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ABBREVIATIONS 

ABD – actin binding domain 

ABP – actin binding protein 

bp – base pair 

dpi – day post infiltration  

F-actin – filamentous form of actin, consisting of globular actin monomers 

G-actin – monomeric globular form of actin, which polymerizes form actin filaments (F-

actin)   

GFP – green fluorescent protein  

RE – restriction endonuclease  

SP – signal peptide  

SPNLS – nucleus localization signal peptide 

SPChl – chloroplast localization signal peptide 
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INTRODUCTION  

Actins are the most abundant globular proteins in eukaryotic cell, which are essential building 

units for actin filaments (F-actins). Via an accurately regulated processes F-actins form a 

filamentous network – actin cytoskeleton, which plays a primary role in vital cellular processes, 

like cell shape changing, cytokines, cytoplasmic streaming, and also intracellular signaling. 

Furthermore, it provides a platform for interacting with neighboring cells. Numerous actin-

binding proteins (ABP) participate in determining the dynamics and configuration of actin 

cytoskeleton. To date, a large number of ABPs have been described, but mostly have been 

studied by biochemical assays in vitro, thus their functions in plants remain uncharacterized. 

Nevertheless, characterization of the actin cytoskeleton and ABP molecular functions has been 

a focus in plant cell biology.  

Our understanding of actin dynamics and structures relies primarily on tools and techniques, 

which permit actin visualization of actin in living cells. Initially, most commonly used methods 

were performed in fixed materials labelled with fluorescently tagged phalloidin or by 

immunocytochemistry. Presently they have been predominantly replaced with a new class of 

live plant F-actin probes based on the green fluorescent protein (GFP). The major problem with 

GFP-based F-actin probes associates with disruptions in actin organization caused by 

overexpression of the actin-binding domain (ABD) of regulatory ABPs. Furthermore, the 

fluorescence signal from currently available F-actin reporters is frequently too weak to allow 

identification of certain fine and subtle structures. Therefore, there are still needs in the 

development for better reporters.  

The aim of current study was to improve fluorescence imaging on the actin cytoskeleton by a 

split-tagging system, in which a synthetic protein scaffold was used to recruit multiple GFPs 

for fluorescence signal amplification.  

Current study was performed in The Plant Signal Research Group at the Institute of 

Technology. I would like to thank Yuh-Shuh Wang, who was creative and inspiring supervisor 

and in addition all helpful members from our research group.  
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1. LITERATURE OVERVIEW 

1.1. The actin cytoskeleton  

Actins are abundant and highly conserved globular proteins in eukaryotes. They are mainly 

located in cytoplasm, but are also present in the nucleus, where they may or may not have 

motor-associated functions (Remedios et al., 2002). Under certain physiological conditions 

actin monomers (G-actin) assemble into polar, helical filamentous structures (F-actin), which 

have two biochemically and structurally distinct ends called barbed end and pointed end. ATP-

dependent polymerization in barbed end and depolymerization in pointed end cause filaments 

treadmilling, which plays a decisive role in actin-based motile processes (Pantaloni et al., 2001; 

Bugyi et al., 2010). The F-actin is the basic building unit for actin cytoskeleton complex 

network, which is highly dynamic and can undergo rapid changes upon various stimuli. 

Numerous actin-binding proteins and small molecules play essential roles in modulating the 

dynamics of the actin cytoskeleton (Kreplak et al., 2007; Dominiquez et al., 2011).  

Actin cytoskeleton drives indispensable processes for normal cell growth and development. For 

example, F-actin facilitates the maintenance of the internal architecture of the cell, drives 

cytoplasmic streaming, contributes to the process of cell division and provides a platform for 

interaction with neighboring cells (Remedios et al., 2002; Hussey et al., 2006; Kreplak et al., 

2007; Deeks et al., 2009, McKayed et al., 2013). Furthermore, actin cytoskeleton provides 

trafficking routes for delivery of cell wall precursor containing vesicles to the site of polarized 

growth and functions as molecular tracks, which guide intracellular movements in response to 

environmental stimuli (Drøbak et al., 2004). Not less important are actin-mediated signaling 

cascades, which dictate the plant protection strategies against pathogens and facilitate response 

to abiotic stresses (Dyachok et al., 2014; Nick, 1999). Consequently, as actin cytoskeleton 

provides several fundamental functions in the cell, it has been an important research field in 

cell biology. As tools and techniques that allow us to visualize actin are central to our 

understanding towards actin biology. The race of inventing and improving different methods 

has been continuous and been accelerateing in the past quarter of a century (McKayed et al., 

2013). 

1.2. Visualizing the actin cytoskeleton 

The past two decades have been an explosion in development of new techniques in cell biology, 

especially in the field of light microscopy and imaging (Blancaflor, et al 2000). Originally F-

actin was only observed in fixed materials by immunolabelling (immunofluorescence) or using 
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fluorophores conjugated to the actin binding drug phalloidin (Krauss et al., 2003; Deeks et al., 

2009). These approaches have contributed to our understanding of how the plant cytoskeleton 

is reorganized during cell cycle and in response to various environmental stimuli (Lloyd et al., 

1987; Blancaflor et al., 2000; Collings et al., 2005). However, as plant samples often required 

prolonged chemical fixation and permeabilization treatments, these methods are prone to 

generating artifacts (Schnell et al., 2012). In addition, only static images could be obtained, 

which makes it impossible or difficult on studies of the actin dynamics.  

In the nineties, more dynamic elements, such as fluorescently labelled phalloidins, were 

introduced through microinjection in living plant cells for imaging purpose. This technique 

allowed visualization of two F-actin populations that were not co-localized, of which one 

presumably was newly assembled during cell plate development after microinjection (Schmit 

et al., 1990). Alternatively, in the nineties, fluorescent analogs of actins were injected into 

cytoplasm of living plant cells, by which the cytoskeleton structure that maintains nuclei in a 

centralized position was reported (Ren et al., 1997). The critical nuance of microinjection was 

that it was time-consuming, required accurate technical expertise and specialized equipment, 

and it could perturb cellular processes. Since the discovery of the green fluorescent protein 

(GFP) and identification of its gene, the visualization of protein dynamics and gene expression 

in living cells has evolved tremendously. GFP appeared to be the ideal genetically encoded in 

vivo reporter due to its low toxicity to the cell and high sensitivity that enables easy detection 

with fluorescence microscope (Chalfie et al., 1994). Introduction of GFP heralded a new class 

of live plant cytoskeleton probes, thus the actin imaging in plants spread widely and has become 

routine in many laboratories (Kost et al., 1998, Timmers et al., 2002; Genove., et al 2005). 

Fluorescent probes are normally fusion proteins of a GFP (or its variants) and a protein that 

specifically targets to the site or structure of interest. For example, the first invented cytoskeletal 

fluorescent probe was GFP-MBD (GFP fusion to the microtubule-binding domain of 

microtubule-associated protein 4), through which the microtubule organization was accurately 

described in living cells (Marc et al., 1998). Similarly, the GFP-Talin (actin-binding domain of 

talin) and GFP-ABD2 (actin-binding domain 2 of fimbrin 1) were used in F-actin organization 

imaging (Kost et al., 1998; Wang et al., 2004). Altogether these genetically encoded F-actin 

reporters allow further comprehensive and extensive studies on plant actin biology. They have 

helped to increase our understanding on actin functions in cell polarity establishment, organelle 

dynamics, and plant virus movement (Ketelaar et al., 2004; Sheahan et al., 2004; Liu et al., 

2005; Sano et al., 2005). However, widened use of fluorescent probes has revealed some issues 

concerning side-effects. For example, plant growth defects caused by perturbed actin 
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organization and dynamics have been reported. In addition, loss of fluorescence due to gene 

silencing has been a common phenomenon, especially when the reporters were driven by a 

strong constitutive promoter. In many cases, both problems could be overcome by using a 

weaker promoter. However, low expression levels of the live reporters often lead to weak 

fluorescent signals, which make imaging difficult (Wang et al., 2004, Ketelaar et al., 2004; 

Wang et al., 2008).  

Requirement for fluorescent signal amplification in imaging process is driving constant 

development of new methods, which allow better visualization with minimal side-effects. 

Significant progress has been made by multimerization of fluorescent proteins.  

1.3. Advancements in live cell fluorescent imaging by fusion of multiple 

fluorescent proteins 

It has been shown that fluorescent signal intensity could be increased by protein 

multimerization (Wang et al., 2008). Several attempts have been made to use fluorescent 

proteins as reporters of promoter activity, hitherto with limited success. The main reason may 

lie in the low activities of most promoter. Therefore the yield of fluorescent protein is not 

sufficient for visualization without antibody enhancement (Fleischmann et al., 1998). It has 

been demonstrated that by improving the spectral yield of fluorescent protein the signal can be 

enhanced (Gong et al., 2003). However, engineering of the fluorescent proteins requires 

specialized expertise. On the other hand, fluorescence output after in-frame multimerization of 

up to three copies of fluorescent protein monomers increased signal intensity proportionally, 

whereas construct with 6 copies of fluorescent protein displayed weaker signals than the three 

copy construct. This was likely caused by instabilities of repeated DNA sequences and proteins 

of tandem repeats (Genové et al., 2005). 

To increase fluorescent signals for actin imaging, an additional GFP tag was added to the 

ABD2-GFP reporter, which resulted in significant improvement on the fluorescence output 

(Wang et al., 2008). By using this live actin reporter, researchers have gained insights on how 

the root hair polarity is established (Yoo et al., 2012). Major problems of fluorescent protein-

based F-actin probes in plants associate with perturbed actin organization and growth defects. 

These effects have been reported for every F-actin markers during their development. Several 

researches have shown that F-actin binding GFP probes inhibit the growth of plants or some 

cell types, for instance the GFP-ABD2-GFP reporter has a minor inhibitory effects to the 

growth of cells and tissues of young Arabidopsis seedlings. Furthermore, the F-actin binding 

GFP reporters often cause partial or total loss of fluorescence, especially in the root meristem 
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and elongation zone (Sheahan et al., 2004; Wang et al., 2004; Wang et al., 2008; Dyachok et 

al., 2014). Minor improvement in minimizing mentioned side-effects has been made by using 

the moderate ubiquitin 10 promoter (pUBQ10) instead of the strong constitutive 35S promoter 

(p35S) from the cauliflower mosaic virus (Norris et al., 1993; Wang et al., 2008; Dyachok et 

al., 2014).  

Altogether, several studies have shown that addition of up to 3 copies of extra GPF molecules 

could increase fluorescence spectral yield for protein localization or gene expression studies 

(Genové et al., 2005; Wang et al., 2008, Dyachok et al., 2014). However, fusion with more than 

3 copies of fluorescent protein has been technically challenging and has failed to increase 

fluorescent signals so far. For more efficient use of live actin reporters, it is important to further 

increase signal-to-noise ratio that allows imaging under lower expression levels of the ABD2 

domain to minimize perturbation of the native structures. 

1.4. Advancements in live cell imaging by a protein tagging system based on 

antibody-antigen interaction.   

Very recently, a novel protein tagging system, named the SunTag (SUperNova), was reported 

to achieve tagging with up to 24 copies of GFP in the live cell reporters (Tanenbaum et al., 

2014). The principle of SunTag system lies on interaction between antibodies and antigens. 

Instead of direct fusion to a fluorescent protein, the protein of interest was tagged with multiple 

repeats of short peptide, which in turn recruited multiple copies of GFP fused to a specific 

antibody fragment that recognized the peptide (Figure 1). Using the SunTag system, 

fluorescence signals increased dramatically, which allowed single molecule imaging with a 

regular confocal microscope. In addition, the strong signal-to-noise ratio of the SunTag allowed 

easy imaging even when the tagged protein was expressed at very low levels. For example, the 

fluorescence signal of SunTag24x with plasma membrane targeting domain in the C terminus 

was 18-fold brighter than the single GFP fused to the same targeting domain. 

 

 

 

Figure 1. Schematic of the antibody-peptide labelling method for the SunTag system 

(Tanenbaum et al., 2014). (Antibodies were marked violet) 
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Antibody based systems have several advantages, including their very high affinity and ability 

to recognize short peptides. However, main issues of antibody-based systems, including the 

SunTag system lies in the relatively large size of antibodies and low expression levels and 

limited solubility in the cell (Tanenbaum et al., 2014).   

Alternative to antibody based methods, is the use of well-defined protein-protein interaction 

modules. Dueber and co-workers have reported a synthetic protein scaffold approach to recruit 

various and multiple enzymes in a spatially designed manner. The protein scaffold was 

composed of various copies of three small protein-protein interaction domains. Various 

enzymes were tagged with the corresponding ligands, which bind to the specific domains. The 

synthetic scaffold in turn guided enzymes tagged with ligands to form a multi-enzyme complex 

that resembled the natural metabolon (Dueber et al., 2009). A large number of protein-protein 

interaction module pairs have been well characterized, and many of them are small enough as 

potential protein tags (Binz et al., 2004). Therefore, modifications of the SunTag system with 

small protein-protein interaction modules represent opportunities for developing new actin 

reporters for live imaging in plants.  
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2. EXPERIMENTAL PART 

2.1. Aims of current study  

A number of actin reporters have been developed for live cell imaging, and their usage has 

provided valuable insights on the structure, dynamics and functions of the actin cytoskeleton. 

Despite their usefulness, current live actin reporters still possess certain limitations, such as 

weak fluorescence or undesired side-effects due to perturbance of the actin structure and 

dynamics.  

Thus, the main goal of current study was to develop new actin reporters using a modified 

SunTag system. The specific aims include:   

 To generate new constructs using various molecular cloning techniques  

 To evaluate new constructs as potential actin reporters in transient assays by 

agro-infiltration and confocal microscopy.  
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2.2. Materials  

All plasmids used or created in current study are shown in the Table 1. 

Table 1.  Used or created plasmids 

Plasmid name  Characterization Reference 

PDZ-SH3lig-HA   In vector pUC57-Mini Genes are synthesized by    

GenScript 

HisStrp-SH3-PDZlig myc In vector pUC57-simple, 

size 2710 bp 

Genes are synthezised by 

GenScript 

p35S/pCAM1390  Wang et al., 2004 

p35S:GFP-ABD2-GFP  Wang et al., 2008 

pUBQ10:GFP-ABD2-GFP  Dyachok et al., 2014 

pUBQ10:mCherry-ABD2-

mCherry 

 Dyachok et al., 2014 

pICH78133 5’UTR,(Tobacco Mosaic 

Virus)+chloroplast transit 

peptide, RbcS (syntetic) 

Golden Gate Plant Parts 

Kit, Engler et al., 2014 

pAGM5331 5’UTR, (Tobacco Mosaic 

Virus, nuclear localization 

signal (Simian Virus 40) 

Golden Gate Plans Parts 

Kit, Engler et al., 2014 

p35S:GFP-PDZlig In vector pCAM1390 This study, class II 

construct 

p35S:SPChl-GFP-PDZlig In vector pCAM1390 This study, class II 

construct 

p35S:SPNLS-GFP-PDZlig In vector pCAM1390 This study, class II 

construct 

pUBQ10:ABD2-3xPDZ In vector pCAM1390 This study, class I construct 

pUBQ10:ABD2-4xPDZ In vector pCAM1390 This study, class I construct 

pUBQ10:ABD2-4xPDZ-

6xHis 

In vector pCAM1390 This study, class I construct 

pUBQ10:ABD2-5xPDZ In vector pCAM1390 This study, class I construct 

pUBQ10:ABD2-5xPDZ-

6xHis 

In vector pCAM1390 This study, class I construct 
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2.2.1. Media and chemicals  

LB medium and LB agar used for growing bacteria were form Difco. Ticarcillin disodium and 

kanamycin was purchased from Duchefa Biochemie.  

All components for digestion reaction (fast digest restriction enzymes, 10X fast digest buffer), 

ligation reaction (T4 DNA ligase, 10X T4 DNA ligase buffer) and some components for PCR 

amplification (10x DreamTaq buffer, 10mM ATP) were manufactured by Thermo Scientific. 

DNA polymerase Taq FirePol was manufactured by Solis Biodyne and GeneRuler by 

Fermentas. 

2.2.2. Bacterial strains and plant line 

Escherichia coli strain DH5 was used for maintaining and purification of plasmid DNA. 

Agrobacterium tumefaciens strain C58_GV3101 was used for immobilizing constructs into 

tobacco plant leaves by agro-infiltration method. Tobacco plant line Nicotiana benthamiana 

was used as a host for agrobacterium with established constructs. 

2.3. Methods  

2.3.1. Preparation of competent cells 

Preparation of Escherichia coli strain DH5 competent cells by TSS method 

The E. coli cells were grown in 3ml of LB media at 37°C overnight. One ml of overnight culture 

was added into 50ml fresh LB in a 250ml flask and cultured for about 3 hours at 37°C, until 

OD600 reached to 0.4. The bacterial culture was then incubated on ice for 30 minutes and 

subsequently pelleted at 4,000 rpm for 5 minutes at 4°C. TSS solution containing 10% PEG 

8000, 50mM MgCl2, 5% DMSO in LB was prepared previously by filter sterilization and stored 

at 4°C. Pelleted bacterial cells were gently resuspended in 5ml of ice-cold TSS solution on ice, 

and aliquoted to 90μl per tube. All aliquots of competent cells were placed to liquid nitrogen 

for snap-freezing and stored at -80°C. 

Preparation of Agrobacterium tumefaciens strain C58_GV3101 competent cells  

The single colonies of A. tumefaciens were grown in 3ml LB media with 100mg/L gentamycin 

overnight at 28°C shaker at 200 rpm. The overnight culture was inoculated in 50ml LB with 

gentamycin and incubated in 28°C until OD600 was 0.5. After measurement the culture was 

chilled on ice for 10 minutes and subsequently centrifuged at 4,000 rpm for 10 minutes at 4°C. 
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The cells were resuspended in 10ml of ice-cold 0.15M NaCl and centrifuged for 10 minutes at 

4,000 rpm at 4°C. Pellet was resuspended in 5ml of 20mM ice-cold CaCl2. The competent cells 

were aliquoted in 50l per tube, snap-frozen in liquid nitrogen and stored at -80°C. 

2.3.2. Transformation and colony-PCR 

E. coli transformation was performed by heat shock method, by which 30μl competent E. coli 

cells were added to ligation mixture with gentle mixing. The mixture was incubated on ice for 

20 minutes, and transported into the water bath for heat shock (at 42°C for 90 seconds). After 

heat shock the mixture was transported to ice for 3 minutes immediately. Transformed cells 

were incubated with gentle shaking (200 rpm) in 300μl LB at 37°C for 1 hour. After incubation, 

200μl of mixture was plated on selective LB plates, containing appropriate antibiotic – 80mg/L 

Ticarcillin disodium or 50mg/L kanamycin, according to the specifics of used vector. Plates 

were incubated upside-down at 37°C overnight. 

Similarly, agrobacterium transformation was performed by heat shock method. About 500ng 

of plasmid DNA was added to 50l of frozen agrobacterium competent cells, and incubated at 

37°C for 10 minutes. 300l of LB was added after heat shock, and the cells were incubated at 

28°C for 1-2 hours. 200l of transformation mixture was plated on LB plates with 50mg/L 

kanamycin, and incubated at 28°C for 2-3 days. 

After transformation, colonies were verified by colony-PCR, using ESCO (Peltier Tehnology 

TAS) Aeris or Professional Thermocycler machine. One colony was touched and pipetted into 

6,4μl water in the PCR tube, subsequently 13,6μl master mixture was added. The final PCR 

reactions included 250nM each of forward and reverse primers, 1X DreamTaq polymerase 

buffer, 200M dNTPs, 0.2l Taq DNA polymerase (FirePol 5U/l, Solis Biodyne). PCR 

program included three different phases, firstly 30 second initial denaturation at 95°C. Second 

phase contained 30 cycles for amplifying a specific DNA sequence. One cycle consisted of 

three successive steps, 15 second denaturation at 95°C, 15 second annealing at 55°C and about 

1min/kb for elongation at 72°C. The incomplete PCR fragments were allowed to elongate by 

additional elongation step at 72°C for 5 minutes. 

The size of PCR products was verified by electrophoresis in 1% agarose gel, with GelGreen 

Nucleic Acid stain (Biotium). The Labnet GelXL Ultra V-2 gel bath filled (approximately 

300ml) with 0,5xTBE buffer (89mM Tris base, 89mM boric acid, 2 mM EDTA for 1xTBE) 

was used. DNA fragments were viewed in a blue LED transilluminator (Clare Chemical 

Research) and documented in a gel-doc system (Cleaver Scientific Ltd). The size of DNA 
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fragments were evaluated by comparing them with DNA ladder (GeneRuler 1kb, Fermentas). 

Colonies with right insert size were grown overnight in 5ml LB medium with Ticarcillin 

disodium or kanamycin, according to the antibiotic resistance gene in the vector. Plasmids were 

extracted from overnight cultures using FavorPrep Plasmid Extraction Mini Kit (Favorgen) 

according to manufacturer’s protocol.  

2.3.3. Traditional cloning method 

The plasmid containing the synthetic PDZ domain was used in two separate digestion reactions. 

In one reaction the DNA was digested with BglII and XbaI REs for releasing PDZ fragment 

and in the other reaction the DNA was digested with BamHI and XbaI for preparation of the 

vector. 

 

Figure 2. Creation of insert and vector. Orange arrows show insert restriction sites and blue 

arrows indicate vector restriction sites. 

The digested vector and insert were purified by gel purification using a PCR/gel purification 

kit (Favorgen) according to manufacturer’s protocol. The purified vector and insert were ligated 

together by T4 DNA ligase (Thermo Scientific) in 10μl ligation reaction containing 1X ligase 

buffer, and 0.5l of T4 DNA ligase (5U/l, Thermo Scientific). Ligation was carried out at 

room temperature for 30min followed by transformation into the competent E.coli cells. In the 

subsequent cloning steps, the construct containing 2xPDZ was used to prepare 2xPDZ insert 

and vector with 2xPDZ in a similar way to generate constructs with 4xPDZ. By combining 

different vectors and inserts, various tandem repeats of PDZ could be generated in the pUC57-

mini backbone. However, the maxima number of PDZ in the pUC57-mini was only three. The 

3xPDZ was then released by EcoRI and BamHI, and cloned into p35S/pCAMBIA1390 at the 

EcoRI/BglII site (XbaI and SpeI are isocaudomers). To create more than 3xPDZ constructs in 

the p35S/pCAMBIA1390 backbone, two types of PDZ inserts were digested by either 

EcoRI/BamHI or BglII/XbaI, and together cloned into p35S/pCAMBIA1390 at the EcoRI/SpeI 

site (XbaI and SpeI are isocaudomers). Subsequently, these constructs with various PDZ repeats 

in p35S/pCAMBIA1390 were used to generate the final class I constructs by cloning pUBQ10 
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(with HindIII/NcoI ends) and ABD2 (with NcoI/EcoRI ends) at the HindIII/EcoRI site. 

Similarly, the final assembly of class II constructs was carried out using the conventional 

cloning method with appropriate RE and ligation steps. 

2.3.4. Modified Golden Gate cloning method  

The PDZ fragment was released by two RE-s BglII and BamHI. Subsequently, in self-ligation 

in the presence of both REs, the fragments with multiple copies of PDZ was generated at 16˚C 

(Figure 2). The ligated BglII and BamHI ends cannot be recognized by either enzyme, whereas 

the undesired ligation products of BglII-BglII and BamHI-BamHI ends can be re-cleaved by 

the corresponding enzymes at 37˚C.  

By alternating the incubation temperatures between 16˚C and 37˚C as described in the Golden 

Gate cloning method (Engler et al., 2008), various tandem PDZ copies in the head-to-tail 

configuration would be preferentially produced in the same reaction, resulting in different size 

ladders on the gel.  

 

Figure 3. PDZ fragments assembling by a modified Golden Gate method. Plasmid DNA 

was digested with RE BglII and BamHI. Purified fragments were used in self-ligation reaction 

in the presence of both REs, with temperature alternating between 16˚C and 37˚C (Golden Gate 

protocol, Engler et al., 2009). 

2.3.5. Amplification by overlapping-PCR 

GFP-PDZlig fragment was prepared by two two-step-overlapping PCR cloning method (Figure 

4). In the first reaction the GFP was amplified from template p35S:GFP-ABD2-GFP with the 

forward primer (EcoRI-YFP fwd: gagaattcatggtgagcaagggc) and reverse primer (GFP-Xlig R: 

tgatcctgaacctctcttgtacagctcgtc), and PDZlig from template HisStrp-SH3-PDZlig with forward 
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primer (GFP-Xlig F: gacgagctgtacaagagaggttcaggatca) and reverse primer (M13 R: 

ggaaacagctatgaccatg). These PCR products were mixed and used as the template for the 

subsequent PCR with EcoRI-YFP fwd and M13 R primers to amplify the GFP-PDZlig 

fragment.  

The GFP-PDZlig was purified, digested by EcoRI and SpeI, and cloned into 

p35S/pCAMBIA1390 at the EcoRI/SpeI site. In addition, sequences of the nuclear and 

chloroplast-targeting signals were PCR-amplified, digested with SalI and EcoRI, and cloned 

into p35S:GFP-PDZlig/pCAMBIA1390 at the SalI/EcoRI site. 

 

Figure 4. GFP-PDZlig amplification by overlapping-PCR. a) In the first round of PCR, both 

fragments – GFP and PDZlig were amplified separately. Primers were designed that 3’ of the 

reverse primer for GFP is complementary to t5’ of the forward primer for PDZlig. b) During 

the second PCR the complementary overlaps annealed and allows amplification for the entire 

GFP-PDZlig fragment by using the forward primer for GFP and reverse primer for PDZlig 

during the first round of PCR. 

2.3.6. Agro-infiltration  

Agro-infiltration experiments were performed on tobacco plant Nicotiana benthamiana. One 

single colony from each different transformed A. tumefaciens strain C58_GV3101 were 

cultured overnight at 28°C at 250 rpm in LB containing kanamycin (50mg/L) and gentamycin 

(100mg/L). The overnight culture was centrifuged at 28°C at 4000 rpm. Pellets were 

resuspended in infiltration buffer (10mM MgCl2; 10mM MES, 200 mM Acetosyringone) to 

OD600 of 0.6 (Ultraspec 10, Amersham Biosciences), and incubated at room temperature for 2 

hours. Before infiltration, agrobacteria containing the specific constructs were mixed with 

additional agrobacterium carrying a gene silencing suppressor (P19). The final OD600 for each 

agrobacteria clone was 0.2. The final suspension was injected into the Nicotiana benthamiana 

leaves by using 1ml syringes (without the needles). 
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2.3.7. Live cell imaging 

Selected leaves were cut 2 days post infiltration (dpi). The fluorescents signal was observed by 

stereo-microscopy equipped with an AxioCam MRc5 camera (SteREO Discovery.V20 Zeiss, 

objective PlanApoS 1,5x FWD 30mm). Infiltrated area was explored and the promising regions 

were marked for imaging with confocal-microscopy.  

The confocal-microscope (Zeiss LSM710) was used for monitoring fluorescent signal in 

various layers of cell. Previously marked area was cut out with scalpel and placed with water 

between glass slide and cover glass. Prepared sample was observed with different objective 

(20x and 63x water). GFP was excited with 488nm laser, and mCherry was excited with 561nm 

laser. All confocal images were processed in Zeiss Zen 2011 Blue program.  
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RESULTS  

The main goal of current thesis was test a new approach for actin cytoskeleton imaging in living 

plant cells via recruitment of multiple fluorescent proteins using a split-tagging system. This 

split-tagging system required two separate classes of constructs. Class I (Figure 1-a) contains 

an actin-binding domain (ABD) fused to various copies of a synthetic metazoan PDZ domain, 

a well-defined protein interaction module. Class II (Figure 1-b) are constructs of a green 

fluorescent protein (GFP) fused to the PDZ ligand (PDZlig), a short peptide that binds to the 

PDZ domain. Several cloning methods and concepts have been explored to generate the final 

constructs, which allows more flexible and effective cloning for the current project, as well as 

for future modifications. 

After agro-infiltration in plant leaves, proteins from class I and class II constructs assemble by 

PDZ-PDZlig interaction. The ABD2 domain in the class I constructs would bind to F-actin, and 

the number of its PDZ fusions would determine how many copies of GFP being recruited to the 

new actin reporter complex. The intensity of fluorescent signal, in theory, would be 

proportional to the number of recruited GFPs (Figure 1-c). 

                       

Figure 5. Class I and class II constructs and their incorporation. a) class I constructs consist 

a moderate promoter (Pro), actin binding domain ABD2, different copy numbers of PDZ 

(PDZ)x, and a terminator (NosTer); b) class II constructs consist of Pro, signal peptide (SP), 

fluorescent protein (GFP), the PDZ ligand (PDZlig, for binding to PDZ) and Ter; c) Fusion 

proteins from class I constructs bound to actin filaments via ABD2. The GFP-PDZlig from 

class II constructs interacts with PDZ, thus decorating the F-actin, whereas the unbound GFP-

PDZlig is sequestered to specific organelle by the SP.  



 19 

3.1. Molecular cloning of class I constructs 

The main parts of the class I constructs are the actin-binding domain 2 (ABD2) of the 

Arabidopsis Fimbrin1 protein, and the synthetic PDZ domain. To minimize potential 

perturbation in the native structure and dynamics, these fusions need to be expressed at low to 

moderate levels. The Arabidopsis ubiquitin 10 promoter (pUBQ10), which drives gene 

expression constitutively at a moderate level was chosen for this study. 

3.1.2. Multimerization of PDZ fragment by using different cloning methods. 

As the first step, a synthetic construct containing the codon-optimized (for Arabidopsis) PDZ 

domain was ordered through a commercial gene synthesis service. This PDZ domain was 

designed to contain BglII and BamHI sites flanking the 5’ and 3’-ends of the sequence, 

respectively. BglII and BamHI are isocaudomers that generate identical overhangs upon DNA 

cleavage (Supplemental 1), despite their slightly different recognition sites. We tried to create 

various copies of PDZ fragments in one step using the Golden Gate cloning concept (Engler et 

al., 2008). The purified PDZ fragments with complementary ends (BglII and BamHI) were 

incubated in a thermocycler. During cycles of alternating temperatures optimal for either ligase 

(16˚C) or restriction enzymes (37˚C), direct tandem repeats of PDZ would form preferentially, 

while avoiding the undesired ligation of inverted fragments. However, our first attempt only 

resulted in two direct PDZ repeats. 

Alternatively, a more conventional stepwise approach was used, as described under in 

traditional cloning section in the Methods. First, we tried to multimerize PDZ domain in the 

small cloning vector, pUC57-mini, for ease of handling. However, despite several repeated 

experiments, the maximal number of PDZ genes in pUC57-mini was only three. Since the size 

of pUC57-mini is only 1835bp, we suspected that the insert size might be limited to 1kb, which 

is smaller than the size of 4xPDZ (about 1,2kb). 

As multimerization of PDZ fragment (more than three) was unsuccessful in pUC-57mini, we 

performed further multimerization steps in another vector. The Agrobacterium binary vector 

pCAMBIA1390 (pCAM1390) with a kanamycin resistance gene was selected for further 

cloning, mostly because it was later applicable for plant transformation as well. In contrast to 

pUC57-mini, the pCAM1390 vector was larger (8861bp), and has been used to accommodate 

inserts of several kilo-base pairs previously. By using the conventional cloning methods, up to 

5 copies of PDZ domain were introduced to the pCAM1390.  
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In addition to the PDZ domain, class I constructs also include the pUBQ10 and ABD2. The 

purified pUBQ10 and ABD2 fragments were cloned into the pCAM1390 containing various 

copies (3, 4, 5) of PDZ by 3-way ligation. Figure 6 showed the diagram of class I constructs 

generated and used for current study. All constructs were verified by sequencing and restriction 

enzyme digestion.  

 

Figure 6. Diagram of all class I constructs generated in this study. All constructs are in 

pCAM1390. 

3.2. Molecular cloning of class II constructs 

The major components of class II constructs are coding regions of the green fluorescent protein 

(GFP) and the PDZ ligand (PDZlig). Ideally, these constructs need to be expressed at high 

levels, thus the strong constitutive 35S promoter (p35S) from cauliflower mosaic virus was 

chosen for this study. On the other hand, overexpression of the class II constructs may result in 

high background from unbound GFP-PDZlig fusions. Therefore, two additional constructs with 

signal peptides (SP) to the nucleus (NLS) or chloroplasts (Chl) fused to the GFP were generated 

to sequester unbound GFP to designated organelles.   

3.2.1. Signal peptide and GFP-PDZlig-myc fragment insertion into the pCAM1390 

vector under the 35S promoter.  

The PDZlig is a small peptide of seven amino acids. DNA sequences encoding the PDZlig 

along with a c-myc epitope were designed and incorporated to other protein-protein interaction 

modules by a commercial DNA synthesis service. The c-myc epitope was included to aid future 

protein analysis with the anti-myc antibody. Due to the small size of the PDZlig and c-myc 

epitope (PDZlig-myc), we performed an overlap-PCR to create GFP fusions with PDZlig-myc, 

and cloned the GFP fusions into pCAM1390 under the control of p35S. In addition, sequences 
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of SPNLS and SPChl were PCR-amplified, and added in-frame to the 5’-end of the GFP-PDZlig-

myc fusion. Figure 7 showed the diagram of class II constructs created in this study.  

 

Figure 7. Diagram of all class II constructs used in this study. All constructs are in 

pCAM1390. 

3.3. Actin filaments imaging in agro-infiltrated Nicotiana benthamiana  

3.3.1. Effects of different promoters 

As mentioned earlier, the selection of promoter was critical in establishing class I and class II 

constructs. To minimized disturbance to actin dynamics and its structure, class I constructs need 

to be expressed by a weaker promoter, whereas class II constructs require a strong promoter for 

fluorescence signal enhancement. In this study, we selected pUBQ10 as the weaker promoter, 

and p35S as the strong promoter. To compare the effects of these two promoters in the transient 

assays by agro-infiltration, we first tested two previously reported plant actin reporter 

constructs, the p35S:GFP-ABD2-GFP and pUBQ10:GFP-ABD2-GFP (Wang et al., 2008; 

Dyachok et al., 2014). As shown in Figure 8, p35S resulted in brighter signals under a wide 

field stereo-microscope. However, the signals from pUBQ10 appeared more uniform among 

transformed cells. Using a confocal microscope, both constructs gave very bright signals 

depicting the actin cytoskeleton.  
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Figure 8. Comparison of 35S and UBQ10 promoters. Performed by using p35S:GFP-ABD2-

GFP (Wang et al., 2008) (shown in the first row) and pUBQ10:GFP-ABD2-GFP (Dyachok et 

al., 2014) constructs (shown in the second row). Images from left and middle column were 

taken by confocal microscopy (63x-water objective). Right column images were taken by 

stereo-microscopy (1.5x objective). All images were taken on the 3rd day past infiltration. Scale 

bar = 50m. 

3.3.2. Quality control for class II constructs  

The class II constructs functionality was verified by infiltrating separately without any class I 

construct. As expected, expression of p35S:SPNLSGFP-PDZlig displayed fluorescence signals 

in the nucleus, whereas the SPChlGFP-PDZlig was located in chloroplasts. On the other hand, 

GFP-PDZlig without SP showed widely spread fluorescence signal in the cytosol and the 

nucleus. These results suggest that SPNLS and SPChl have potential to sequester the cytosolic 

background caused by unbound class II fusions. 
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Figure 9. Sub-cellular localization of class II GFP fusions. SPNLS and SPChl directed GFP-

PDZlig to the nucleus (left) and chloroplasts (middle), respectively. The GFP-PDZlig without 

SP was found in the cytosol and the nucleus. All images were taken by confocal microscopy 

with 63x water objective.  Scale bar = 50m. 

3.3.3. Live cell imaging by co-infiltration of class I and class II constructs 

Each class I and class II construct was transformed into Agrobacterium tumefaciens separately. 

Tobacco leaves were co-infiltrated with two Agrobacteria clones each containing either class I 

or class II construct. During current study we established several class I constructs, out of which 

we selected three for co-infiltration experiments. All class II constructs passed the quality 

control and were used in co-infiltration assays. Nine possible combinations were made from 

three class I and three class II constructs.  

We first monitored fluorescence on the 2nd day post infiltration (dpi). As shown in the 

confocal images (Figure 10), the signal peptide had significant impact on the localization of 

fluorescence signal. Despite comprehensive screening we could not observe any distinct actin 

filaments in any of class I and class II combinations at 2 dpi time point. 
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Figure 10. Confocal images of different combinations of class I and class II constructs on 

the 2nd dpi. Images of leaves co-infiltrated with class I (indicated in the left) and class II 

(indicated on top) constructs. All images were taken by confocal microscopy (63x water 

objective) on the second day after infiltration. Scale bar = 50m. 
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3.3.4. Our imaging strategy is time sensitive  

Initially, we imaged tobacco leaves on the 2nd day post infiltration (2 dpi). Additional 

monitoring was performed on the 3d dpi and surprisingly, we were able to image the actin 

cytoskeleton in addition to signals from the nucleus for combinations with p35S:SPNLS-GFP-

PDZlig. 

As shown in Figure 11, at 2 dpi, the fluorescence signal was relatively low and mainly located 

in nuclei due to the nuclear localizing signal (NLS) in class II construct, indicating that most 

GFP-PDZlig fusions did not bind to the PDZ domain. We reasoned that the time required for 

expressing the class I and class II constructs might be different, and in turn the PDZ-PDZlig 

interaction might occur at a later time point. And indeed, at 3 dpi, the fluorescence intensified 

when viewed with a stereo-microscope. Using a confocal microscope, distinct filamentous 

structures resembling F-actins were detected. Among three class I constructs tested, co-

infiltration with the 4xPDZ class I construct yielded best results as an F-actin reporter.  

 

Figure 11. Time-dependent localization of co-infiltration with various class I and the 

p35S:SPNLS-GFP-PDZlig construct. Confocal images were taken at 2 and 3 dpi. Scale bar = 

50m. 
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3.3.5. Current approach requires further optimization to increase fluorescence 

signal  

The combinations of class I constructs and p35S:SPNLS-GFP-PDZlig were selected for 

comparative experiments with the published pUBQ10:GFP-ABD2-GFP reporter. At 3 dpi, 

distinct F-actin structures were visualized in all three combinations. However, no signal 

increase was observed in proportion to the copy numbers of PDZ in class I constructs. Instead, 

brighter signals were mostly recorded with 4xPDZ construct among all three class I constructs. 

In comparison with the pUBQ10:GFP-ABD2-GFP construct, the new tagging system did not 

yield signal improvements in the transient assay. 

 

Figure 12. Comparison of our split-tagging system and the pUBQ10:GFP-ABD2-GFP 

reporter. Different combinations of class I constructs with p35S:SPNLS-GFP-PDZlig, and the 

pUBQ10:GFP-ABD2-GFP construct were infiltrated in the same tobacco leaf at different 

locations. All images were taken by confocal microscopy (63x water objective) at 3 dpi. Scale 

bar = 50m. 
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3.3.6. mCherry effects on actin live imaging 

According to our original cloning strategy, the class I constructs were supposed to contain one 

fluorescent protein for referencing the occupancy of GFP from class II constructs. The red 

fluorescent protein, mCherry was chosen due to its well separated spectra compared with 

GFP. As preliminary tests, we compared two previously reported F-actin reporter constructs, 

pUBQ10:GFP-ABD2-GFP and pUBQ10:mCherry-ABD2-mCherry (Dyachok et al., 2014) in 

transient assays. As shown in Figure 13, mCherry caused actin bundling, which prevented 

imaging of fine F-actin filaments in our transient assays. Therefore, mCherry was excluded 

from further cloning processes to avoid complications. 

 

Figure 13. Side-effect of mCherry in transient assays. Images were taken on the third day 

after infiltration. The first row are images with pUBQ10:GFP-ABD2-GFP construct (GFP 

signals are shown in green, and chloroplast autofluoresence is shown in red). The second row 

are images with pUBQ10:mCherry-ABD2-mCherry (mCherry signals are shown in red, and 

chloroplast autofluorescence in green). All images are taken by confocal microscopy (63x water 

objective) on the third day after infiltration. 
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DISCUSSION  

In current thesis we described a new approach for development of F-actin reporters in living 

plant cells. Our method combines two different classes of construct (class I and class II), which 

were used by co-infiltration in the transient assays for actin imaging.  

Multimerization of PDZ requires vector with large input and two-step PCR is a useful 

tool for assembling small fragments. 

Major part of current thesis focused on the establishment of class I and class II constructs by 

using various molecular cloning methods.  

The first attempt to create multiple copies of PDZ in a small cloning vector was inspired mostly 

by the Golden Gate method (Engler et al., 2008). By using isocaudomers the one tube single 

reaction permits multimerization of interesting fragments with complementary ends. The 

reason of low success in our first experiment may have been low concentration of DNA and 

sub-optimal cycle conditions. In addition, the multimerized PDZ fragment was used to ligate 

with the small vector pUC57-mini, which was very likely to accommodate inserts below 1kb 

as suggested by the fact that only up to 3xPDZ (~0.9kb) was cloned into pUC57-mini despite 

many attempts in this study. The further cloning was thus performed in the big binary vector 

pCAMBIA1390 (8861kb).  

GFP-PDZlig was established by using two-step overlap PCR method. The complementary 

sequence in one end of both fragments is essential in the second PCR step. This allowed partial 

annealing between two PCR products from the first step, which in turn served as the template 

for the second PCR step. In comparison to traditional cut-and-paste method, the overlap PCR 

is relatively fast since it does not require a ligation and transformation cycle to join two 

fragments together. However, it does require longer primers to include sufficient overlap 

between two fragments. 

Promoter selection is critical point in construct establishment 

Previously it has been shown that F-actin reporters based on the ABD from actin regulatory 

proteins perturbed actin organization and dynamics and resulted in growth defects (Wang et al., 

2004). Furthermore, high expression of fluorescent protein tends to cause strong background, 

which hinders imaging of certain structures. These side-effects can be minimized by replacing 

the strong constitutive 35S promoter with the moderate UBQ10 promoter (Wang et al., 2008; 

Dyachok et al., 2014). In current study, one of the key issues on generating different constructs 
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was the selection of appropriate promoter. According to the functional roles of class I and class 

II constructs, the moderate pUBQ10 was selected for class I establishment, and the stronger 

p35S was chosen for class II constructs. The comparison in transient assays for promoters 

effects to fluorescence intensity was performed by using UBQ10:GFP-ABD2-GFP and 

35S:GFP-ABD2-GFP (Wang et al., 2008; Dyachok et al., 2014) constructs. The difference in 

signal intensity was evident only by stereo-microscopy, exploiting big area (Figure 8). For 

future purpose, one possible optimization for our method is using different promoters other than 

pUBQ10 and p35S. 

Signal peptides and time-factor have significant effects 

The major function of signal peptides has been shown relatively long time ago (Blobel et al., 

1975). Base on the SunTag system, addition of signal peptides in the class II constructs may 

help to reduce high background. As demonstrated in current study, signal peptide had 

significant influence in the initial phase of experiment (at 2 dpi) as it determined the localization 

of GFP.  

Results at 2 dpi suggested that the majority of class II fusions did not bind to the PDZ domain 

in the class I fusions. Due to the use of different promoters (pUBQ10 vs. p35S), we suspected 

that the time required for expressing the class I and class II constructs might be different and in 

turn the PDZ-PDZlig interaction only occurred at later time points. In addition, the larger size 

and the repeated PDZ domains in class I constructs might cause delayed translation and protein 

instability. To clarify this point, class I and class II constructs can be infiltrated separately with 

a time lag in the same leaf region. Alternatively, different promoters can be used and tested for 

transcriptional activities in a time course.  

Current split-tagging method is not optimal to influence the fluorescence signal intensity  

As shown before, the recruitment of multiple fluorescence protein increased the fluorescence 

signal intensity (Genové et al., 2005, Wang et al., 2008, Tanenbaum et al., 2014). Relying to 

previous studies, our established class I constructs included up to 5 copies of PDZ domains, 

which presumably could have dramatic improvements on the intensity of fluorescence signal. 

However, no clear difference in signal intensity was found proportionally to the number of PDZ 

repeats. This strongly suggested that full occupancy on the PDZ domains by GFP fusions was 

not achieved. One possibility could be the instability of class I fusions due to the repeated PDZ 

domain. Alternatively, the distance between PDZ domains might lead to space hindrance to 
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neighboring GFPs. Due to lack of a reference FP in the class I constructs, these issues were not 

verified in the current study, but will be important in the future modifications. 
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SUMMARY 

Improving live cell imaging methods, which are central for our understanding on actin 

dynamics and organization in the cell is an important challenge. Especially taking into accounts 

the essential role of actin in cell signaling cascades responding to dynamical environmental 

stimuli. 

Our split-tagging strategy was inspired mainly by the recent report on development and 

applications of the SunTag system (Tanenbaum et al., 2014). By using a novel tagging system 

based on antibody-antigen interaction, the SunTag allowed recruitment of up to 24 GFP 

monomers to dramatically increase fluorescence output that enables single molecule imaging 

by confocal microscopy. However, the antibody-based systems generally are limited to 

problems related to the large size, low expression levels and insolubility of antibodies. 

In the current study, we developed an alternative split-tagging system based on interactions 

between small protein domains and their corresponding ligands. Two separate classes of 

constructs, each containing one module from the chosen protein-protein interacting pair 

assemble in vivo to recruit multiple GFPs in the reporter system. Various molecular cloning 

techniques and concepts have been explored to create the constructs. Interestingly, our method 

is highly dependent on the time factor. Binding between the chosen protein-protein interacting 

modules mostly occurred at later time points in our transient assays, possibly due to different 

promoters used in the two separate classes of constructs. No proportional signal enhancement 

was observed based on the copy numbers of protein interacting domain, which may be caused 

by sub-optimal spacers between the interacting domain repeats. Altogether, results of current 

thesis affirmed our method as a useful approach for developing live cell actin reporters albeit 

optimizations in several aspects are needed.   
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KOKKUVÕTE 

Maare Mõttus  

Uute taimse F-aktiini reporterite loomine kasutades  

split-tagging süsteemi 

Aktiinid on kõrgelt konserveerunud globulaarsed valgud, mis esinevad eukarüootsete 

organismide rakkudes kahes erinevas vormis – globulaarses ja filamentaarses. Globulaarsed 

aktiini osakesed ühinevad rangelt reguleeritud protsessi käigus helikaalseteks filamentideks, 

mis on peamisteks komponentideks tsütoskeleti moodustumisel. Tsütoskeletti võib nimetada 

ka raku tugiskeletiks, kuna selle najal kujuneb üldine struktuur, viiakse läbi tsütokinees, 

tsütoplasma tsirkulatsioon ning organellide ümberpaigutamine. Lisaks tagab tsütoskelett 

rakkude polaarse kasvu, funktsioneerib nii rakusisese kui rakkudevahelise signaaliülekande 

rajana, kujundades rakulise vastuse keskkonnatingimustele. Ülalöeldust on selge, et aktiinidel 

on raku seisukohalt elutähtis roll, mille tõttu on uute, minimaalselt kõrvalefekte omavate 

uurimismeetodite väljatöötamine hädavajalik.  

Algselt toimus aktiinide visualiseerimine vaid fikseeritud preparaatidel, kasutades 

immuunoflorestsentsi meetodit või aktiinidega seonduvat seene toksiini (Krauss et al., 2003; 

Deeks et al., 2009). Olulise läbimurde visualiseerimise vallas tõi kaasa rohelise florestseeruva 

valgu (GFP) avastamine, mille baasil toimus plahvatuslik uute meetodite arendamine ja 

kasutuselevõtt. Kõigele vaatamata pole siiani suudetud välja töötada süsteemi, millel puuduksid 

negatiivsed kõrvalmõjud raku morfoloogiale, metabolismile või kalduvus artefakte tekitada. 

Seetõttu vajab tehnoloogiate arendamine ning uute lahenduste leidmine veel põhjalikku 

uurimistööd.  

Meie loodud meetod on inspireeritud kahest erinevast lähenemisviisist signaali tugevdamiseks 

bioloogilistes süsteemides (Dueber 2009; Tanenbaum et al., 2014). Loodud kontseptsioon 

võimaldab aktiinide visualiseerimist läbi kahte erinevasse klassi kuuluvate sünteetiliste 

komplekside seostumise valk-valk interaktsiooni kaudu. Mõlemasse klass kuuluvad 

kompleksid disainiti modifitseeritavateks, võimaldades tulevikus lihtsate kloonimisvõtetega 

asendada erinevaid komponente.  

Käesolevas töös valmistati ja kasutati klass I ja klass II komplekse. Esimesse klassi kuuluvad 

kompleksid kodeerisid aktiini seostumise domeeni (ADB2) ja vastavalt disainile ühte kuni viit 

PDZ valku kodeeriva regiooni kordust. ADB2, täpsemalt aktiini fimbriini domeen, võimaldas  
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kompleksil seonduda aktiini filamentidega. PDZ valku kodeeriva järjestuse mitmekordistamine 

oli oluline osa isokautomeersete restriktsiooniensüümide kasutamisel. Klass II kompleksid 

sisaldasid lisaks roheliselt florestseeruvale valgule veel PDZ ligandi – valku, mis oli võimeline 

seostuma klass I kompleksi poolt kodeeritud PDZ domeeniga. Mida rohkem oli PDZ domeeni 

kodeerimisjärjestuse koopiaid klass I kompleksis, seda rohkem seostumiskohti oli klass II 

komplekside poolt kodeeritud produktidele. Varasematele uuringutele põhinedes võimaldab 

taoline strateegia florestsentsivalkude lokaalse üldarvu tõstmise kaudu florestsentssignaali 

tugevdamist (Deeks et al, 2005, Tanenbaum et al., 2014).  

Varasemalt on ka näidatud, et sarnaste reportersüsteemide loomisel on kriitiliseks faktoriks 

promootori valik (Wang, et al., 2008, Dyachok et al., 2014). Meie kasutasime klass I 

komplekside loomisel keskmise aktiivsusega promootorit ubikvitiin 10 (UBQ10), et vältida 

aktiiniga seonduvate valkude ületootmisest tingitud häireid aktiin dünaamikas. Klass II 

komponentide konstrueerimisel eelistasime tugevamat 35S promootorit, mis võimaldas 

suurendada florestsentsvalkude ekspressiooni.  

Käesolevas töös kasutati loodud komplekside taimerakkudesse sisestamiseks agro-

koosinfiltreerimise meetodil ehk mõlema klassi komplekside hulgast valiti üks ning infiltreeriti 

need tubaka Nicotiana benthamiana lehtedesse. Kokku uuriti üheksat erinevat kombinatsiooni 

klass I ja klass II kompleksidest, mille kodeeritud produktid ühinesid rakkudes valk-valk (PDZ-

PDZ ligand) seostumise kaudu.  

Uurimise tulemused viitavad otseselt antud süsteemi tundlikkusele ajafaktori suhtes. 

Potentsiaalne põhjus võis seisneda klass I ja klass II komplekside ekspressioonitaseme 

erinevuses tulenevalt promootorite aktiivsuse ja lisaks lõpp-produktide pikkuse varieeruvusest 

eri klassi komplekside lõikes.  

Eksperimentaalselt leidis kinnitust, et loodud meetod on kasutatav aktiini filamentide 

visualiseerimiseks elusates rakkudes. Meie loodud meetod vajab tulevikus täiendavat 

optimeerimist, võimaldamaks fluorestsentssignaali regulatsiooni. 
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Used web addresses  

 https://www.neb.com/search?q=restriction+enzymes New England Biolabs 

 http://www.thermoscientific.com/en/home.html Thermo Scientific  
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SUPPLEMENTS  

1. Restriction enzymes 

Table 2. Restriction enzymes and their restriction sites.  

 

Fast digest restriction enzymes, 10X fast digest buffer, T4 DNA ligase, T4 DNA ligase buffer 

(10X), DreamTaq buffer (10x), ATP (10mM) were manufactured by Thermo Scientific. DNA 

polymerase Taq FirePol was manufactured by Solis Biodyne. and GeneRuler by Fermentas. 

(Restriction enzymes sites were taken from New England Labs website) 
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