rules to guide the assembly of building blocks or clusters. Most of the 
ligand-based and fragment-based methods need the reference fragment structure 
to initiate the design of novel molecule.5 Novel molecules are generated by the 
building blocks from data base. These building blocks can be curated from 
drug-like molecules with a set of reaction linking rules and retro-synthetic 
pathways.6 

As mentioned above, ligand-based methods are suitable for challenging 
biological problems, and do not require protein or receptor target information. 
These methods are mainly focused on developing 3D QSAR or pharmacophore 
based models of active, moderately active and inactive molecules by detecting 
their similar or diverse molecular and pharmacophoric features. Recent trend in 
QSAR shows an increased demand for consensus models combining the 
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predictive power of multiple individual approaches: e.g. the linear and non-
linear QSAR utilizing different descriptor types is a common practice.7 The 
schematic representation of different CADD approaches is shown in Figure 1. 

 
 

 
 
Figure 1. Schematic representation of computer aided drug design and virtual screening 
methods with reference to different scenarios of ligand and protein target availability. 
 
 
This Ph.D. thesis provides an overview of the comprehensive and fragment 
based QSAR methodologies. It also summarizes work done on the chemical 
ligation, mosquito repellence, and modelling of dual inhibitors and HPV anti-
viral agents. 
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2. AIMS OF THE STUDY 

The main focus of this thesis is the development and implementation of the 
molecular modelling techniques and statistical modelling algorithms to process 
the biochemical and biomedical data in drug discovery. The thesis is organized 
into three main parts, (i) literature overview of chemical, biochemical and bio-
medical applications, (ii) computational methods and modelling techniques 
where one wants to obtain highly active molecules for a given experimental 
budget, and (iii) summary of the research findings. Specific highlights of this 
thesis include: 
 

I. Developing for the first time, a QSLR statistical model for the prediction 
of relative abundance in chemical ligation from NN Acyl migrations of 
tryptophan peptides and its chemical synthesis (Article I). 

II. Proposing and validating the hit expansion approach to identify diverse 
mosquito (Aedes aegypti) repellent chemotypes using virtual screening, 
QSAR and experimental approach (Article II). 

III. Evaluating the dual inhibition activity on diverse pharmacological pro-
perties and validating the predictions of link between Type 2 Diabetes 
Mellitus and Alzheimer’s disease using Molecular Field Topology Ana-
lysis (Article III). 

IV. Designing of novel antiviral agents for Human Papilloma Virus (Type 6) 
inhibitors using customized fragment based QSAR approach (Article IV). 

V. Assessment and overview of QSAR in various areas of research (Article 
V). 
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3. LITERATURE OVERVIEW 

3.1 Native Chemical Ligation 

Native chemical ligation (NCL), is the process of convergent synthesis of 
peptides which was first reported by Wieland in 19538 and further developed by 
Kent et. al.9 NCL is the most widely used form of chemical ligation involving a 
chemo-selective reaction, usually in aqueous solution. A region-selective 
reaction of a thioester mediated covalent linking of unprotected peptide sub-
divisions at a cysteine residue of an adjacent peptide gives a native amide bond 
at the ligation site over a rapid S-N acyl transfer via a cyclic transition state 
(TS).10–12 NCL has overcome the limitations of classical synthetic organic che-
mistry into the total synthesis of proteins, and enables the routine total or semi-
synthesis of protein molecules.13 NCL process has contributed to build bio-
logically active molecules as potential therapeutics in the synthesis of the cancer 
protein NY-ESO-1,14 cytochrome b562,15 dendrimers, and monodisperse macro-
molecules.16 The major challenge was to control the intrinsic dual reactivity of 
bifunctional Cys-peptide-thioester because of low abundance of Cys and steric 
hindrance. This problem was overcome by developing thiol auxiliary groups.17–19 
Therefore, an improved new ligation method which performed the reversibility 
of the first step, the thiol(ate)–thioester exchange reaction was developed. Due 
to irreversibility, high yields of the final ligation product was obtained, even in 
the presence of internal Cys residues, under the reaction conditions of the 
second (S-to-N acyl shift) amide-forming step.20 The intramolecular NN acyl 
migration of Z-alanine to the N terminus to form native peptide is shown in 
Figure 2. To rationalize and predict the relative abundance for native chemical 
ligation for the first time, full conformational analysis and statistical modelling 
is required to reduce the cost of trials in synthesis. 
 
 

 
 
Figure 2. Scheme on chemical ligation of N-acyl isopeptides through 14-membered 
transition states. 
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3.2 Mosquito Repellents 

Natural resources, such as lemon eucalyptus oil, lavender, cinnamon oil, thyme 
oil, Greek catnip oil, soybean oil, basil, gum, and aroma plant based smoke, 
have been used for years as mosquito repellents and are still utilized today 
throughout the tropical region.21 We still need more effective, non-toxic to 
humans, long-lasting and water-resistant repellents because of more than one 
million cases of malaria and yellow fever are reported per annum in South 
Africa, India and Southern Americas. The most effective wide spectrum 
synthetic repellent is N,N-diethyl-3-methylbenzamide (DEET) discovered in 
1952.22 Although DEET is considered as the standard for insect repellents, it has 
drawbacks: (i) limited efficacy against the species Anopheles albimanus,23 less 
tolerant on variants of Aedes aegypti,24 and other vectors25 (ii) skin irritation; 
(iii) possible neurotoxic effect;26 and (iv) high cost. Other repellents such as the 
piperidine derivatives KBR 3023 (picaridin) and AI3-37220 are considered 
almost as effective as DEET, and will remain effective for a longer duration. 
The repellent diethyl phenyl acetamide (DEPA) is also as effective as DEET 
and can be produced at about half the cost of DEET. The ethyl ester of 3-[N-
butyl-N-acetyl]-aminopropionic acid (IR3535), has few severe side effects but 
is less effective than DEET since its development in 1975.27–29 Currently, identi-
fication of chemotypes of effective mosquito repellents with few severe side 
effects is necessary for the affected population in tropical regions. Computer 
aided molecular design provides relief to the identification of novel repellents.30  
 
 

3.3 Link between T2DM and AD – Dual Inhibition 

-Glucosidase is a carbohydrase enzyme which catalyzes the release of -D-
glucopyranose located in the striated border of the small intestine by acting 
upon 1,4- bonds.31–33 The inhibition of its catalytic activity leads to the 
hindrance of glucose absorption and a decrease in postprandial blood glucose 
level leading to type 2 diabetes mellitus (T2DM).34 Recently it was found that 
acarbose is efficient in patients with impaired glucose tolerance and could 
prevent or delay the development T2DM.35–37  

Acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) belong to 
the class of cholinesterases, that hydrolyze neurotransmitter acetylcholine 
(ACh) within cholinergic synapses of the brain and nervous system. BChE is 
considerably less active in ACh hydrolysis than AChE at low concentrations of 
the substrate and at the same time it is highly efficient at higher levels of ACh, 
when AChE becomes substrate-inhibited.38 Suppression of the cholinergic 
transmission in synapses results in severe neuro-degenerative disorders such as 
Alzheimer’s disease (AD). AD is considered as a loss of neurons caused by the 
formation of β-amyloid plaques and neurofibrillary tangles in brain nerve cells. 
Simultaneous depletion of AChE and some increase of BChE activity shifts the 
balance of ACh regulation.39 Based on this observation, AChE inhibitors 
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reducing the rate of ACh cleavage such as tacrine, rivastigmine, galantamine, 
and donepezil have traditionally been used for symptomatic treatment of AD.40 

According to the epidemiological and pathogenic studies, patients with 
T2DM have a higher tendency of dementia and AD and vice versa. Over the last 
decade research has attempted to understand the mechanisms of AD and T2DM. 
Thus, experimental evidence was found that the impairment of insulin might be 
a mechanistic link between both conditions since insulin (and leptin) have been 
shown to regulate neuronal and synaptic functions in brain.41–45 At the same 
time, BChE may be involved in parthenogenesis of T2D through suppression of 
amyloid formation.38,46 For multi target drug discovery, it is important to re-
cognize the link between the T2DM and AD dual inhibition in order to avoid 
the off-target mode of action.47 Comparative analysis is the necessity to evaluate 
the dual inhibition using pharmacophore and QSAR modelling approaches. 

 
 

3.4 Human Papilloma Virus Inhibitors 

High risk Human Papilloma Viruses (HPV) types 16 and 18 are the most com-
mon sexually transmitted carcinogenic infections.48 HPVs preferentially occur 
in a latent life cycle, and wide variety of different types can be detected at 
random sites of healthy skin of humans.49 The viruses infect and replicate in the 
cutaneous or mucosal epithelia. HPV type 6-E1 helicase ATPase is also respon-
sible for the majority of genital warts. Antiviral agents inhibiting HPV repli-
cation could play a vital role in the treatment of the disease, but there are no 
effective agents present at this time.50 Recent progress towards the discovery 
and characterization of specific molecular targets affords prospectus for effi-
cient HPV antiviral compounds.51  QSARs and other molecular modeling tools 
are widely used for discovery of novel and potentially active compounds against 
HPV.52 
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4. COMPUTATIONAL METHODS 

Computer aided molecular and drug design as a process rarely occurs in one 
step. In addition to the deployment of computational methods, the data also 
needs to be prepared, analysed and validated. The following section of the thesis 
takes a closer look on the steps used and work done in individual articles. In 
Article I, methods like native chemical ligation with pre-organized conformatio-
nal analysis and QSLR were employed. Article II & III employ ligand-based 
approaches by following MFTA, QSAR similarity search, and docking. Article 
IV presents newly developed fragment-based drug design (reverse) QSAR 
methodology. 
 
 

4.1 Molecular Field Topology Analysis 

Molecular Field Topology Analysis (MFTA) is a method for the analysis of 
structurally similar chemical compounds that is similar to the Comparative 
molecular field analysis (CoMFA) in 3D space.53 MFTA does a structural 
alignment in two-dimensional grid and 2D molecular graphs are superimposed 
to make “molecular supergraph” (MSg) as shown in Figure 3.54 The MSg verti-
ces and edges corresponding to atoms and bonds are characterized with values 
of local atomic descriptors. These form a rectangular atom descriptor matrix, 
which is processed by the PLS (Partial Least Square) method to link chemical 
or biological activity to molecular structure. PLS reduces the dimensionality of 
the descriptor matrix down to few sensible factors.  Therefore using the number 
of factors (NF) in PLS is more common than usage of descriptors. In MFTA, a 
factor is presented as a linear combination over all selected descriptors. The 
basic MFTA descriptor space includes: atomic charges, van der Waals radii, 
electronegativity, hydrogen bond parameters, and lipophilicity. The quality of 
the prediction of a model is characterized by the statistical parameters such as 
squared correlation coefficient, R2, and the cross-validation coefficient Q2(n), 
where n is a user-defined parameter for the number of structures in each leave-
many-out (LMO) cross-validation procedure. MFTA has been successfully 
applied to several medicinal chemistry problems such as (i) discovery of new 
CX chemokine receptor-4 antagonists,55 (ii) modelling of anticholinesterase 
activity of o-phosphorylated oximes,56 and (iii) design of GABAA receptor 
selective ligands.57 Articles II and III of the present Thesis employ MFTA to 
analyze and understand the pharmacophore sites in structure activity 
relationship to identify new promising candidates. 
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Figure 3. Molecular supergraph for MFTA model 

 

4.2 Molecular Docking 

Molecular docking is a widely used procedure in computer-aided drug design to 
explore and predict the predominant binding mode(s) of a ligand within a target 
3D protein. The docking search methods examine interaction points in the 
binding pockets and utilize scoring functions like Dock Score, Glide Score, 
Chem Score, etc., to rank ligand dockings efficiencies.58,59 Docking can be used 
to perform virtual screening on large chemical space, rank the docked poses, 
and recommend structural hypotheses on the mechanism of ligands inhibiting 
the protein target, which is crucial in “hit to lead” optimization. The input pre-
paration of both protein and ligand structures for the docking is as important as 
the docking search algorithm parameters, and interpretation of the results can 
sometimes be ambiguous.60 Molecular docking studies are sometimes used in 
QSAR to generate the conformers of the ligands (inhibitors/molecules) within 
the protein binding site to generate 3D and 4D molecular descriptors (using 
frozen conformer in semiempirical parameterization).61 In this approach, Auto-
Dock62 and Glide63 programs have been used for molecular docking and virtual 
screening studies. A protein-ligand interaction in 3D and 2D depiction is shown 
in Figure 4. In article III of this Thesis, the molecular docking studies helped to 
understand the mode of action of repellents with odorant binding protein of 
Aedes aegypti. This led to the identification of new chemotypes through the 
virtual screening process. 
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Figure 4. For example: Ligand Rilviparine binds to the pocket of HIV-1 reverse 
transcriptase protein target PDBID : 3MEE a) 3D representation of protein-ligand 
complex. b) 2D depiction of protein-ligand interaction with key amino acids taking part 
in hydrogen bond. 

 

 

4.3 2D Similarity Search 

Similarity search is a method to find chemical structures that are similar to the 
reference structure. The similarity is measured by comparing the molecular 
features (molecular descriptors) or fingerprints of chemical structures. The use 
of molecular fingerprints for chemical similarity search has made the exami-
nation of large databases much easier by encoding 2D sub-structural fragments 
in a molecule (hashed fingerprints, and binary fingerprints).64 In the similarity 
search, the compounds are ranked by different metric functions and weightings 
such as Tanimoto, Euclidean, Tversky, Substructure, and Superstructure.65 
These metric functions can also be combined to increase the effectiveness of 
finding similar structures. The similarity search has been extensively used for 
finding homogenous molecules and drug like structures for subsequent QSAR 
modelling.66,67 In this thesis, Instant JChem68 was used for 2D similarity search 
and Accelrys Discovery Studio69 for 3D overlap analysis.  The illustration of 2D 
chemical similarity search is given in Figure 5. In articles I, II, III and IV, the 
chemical similarity search played a vital role to understand the diversity and 
closeness of molecular structures to be applicable for QSAR studies. 
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Figure 5. Similarity search: a) Query b) Target c) Search result with similarity score of 
59.75%. 
 
 

4.4 QSAR Modelling 

The aim of QSAR is to correlate biological activities of chemical structures with 
the molecular descriptors, which are solely calculated from molecular structure. 
The process of constructing a QSAR model includes the following steps; i) 
selection of a data set; ii) generation of molecular structural data; iii) optimi-
zation of the 3D geometry by an appropriate method (to generate 3D/4D 
descriptors); iv) generation of various structural descriptors; v) application of 
variable selection or/and data reduction methods on the calculated descriptors; 
vi) regression analysis; and finally, vii) evaluation of the validity and 
predictability of the developed QSAR models using external datasets.70. QSAR 
modeling is a useful technique for accelerating development of drugs, agro and 
fine chemicals, materials, and toxicology predictions. The QSAR approach is 
under permanent scrutiny by the community to improve and enhance robustness 
by minimizing predictive errors and over-training.71 The simplified QSAR 
approach is shown in Figure 6. 

In terms of methodology improvements, a new trend is to integrate QSAR 
with adjacent computational methods such as virtual screening and molecular 
dynamics to justify the predictive capacity of models with mechanism of action. 
Such synergy offers unique opportunities to overcome the limitation of 
modelling global QSAR models.72,73  
 

 
 
Figure 6. Generation of QSAR (3D) models a) Analysis of 3D conformer, b) 
Elucidation of molecular features to calculate descriptors c) Generate statistical models. 
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4.5 Molecular Descriptors 

Molecular descriptors map the structure of the compound into a set of numerical 
or binary values representing various molecular features that are important for 
explaining the activity or property of the molecule. The descriptors establish a 
link between the molecular structure and the corresponding activities.74–76  
 
Molecular descriptors are mainly classified as  
a) Constitutional descriptors: the most simple and frequently used class of 

descriptors, reflecting the chemical composition of a compound without any 
information about its molecular geometry or atom connectivity. Some 
constitutional descriptors are; molecular weight (MW), number of atoms 
(nAT), number of bonds (nb), number of rings (nr), number of Hydrogen 
atoms (nH), number of Carbon atoms (nC), number of Nitrogen atoms (nN), 
number of Oxygen atoms (nO), number of halogen atoms (nX).77  

b) Topological descriptors: consider the topology of a molecule. These are 2D 
descriptors which consider the internal atomic arrangement of compounds, 
and encode molecular size, shape, branching, presence of heteroatoms and 
multiple bonds information in numerical form. Some topological descriptors 
are; Wiener index, Balaban's index, Kier and Hall valence connectivity in-
dices, Structural information content index, Topological electronic indices.78  

c) Geometrical descriptors: characterize the shape and extent of the molecule in 
terms of its 3D Cartesian coordinates. As a result, accurate coordinates are 
required and so the structure must be geometry optimized before these 
descriptors can be calculated. Currently for biological activity, 3D con-
formers of the target protein binding site are used for meaningful geo-
metrical descriptor generation.77,79 

d) Electronic (Charge) descriptors: calculated from atomic charges, which can 
be calculated using semi-empirical methods based on the 2D topological 
structure of the molecule or a quantum chemical wave function of the mole-
cule.80–82 

e) Quantum chemical descriptors: describe electrostatic and electronic pro-
perties of a molecule. These descriptors are calculated using molecular orbi-
tal energies and wave functions of electronic motion in a molecule obtained 
by solving the respective time-independent Schrödinger equation. The semi-
empirical AM1/PM3/PM6 parameterizations used in MOPAC/AMPAC pro-
grams are widely used to derive charges, dipole moments, and bond lengths. 
The computed quantum chemical descriptors include the partial atomic 
charges, HOMO and LUMO energy levels, dipole moment, polarizability, 
etc., as well as the derivative descriptors from them.75,83 

 
The software reporting different molecular descriptors used for the studies in 
articles are listed in Table 1. A detailed modelling schema for the elucidation of 
structural features to calculate molecular descriptors is shown in Figure 7. 
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Criteria for Molecular Descriptors to be used in QSAR: 
a) Physical significance and structural interpretation are very important. 
b) Key molecular descriptors should have a correlation with the property/ 

activity. 
c) 3D descriptors should discriminate isomers. 
d) Co-linearity among the descriptors are trivial. 
 
 
Table 1. List of software tools used for calculating molecular descriptors 
 

Name Developers 
No. of 

Descriptors 
Platform / License 

CODESSA III SemiChem Inc. ≈720 
Win/Linux/Mac 

Commercial 

CODESSA-Pro 
Univ. of Florida / 
Univ. of Tartu 

≈590 
Windows 

Commercial 

CDK GUI Dr. Rajshri Guha ≈120 
All Plaforms 

GPL, Freeware 

EDRAGON 
Virtual Computational 
Chemistry Laboratory 

≈3000 
All Platforms 
Online Server 

PADEL 
National University of 
Singapore 

≈380 
All Platforms 

GPL, Freeware 

Indigo GGA Software ≈50 
All Platforms 

GPL, Opensource 

RDKit Greg Landrum ≈220 
All Platforms 

GPL, Opensource 
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Figure 7. QSAR modelling schema for the elucidation of structural features to calculate 
molecular descriptors from different resources. (Chart style adapted from J. Chem. Inf. 
Model., 2008, 48 (11), pp 2207–2213 and QSAR & Comb. Sci.,2009, 28, pp 811–814) 
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4.6 Approaches in Data Treatment and Modelling  

4.6.1 Data Source and Quality 

The selection of compounds in a dataset is based on the molecular similarity 
search with known active drugs.84 In QSAR the data clean-up plays important 
role as the quality of the structures and the respective biological data should be 
verified. The verification is required particularly, if the data is collected from 
different research groups. QSAR models can also be used to correct erroneous 
biological data associated with chemical compounds.85–87 
 
 

4.6.2 Data Standardization 

The data pre-processing step transforms the original dependent and independent 
variables into a new set of variables suitable for QSAR analysis. 
 

i)  Transformation of the dependent variable. 
Biological data is often provided in units that are unsuitable for QSAR 
analysis. Furthermore, the collected experimental data (EC50, LD50, IC50, 
MED, etc.) may not be normally distributed. In most cases the bioassay 
data is reported in different units like nm/ml, g/L, etc., but for modelling 
purpose molar units are used. As the Pearson Product Moment Correla-
tion (frequently used measure of model performance in QSAR) requires 
normally distributed data, a transformation of the original endpoint values 
is often necessary.88  

 
ii)  Transformation of the independent variables. 

Being defined by unique mathematical expressions, all molecular 
descriptors certainly cover vastly different ranges of numerical values. 
For example, the molecular volume (expressed as Å3) usually takes 
values in the range of a hundred to several thousand units, whereas the 
partial atomic charge of a C atom may vary from 0.010 to 0.199e units. If 
these two descriptors are used in a QSAR equation it would be extremely 
difficult to determine their relative impact on the modelled endpoint. 
Hence, it is desirable to use normalization or standardization procedures 
to bring all descriptors in proportion with one another. 
 

 
4.6.3 Data Modelling Techniques 

A plethora of supervised and unsupervised data processing algorithms are 
widely used for data modelling. Although methods, such as SVM (Support 
Vector Machines), kNN (k-Nearest Neighbors), GA (Genetic Algorithms), DT 
(Decision Trees), RF (Random Forests), ANN (Artificial Neural Networks) 
have become increasingly popular during the past decade, classical methods like 
MLR (Multiple Linear Regression), PCA (Principle Component Analysis) and 
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PLS (Partial Least Squares) are still preferred due to their simplicity, predictive 
capacity and easy interpretability of the generated models.  
 
a) BMLR 
The Best Multi-Linear Regression method (BMLR) was used to correlate the 
descriptors with the activities. The BMLR method is based on the (i) selection 
of the orthogonal descriptor pairs, (ii) extension of the correlation (saved on the 
previous step) with the addition of new descriptors until the F-criteria becomes 
less than that of the best 2-parameter correlation.70 The best N correlations (by 
R2) are saved. The method successfully solves the initial selection problem by 
reducing the number of pairs of descriptors in the "starting set". The major 
limitations are the pairwise selection on the first step and the low consistence of 
the presentation of the upper (according to the selected criteria) segment of the 
search (N ≈ 200) due to the small size of the correlation selection.89,90 
 
b) Genetic Algorithm 
Genetic Algorithm (GA) is a stochastic optimization machine learning tech-
nique that simulates natural selection principles and its advantages have been 
proven in several QSAR studies.91 The genetic algorithm used in this study was 
presented for the first time by Leardi et al.92 The fitness function in the 
QSARINS program93 is the leave-one-out (LOO) cross-validation correlation 
coefficient (Q2). GA method is used for the selection of descriptors and rank the 
best model based on the applicability domain which depends on the William’s 
plot, internal validation, external validation, and relevance of the descriptors’ 
physical meaning to the inhibitors.94 Since the models are described by several 
parameters, the major goal is the extraction of relevant information, together 
with the exclusion of redundant and noisy information. In regression modelling, 
the most relevant variables with respect to the specific problem of interest are 
searched for by different selection strategies. GAs perform this selection by 
considering populations of models generated through a reproduction process 
and optimised according to a defined objective function related to model 
quality.95 The genetic algorithm functions and parameters used in this Thesis are 
defined in Appendix B. 
 
 

4.6.4 Model Validation 

A robust QSAR modelling workflow is required to generate models, validate 
and predict activities for new datasets. The fitting ability of the model is verified 
by internal validation on the leave-one-out (LOO) cross-validation and leave-
many-out (LMO) cross-validation techniques.96 In the LMO cross-validation 
technique, ≈20% of training set compounds are obliterated in different cycles 
based on outliers and heterogeneity of the compounds in the dataset. For all 
iterations, the biological activities of the excluded compounds are then pre-
dicted using the model developed with the corresponding dataset of com-
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pounds.97 Training sets are further divided into multiple sets of descriptive 
training and test sets of different size, i.e., based on descriptor similarity using 
tanimoto method and structure similarity using overlap analysis. The external 
predictive ability of the model is assessed based on the predictions of the test set 
and external validation set compounds followed by the calculation of the  
Q2

LOO & LMO parameter.98 A randomization procedure aimed at testing models for 
potential chance correlations is the so-called Y-scrambling. This procedure 
randomizes the dependent variable vector, by assigning endpoint values to com-
pounds to which they do not belong. The most stringent form of validation is 
the external validation. The true external validation uses compounds never used 
in the model development, the prediction is then carried out and R2

ext for the 
external test set is compared to the R2 for the model. In case of data collected 
from different sources significant differences between these two R2 can be 
expected.99  
 

4.6.5 Identification of outliers 

Outliers are compounds with deviating endpoint values, which do not fit in a 
QSAR model. This usually happens when: i) a compound acts by a different 
mechanism, ii) interacts with the target in a different mode, iii) it is affected by 
a random or a systematic experimental error having little effect on the other 
chemicals. In statistical terms, an outlier is a data point, which has a high abso-
lute standardized residual compared to the other compounds in the data set. As 
the coefficients and the intercept of the regression are highly sensitive to the 
presence of outliers, such points may be removed from training set.100  
 
 

4.7 Domain of Applicability  

Once a QSAR model is generated and properly validated, it can then be used to 
predict the activities/properties of a novel chemical entity. When the datasets 
used to generate and validate the models have limited structural diversity, it is 
expected that the model’s applicability for the prediction of new compounds is 
also limited. Hence, reliable predictions are usually confined to chemicals that 
are structurally similar to the training set. The chemical space for the reliable 
predictions is defined as Applicability Domain (AD). A defined AD provides 
the following benefits: i) identifies the type of compounds for which reliable 
predictions can be obtained, ii) determines the degree of generalization of a 
QSAR model and iii) gives an idea about the interpolation and extrapolation 
power of a model (the extrapolation often limited to 30% beyond the minimum 
and the maximum values of the data used in the model development).101,102 
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4.7.1 QSAR Model selection  

QSAR models are statistical constructs (models) of different mathematical form 
that describe the relationship between the independent and dependent variables. 
Although, a large number of models may be statistically relevant, only a 
fraction of them would be biologically/chemically significant. Thus, various 
criteria have to be considered when selecting a final model among the many 
possible alternatives:103,104 
i)  The model should be biologically and/or chemically relevant. For example, 

models that contain hydrophobicity related descriptors should be 
considered more relevant comparing to those that are difficult to interpret. 
Hydrophobicity manages several biological processes, such as distribution, 
transport and metabolism of biological system, molecular recognition etc. 
Therefore, the understanding of a parameter that defines the activity of 
molecules into polar and nonpolar stages is vital to predict the transport 
and activity of drugs.105  

ii)  Preference for parsimonious models. The principle introduced by William 
of Occam’s razor states that among a set of equally good explanations for a 
given phenomenon, the simplest explanation tends to be the right one. In 
the context of QSAR, the models should have as few parameters as pos-
sible and should be trimmed down until they are minimally adequate.106  

iii)  Models with superior predictive power. As the majority of QSAR is gene-
rated for prediction, models able to predict external data correctly should 
be preferred. 

 
 

4.7.2 Interpretation  

In general, there are two types of QSAR models: i) models that are built with 
the sole purpose of predicting an endpoint of interest to fill gaps in the data and 
ii) models built to pursue a better understanding of the underlying biochemical/ 
chemical/physico-chemical phenomena.107 When dealing with the second type 
of QSAR models, the first and major step in their interpretation is the ability to 
interpret the individual descriptors.108 It is important as arbitrary interpretation 
of descriptors may lead to irrelevant interpretation of the QSAR.103 The work-
flow for statistical data modelling of QSAR paradigm is given in Figure 8. 
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Figure 8. Overall workflow of QSAR (statistical data) modelling procedure. (Style 
adapted from QSARINS) 
 
 

4.8 Fragment Based Scaffold Hopping 

Fragment-based drug discovery (FBDD) method has been developed to gene-
rate new potential lead compounds.109 The FBDD starts with the identification 
of fragments that generally bind with weak affinity to the target scaffold of 
interest. The fragments that form high quality interactions are then optimized to 
lead compounds with high affinity and selectivity.110,111 The main idea of the 
fragment based QSAR (FQSAR) is the division of compound structures into 
appropriate fragments for which the fragment descriptors can be calculated.112 
FQSAR is not widely used in activity data modelling due to requirement of 
homogeneity and identical core of molecules in the dataset including limited 
number of descriptors.113 Schematic representation of fragmentation for the 
FQSAR is shown in Figure 9. 
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Figure 9. Illustration of custom fragmentation of molecular structures in FQSAR. 
 
 
Pharmacophore modelling has become one of the major steps in drug discovery 
after the creation of drug or ligand databases with biological activity data..114 In 
spite of the successes, pharmacophore approaches have not reached their 
expected full capacity, particularly in facing the demand for reducing the overall 
high cost associated with drug discovery and development. To overcome the 
shortcomings, scaffold hopping was introduced to find the fragments to 
substitute one part of a molecule with another, retaining their pharmacophoric 
interaction points.114 In order to consider the interaction and spatial constraints, 
field point technology with XED forcefields was used to generate novel com-
pounds with similar chemical activity. Bio-isostere replacement method115 was 
used to perform scaffold hopping using field point constraints to generate novel 
compounds from fragment databases.116,117 Schematic workflow for the 
fragment based (scaffold hopping) approach is shown in Figure 10. 
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Figure 10. Schematic workflow for the fragment based scaffold hopping (bioisostere 
replacement) approach. Field-based template containing a single docked conformation 
of a chemical compound was considered on their 3D field point patterns to generate 
novel compounds. 
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5. SUMMARY OF ORIGINAL PUBLICATIONS 

5.1 Application of QSLR in chemical ligation 

Title: “Long-Range Chemical Ligation from NN Acyl Migrations in 
Tryptophan Peptides via Cyclic Transition States of 10- to 18-Members” 
The NN acyl migration for the synthesis of native peptides has not been 
thoroughly explored, therefore we discovered the first examples of successful 
chemo-selective NN acyl migration involving Trp-containing isopeptides via 
10-, 11-, and 12-membered cyclic transition states.I  However, this methodology 
still needed to be fully developed and explored by examining the following 
factors: 1) the range of cyclic transition states, 2) the best conditions for the 
ligation step, and 3) the effects of substituents in the amino acid residue and 
rationalization of the relative abundance of ligated product. This novel 
methodology was achieved without using Cys/Ser/Tyr residues or an auxiliary 
group at the ligation site. To rationalize the chemical ligation, a full confor-
mation search was performed using MMX forcefield in PC Model,118 con-
sidering both rotatable bonds and the phenyl rings. The bond distance - b(N-C) 
for twenty-one compounds were measured by generating the best pre-organized 
conformer for each compound. A statistical QSLR model was generated to 
predict the feasibility of ligation by considering the relative abundance as the 
activity data. The model generated using BMLR and Genetic Algorithm was 
further validated and with the experimental ligation data. The QSLR model 
equation was used to predict relative abundance of 6 more compounds and the 
model predictions were experimentally validated by measuring the relative 
abundance of the selected 3 compounds.I Given that there is an increasing 
number of studies involving the synthesis of longer peptides and iso-peptides, 
we believe this new ligation approach with QSLR represents a significant 
development in the field. 
 
 

5.2 Identification of Aedes aegypti repellent chemotypes. 

Title: “Promising Aedes aegypti Repellent Chemotypes Identified through 
Integrated QSAR, Virtual Screening, Synthesis, and Bioassay” 
The repellent chemical library consisted of 43 carboxamides119 together with 27 
compounds for which the repellency was evaluated for this study. In this study, 
repellent activity measurements were carried out by USDA-ARS and the repel-
lency was characterized by a minimum effective dosage (MED, µmol/cm2). 
MED is defined as the minimum surface concentration of a compound that is 
required to produce a repellent effect. A QSAR (Quantitative Structure-Activity 
Relationships) pharmacophore model predicted the most favourable amide 
structure to consist of an aliphatic moiety and an aromatic hydrophobic moiety 
separated by a highly polar carboxyl group.II Another 3D (three dimensional) 
QSAR model defined an optimal structural pattern that consists of two oxygen 
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atoms (one of which belongs to an amide group) positioned a certain distance 
from each other and joined by a lipophilic moiety. Predictive models have also 
been derived by using multi-linear QSAR based on experimental and theoretical 
descriptors. Protection times of a large set of carboxamides and N-acylpipe-
ridines had been qualitatively analysed using artificial neural networks and 
multiple linear regression.119–121 The repellents in this study were classified as 
early spatial, late spatial, and contact. It found that few chemical bonds sepa-
rating the hydroxyl and the hydrophobic fragments are beneficial for increasing 
repellent activity. Until very recently, no valid information on putative mole-
cular targets was available. Analysis by QSAR revealed molecular determinants 
of repellent action against Aedes aegypti, and this knowledge was translated into 
search queries for a scaffold hopping step. Molecular docking using Glide soft-
ware63 against the Aedes aegypti OBP1 protein structure helped to identify 
highly promising scaffolds and individual compounds possessing mosquito 
repellent activity. From computational approaches, 27 assorted compounds 
containing hydroxyl, ether, ester, amine, nitro, and halogen functionalities were 
purchased and tested for measuring the MED.   
 
 

5.3 Dual inhibition studies of Type 2  
Diabetes Mellitus and Alzheimer’s disease 

Title: “Dual inhibition of the α-glucosidase and butyrylcholinesterase 
studied by Molecular Field Topology Analysis” 
α-Glucosidase and BChE inhibitory activities were obtained for 42 and 65 com-
pounds, respectively, of which 30 compounds had overlapping dual inhibition 
data. The compounds included assorted heterocyclic compounds: 27 alkyl and 
phenyl substituted triazoles, 20 benzothiazepines, 18 phenyl steryl ketones 
(chalcones). The whole library was synthesized and experimentally tested by 
the collaborators. This dual inhibitors subset predominantly consisted of 1,4-
disubstituted-1,2,3-triazoles, whose specific structural features responsible for 
the poly-pharmacological activity were identified by MFTA.III As T2DM is a 
risk factor to AD, dual mode drugs acting on both of them are highly promising. 
The IC50 values for α-glucosidase vary from 11.9 to 6756.7 µM while those for 
BChE lie between 3.97 and 585 µM. The highest bi-target activity was found 
for two compounds, with IC50 values equal to 12 µM for α-glucosidase and 14 
µM for BChE, respectively. The quantitative structure activity relationships and 
the common pharmacophore pattern identified in this work will help to design 
better drug candidates to counteract those two debilitating conditions. 
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5.4 Generation of QSAR models using  
fragment based approach 

Title: “Theoretical Modeling of HPV: QSAR and Novodesign with Frag-
ment Approach”  
Antiviral agents capable of specifically inhibiting Human Papilloma Virus 
(HPV) replication could play an important role in the treatment of these 
diseases, but unfortunately no such antiviral agents are yet available. The recent 
progress toward the identification and characterization of specific molecular 
targets offers the prospect of effective HPV antiviral compounds.122 Both 
standard and fragment based Quantitative Structure-Activity Relationships 
((F)QSAR) methodology has been used to the analysis of HPV inhibitors, and is 
based on the experimental work done by White et. al. on a series of small 
molecules inhibiting the ATPase (Adinosine Tri-Phosphatase) activity of 
HPV6-E1 helicase.50 E1 is the most highly conserved HPV protein that 
possesses enzymatic activity.48 Thus, the E1 helicase has been considered the 
most attractive molecular target for the development of antiviral agents. In 
accordance with the scheme given on Figure 9 in section 4.8, a data set of 42 
anti-HPV compounds was divided into three subsets: 9 valence fragments (FI), 
8 bridge fragments and 23 valence fragments (FII). FQSAR model was 
generated for prediction of the antiviral activities.IV. 
 
 

5.5 QSAR: Link between cause and effect 

Title: “Quantitative structure–activity/property relationships:  
the ubiquitous links between cause and effect” 
The universal applications of the QSAR approach were explored in various 
research fields. The predictions and modelling of QSAR within the applicability 
domain can be useful, reliable and cost effective for the whole drug discovery 
process depending on the dataset. Recent improvements in the QSAR approach 
have given a vision beyond the classical QSAR paradigm by detailed 
consideration of the molecular conformers, protein-ligand receptor complexes, 
and molecular dynamics. The only problem arises when there is a lack in the 
availability of 3D structures of protein targets to consider the improved metho-
dology. QSAR is also widely used in designing novel compounds with im-
proved activity, evaluating their toxicity in the field of materials science, nano-
technology, agrochemicals, pharmaceuticals and personal care products. The 
assessment of dimensionality in statistical QSAR conveys that not all models 
can predict activity for novel compounds and not all model validations are 
reliable for different applications. QSAR is a scientific method with its own 
benefits and drawbacks. Nevertheless, it is a powerful technique capable to 
cover huge chemical space, which is inaccessible with any other methodology. V 
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6. SUMMARY  

In this thesis, QSAR methods in combination with pharmacophore assessment 
and molecular modelling were applied to generate predictive models for 
biological activities and potential drug candidates. The focus was set on a closer 
study to the conformational analysis, fragment- and ligand -based methods, 
global QSAR and molecular docking in prospect of drug design.  

QSLR models for relative abundance (Article I) revealed importance of the 
bond distance b(N-C) in NN acyl transfer and Balaban index in the chemical 
ligation. The reproducibility of the model was further proven by experimental 
validation for the predicted relative abundance by synthesizing 3 more com-
pounds. 

New chemotypes for mosquito repellents (Article II) were identified using 
the hit expansion technique which can lead to the discovery of less toxic and 
long lasting repellents. Molecular docking and pharmacophore based QSAR 
modelling was applied to identify new repellents from chemical libraries.  

Comparative analysis of dual inhibition studies on T2DM and AD (Article 
III) showed overlapping of biological activities for 30 compounds. The identi-
fication of common pharmacophoric patterns may lead to the design of multi-
target drugs in the future.  

Finally, FQSAR method (Article IV) was applied for the prediction of novel 
potential inhibitors against HPV. A new set of techniques on fragmentation 
method and calculation of fragment based descriptor matrix were introduced in 
this work. The reported model had interpretable descriptors and better statistical 
parameters of prediction as compared to those of linear QSAR approach. 

In summary, an improved QSAR approach was designed with adjacent com-
putational methods to overcome the limitations of ligand-based methods. This 
will also provide the researchers with dependable tools for precise model 
predictions within the applicability domain to elucidate new drug candidates. 
  



35 

7. SUMMARY IN ESTONIAN 

Keemiliste, biokeemiliste ja biomeditsiiniliste  
omaduste arvutuslik modelleerimine 

Käesolevas dissertatsioonis kasutati QSAR meetodeid kombinatsioonis farma-
kofooride ja molekulaarmodelleerimisega ennustusvõimeliste mudelite loomi-
seks ning uute ravimikandidaatide leidmiseks. Töö eesmärgiks oli uurida 
konformatsioonianalüüsi ning fragmendi- ja ligandipõhiste meetodite ja 
molekulaarsildamise meetodite võimalikku kasutamist ravimiarenduses. 

Artiklis I arendatud QSLR mudelis suhteliste saagiste  jaoks peptiidide 
sünteesil ilmnes, et sidemete kaugus (b(N-C) N>N tsüüli üleminekus) ja Bala-
bani indeks mängivad olulist rolli kirjeldamaks keemilist seostumist (chemical 
ligation). Mudeli pädevust tõestati kolme uue aine sünteesiga ja vastavate 
eksperimentaalsete mõõtmistega. 

Artiklis II leiti uued kemotüübid repellentidele, mis omakorda andis juht-
nöörid uute, vähemtoksiliste ja kauakestvate sääsetõrjevahendite leidmiseks. 
Kasutati ka molekulaarsildamist ja farmakofooripõhist QSAR meetodit sobivate 
kandidaatide väljaselekteerimiseks kemikaalide andmebaasist. 

Artiklis III leiti, et  30 ühendit inhibeerivad samaaegsel nii diabeeti kui ka 
Alzheimeir tõbe. Taoliste ühiste farmakofooriliste mustrite avastamine võib 
tuleviks olla kasuks multifunktsionaalsete ravimite väljatöötamiseks. 

Artiklis IV arendati FQSAR meetodi abil välja papiloom viiruse inhibiitorite 
aktiivsust ennustav mudel ning disainiti uued, potentsiaalsed antiviraalsed 
ühendid.  

Kokkuvõtteks võib öelda, et erinevaid arvutumeetodeid kombineerides aren-
dati täiendatud QSAR meetod, et saada üle ligandipõhiste meetoditega kaas-
nevatest piirangutest.  
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APPENDIX 

A. Multiple Linear Regression Functions and Parameters123 
 
BMLR relies on the following assumptions: 
a) The relationship between the independent (x) variables and the dependent 

(y) variable is linear; 
b) The residuals between the actual and the estimated values of y follow a 

normal distribution; 
c) The independent variables x1, x2 …xn should be uncorrelated (R < 0.5). As 

the calculation of the regression coefficients is done through matrix in-
version if multi-collinearity is present the inversion matrix would be 
unstable. 

 
The following signs can indicate the presence of multi-collinearity between the 
descriptors in a given descriptor pool: 
a) The F-test of the QSAR equation as a whole is significant while none of the 

t-ratios of the coefficients are statistically significant; 
b) The addition of a new descriptor to the equation radically changes either the 

size or the sign (plus or minus) of the regression coefficients of the re-
maining descriptors. Most QSAR operates on large descriptors pools. How-
ever, only a few of the descriptors are relevant to the modelled endpoint. 
Thus, feature selection algorithms able to extract a small subset of 
descriptors from a larger pool are often used.  

 
A.1. Residual Sum of Squares, RSS (error sum of squares). The sum of 
squared differences between the observed (y) and estimated response: 
 =	 ( −	 )  

 
being n the number of training objects. This quantity is minimized by the least 
square estimator. 
 
A.2. Model Sum of Squares, MSS, defined as the sum of the squared diffe-
rences between the estimated responses and the average response:  
 =	 ( −	 	)  

 
This is a part of the total variance explained by the regression model as opposed 
to the residual sum of squares RSS. 
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A.3. Total Sum of Squares, TSS, defined as the sum of the squared differences 
between the experimental responses and the average response:  
 =	 ( −	 	)  

 
This is the total variance that a regression model has to explain and is used as a 
no-model reference quantity to calculate standard quality parameters such as the 
coefficient of determination. 
 
A.4. Coefficient of determination, R2. The squared multiple correlation 
coefficient that is the total variance of the response explained by a regression 
model. It can be calculated from the model sum of squares MSS or from the 
residual sum of squares RSS: 
 =	 = − = − ∑ ( −	 )∑ ( −	 	)  

 
where TSS is the total sum of squares around the mean. A value of one indicates 
perfect fit, i.e. a model with zero error term. 
 
A.5. Residual Mean Square, RMS or s2 (: mean square error, expected squared 
error). The estimate s2 of the error variance σ2, defined as: 
 =  

 
where RSS is the residual sum of squares and dfE is the error degrees of 
freedom, i.e. to n – p', where n is the number of objects (samples), p' the number 
of model parameters (for example, n – p – 1 for a regression model with p 
variables and the intercept). The standard error of the estimates is the square 
root of the residual mean square. 
 
A.6. Standard Deviation Error in Calculation, SDEC also known as standard 
error in calculation, SEC. A function of the residual sum of squares, defined as: 
 =	 ∑ ( −	 ) =  

 
A.7. F Fisher function. Among the most known statistical tests, it is defined as 
the ratio between the model sum of squares MSS and the residual sum of 
squares RSS:  
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= //  

 
where dfM and dfE refer to the degrees of freedom of the model and error, 
respectively. The calculated value is compared with the critical value F crit for 
the corresponding degrees of freedom. It is a comparison between the model 
explained variance and the residual variance: high values of the F-ratio test 
indicate reliable models. 
 
A.8. Adjusted R2, f. A fitness parameter adjusted for the degrees of freedom, so 
that it can be used for comparing models with different numbers of predictor 
variables:  
 = − // = − − . −−  

 
where RSS and TSS are the residual sum of squares and the total sum of squares, 
respectively; dfT refers to the total degrees of freedom; R2 is the coefficient of 
determination. 
 
A.9. Predictive Residual Sum of Squares, PRESS. The sum of squared diffe-
rences between the observed and estimated response by validation techniques:  
 = −	 / 	  

 
where yi/i denotes the response of the i-th object estimated by using a model 
obtained without using the i-th object. Using validation techniques minimizes 
this quantity. 
 
A.10. Cross-validated R2, R2cv (or Q2). The explained variance in prediction:  
 = = − = − ∑ −	 / 	∑ ( −	 	)  

 
where PRESS is the predictive error sum of squares and TSS the total sum of 
squares. 
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A.11. External Q2. The explained variance in prediction: 
 = − ∑ / 	 −	 	 /∑ ( 	 −	 	) / = − //  

 
where the sum runs over the test set objects (next) and  is the average value of 
the training set responses. 
 
A.12. Standard Deviation Error of Prediction, SDEP also known as standard 
error in prediction SEP or PSE. A function of the predictive residual sum of 
squares, defined as: 
 

=	 ∑ −	 / =  

 
A.13. Total correlation in the model predictors, KX: 
 

= ∑ ∑ −. ( − )  

 
where λ are the eigenvalues obtained from the correlation matrix of the data set 
X(n, p), being n the number of objects and p the number of variables. Total 
correlation in the set given by the model predictors X plus the response Y. KXY 
is calculated by the above formula (KX) adding the y response to the set of 
predictor variables.  
 
 
Appendix B 
B. Genetic Algorithm Parameters 
 
B.1. Random initialization of the population: The model population is built 

initially by random models with a number of variables between 1 and L. 
The value of the selected objective function of each model is calculated in 
a process called evaluation. The models are then ordered with respect to 
the selected objective function – model quality - (the best model is in first 
place in the population, the worst at position P);  
 

B.2. Crossover: From the actual population, pairs of models are selected 
(randomly or with a probability function of their quality). Then, from each 
pair of selected models (parents), a new model is generated, preserving the 
common characteristics of the parents (i.e. variables excluded in both 
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models remain excluded, variables included in both models remain in-
cluded) and mixing the opposite characteristics according to the crossover 
probability. If the generated sibling coincides with one of the individuals 
already present in the actual population, it is rejected; otherwise, it is 
evaluated. If the objective function value is better than the worst value in 
the population, the model is included in the population, in the place 
corresponding to its rank; otherwise, it is no longer considered. This 
procedure is repeated for several pairs; 
 

B.3. Mutation: After a number of crossover iterations, the population proceeds 
through the mutation process. This means that for each individual of the 
population every gene is randomly changed into its opposite or left un-
changed. Mutated individuals are evaluated and included in the population 
if their quality is acceptable. This process is controlled by mutation proba-
bility which is commonly set at low values, thus allowing only a few 
mutations and new individuals not too far away from the generating 
individual.  
 

B.4. New generation: After a number of iterations, a new generation of the 
population can be performed killing a defined percent of individuals and 
randomly recreating them. In MobyDigs the 50% of population individuals 
is iteratively recreated after a user-defined number of iterations; the killed 
individuals are the worst ones. This process is useful in better exploring the 
solution space.  
 

B.5. Population size: maximum number of models in a population (default: 50).  
 

B.2. Maximum allowed variables in a model: maximum number of variables 
in a model (default: 3).  
 

B.3. Start calculation with all subset models until: sets the maximum size of 
models searched by the All Subset Model approach (the default 0 indicates 
that not all the subset model search is performed  
 

B.4. Number of retained models for each size: number of the best models for 
each size surviving in the population regardless of their quality (default: 3). 
This option is important to save, in the final population, also the best 
models of lower complexity e.g., the first best three models with one 
variable, the first three models with two variables, etc.  
 

B.5. Trade-off between crossover and mutation: user-defined value of the T 
parameter which sets the values of the crossover and mutation probabilities 
(default: 0.5; T = 0 only crossover; T = 1 only mutation).  
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B.6. Selection bias: user-defined value of the B parameter which sets the parent 
selection operator (default: 0.5 roulette-wheel selection; B = 0 random 
selection).  
 

B.7. Add noisy variables: addition of normal and uniformly distributed 
variables, which test chance correlation during the evolution procedure. 
The user can add up to 200 noisy variables to each population with labels 
ZZNxx when normally distributed and ZZUxx when uniformly distributed 
(xx is an ID number associated to the noisy variable).   
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