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INTRODUCTION 

With very few exceptions every cell in our body contains identical copies of the 
same deoxyribonucleic acid (DNA) molecules. This is in contrast with the vast 
diversity of cell types that essentially derive from a single genome. To 
accomplish this variety, distinct nucleotide sequences on the genome called 
genes are used as templates for ribonucleic acid (RNA) molecule synthesis. This 
process can vary considerably in its activity from cell type to cell type. By 
carefully regulating the activity of genes, cells are able to obtain, maintain and 
change their function and physiology. This property allows cells to adapt to 
changing environments and to develop specific behavior essential for their 
function and role in the body in both health and disease. Therefore quantifying 
gene activity across cell types and diverse conditions is an incredible source of 
information that can be utilized to understand mechanisms of disease, develop 
intervention strategies and much more. 

The activity of genes is most often characterized by the level of messenger 
RNA (mRNA) synthesized using the DNA sequence of a gene as the template. 
By measuring the amount of mRNA product from a single gene, i.e. gene 
expression level, we are able to determine the transcriptional activity of that 
gene. There are several technologies that can be used to measure gene 
expression levels. There are many more analysis methods developed to analyze 
the data that these technologies produce. Each of them has its peculiarities with 
unique strengths and weaknesses. Often they approach the data from alternative 
angles, making divergent assumptions and providing controversial results that 
can make the methods difficult to compare. Therefore, researchers have the 
choice on which technology and analysis method would best fit the research 
question in order to obtain accurate results. 

The current thesis addresses these issues and proposes a novel alternative, 
DEMI (Differential Expression from Multiple Indicators), for analyzing gene 
expression data produced by high-density microarrays. DEMI takes advantage 
of the repeated measurements of the target mRNA level by independent probes 
on the microarrays. Integrating data from multiple probes is somewhat related to 
the law of large numbers, which states that in sufficiently large samples, esti-
mates about the distribution should converge with the actual value of the 
parameters in the population. By design, DEMI is versatile and can be used to 
address various research questions, from a standard comparison of two groups 
to a more complex time-series analysis, as well as a novel approach to analyze 
differential expression of genomic regions encompassing neighboring genes. 
DEMI has been applied to study the effect of Neuroglobin (Ngb) deficiency on 
the global gene expression in the brain following hypoxia and the effect of light 
in the mouse retina. We have also used it to study the effects of prolonged 
hypoxia and hypothermia in cell culture. To demonstrate its accuracy, DEMI 
was benchmarked in reference to state of the art methods on several datasets 
with various experimental designs. I will argue that DEMI is easy to use and 
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simple to understand, provides enough flexibility to accommodate various 
experimental designs and retains accuracy even with low number of samples 
and, hence, has a wide application range for both biologists and bioinfor-
maticians alike. Methodological concerns arising during benchmarking as well 
as future perspectives on extending DEMI to RNA sequencing (RNA-seq) and 
proteomics are discussed. DEMI software is freely available which has been 
implemented as an R package.  

I hope that, eventually, this work will serve as a good reference for new 
enthusiasts to dig deeper into the intriguing realm of gene expression data 
analysis. Hopefully, DEMI will reduce the learning curve and support decision 
making for individual research objectives. No method should be used as the 
ultimate source of truth and using several methods together with eyes wide open 
would maybe best serve the researcher to increase confidence in the results.  
  



12 

REVIEW OF LITERATURE 

1. Gene expression measurement technologies 

The physiology and function of a living cell is specified by the collaborative 
activity or inactivity of every single gene in the genome. This activity is carried 
out by the controlled synthesis of messenger RNA (mRNA) from the template 
deoxyribonucleic acid (DNA) strand, in a process called transcription (Alberts, 
2014). 

Gene expression level is the extent of gene’s activity that is determined by 
the amount of mRNA molecules in the cell where higher rates of transcription 
lead to higher levels of gene expression. Although proteins perform the actual 
functional tasks, in general, the level of mRNA is considered a reasonably good 
estimate of the protein level (Schwanhausser et al., 2011). Therefore distur-
bances altering gene expression can alter cell’s physiology and function, 
making it an important study subject to enhance the understanding of molecular 
mechanisms at work. For example, by measuring mRNA levels in the cells we 
can discover properties responsible for the differences between cell types. One 
can use it, for example, to describe abnormalities in different cancer types 
(reviewed in van’t Veer and Bernards, 2008) or characterize the differentiation 
stages of engineered neural tissue from reprogrammed somatic cell lines (Wang 
et al., 2011).  

There are several technologies capable of measuring mRNA levels, each 
with their own strengths and weaknesses as mentioned by Bradford et al., 2010 
and by Liu et al., 2011. These technologies could broadly be categorized into 
single-gene and whole-genome measurements. A single-gene approach, con-
sidered as the “gold-standard” by many, is quantitative polymerase chain reac-
tion (qPCR). Currently, the two main technologies to measure gene expression 
of many genes simultaneously are microarrays (Schena et al., 1995) and 
sequencing approaches (reviewed in Metzker, 2010) whereas qPCR is often 
used to confirm these findings (Qin et al., 2006). In the following chapters I will 
focus on describing the steps involved with differential expression analysis 
using microarrays.  

 

1.1. Microarrays 

1.1.1. Description of microarrays 

Double-stranded DNA and RNA molecules exhibit the characteristic pairing of 
matching nucleotide bases by forming hydrogen bonds. It is known as the 
complementarity principle and is heavily used by many processes in the cell, 
e.g. by microRNA (miRNA) to recognize their targets (Brennecke et al., 2005) 
or to direct meiotic recombination of chromosomal DNA. In double-stranded 
DNA, adenine (A) is always paired with thymine (T) and cytosine (C) is paired 
with guanine (G). The complementarity principle is applied in technologies that 
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utilize hybridization, a process of annealing two complementary sequences 
together. By measuring the magnitude of hybridization between complementary 
molecules, researchers can measure the amount of sequence-specific signals, 
thus making direct observations of gene expression levels. Microarrays were 
specifically designed for such purpose. 

DNA microarrays are small solid surfaces where oligonucleotides are cova-
lently attached and organized into arrays of “spots” (reviewed in Bumgarner, 
2013). Each spot contains millions of identical oligonucleotides (termed 
“probe”) representing a small stretch of sequence identical or complementary 
(depending on the array) to an expressed sequence, the “target”. The probes 
generate a signal when hybridized with fluorescently labeled complementary 
DNA (cDNA) synthesized from the RNA samples studied. The signal intensity 
depends on the amount of target RNA in the original samples with higher 
amounts increasing the chance of hybridization, thus yielding a higher signal 
from the spot. 

Although there are several types of microarrays produced by distinct compa-
nies, the current work concentrates on oligonucleotide microarrays produced by 
the company Affymetrix®, the most popular microarray provider. Compared 
with other manufactures, Affymetrix® set themselves apart by being the first to 
introduce microarrays providing repeated measurements of the target with many 
probes targeting the same mRNA species. For example Human Exon ST 1.0 
microarray contains more than 5.5 million probes with length of 25 nucleotides 
whereas Illumina HumanHT-12 v4 Expression BeadChip contains only 47,231 
probes with length of 50 nucleotides (http://www.affymetrix.com/estore/ 
catalog/131452/AFFY/Human+Exon+ST+Array#1_1, last access: 30.01.2015; 
http://res.illumina.com/documents/products/product_information_sheets/product_
info_humanht-12.pdf, last access: 30.01.2015). Although smaller probe size can 
result in poorer hybridization affinity, the greater number of probes on Affy-
metrix® arrays allows to interrogate a higher number of targets with more fine-
grained resolution. In addition, smaller probe size is less prone to non-specific 
cross-hybridization as it is easier to design shorter probes measuring unique 
genomic sequences not shared by homologous genes or gene families (Relogio 
et al., 2002). High number of probes also allows interrogating one target from 
several locations. For example, probes can be designed to target individual 
exons, which can then be used to estimate the use of alternative transcripts 
(Bemmo et al., 2008; Johnson et al., 2003). Furthermore, one exon can be 
targeted by several probes (a probe set) increasing the reliability of signal 
estimates through replicated measurements. In addition, the multiple probes per 
target design should even the odds by improving specificity and reliability 
(Miller and Tang, 2009). 

Using microarrays for large-scale gene expression studies has been a 
common practice since the mid 1990s (Schena et al., 1995). Later, Brazma et al. 
(2001) specified the Minimum Information about Microarray Experiment 
(MIAME) standard. The goal of the MIAME standard was to ensure that 
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experiments carried out by the researchers could be independently verified and 
the results easily interpreted while also promoting the establishment of public 
repositories and data analysis tools (Brazma et al., 2001). Since the 
establishment of ArrayExpress (Rustici et al., 2013) it contains over 42,000 
microarray experiments in the public archive. Most of these experiments have 
only been looked at in confinement from a narrow research perspective but this 
data can also be used for conducting large-scale meta-analysis studies. For 
example, such approaches have been used to study individual cancers from 
several resources as well as across different cancer types, which decreases the 
limitations from biological and technical biases and small sample size (reviewed 
in Chen et al., 2014). Upon that bioinformaticians have built added value 
databases (Rung and Brazma, 2013) that, for example, can investigate the 
coexpression of genes over a large number of datasets (Adler et al., 2009) or 
allow researchers to query conditions where specific genes are differentially 
expressed (Chen et al., 2008). 

 

1.1.2. Microarray weaknesses and strengths 

A notable limitation of microarrays is its fixed design (Liu et al., 2011; Zhao et 
al., 2014). The probe sequences are selected by the manufacturer based on 
knowledge of gene annotations at the time of design. With reference genomes 
being consistently updated and genetic information improved, the arrays 
become outdated as new coding regions are discovered and the annotation of 
known genes is refined. However, by updating array designs according to 
improved probe annotations one can discard probes with poor hybridization 
properties and update probe sets to target novel genes. 

Another drawback of microarrays is the fixed number of oligonucleotide 
copies of each probe on the array. It can lead to under-estimation of the true 
mRNA abundance if there are more labeled target molecules than comple-
mentary oligonucleotides to bind them to the array, which can yield in a 
saturated signal (Wang et al., 2009). Therefore, the fluorescence signal can 
reach a plateau when excess mRNA molecules have no space for hybridization 
(“ceiling effect”). This presents a limit for the dynamic range of expression 
signals on the microarrays. In addition, the detection of low abundance mRNAs 
is complicated by the background noise and non-specific hybridization, which 
make it difficult to distinguish between “no” and “low” expressed genes (Zhao 
et al., 2014). 

Oligonucleotides varying in their sequence have alternate hybridization 
properties (Zhao et al., 2014). Some have stronger affinity towards the target 
mRNA than others. This makes it difficult to compare different probes in a 
probe set directly because signal intensity does not always correspond to the 
actual amount of mRNA (Zhao et al., 2014). This can present a problem during 
microarray analysis where summarization procedure, discussed later, combines 
the signal from relevant probes into a probe set value. In addition, several probe 
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sets can correspond to the same gene and it is not uncommon that they do not 
yield a consensus (Zhao et al., 2014). 

Despite well-known issues with microarrays, the benefits of using micro-
arrays include relatively low cost, high throughput and well-established analysis 
workflows. Therefore microarrays are still the tool of choice in experiments 
where many samples are available (Rung and Brazma, 2013). 

 
 
2. Differential expression analysis with microarrays 

Quantifying the expression of genes across cell types and diverse conditions is 
an incredible source of information that can be utilized to understand 
mechanisms of disease, develop intervention strategies and much more. It is 
therefore important to design the experiment properly for it is impractical to 
study cancer cells without studying healthy cells when we aim to capture the 
difference. In most cases current gene expression measurement technologies 
and downstream analysis methods don’t perform direct quantification of gene 
expression levels. Instead, they provide relative estimates and compare them 
between experimental treatments. Differential expression is typically defined as 
a statistically significant difference in the abundance of an mRNA species 
between two treatments and it can be used to identify genes with altered 
expression levels (Slonim, 2002). Differential expression analysis is the most 
common application of microarray data (Shedden et al., 2005). 

In the simplest cases researchers perform differential expression analysis 
between two groups, typically labeled as “case” and “control”. However, diffe-
rential expression analysis can also be applied to other experimental designs, for 
example time-series, concentration series or factorial designs. Experimental 
designs, in principle, are limited only by the researcher’s imagination and the 
existence of applicable statistical tools. 
 

2.1. Preprocessing of Affymetrix® microarrays 

There are several sources that contribute to signal variation between 
microarrays. In addition to the interesting variation, that depends on the genetic 
and environmental conditions (Hartemink et al., 2001), there is also obscuring 
variation. Sources for obscuring variation derive from array manufacturing, 
processing (hybridization, washing and scanning), sample preparation (RNA 
extraction and labeling) and sloppy experimental design (Irizarry et al., 2003b). 
Therefore, in order to make signal intensities on different arrays comparable, we 
need to preprocess the data, which essentially projects the intensities from 
different arrays onto a common scale. 

Preprocessing of Affymetrix® microarrays consists of several independent 
steps. Often, the first step is to correct the raw signal intensities for the 
background noise, which on the microarrays is a signal caused by optical noise 
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during the scanning process and non-specific binding (Irizarry et al., 2003b). 
Secondly, the background-corrected signal intensities have to be normalized so 
that they would have the same signal distribution across all arrays in the study. 
This serves to reduce the problem of obscuring variation (Bolstad et al., 2003). 
Finally, as the probe level data by itself is uninformative it needs to be 
aggregated into a single expression value ultimately representing a gene or 
transcript, which can then be used to evaluate differential expression. 

In the following chapters I will describe four different preprocessing 
methods and the steps they involve. These methods are Robust Multi-array 
Average, RMA (Irizarry et al., 2003b), Factor Analysis for Robust Microarray 
Summarization, FARMS (Hochreiter et al., 2006), Distribution Free Weighted, 
DFW (Chen et al., 2007) and Probe Logarithmic Intensity Error, PLIER (Affy-
metrix, 2005). In addition, I will give an overview of two approaches to esti-
mate differential expression. The first one uses a mixture of linear modeling and 
empirical Bayes and is implemented in the Limma package (Smyth, 2004) and 
the second one, RankProd (Hong et al., 2006), uses a non-parametric rank 
product approach. In the later chapters I will introduce a novel differential 
expression analysis method called DEMI (Differential Expression from 
Multiple Indicators), which will be compared against different combinations of 
previously mentioned methods. 

Although some methods like DFW or FARMS were specifically developed 
to tackle the summarization problem, these packages also incorporate preceding 
preprocessing steps – e.g. quantile normalization developed for RMA is also 
used in FARMS. 

 

2.1.1. Background correction 

Signals on individual arrays are always affected by variations not related to the 
experimental factors. As mentioned before, this variation is called obscuring 
variation that when ignored can lead to inaccurate results (Irizarry et al., 2003b). 
At high target abundance, the contribution of background noise to signal is 
proportionally smaller since most of the spot intensity is target-derived whereas 
for targets with low observed intensities the background signal is proportionally 
larger (Affymetrix, 2005). In other words, background noise has a substantial 
effect on the intensity values, especially when the intensities are low (Chen et 
al., 2007). The presence of background noise is obvious since the minimum 
probe intensity is never 0 (Zhijin et al., 2004) as you would expect in an actual 
biological situation where a gene is expressed below detection level. Therefore 
it is often recommended to adjust the data for this variation using background 
correction. 

From the previously mentioned methods RMA is probably the most widely 
used open-source analysis method for Affymetrix® microarrays with almost 
6000 citations as of July 2014. It was developed at a time when Affymetrix® 
microarrays were designed to take advantage of mismatch (MM) probes to 
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estimate non-specific hybridization. Unlike perfect match (PM) probes, which 
are perfectly complementary to the target, MMs have a mismatching nucleotide 
in the middle (at the 13th position) of the 25-mer sequence. MMs were 
incorporated on arrays to enable the subtraction of background noise by sub-
tracting MM signal from the paired PM signal, which initially was the default 
approach for background noise adjustment (Zhijin et al., 2004). Different to 
previous understanding, RMA developers ignored MMs because they claimed 
that although non-specific binding is contained in the MM values, empirical 
results demonstrate that mathematical subtraction does not translate into 
biological subtraction (Irizarry et al., 2003a) and hence only PM values should 
be used. Similar to RMA, both the developers of FARMS and DFW have 
chosen to ignore MM values in their software packages and use only PM values 
to calculate gene expression estimates. Most likely as a response to this trend, 
the newer generation Affymetrix® microarrays do not contain mismatch probes. 

Not all methods utilize background correction. From the discussed methods 
only RMA and PLIER perform background correction whereas FARMS, DFW 
and DEMI start by normalizing the data. In the case of RMA, background-
corrected PM values are calculated for every microarray separately. Authors of 
RMA assume that the signal observed is a convolution of exponentially 
distributed true signal and normally distributed background noise (Irizarry et al., 
2003b). RMA incorporates kernel density estimation for adjusting PM probe 
intensities. As an alternative to RMA, Affymetrix® developed PLIER. It can be 
found in the Affymetrix Power Tools (APT) Software Package 
(http://www.affymetrix.com/estore/partners_programs/programs/developer/tool
s/powertools.affx, last access: 30.01.2015) as a command line program called 
apt-probeset-summarize. This function allows the researcher to select the 
appropriate background to be used for background correction. The choices 
include MMs as background or global uniform background such as genomic or 
anti-genomic probes that are designed to exclude sequences from any known 
transcript. In the cases where the researcher assumes the background noise to be 
minimal only PM values can be utilized or when background is irrelevant to the 
target response MM values can be added to the PM values (Affymetrix, 2005). 
However not all arrays have MM probes or dedicated global background 
probes, so the choices are often dictated by the array design. 

After background correction the raw intensity values are replaced with 
background-corrected signal intensities. 

 

2.1.2. Normalization 

The hybridization process is never 100% efficient. Even if the same sample is 
used on several arrays slight variations in signal intensity distributions can be 
observed between the arrays (Gautier et al., 2004). To eliminate these inter-array 
differences it is required to normalize the signal intensities making individual 
microarrays comparable to each other. 

5 
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Several normalization procedures have been proposed by different authors of 
which the most popular is quantile normalization, which was first used by the 
authors of RMA and described in Bolstad et al. (2003). In their description of 
quantile normalization, signals are first sorted according to the intensity. The 
individual probe intensity values at every quantile are then replaced with the 
average probe intensity values of that quantile after which the signals are 
rearranged back to the initial ordering. Although the arrays are now comparable 
to each other quantile normalization forces the values of quantiles across all 
arrays to be equal and therefore risks removing some of the signal in the tails 
(Bolstad et al., 2003). However this problem should be diminished through the 
use of multiple probes in a probe-set during summarization process (Bolstad et 
al., 2003). 

FARMS and DFW, which were developed as alternative summarization 
methods also utilize quantile normalization, as does PLIER. FARMS users have 
the additional option of using cyclic loess normalization. The latter implements 
the M versus A plot that was initially developed for two-color microarrays by 
Dudoit et al. (2002). Bolstad et al. (2003) modified it for single-channel micro-
arrays where instead of two colors they used two separate arrays to calculate 
logarithmic difference of expression and logarithmic expression mean for M 
and A values respectively. They then used these values to fit a normalization 
curve with a local regression method called loess for each pairwise combination 
of the arrays. 

There are many other normalization methods, not discussed in this work, 
available for the researchers. For example, solely the affy package (Gautier et 
al., 2004) available in BioConductor (Gentleman et al., 2004) includes 
quantiles/quantiles.robust, loess, contrasts, constant, invariantset and qspline. 
Comparing cyclic loess and quantile normalization Bolstad et al. (2003) argues 
that the practical choice to be used in normalization step would be quantile 
normalization, especially in terms of speed. Quantile normalization is also the 
default approach for all the methods discussed in this work apart from DEMI. 

 

2.1.3. Summarization 

High-density microarrays are designed to interrogate one target sequence by 
several probes. Even after background correction and normalization have been 
performed it remains challenging to make conclusive inference about the 
expression of target sequence since different probes measuring a single target 
can have different hybridization kinetics and can produce different expression 
profiles (Zhao et al., 2014). Therefore, it is necessary to summarize the probe 
level intensity values of the specified target sequence into a single value 
represented by a probe set. Considering the methods discussed in this work, 
summarization is also the primary step of preprocessing that sets them apart. As 
such, FARMS and DFW were specifically developed as alternative sum-
marization methods. 
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Summarization is most often performed after the raw signal intensities have 
been background corrected and normalized. However, in the case of PLIER, 
normalization can also be applied after summarization (Affymetrix, 2005). In 
addition, PLIER performs summarization without log-transformation whereas 
other methods use log 2 transformed signal intensities (probably due to the fact 
that the distribution of log-transformed data is approximately normal (Sartor et 
al., 2003). PLIER models the measured signal intensity as the product of the 
amount of mRNA (target response), common across intensities in a given probe 
set, and probe’s affinity (feature response), common across all arrays in the 
experiment (Affymetrix, 2005). Initial estimates of the probe set values are 
calculated using median polish, initially used by the authors of RMA 
(Affymetrix, 2005; Irizarry et al., 2003b). Median polish is an iterative method 
operating on a matrix by alternatively extracting row and column medians. 
Iterations continues until convergence or a limit number of iterations has been 
reached (Holder et al., 2001). Upon receiving the first estimations PLIER then 
attempts to find estimates that more precisely fit the data by calculating 
approximate likelihood minimizing the PLIER function (Affymetrix, 2005). 

The authors of FARMS (Hochreiter et al., 2006) proposed a Bayesian factor 
analysis technique for probe set summarization where they model initial mRNA 
concentrations from log-transformed PM values. FARMS’ main idea is to 
decompose the covariance structure data of multiple PMs, that measure the 
same transcript, into a Gaussian distributed latent factor and additive indepen-
dent noise via the latent variable posterior distribution providing a rather unique 
ability to assess whether a probe set is informative or not. FARMS initializes by 
normalizing perfect match observations to a zero mean after which expectation-
maximization algorithm, modified to maximize the Bayesian posterior, esti-
mates the model parameters given the data. The last step recovers the true signal 
from the estimated log-transformed RNA concentrations in the hybridization 
mix (Hochreiter et al., 2006). 

The last method discussed is DFW by Chen at al. (2007). The authors of 
DFW claim that the model-based methods, such as RMA and FARMS, are 
heavily dependent on the assumptions made by the model, and require 
estimation of model parameters in order to perform effectively (Chen et al., 
2007). With such reasoning they developed a non-parametric summarization 
technique where they do not make any distributional assumptions of the probe-
level intensities (Chen et al., 2007). Similar to RMA and FARMS, DFW uses 
log 2 transformed PM intensities. DFW estimates the quality of each PM probe 
in the probe set by assigning a weight, using Tukey weight function, to each 
probe. The weight is calculated based on the range of probe signal intensities 
across all arrays in the analysis. Individual probes in a probe set are then 
combined by taking account the weighed probe intensities together with range 
and standard deviation that is calculated on the weighted intensities. 
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2.2. Differential expression statistics 

Several statistical methods have been developed to estimate the statistical signi-
ficance of differentially expressed genes. As such, Limma (Smyth, 2005) is an 
extensively used R package that contains methods designed to estimate diffe-
rential expression by taking preprocessed expression data as input. Limma fits a 
linear model for every probe set in the expression matrix where it estimates the 
least square error by calculating coefficients for every group in the experimental 
design. Using a contrast matrix the user can specify which comparisons to 
extract from the fit. Based on the contrast matrix, standard errors and linear 
coefficients will be calculated relevant to the comparisons of biological interest 
for the researcher. This allows the user to conduct any comparison or 
combination of comparisons. Limma estimates differential expression with a 
moderated t-test where the standard errors of coefficients have been moderated 
across all probe sets using an empirical Bayes approach (Smyth, 2005). This 
can be thought of as condensing the estimated sample variances towards a 
pooled estimate, which allows to make reliable inferences even when the 
sample size is small (Smyth, 2004). 

RankProd (Hong et al., 2006) is another method used to determine the 
statistical significance of differential expression on preprocessed microarray 
data. RankProd provides a non-parametric method that detects genes that are 
consistently ranked high in a number of gene lists, namely genes that are often 
found to be strongly up- or downregulated in replicate experiments (Hong et al., 
2006). In the first step RankProd computes pair-wise ratios of fold change for 
all samples between treatment versus control. Secondly, the ratios are ranked 
within each comparison and the rank product for each gene is calculated. After 
data permutation the false discovery rate (FDR) associated with each gene can 
be determined that indicates the significance of differential expression for up- 
and downregulated genes separately (Hong et al., 2006). 

It is in the nature of microarray data that a large number of genes are tested 
simultaneously resulting in a multiple testing problem. RankProd approaches 
that problem by estimating the proportion of false positives by permuting gene 
expression values within each single array. In the case of Limma, the researcher 
can manually determine which multiple correction approach to use. The default 
p-value adjustment procedure is the false discovery rate (FDR) by Benjamini 
and Hochberg (1995) to control for the expected proportion of falsely rejected 
null hypotheses. 

 
 

3. The function of Neuroglobin in the brain 

The gene NGB encodes a protein called Neuroglobin (Ngb), which is a neuron-
specific globin that is predominantly expressed in the brain (Burmester et al., 
2000). More specifically, it has been demonstrated that the expression of Ngb 
occurs mainly in the brain regions that are related to functions such as sleep-
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wake activities, circadian rythm and regulation of energy homeostasis (Hundahl 
et al., 2008a; Hundahl et al., 2008b). 

The function of Ngb in the brain is subject to controversy. Initially, the 
function of Ngb was associated with oxygen storage and intracellular transport 
(reviewed in Brunori and Vallone, 2007) and, in addition, it was shown to 
possess a neuroprotective role under hypoxic conditions where there is a 
shortage of oxygen supply to the brain (Fordel et al., 2004; Sun et al., 2001). 
Contradictorily, however, evidence has been provided that shows a low oxygen 
affinity of Ngb (Fago et al., 2004). In addition, the low concentration levels of 
Ngb in neurons question its role as oxygen reservoir and in oxygen transport 
(reviewed in Brittain et al., 2010).  

Despite the obvious disagreements in the function of Ngb, Schmidt et al. 
(2003) demonstrated that the amount of Ngb protein present in the murine retina 
is 50 to 100 fold higher in comparison to the total brain extracts making up 4 
percent of total retinal protein. The retina is like the brain, one of the most 
metabolically active tissues (Ames, 1992; Anderson and Saltzman, 1964). To be 
more specific, oxygen consumption rate in retina is dependent on the exposure 
to light where dark-adapted retina requires more oxygen compared to light-
adapted retina (Ahmed et al., 1993). Therefore, it is reasonable to expect that if 
Ngb is integral for correct retinal functioning, Ngb-deficiency would have 
detectable effects on light-induced gene expression if it were important for 
oxygen metabolism or its delivery.  

6 
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AIMS OF STUDY 

1. Describe and benchmark a novel probe-level differential gene expression 
analysis workflow (DEMI). Demonstrate the applicability of DEMI to non-
conventional experimental designs and different target categories (e.g. gene, 
transcript, genomic region). 

2. Study the effect of acute and prolonged hypoxia on neuronal viability and 
gene expression on Neuroglobin deficient mice with DEMI. 

3. Study the effect of Neuroglobin deficiency on light-induced gene expression 
response in the mouse retina with DEMI. 



23 

MATERIALS AND METHODS 

1. DEMI algorithm (Paper I) 

DEMI is a probe-level microarray analysis workflow that consists of three 
steps: I) normalization of the raw signal intensities, II) evaluation of probe-level 
signal dynamics, III) estimation of differential expression of the target in 
question. CEL files are read as input and an expression matrix containing raw 
signal intensities is created where rows represent independent measurements 
(equivalent to probes) and columns represent individual samples of the 
experiment. 

In contrast to the popular preprocessing methods that use quantile 
normalization, DEMI utilizes relative rank normalization instead. Relative rank 
provides an intuitive measure of gene expression by relating the intensity of a 
probe signal to all other probes on the array. The appointed values will be on the 
scale of 0 to 100 where a relative rank of 75 corresponds to a probe with signal 
intensity at 75th percentile (the third quartile) in the probe signal distribution. 
For clarification, relative rank 0 and relative rank 100 correspond to the weakest 
and strongest signal respectively. Ranking is applied to each column in the 
expression matrix separately and is therefore independent of the other samples 
in the experiment. 

Let us consider a simple experiment where we have samples corresponding 
to two groups or conditions, a TEST and a REFERENCE group. Given a dataset 
of m TEST and n REFERENCE samples, each represented by ݍ independent 
measurements on every array, we can construct an expression matrix ࢄ = ൫ݔ௜௝൯ 
where ݅ = 1 ⋯ ݆ and ݍ = 1 ⋯ ݉ + ݊. Relative rank normalization is applied to 
each column vector ܴ∗௜  yielding a normalized expression matrix ࢓࢘࢕࢔ࢄ  with 
concatenation operation ∥ of all column vectors where the order of rows and 
columns remains identical to the original expression matrix. 

࢓࢘࢕࢔ࢄ  = ݍ1  × ሺܴ∗ଵ ∥ ܴ∗ଶ ∥ ⋯ ∥ ܴ∗௠ା௡) 

 
In the second step DEMI evaluates whether the experimental treatment has a 
statistically significant effect on the normalized signal intensities. This process 
is applied to each probe separately in the normalized expression matrix ࢓࢘࢕࢔ࢄ. 
The choice of test method depends on the research question. Among the choices 
are, for example, Wilcoxon-Mann-Whitney rank sum test to compare two 
groups of samples and Kendall’s tau statistic to evaluate departure from 
monotonicity. The Wilcoxon-Mann-Whitney rank sum test is the default choice 
in DEMI when estimating differential expression between TEST and 
REFERENCE samples. 
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Given a set of probes ࡽ = ൛ݍଵ, ⋯ , ௤ൟݍ , a normalized expression matrix ࢓࢘࢕࢔࢏ࢄ where ݅  specifies the current row, and sets of ࡹ = ሼ݉ଵ, ⋯ , ݉௠ሽ  and ࡻ = ሼ݋ଵ, ⋯ ,  ௡ሽ that correspond to the column indices indicating TEST and݋
REFERENCE samples, respectively, we will define a set of upregulated probes ࡴ and a set of downregulated probes ࡸ. Depending on the sample size these sets ࡴ and ࡸ are constructed differently. For all tests where both groups have more 
than 3 samples (݉, ݊ > 3) a probability of null hypothesis (H0) being true, i.e. 
there is no difference between the TEST and REFERENCE group for probe ݍ௜, 
is calculated by obtaining a sum of ranks that is higher or lower than the 
observed rank sum of the TEST samples. Upregulated and downregulated sets 
of probes can be formulated as 

ࡴ  = ൛ݍ௜ ∶ ݂݅ ௛ܲ௜௚௛௘௥ሺݎ௜) < 0.05ൟ 
ࡸ  = ሼݍ௜ ∶ ݂݅ ௟ܲ௢௪௘௥ሺݎ௜) < 0.05ሽ 
 
where ݎ௜  is a vector of ranks corresponding to probe ݅ and ௛ܲ௜௚௛௘௥  and ௟ܲ௢௪௘௥ 
corresponds to the H0 probability of obtaining a sum of ranks higher or lower, 
respectively, than the observed rank sum of TEST. In the cases where either the 
TEST or REFERENCE group contains less than 4 samples (݉ ≤ 3 or ݊ ≤ 3) 
we use a heuristic where a probe is labeled differentially expressed only if all 
TEST ranks are either higher or lower than corresponding REFERENCE ranks. 

Similar to the summarization problem of other methods, probe-level 
differential expression information by itself is uninformative and needs to be 
combined into a target level differential expression estimate. Following our 
example we want to test whether the target (e.g. gene) is differentially expressed 
between TEST and REFERENCE samples. Given a set of targets ࢀ = ሼݐଵ, ⋯ ,  ௧ሽݐ
where each target ݐ௜  is related to a predetermined set of probes ࡽ௧೔ ∈  and ࡽ
given sets of distinct probe expression profiles ࡴ, ࡸ ∈  that were calculated in ࡽ
the second step, two complementary differential expression estimates will be 
obtained (one for upregulation and the other for downregulation) using 
hypergeometric probability distribution. Hypergeometric probability function 
( ௛ܲ௚ ) estimates for each ݐ௜ the H0 probability of observing ห࢏࢚ࡽ ∩ หࡴ  or ห࢏࢚ࡽ ∩  ห target-specific differentially expressed probes. The H0 probability ofࡸ
target ݐ௜  being upregulated ( ௛ܲ௜௚௛௘௥ሺݐ௜) ) and downregulated ( ௟ܲ௢௪௘௥ሺݐ௜) ) is 
formulated as: 

 

௛ܲ௜௚௛௘௥ሺݐ௜) = ෍ ௛ܲ௚൫݇, ,|ࡴ| ࡽ| ∖ ,|ࡴ |ࡴ∩೟೔ࡽ|೟೔|௞ୀࡽ|௧೔|൯ࡽ|  
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௟ܲ௢௪௘௥ሺݐ௜) = ෍ ௛ܲ௚൫݇, ,|ࡸ| ࡽ| ∖ ,|ࡸ หࡽ௧೔ห൯ቚࡽ೟೔ቚ௞ୀቚࡽ೟೔∩ࡸቚ  

 
When exon is the target, off-target probes are defined as the difference between 
the set of probes specific to the gene containing exon ݐ௜ and probes targeting 
exon ݐ௜ . A potential caveat of using the hypergeometric test to estimate 
differential expression is assuming an H0-distribution where probe signals are 
uncorrelated between unrelated targets. We will argue, however, that substantial 
deviations from this assumption would manifest in the ratio of differentially 
expressed off-target probes and, given a reasonable number of target-specific 
probes, it will not result in increased false-positive rate. 

As differential expression is evaluated for thousands of targets the estimates 
must be corrected for multiple testing. For target categories, where targets are 
expected to share many probes (alternative transcripts, overlapping genomic 
regions) FDR under dependency is used (Benjamini and Yekutieli, 2001). For 
gene-specific estimates, the original formulation of the false discovery rate 
procedure is employed (Benjamini and Hochberg, 1995). 

 
 

2. DEMI R package (Papers I–III) 

In this chapter I will discuss the implementation of DEMI algorithm in R and a 
few design concepts of the software. The software itself is available as an R 
package called demi which can be installed through CRAN or downloaded 
directly from DEMI website http://biit.cs.ut.ee/demi (last access: 30.01.2015). 

The implementation of DEMI in R consists of several packages with demi 
package containing the algorithm. In addition, there are data packages that 
contain probe and target information for different microarrays. These data 
packages are required to run the analysis since demi does not use traditional 
CDF (chip definition file) to relate probes to targets as most open-source 
microarray analysis software solutions do. Keeping the algorithm’s imple-
mentation and data packages separate from each other reduces the need to 
update them concurrently. The data packages are downloaded and installed 
automatically when DEMI is run for the first time. 

When running the analysis, the first step is performed by the DEMIExperiment 
function, which loads signal intensities from CEL files and gene annotation 
informations into a DEMIExperiment object followed by relative rank normal-
ization. At this point the experimental design is not important since all the 
microarrays will be normalized separately and one can have as many samples 
from as many groups as long as all the arrays represent the same platform. In 
addition, DEMIExperiment function allows the researcher to specify a custom 
function for the normalization of the input data. When specifying parameters for 
DEMIExperiment, the researcher has to select the target category, from a 
selection of gene, transcript, exon or a genomic region. 

7 
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In the second step, by default the differential expression on the probe level is 
estimated with Wilcoxon-Mann-Whitney rank sum test. Using the function 
DEMIClust the user can specify the names of the two groups that are tested for 
differential expression. It is important to note that these names have to occur in 
the names of the CEL files or the system will be unable to identify which 
columns of the expression matrix correspond to which experimental groups. It 
is always a good practice for a data file to contain as much information on the 
metadata in its name as possible. Similar to the function DEMIExperiment, 
DEMIClust also allows the user to use a custom method to estimate differential 
expression on probe level. DEMIClust object will hold information on probes 
that were differentially expressed in the specified experimental design. 

DEMIDiff function estimates differential expression on the target level by 
utilizing hypergeometric distribution function as described above. The returned 
DEMIDiff object contains the results of DEMI analysis in a table where targets 
are sorted according to increasing FDR value. An example of an output table 
can be seen in Appendix 1. 

A more detailed manual that contains description on different functions and 
its parameters can be found at http://biit.cs.ut.ee/demi/doc/demi.pdf (last access: 
30.01.2015). 

 
 

3. Animals (Papers II, III) 

3.1. Neuroglobin knock-out mice (Papers II, III) 

For Papers II and III we used Neuroglobin (Ngb) knock-out mice (Ngb-null) 
that were created by genOway (Lyon, France) under the project no. 
genOway/SST/HSA1-Ngb/260307. In Ngb-null mice, the exons 2 and 3 were 
floxed and ultimately deleted from the genome with Cre recombinase during the 
early stages of embryonic development. Specific details on the creation of  
Ngb-null mice can be found in Paper II. 
 

3.2. Hypoxia model (Paper II) 

In Paper II a total of 46 female and 31 male mice, 16–18 weeks old, were 
exposed to hypoxic conditions where the oxygen level was lowered to 7% in 
rigid plastic cages with a glass cover (hypoxia chambers). The exposure to 
hypoxia was limited either to 90 minutes, 2 hours, 24 hours, 48 hours, 72 or 96 
hours. However for microarray and qPCR analysis only female mice were used 
to study gene expression differences between normoxic mice and mice exposed 
to hypoxia for 90 minutes and 24 hours. At naive conditions 3 normoxic wild-
type (wt) and 5 normoxic Ngb-null, after 90 minutes of hypoxia 5 mice from 
both genotypes and at 24 hours 5 wt hypoxic mice and 4 Ngb-null hypoxic mice 
were euthanized. 



27 

All animal experiments were performed in accordance to the rules of 
Dyreforsoegstilsynet, Ministry of Justice, Denmark, who approved the studies 
by issuing the license number 2010/561-1834. 

 

3.2.1. Neuronal survival under hypoxia 

Neuronal survival in Ngb-null and wt mice was estimated by immunohisto-
chemical (ICH) staining with Ngb co-localization markers. In lateral hypotha-
lamus (LH) Orexin-A was used and in two hindbrain nuclei, the pendun-
culopontine tegmental nucleus (PPTg) and the laterodorsal tegmental nucleus 
(LDTg) Cytoglobin (Cygb) was used. The number of Orexin-A-immunoreactive 
(IR) and Cygb-IR neurons and IR double-stained for Ngb was counted in wt 
(n = 3–6) and Ngb-null mice (n = 4–6) during normoxia and after 24 or 48 
hours of hypoxia. The cells were counted in three levels of LH and two levels of 
PPTg and LDTg, 160 μm apart, from digital photomicrographs using ImageJ 
(http://rsbweb.nih.gov/ij/, last access: 30.01.2015) cell counter plugin as 
described in (Hundahl et al., 2010). Statistical analysis was performed with 
Mann Whitney test. 
 

3.3. Retina model (Paper III) 

15 wt C57Bl and 15 Ngb-null mice, 12–16 weeks old, were used in the experi-
ment to study the effect of Ngb deficiency in mouse retina upon exposure to 
light. To that end, the animals were kept in a 12/12 hour light/dark cycle with 
ad libitum access to food and water. Five mice of both genotypes were 
euthanized by decapitation either in darkness (t0) or after exposure to light for 
1.5 or 5 hours. 

Animal care and all experimental procedures were conducted in accordance 
to the principles of Laboratory Animal Care (Law of Animal Experiments in 
Denmark, publication 1306, November 23, 2007) and approved by the Faculty 
of Health, University of Copenhagen (Copenhagen, Denmark). 

 
 

4. Cell culture (Paper I) 

4.1. Primary cell culture 

Around 1 million primary mouse embryonic fibroblasts (MEF) (Millipore) were 
seeded onto 100-mm culture dishes and were grown in DMEM (high glucose 
4.5g/l with additional 10% FBS and L-glutamine, PAA) in normal conditions 
(atmospheric oxygen, 5% CO2 at 37°C) until 60–70% confluent. 
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4.2. Modeling hypoxia 

Hypoxia was initiated on primary cell culture by lowering the oxygen 
concentration to 1% in multi-gas incubator (Sanyo). Five replicate samples were 
used at each experimental condition. RNA was extracted after 24 hours from 
hypoxic and normoxic cells with Trizol® (Life) after which RNA was used for 
large scale gene expression profiling performed with Mouse Exon 1.0 ST 
microarrays (Affymetrix®) as instructed by the manufacturer. 
 

4.3. Modeling hypothermia 

Hypothermia was initiated by lowering the temperature of the cell culture 
incubator to 32°C whereas the control batches were incubated at 37°C. Three 
dishes per group were incubated for various time periods (0h, 0.5h, 1h, 2h, 4h, 
8h and 18h). RNA was extract with Trizol® (Life) and the three replicates at 
each experimental condition were pooled together. Global gene-expression 
profiling was performed using Mouse Gene 1.0 ST arrays (Affymetrix®) 
according to the manufacturer’s instructions. 
 
 

5. Microarray data (Papers I–III) 

5.1. Microarray processing (Papers I–III) 

In all the papers, microarray processing was done by Rigshospitalet Microarray 
Center, Copenhagen, Denmark (www.rhmicroarray.com, last access: 30.01.2015) 
with slight variations, mainly differing by the array platforms used in the 
analysis. In Paper I, we used Mouse Gene 1.0 ST arrays for the study of hypo-
thermia in primary cell-culture model, and Mouse Exon 1.0 ST arrays to 
describe changes in gene expression induced by hypoxia. In Paper II, described 
below, we utilized Mouse Gene 1.0 ST arrays but in Paper III Mouse Exon 
1.0 ST arrays were used to study the effect of light on Ngb-null mice. The raw 
data stored in CEL files can be accessed from public repositories such as Gene 
Expression Omnibus (GEO) or ArrayExpress (AE). The accession numbers are 
presented in Table 1 in addition to references to the original publications where 
further details about each microarray processing procedure can be found. 

As an example, in Paper II we studied the effect of hypoxia on wt and Ngb-
null mice. For that we used 50ng of total RNA from each sample that was 
amplified using the WT-Ovation Pico RNA Amplification System (Nugen®, 
San Carlos, CA, USA) according to manufacturer’s instructions. Double-
stranded cDNA was generated using the WT-Ovation Exon module followed by 
biotin labeling with the FL-Ovation cDNA Biotin Module V2. The labeled 
samples were hybridized to the Mouse Gene 1.0 ST GeneChip® array 
(Affymetrix®, Santa Clara, CA, USA) after which they were washed and stained 
with phycoerytrin conjugated streptavidin (SAPE) using Affymetrix Fluidics 
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Station® 450. Fluorescent images were created with Affymetrix GeneArray® by 
scanning the arrays as described in the Affymetrix GeneChip® instructions. In 
all the papers, CEL intensity files were generated in the GeneChip® Command 
Console® Software (AGCC) (Affymetrix®, Santa Clara, CA, USA).  
 
Table 1. Accession numbers and references for datasets generated in Papers I, II and III. 

Paper Platform Accession Reference 

Ia Mouse Gene 1.0 ST GEO: GSE54229 Paper I 

Ib Mouse Exon 1.0 ST GEO: GSE54228 Paper I  

IIc Mouse Gene 1.0 ST AE: E-MTAB-726 Paper II 

IIId Mouse Exon 1.0 ST Not Uploaded  

a gene expression profiling of primary cell culture model of hypothermia; b gene expression 
profiling of primary cell culture model of hypoxia; c gene expression study of hypoxia model on 
wt and Ngb-null mice; d light induced gene expression profiling on wt and Ngb-null mouse retina. 
 

5.2. Microarray data from public domain (Papers I, III) 

5.2.1. MicroArray Quality Control dataset (Paper I) 

In Paper I we utilized publicly available MicroArray Quality Control (MAQC) 
project’s samples of Human Brain Reference RNA (HBR) by Ambion and 
Universal Human Reference RNA (UHR) by Stratagen. The data, available on 
Affymetrix® microarray platforms, was obtained from GEO. Accession 
numbers and each dataset references are presented in Table 2. Although some 
datasets contained more than four replicate samples per group, only four 
robustly chosen technical replicates were used in our analysis. 
 
Table 2. Datasets representing MAQC project’s samples 

Platform Accession Reference 

Human Genome U133 Plus 2.0 GEO:GSE9819 (Pradervand et al., 2008) 

Human Gene 1.0 ST GEO:GSE9819 (Pradervand et al., 2008) 

Human Exon 1.0 ST GEO:GSE13069 (Bemmo et al., 2008) 

 

5.2.2. Exposure to light datasets (Paper III) 

In Paper III we used two datasets that investigated differential expression upon 
exposure to a light pulse. Microarray dataset (GEO: GSE29299) had been made 
available of ex vivo retinas obtained from Long Evans rats that were exposed to 
3 or 6 hours of light or were left in the dark for the equivalent time (Bedolla and 
Torre, 2011). In addition, we obtained data (GEO: GSE6904) from a study on 

8 
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short-term effect of light by measuring differential gene expression from mouse 
suprachiasmatic nucleus (SCN) after 30 minutes of continuous light pulse or 
darkness (Porterfield et al., 2007). In ex vivo rat retina study the authors utilized 
Rat Genome 230 2.0 (Affymetrix®) microarrays whereas in mouse SCN study 
Mouse Genome 430A 2.0 (Affymetrix®) platform was used. 
 

5.2.3. Long-range epigenetic silencing (LRES) data (Paper I) 

Coolen et al. (2010) investigated downregulation of neighboring genes over 
large chromatin regions in cancer cells. For differential gene expression analysis 
they used gene expression measurements of normal prostate epithelial cells 
(PrEC) and the prostate cancer cell line (LNCaP). The dataset (GEO: GSE19726) 
containing two replicate measurements for both conditions were measured with 
Human Gene 1.0 ST (Affymetrix®) arrays. 
 

5.2.4. Epigenetic modification data (Paper I) 

In addition to the above-mentioned LRES gene expression dataset we 
downloaded additional chromatin immunoprecipitation DNA microarray (ChIP-
chip) data (GEO: GSE19726) on epigenetic markers from the same study by 
Coolen et al. (2010). Histone 3 lysine 9 acetylation (H3K9ac) and Histone 
3 lysine 27 tri-methylation (H3K27me3) data in PrEC and LNCaP cells 
contained MAT scores from two arrays for both cell lines and the epigenetic 
marker identifier. 
 
 

6. Reference datasets (Paper I) 

6.1. MAQC Taqman® dataset 

A dataset of Taqman® assay (GEO: GSE5350) measurements on UHR and 
HBR samples, performed by MAQC project, were used as a reference to 
evaluate the performance of differential expression analysis workflows. The 
normalized expression levels were obtained by the MAQC consortium using the 
formula 2CTPOLR2A–CTi where CTi refers to the cycle threshold of the gene using 
the POLR2A gene as reference. Differential expression between UHR and HBR 
samples was estimated with Student’s t-test followed by Bonferroni multiple 
testing correction. 
 

6.2. HIF-1 and HIF-2 binding sites in hypoxia-induced genes 

A list of high-stringency hypoxia inducible factors HIF-1 and HIF-2 binding 
sites with human genomic coordinates was obtained from the Supplementary 
Material of Schödel et al. (2011). To cross-link human gene identifiers (RefSeq) 
with mouse gene identifiers (Ensembl) we downloaded an annotation table from 
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Ensembl (Cunningham et al., 2014) using R (package biomaRt, (Durinck et al., 
2009)). We were able to successfully map 295 mouse orthologs of Hif-1 targets 
and 245 orthologs of Hif-2 targets. Enrichment of putative Hif-1 and Hif-2 
targets among upregulated genes in primary cell culture model of hypoxia was 
estimated with hypergeometric probability distribution. 
 
 

7. Microarray data analysis (Papers I–III) 

7.1. Microarray preprocessing (Paper I–III) 

In Paper I, microarray data preprocessing on MAQC UHR and HBR samples 
and on data from primary cell culture model was performed using RMA 
(Irizarry et al., 2003b), FARMS (Hochreiter et al., 2006), DFW (Chen et al., 
2007), PLIER (http://media.affymetrix.com/support/technical/technotes/plier_ 
technote.pdf, last access: 30.01.2015 ) and DEMI. RMA, FARMS and DFW 
were applied using an R implementation provided in the xps package (Stratowa) 
downloaded from www.bioconductor.org/packages/release/bioc/html/xps.html 
(last access: 30.01.2015). PLIER analysis was performed with Affymetrix 
Power Tools (http://www.affymetrix.com/estore/partners_programs/programs/ 
developer/tools/powertools.affx, last access: 30.01.2015). All methods were 
applied with default parameters and probe-sets were mapped to genes according 
to the annotation table downloaded from Ensembl (release 73¸ (Cunningham et 
al., 2014)) using biomaRt package in R (Durinck et al., 2009). All other 
differential gene expression analysis in Papers I, II and III were performed 
using DEMI. 
 

7.2. Differential expression analysis (Paper I–III) 

In addition to DEMI the differential expression analysis on MAQC and primary 
cell culture model data in Paper I was performed two times on each pre-
processing workflow (RMA, FARMS, DFW and PLIER), with Limma (Smyth, 
2005) and RankProd (Hong et al., 2006). The analysis was done in R using 
Limma (http://www.bioconductor.org/packages/release/bioc/html/limma.html)  
and RankProd (http://www.bioconductor.org/packages/release/bioc/html/Rank 
Prod.html) packages in R applied with their default parameters. 

If not noted otherwise, differential expression with DEMI was performed with 
the default settings. However, in Paper III we set more stringent constraints on 
the differentially expressed genes. More specifically, we set a rule that at least 
half of the gene-specific probes have to be differentially expressed in the same 
direction and the minimum cutoff FDR value for the gene had to be below 0.01, 
instead of the 0.05, which is the default in DEMI. 
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7.3. Analysis of long-range epigenetic silencing  
data (Paper I) 

A list of putative candidate regions subject to long-range epigenetic silencing 
(LRES) in prostate cancer was retrieved from Table 1 in the original study 
(Coolen et al., 2010). Differential expression was estimated with DEMI on  
0.5-Mbp genomic windows overlapping with neighboring genomic windows by 
50%. Both original comparison and the possible null permutations of the arrays 
were analyzed. P-values were adjusted for multiple testing using the method 
published by Benjamini and Yekutieli (2001) and corresponding p-values lower 
than 0.005 were considered as statistically significant. A DEMI predicted 
downregulated genomic window was labeled LRES if an overlap of least  
0.25-Mbp was observed with an LRES locus from the original publication. 
 

7.4. Estimating overlap of microarray  
experiments (Paper III) 

The overlap of differentially expressed genes representing results from light 
exposure experiments in Paper III was estimated with Fisher’s exact test in R. 
The p-values were adjusted for multiple testing with FDR (Benjamini and 
Hochberg, 1995) and enrichment of FDR < 0.05 was considered statistically 
significant. Since the original data represented measurements from several 
species (mouse and rat) an annotation table connecting rat gene identifiers to 
mouse orthologs was obtained from Ensembl (Cunningham et al., 2014) 
(release 75) using R package biomaRt (Durinck et al., 2009). 
 
 

8. RNA-seq data and analysis (Paper I) 

Two sets of RNA-seq data based on HBR and UHR samples, differing by the 
number of samples, were obtained from GEO (GSE12946 (Wang et al., 2008) 
and GSE24283 (Nacu et al., 2011)). RNA-seq reads were aligned with TopHat 
(Trapnell et al., 2009) (version 1.3.3) to genome indices downloaded from 
Ensembl (build GRCh37.p12). Differential expression between UHR and  
HBR samples was estimated using EdgeR (Robinson et al., 2010) (R package, 
version 3.0.8), DESeq (Anders and Huber, 2010) (R package, version 1.10.1) 
and Cuffdiff2 (Trapnell et al., 2013) (version 2.0.2). Raw count data,  
which is required by EdgeR and DESeq was generated with HTSeq  
(http://www-huber.embl.de/users/anders/HTSeq/, last access: 30.01.2015) 
(version 0.5.3p9), using flags ‘-stranded=no -mode=union -type=exon’. 
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9. Performance analysis (Paper I) 

9.1. Performance indicators 

We used the following metrics to evaluate the performance of microarray 
workflows: area under receiver-operator curve (AUC), Matthews correlation 
coefficient (MCC), true positive rate (TPR), false positive rate (FPR), true 
negative rate (TNR) and false negative rate (FNR). The latter four were 
calculated based on the true positives (TP), true negatives (TN), false positives 
(FP) and false negatives (FN) according to the intersection between gene 
identifiers in the prediction and reference datasets, measured by microarrays 
and Taqman® assays, respectively. A prediction was classified as TP if the 
differential expression estimate was significant in both datasets with identical 
direction (either higher or lower expression in UHR compared to HBR). TN 
label was assigned to genes with insignificant differential expression in both 
datasets. Genes that showed significant differential expression in only the 
reference dataset were termed FN and genes that had significant differential 
expression in only prediction dataset were labeled as FP. 

All the indictors were calculated with R using the ROCR package 
(http://cran.r-project.org/web/packages/ROCR/, last access: 30.01.2015). 

 

9.2. Microarray simulation test 

We created a simulation dataset consisting of 100 simulations of two conditions 
with four technical replicates, each involving around 45000 genes and around 
1.3 million probes that match to transcriptome on Mouse Exon 1.0 ST array. 
For 1000 randomly chosen genes new signal intensities were simulated by 
adding a fold change of 2 or –2 to the initial log2-transformed intensity values 
for 80% of the target-specific probes. Additional noise was added by adding the 
same fold-change to a randomly selected 10% of remaining probes. Using 
DEMI we calculated FDR and MCC by changing two parameters, ݑ (maximum 
number of probes matching to a target) and ݐ (the maximum number of distinct 
targets a single probe can match to). In baseline settings DEMI does not force 
such restrictions. 

In a supplementary study we did a power simulation test in order to describe 
the dependence between the number of probes per target and the target-specific 
differentially expressed probe with ratios ݎ௜ = ሼ0.3, 0.5, 0.8ሽ. Using the same 
fold change modification and background noise ratio as in the first simulation 
test, we calculated the power of Fisher’s exact test in correctly identifying 
differentially expressed targets averaged over 1000 simulations. 

 
 

9
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9.3. Microarray permutation 

To evaluate the performance of microarray analysis methods in conditions 
where there are few technical replicates available, we performed a permutation 
analysis using the MAQC samples that contained four technical replicates in 
both UHR and HBR groups. To that end, all possible combinations of technical 
replicates with sample size ܰ = ሼ3,2ሽ were created. Each permutation of the 
test sample was compared against all permutations of the reference samples of 
the same sample size. For every such comparison performance metrics were 
calculated by averaging across the selected FDR cutoffs (0.05 and 0.01). To 
evaluate the performance of the entire workflow, at every sample size, the 
indicators were averaged across all permutations. 
 
 

10. Functional annotation analysis (Papers I–III) 

In Paper II and III functional annotation analysis was performed with g:Profiler 
(Reimand et al., 2011) using the default settings. In Paper I, DEMI utilized its 
internal functional enrichment analysis on differentially expressed genes. To 
that end, the child categories of all GO terms were downloaded using Ensembl 
Perl API (http://www.ensembl.org/info/docs/api/index.html, last access: 
30.01.2015). Ensembl gene identifiers were downloaded using biomaRt (Durinck 
et al., 2009) package that provides a programmatic access to the Ensembl’s 
(Cunningham et al., 2014) Biomart database. Gene lists corresponding to each 
GO category was compiled from gene identifiers associated with the category 
and its children. 
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RESULTS 

1. Paper I 

1.1. Evaluation of DEMI performance  
on simulated expression data 

Differential gene expression was simulated by adding a fold-change of 2 or –2 
to 80% of on-target probes for 1000 genes selected at random. Equivalent 
amount of noise was added to a randomly selected 10% of probes remaining on 
the array. By altering parameters ݑ (the maximum number of probes matching 
to a target) and ݐ (the maximum number of distinct targets matching to a single 
probe), we observed that if probes were restricted to match only a single distinct 
target ( ݐ = 1 ), the MCC values were considerably better, as fewer false 
positives were detected. It indicates that sequence homology between genes can 
trigger false positive findings if their on-target probes intersect. Limiting the 
apparent number of on-target probes by setting ݑ to 30 had a smaller but still 
positive effect on performance by further decreasing the number of false 
positive findings (Figure 1). Since lowering ݑ reduces sensitivity, it will also 
reduce the effect of intersecting probes on triggering false positive findings for 
homologous genes. 
 

 

Figure 1. Performance of DEMI on simulated gene-expression data. For each parameter 
setting the average of 100 simulations are plotted. 
 
DEMI expects that there are several target-specific probes on the microarray. 
Depending on the target category, this might not always be the case. One 
possible shortcoming of DEMI is the varying number of probes ݊௜ per target ݅. 
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Intuitively, a target with many probes can be assessed more confidently than 
targets with fewer probes. From the power simulations we observed that the 
sensitivity to detect differential expression of targets with very few on-target 
probes (݊ ≤ 3) is around 60% even if the enrichment of differentially expressed 
probes is quite high (ݎ௜ = 0.8 versus ݎ௥௘௙௘௥௘௡௖௘ = 0.1) (Figure 2). Although 
potentially a concern, this is not a major problem in real life as such targets 
form less than 5% of genes (Figure 3). On the other side of the scale are targets 
with very many on-target probes (݊௜ > 40). In such cases the power to detect 
small differences in the proportions of differential expression (ݎ௜ = 0.3 versus ݎ௥௘௙௘௥௘௡௖௘ = 0.1) is around 90% (Figure 2). Very high sensitivity can lead to 
false positive findings as, for example, ݎ௜ = 0.3 has substantially more evidence 
against differential expression of target ݅ even if significantly different from the 
reference rate. In light of this, we introduced an optional upper limit ݑ for each 
target ݅ with ݊௜ >  Limiting sensitivity by adjusting all such targets according .ݑ
to the formula ܺ′௜ = ௜ܺ ∗ ௨௡೔, where ௜ܺ is the number of differentially expressed 

probes per target ݅, reduces the likelihood of falsely rejecting null hypothesis. 
Based on our experience, a suitable value for ݑ is ~30, which is also close to the 
median number of probes per genes on high-density Affymetrix® microarrays. 
Since the significance of ݎ௜ is calculated in relation to the background rate of 
differentially expressed probes, DEMI is becoming increasingly sensitive when 
the signal profiles between samples become increasingly similar. 
 
 

 
 
Figure 2. Power analysis of Fisher’s exact test. For each combination of input ratios, 
the average of 1000 simulations is plotted. 
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Figure 3. Distribution of gene-specific probe counts with medians presented for four 
microarrays. 
 

1.2. Comparison of differential expression analysis workflows 

Using MAQC UHR and HBR samples, DEMI was compared with eight 
microarray analysis workflows consisting of four preprocessing strategies 
(RMA (Irizarry et al., 2003b), FARMS (Hochreiter et al., 2006), DFW (Chen et 
al., 2007) and PLIER (Affymetrix, 2005)) combined with two differential 
expression estimation methods (Limma (Smyth, 2005) and RankProd (Hong et 
al., 2006)). In addition, RNA-seq data on the same samples was analyzed with 
EdgeR (Robinson et al., 2010), DESeq (Anders and Huber, 2010) and Cuffdiff 
2.0 (Trapnell et al., 2013). Each workflow was assessed by calculating several 
performance metrics (MCC, AUC, TPR, FPR, TNR and FNR) with varying size 
of the input dataset (ܰ = ሼ2, 3, 4ሽ). Performance was estimated in relation to the 
“gold-standard” based on results from Taqman® assays targeting 867 genes as 
published by the MAQC consortium (Consortium et al., 2006). Each metric was 
summarized as an average over two FDR cutoffs (0.01, 0.05) across all 
permutations of the specified sample size. All performance indicators were 
plotted juxtaposed on a radial performance plot (Figure 4). A large colored 
plane on the upper semicircle of the plot is characteristic of good performance, 
as indicated by high MCC, AUC, TPR and TNR values, while coloring in the 
lower semicircle demonstrates bad performance. Ideally, the colored plane 
would occupy most of the upper semicircle while leaving the lower semicircle 
blank.  

DEMI demonstrated most stable performance across different sample sizes 
and microarray platforms. RankProd had a high true negative rate but it came at 
the cost of a high false negative rate. Thus, it appears that RankProd
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Figure 4. Performance analysis of differential expression analysis workflows on 
MAQC projects samples. Performance of each pipeline is presented as a radial plot, 
which includes six complementary performance indicators. Results from three 
microarray platforms (A) and two RNA-seq datasets (B) are presented. Abbreviations: 
AUC – Area Under Curve, MCC – Matthews Correlation Coefficient, TPR – True 
Positive Rate, TNR – True Negative Rate, FPR – False Positive Rate and FNR – False 
Negative Rate. 
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was lacking in power at the given FDR cutoffs, which led it to produce more 
negative findings than was the case for DEMI and Limma. In contrast, Limma 
had the highest TPR at sample sizes ܰ = ሼ4, 3ሽ and similar MCC values to 
DEMI. From the performance plot (Figure 4A) it appears that PLIER is less 
consistent across different array types than other normalization methods, 
whereas the performance of DEMI is rather stable regardless of the microarray 
platform or the sample size. 

In comparison to top-performing microarray analysis methods, RNA-seq 
analysis workflows showed somewhat lower MCC values (Figure 4B). 
Although DESeq and EdgeR were more sensitive at detecting differentially 
expressed genes, more false positives genes were detected. This resulted in 
lower MCC values (~0.3) when compared to top-performing microarray 
analysis workflows. Cuffdiff 2 was the most conservative out of the three RNA-
seq differential analysis methods with substantially lower TPR and a very low 
FPR. 

 

1.3. Performance of DEMI in cell culture model of hypoxia 

DEMI was compared with eight other microarray analysis workflows in 
accurately detecting differentially expressed genes in cell culture model of 
hypoxia. We reasoned that real-life experimental data should be a more valid 
basis for benchmarking than the somewhat artificially constructed MAQC 
reference RNA samples. To this end, we conducted an experiment where 
differential expression was estimated in response to 1% oxygen for 24 hours in 
comparison to atmospheric oxygen levels in the cell culture. The transcriptional 
mechanisms of hypoxia response are extensively studied and well characterized 
(Greer et al., 2012; Semenza, 2012), allowing us to validate our cell culture 
model and the accuracy of microarray analysis workflows. Specifically, we 
searched for the upregulation of Gene Ontology (GO) (Ashburner et al., 2000) 
categories ‘cellular response to hypoxia’ (GO:0071456) and ‘glycolysis’ 
(GO:0006096) among the differentially expressed genes in response to 
prolonged hypoxia (Lendahl et al., 2009). When three or more replicate samples 
were available almost all microarray analysis workflows showed consistency in 
producing an enrichment of the aforementioned GO categories among up-
regulated genes (Figure 5). However, only DEMI was able to correctly detect 
the enrichment of hypoxia response pathways in all possible subsets when 
technical replicate sample size was set to 2. 

In addition, we calculated the enrichment of differentially expressed genes 
among mouse orthologs with HIF-1 and HIF-2 binding sites. Similar to pathway 
enrichment analysis, most methods showed significant enrichment for Hif-1 and 
Hif-2 targeted genes among significantly upregulated genes when replicate 
sample size was ܰ ≥ 3 (Table 3). Once again, only DEMI produced a list of 
differentially expressed genes yielding significant enrichment of Hif-1 and Hif-2 
target genes when sample size was restricted to only two technical replicates. 
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Figure 5. Performance analysis of differential expression analysis workflows on data 
from mouse embryonic fibroblasts exposed to 1% O2 for 24 h. The plot depicts the 
combined detection rate of GO categories ‘cellular response to hypoxia’ (GO:0071456) 
and ‘glycolysis’ (GO:0006096) as indicators of hypoxia response. The data is plotted as 
mean ± standard error of all possible comparisons between subsets of size N of the 
hypoxic and normoxic groups (original N = 4). 
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Table 3. Enrichment of mouse orthologs of HIF-1 targets among significantly up-
regulated genes in mouse embryonic fibroblasts exposed to 1% O2 for 24h. 

Normali-
zation 

DE 
N = 4 N = 3 N = 2 

Mean SEM Mean SEM Mean SEM 

Relative 
ranking 

DEMI 3.0E-25 NA 4.3E-22 2.4E-22 6.0E-19 5.4E-19 

DFW Limma 1.4E-28 NA 3.5E-23 2.2E-23 0.617 0.081 

DFW RankProd 1.4E-30 NA 2.2E-23 1.5E-23 8.2E-08 4.8E-08 

FARMS Limma 9.5E-22 NA 2.5E-21 1.9E-21 0.457 0.082 

FARMS RankProd 6.8E-20 NA 3.1E-10 2.1E-10 0.037 0.011 

PLIER Limma 9.4E-10 NA 0.9 0.1 1 0 

PLIER RankProd 3.5E-01 NA 1 0 1 0 

RMA Limma 6.0E-19 NA 1.7E-14 1.5E-14 0.481 0.083 

RMA RankProd 1.4E-18 NA 4.3E-13 2.1E-13 0.001 4.6E-04 

Differential expression was estimated with nine pipelines including various preprocessing and 
differential expression analysis methods. The data is presented as mean and standard error of hyper-
geometric p-values from all possible comparisons between subsets of size N of the hypoxic and 
normoxic groups (original N=4). N, sample size; SEM, standard error of mean; NA, not available. 

 

1.4. Evaluation of gene expression dynamics  
in response to hypothermia 

To demonstrate that DEMI can handle unconventional experimental designs, we 
investigated differential gene expression in response to increasing duration of 
mild hypothermia (32°C). Hypothermia is a clinically proven treatment for 
various hypoxic and ischemic conditions (Bernard et al., 2002; Miyazawa et al., 
2003; Polderman, 2008). We reasoned that a time-dependent near-monotonic 
increase or decrease of gene expression is a good indicator of a possible causal 
relationship between the treatment and transcriptional regulation. In addition, 
this experimental design required only a single microarray for each condition at 
each time point, which is much less than the suggested minimal number of 
replicates (reviewed in Allison et al., 2006) per treatment for factorial designs. 
Using Kendall’s tau statistic, a measure of rank correlation, DEMI identified 
1750 and 274 genes exhibiting a significant monotonic-like temporal response 
either to hypothermia or normothermia, respectively. Among the top five genes 
with upregulated expression under hypothermic conditions, we found Cold 
inducible RNA-binding protein (Cirbp) (Figure 6), which is a well-known 
hypothermia-responsive gene (Fujita, 1999; Nishiyama et al., 1997). Of interest, 
we also identified several genes related to the antioxidant systems, which appear 
to be induced under hypothermia (Table 4). 

11
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Table 4. Genes responding to increasing duration of hypothermia with significantly 
monotonic increase in expression and relating to the antioxidant system. 

Gene ID Symbol P-value FDR System 

ENSMUSG00000003849 Nqo1 9.04E-35 4.72E-30 
Quinone 
detoxification 

ENSMUSG00000032802 Srxn1 1.23E-19 2.14E-16 Glutathione 

ENSMUSG00000027610 Gss 1.08E-13 4.74E-11 Glutathione 

ENSMUSG00000020250 Txnrd1 4.29E-11 9.83E-09 Thioredoxin 

ENSMUSG00000032350 Gclc 4.29E-11 9.83E-09 Glutathione 

ENSMUSG00000000811 Txnrd3 9.85E-09 1.19E-06 Thioredoxin 

 

 
 
Figure 6. Large-scale analysis of temporal dynamics of transcription in mouse 
embryonic fibroblasts exposed to mild hypothermia (A and B). Temporal profiles of 
probe expression levels of selected genes during mild hypothermia (A) and 
normothermia (B). The solid blue line indicates a linear fit to the data points and the 
gray shadowing represents standard error of the fit. 
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1.5. Studying long-range epigenetic silencing (LRES) in cancer 

In order to demonstrate that DEMI can be used to detect differential expression 
of unconventional target categories, we sought to identify genomic regions that 
were subject to long-range epigenetic silencing (LRES) in the publicly available 
microarray data published by Coolen et al. (2010). The dataset consisted of four 
microarrays, two replicates for prostate cancer cell line (LNCaP) and two 
replicates for normal prostate epithelial cells (PrEC). Under these conditions 
DEMI was able to identify 2242 genomic regions (each spanning 0.5 Mbp) as 
downregulated in prostate cancer from a total of 22,630 partially overlapping 
regions. In array permutations corresponding to the null hypothesis (arrays of 
normal cells and cancerous cells were mixed), only 222 and 201 genomic 
regions were found to be significantly downregulated. To validate the correct 
identification of LRES regions, we calculated the enrichment of putative LRES 
regions reported in the original study (Coolen et al., 2010) within downregu-
lated genomic regions predicted by DEMI. Out of 47 putative LRES regions 38 
had been identified by DEMI, yielding an FDR adjusted p-value of 3.04e-13 
(Fisher’s Exact Test). In contrast, in permutations corresponding to null-hypo-
thesis, adjusted p-values 0.961 and 1 were observed. In addition, we examined 
whether the downregulated regions predicted by DEMI were enriched for 
altered chromatin modifications using ChIP-chip data from the original study of 
Coolen et al. (2010). More specifically we analyzed the levels of histone 3 
lysine 27 tri-methylation (H3K27me3) and histone 3 lysine 9 acetylation 
(H3K9ac) on genomic regions inspected by DEMI. Increased levels of 
H3K27me3 are known to be more prevalent at silent promoters (Barski et al., 
2007) whereas acetylation has been associated with transcriptionally active 
chromatin (Rice and Allis, 2001). In the original paper the authors witnessed 
that the loss of H3K9 acetylation led to a reduction in gene transcription 
(Coolen et al., 2010). This finding was also confirmed by our analysis where 
downregulation of H3K9ac was associated with silenced genomic regions  
(p = 5.4e-22, hypergeometric probability distribution) and upregulation of H3K9ac 
corresponded to upregulated DEMI regions (p = 7.99e-05, hypergeometric 
probability distribution). We did not observe significant association between 
downregulated genomic regions and H3K27me3. 
 
 

2. Paper II 

2.1. Studying transcriptional response to hypoxia with DEMI 

The study was undertaken to identify possible effects of Ngb deficiency on 
hypoxia response in the mouse brain. Mice were subjected to acute (90 min) or 
prolonged (24h) hypoxia (7% oxygen) followed by transcriptome-wide analysis 
of differential gene expression in the whole brain. 
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Transcriptional response to hypoxia was investigated in both genotypes 
individually. At 90 minutes of hypoxia 517 upregulated and 347 downregulated 
transcripts were identified in wt mice, whereas the numbers in Ngb-null mice 
were 404 and 364 respectively. Under prolonged hypoxia of 24 hours the 
numbers of differentially expressed genes increased, 997 upregulated and 1862 
downregulated in wt mice and 1535 upregulated and 1573 downregulated in 
Ngb-null mice. Some of the genes significantly upregulated in both genotypes 
are previously known to be hypoxia responsive (Table 5, Figure 8 A-B). 
Hypoxia-inducible factor 1-alpha (Hif1A) was significantly upregulated only in 
Ngb-null mice after 24 hours of hypoxia when compared to naive Ngb-null 
mice (p < 0.001, respectively). 

 
Table 5. Previously known hypoxia responsive genes that were detected as upregulated 
by hypoxia 

Gene name Duration Reference 

Ier3 90 min (Blais et al., 2004) 

Bhlhe40 90 min (Yun et al., 2002) 

Cdkn1A 24 h (Denko et al., 2000) 

Bnip3 24h (Kothari et al., 2003) 

Mt2 24 h (Murphy et al., 1994) 

Vegfa 24 h (Lu and Kang, 2010) 

Slc2a1 24 h (Ebert et al., 1995) 

Kdm3a 24 h (Wellmann et al., 2008) 

 
Using qPCR, we confirmed hypoxia dependent upregulation of the following 
genes in both genotypes (Figure 7): Ier3 (90 min, 24 h), Hif1A (90 min), Mt2 
(24 h) and Cdkn1A (24 h). Chd7 and Cygb were shown to be exclusively up-
regulated only in Ngb-null mice at both 90 minutes and 24 hours. The overlap 
between the microarray and qPCR results is an indication of DEMI’s accuracy. 
Inter-genotype agreement of transcriptional response was also observed with 
functional annotation analysis of hypoxia responsive genes in relation to KEGG 
pathways (Kanehisa and Goto, 2000) such as “apoptosis” (Hedtjarn et al., 
2004), “oxidative phosphorylation” (Rodriguez-Enriquez et al., 2010), “mTOR 
signaling” (DeYoung et al., 2008) and “VEGF signaling pathway”. 

To identify transcripts with coherent evidence of differential expression we 
calculated the product of differential expression p-values from both wt and 
Ngb-null genotypes and ranked-ordered them for each time-point separately 
(Figure 8 C-D). The five highest-ranking genes after 90 minutes of hypoxia  
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Figure 7. qPCR measurements of differentially expressed genes as detected by 
microarray analysis. Data is plotted as mean +/– standard error. Asterisk denotes a 
statistically significant difference in gene expression between the group bearing the 
asterisk and the naive group of the same genotype. *p<0.05, **p<0.001 (Mann-Whitney 
test). Genotypes: wild-type (white-bars), Ngb-null (black bars). 
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Figure 8. Differential gene expression in response to hypoxia. A-B Differential 
expression (p<0.05) of several well-known hypoxia responsive genes after acute (A) 
and 24 hours of hypoxia (B) according to Affymetrix Mouse Gene 1.0 ST array. Bars 
represent the degree of differential expression between hypoxic and normoxic mice of 
the respective genotype based on the difference in the mean relative rank of target-
specific probes (wt mice – white bars, Ngb-null mice – gray bars). C-D: Genes with 
most reliable differential expression in response to acute (C) and 24 hour (D) hypoxia 
based on the product of differential expression p-values in both genotypes. Genes are 
ordered from left to right by the ascending product of differential expression p-values 
(i.e. decreasing reliability of the differential expression estimate). Bars represent 
differential expression between hypoxic and normoxic mice of the respective genotype 
based on the difference in the mean relative rank of the differentially expressed probes 
(wild type mice – white bars, Ngb-null mice – gray bars). 
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2.2. Effect of Ngb deficiency in response to hypoxia 

Only 22 transcripts were identified as differentially expressed between unt-
reated wt and Ngb-null mice. More compellingly, they were all downregulated 
in Ngb-null mice. To evaluate genotype-dependent transcriptional response on 
the onset of hypoxia we searched for genes with consistent differential expres-
sion at hypoxic time-points (90 min and 24 h) but not in naive conditions (t0). 
We observed an upregulation of 181 genes and downregulation of 121 genes in 
Ngb-null mice. Three most significant upregulated genes (p < 0.001) in  
Ngb-null mice during hypoxia were Cspp1 (centrosome and spindle pole 
associated protein 1), Adi1 (acireductone dioxygenase 1) and Prpf4b (PRP4 pre-
mRNA processing factor 4 homolog). The three most significantly down-
regulated genes (p<0.001) in Ngb-null mice under hypoxia were Ubc (ubiquitin 
C), Rplp0 (ribosomal protein, large, P0) and Kidins220 (kinase D-interacting 
substrate 220). 

To identify genotypic differences in gene expression with respect to the 
duration of hypoxia we conducted differential expression analysis of wt and 
Ngb-null mice independently at either 90 minutes or 24 hours of hypoxia. Only 
6 transcripts were observed to be upregulated in Ngb-null mice after 90 minutes 
of hypoxia, whereas the number of downregulated transcripts was 344. The six 
upregulated transcripts represented Chd7, Snap23, Llph and Hnrnpa1 genes. 
Functional annotation analysis revealed downregulation of pathways in Ngb-
null mice that were related to signal transduction (“IkB is ubiquitinated and 
degraded”) and metabolism (“glyceraldehyde-3-phosphate dehydrogenase 
activity”). After 24 hours of hypoxia the numbers were reversed with 204 genes 
upregulated and 13 genes downregulated in Ngb-null mice compared to wt. No 
functional annotation was observed for these genes. 

 
 

3. Paper III 

3.1. Studying transcriptional response  
in Ngb-deficient mouse retina with DEMI 

The study was undertaken to identify possible effects of Ngb deficiency on 
light-induced gene expression response in the mouse retina. The retinas were 
either dark-adapted (t0) or exposed to light for 1.5 or 5 hours. To identify robust 
genotype-dependent differences, arrays over all time-points were pooled  
(n = 15) and analyzed for differential expression using DEMI. Several genes 
were found to be differentially expressed (Table 6), of which Akap6, Entpd5 
and Atp8a2 were confirmed with qPCR (Figure 9). 

It has been recently shown that Ngb can affect the expression levels of Hif1α, 
Nrf2 (Nfe2l2) and antioxidant response in hypoxia conditioned cells (Hota et al., 
2012). Therefore we chose to examine the expression levels of the following 
genes in dark-adapted retina with qPCR: Hif1α, the Hif1α target gene Bnip3 
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(Mendez et al., 2010), the glutathione system genes Gsr and Gstz1, the master 
regulator of oxidative stress responsive genes Nfe2l2 (Linker et al., 2011) and 
the unfolded protein response regulator Xbp1 (Iwakoshi et al., 2003). None of 
the genes were differentially expressed between wt and Ngb-null genotypes in 
dark-adapted retina (Figure 10), indicating that there was no apparent increase of 
ER-stress, oxidative stress or hypoxia response in the Ngb-null retina. 

 
Table 6. Five most significantly up- and downregulated genes between wt and Ngb-null 
mouse retina when light exposure was ignored. 

 FDR Symbol Description 

↑ 1.10e-23 Akap6 A kinase (PRKA) anchor protein 6 

↑ 6.76e-22 Tmem229b Transmembrane protein 229B 

↑ 2.60e-22 Serpina3n Serine (or cysteine) peptidase inhibitor, clade A, member 3N 

↑ 1.28e-13 Gdpd3 Glycerophosphodiester phosphodiesterase domain 
containing 3 

↑ 1.28e-13 Ccdc115 Coiled-coil domain containing 115 

↓ 7.56e-36 Entpd4 Ectonucleoside triphosphate diphosphohydrolase 4 

↓ 2.39e-31 Atp8a2 ATPase, aminophospholipid transporter-like, class I, type 
8A, member 2 

↓ 5.10e-18 Snapc1 Small nuclear RNA activating complex, polypeptide 1 

↓ 2.20e-16 Heatr5a HEAT repeat containing 5A 

↓ 2.37e-13 Lcmt2 Leucine carboxyl methyltransferase 2 

↑ gene expression was higher in Ngb-null mice; ↓ gene expression was lower in Ngb-null mice; 
FDR – false discovery rate. 

 

 
Figure 9. qPCR verification of differentially expressed genes between Ngb-null and wt 
mouse retina. Expression was normalized to Hypoxanthine phosphoribosyltransferase 
1 (Hprt1) as the internal reference (n=9–10). Differential expression was estimated with 
t-test to confirm the direction of expression dynamics reported by microarray. 
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Figure 10. qPCR measurements of hypoxia (Hif1A, Bnip3), oxidative stress (Nfe2l2, 
Gstz2, Gsr2) and unfolded protein response (Xbp1) marker genes in dark-adapted 
retina. No differential expression was detected between the genotypes (t-test, n=4–5). 
Expression was normalized to Hypoxanthine phosphoribosyltransferase 1 (Htpr1) as the 
internal reference. 
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the results from our study and external datasets (Table 8) validating our 
experimental results. Specifically, a significant overlap between the upregulated 
genes in the mouse retina after 1.5 h light exposure and in the mouse SCN after 
0.5 h light pulse was observed (Table 8). Similarly, a significant overlap of 
upregulated genes after 5 h of light exposure in mouse retina with data from 6 h 
light pulse (Table 8) in ex vivo rat retina cross-validated our analysis. In 
contrast, no significant overlap of downregulated genes was observed between 
the datasets, indicating that light-specific response is mostly associated with the 
induction of gene expression. As a negative control, no significant overlap 
between genes differentially expressed in opposite directions was observed. 
Enrichment of light-inducible genes from external datasets among light induced 
genes in the current study was similar in wt and Ngb-null mice. This suggests 
that the transcriptional response to light is largely unaltered in Ngb-deficient 
retina. 
 
Table 7. Number of differentially expressed genes in the mouse retina (FDR < 0.01) 

Light pulse Genotype differencesa Ngb-null miceb Wildtype miceb 

0 h 7 6 – – – – 

1.5 h 23 27 5 36 28 11 

5 h 9 11 21 29 323 283 

 Up Down Up Down Up Down 

a number of differentially expressed genes between Ngb-null and wt mice after different 
durations of light exposure; b differential expression between light-adapted (1.5 h or 5 h) 
and dark-adapted retina (0 h). 
 
When genotype was ignored and arrays from wt and Ngb-null mouse retina of 
corresponding time points were pooled, we identified several early response 
genes like Egr1, Fos, Fosl2, Per1 and Nr4a1-3, to be upregulated after 1.5 
hours of light exposure (Figure 11). Of these Nr4a1, Per1, Fos, Fosl2 and 
Nr4a2 have also been confirmed in the study by Araki et al (Araki et al., 2006) 
as light inducible transcripts in SCN, which is a light-responsive brain area 
directly innervated by the eye. In addition, by using DEMI for the reanalysis of 
the data from Porterfield et al. (2007) who studied light response in SCN, we 
observed an upregulation of Fos, Nr4a1 and Egr1 after 0.5 hour light exposure 
(Figure 11). Functional annotation analysis of upregulated genes at 5 hours of 
light pulse revealed significantly enriched gene ontology categories related to 
translation, RNA-splicing and visual perception. 
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Figure 11. Known and predicted protein interactions between light-induced genes in the 
retina and the SCN. The circles depict genes, which were upregulated in response to 
light. Connecting lines indicate protein interaction information as retrieved from 
STRING (Franceschini et al., 2013). A. genes induced by 1.5h light pulse (Ngb-null and 
wild-type arrays were pooled). B. genes induced in the mouse SCN by 0.5 light pulse 
(reanalysis of data published by Porterfield et al. (2007)). Thicker lines show more and 
thinner lines show less evidence of interactions between proteins. Genes overlapping 
between two datasets are presented with accentuated circles. 
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DISCUSSION 

1. DEMI – a novel method for microarray  
differential expression analysis 

This dissertation introduces a novel method called Differential Expression from 
Multiple Indicators (DEMI). DEMI is a novel probe-level differential gene 
expression analysis framework that can utilize a variety of statistical tests as 
“plugins” to evaluate differential expression. It has been applied to different 
experimental designs including case and control comparisons (Papers II and III) 
along with time-series design (Paper I). In addition, we have used DEMI to 
evaluate differential expression on genes, transcripts and genomic regions 
(Papers I–III). Although several well-established microarray analysis methods 
can be applied with various experimental designs, DEMI takes a unique 
approach to the differential expression estimation procedure. Traditionally, 
probe-level signal intensities are summarized before differential expression 
testing. In DEMI, however, differential expression is evaluated on the probe-
level data. These estimates are then used to evaluate differential expression on 
the target level. Essentially, DEMI treats probes as voters and, for each target, 
compares the ratio of target-specific differentially expressed probes to the ratio 
of differentially expressed off-target probes. As we have shown, it can partially 
compensate for the loss of power, which occurs at very small sample sizes 
where statistical estimates become very noisy. Thus, DEMI takes advantage of 
repeated measurements per target as provided by high-density microarrays to 
enable more accurate detection of differential expression with few samples. 
 

1.1. Benchmarking of differential expression analysis methods 

DEMI was evaluated using several independent datasets with varying 
experimental designs to demonstrate its applicability in different situations. 
First, it was benchmarked in relation to eight other microarray differential 
expression analysis pipelines and three RNA-seq analysis pipelines, using data 
from Microarray Quality Control (MAQC) project (Consortium et al., 2006). So 
far, MAQC, an initiative of US Food and Drug Administration (FDA), 
represents the most extensive effort to characterize the performance of various 
gene expression measurement platforms and data analysis methods. MAQC 
consortium used two standardized RNA pools, Universal Human Reference 
RNA (UHR) and Human Brain Reference RNA (HBR) to generate gene 
expression data. HBR is high quality RNA extracted from multiple donors and 
several brain regions to obtain an unbiased and reproducible coverage of the 
brain transcriptome (https://www.lifetechnologies.com/order/catalog/product/ 
AM6050, last access: 30.01.2015). UHR was obtained by pooling RNA from ten 
different cell lines (http://www.genomics.agilent.com/article.jsp?pageId=1452, 
last access: 30.01.2015). Earlier efforts have used spike-in datasets with a Latin 
Square design (Chen et al., 2007; Hochreiter et al., 2006; Irizarry et al., 2003b), 
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which have been criticized for the small number of spike-in sequences (typi-
cally a couple of dozen) used to make transcriptome-level conclusions about 
performance (Draghici et al., 2006). Another option is to use dilution studies 
where known samples are mixed or diluted in known ratios (Consortium et al., 
2006). Latin Square datasets are created under controlled conditions providing 
relatively little variation between experimental and technical conditions and 
between samples (Gyorffy et al., 2009). On the other hand, when using UHR 
and HBR for benchmarking, you are dealing with an experiment with large 
inter-group differences (two highly different pools) and very small intra-group 
differences, represented by technical replicates without biological variation. 
Such artificial data might not be representative enough to draw a parallel with 
microarray experiments performed in a biological research setting, for example 
when using clinical samples (Gyorffy et al., 2009; Shedden et al., 2005). To 
address these concerns, we used an additional approach in Paper I, where the 
performance of various data analysis workflows was evaluated on a cell culture 
model of hypoxia, where there is sufficient prior knowledge about the anti-
cipated differential expression. The portion of MAQC data used in the current 
study included three different Affymetrix® microarray platforms (Human 
Genome U133 Plus 2.0, Human Gene 1.0 ST, Human Exon 1.0 ST) and two 
independent RNA-seq datasets. A reference for benchmarking was provided by 
867 genes, which were evaluated with Taqman® assays. 

It is not straightforward to select uniform criteria for benchmarking different 
methods. Even if a method appears superior based on given criteria and data set, 
a change in reference data or criteria can lead to different results (Rung and 
Brazma, 2013). Here, we chose Matthews’s correlation coefficient (MCC) as 
the primary performance indicator, because it is robust to imbalanced classes 
(i.e. unequal ratio of differentially and equally expressed genes between the 
samples) and it has been endorsed by MAQC consortium (Consortium et al., 
2006). Our analysis of the Taqman® assays indicated such an imbalance when 
observing 569 differentially expressed and 298 non-differentially expressed 
genes. In addition, MCC is threshold-dependent, which makes it different from 
area under the receiver operator curve (AUC), another popular performance 
metric. We argue that for differential expression, it makes more sense to use 
MCC at the conventional FDR cutoffs than a threshold-agnostic measure, which 
ignores the fact that, in practice, differential expression is evaluated at a 
predetermined FDR level. Although similar in nature, MCC and AUC are 
distinct from each other in that AUC does not rely on a specific significance 
level, which is used to reject the null hypothesis (typically 0.05 or 0.01). Instead 
AUC is calculated from the receiver operating characteristic (ROC) curve over a 
range of p-values. For example, in cases where false positive rate (FPR) and true 
positive rate (TPR) are 0 at the specified significance level, yielding an MCC of 
0, AUC can still yield favorable values. Using AUC and MCC simultaneously 
can be useful in situations where the predictions are accurate according to AUC 
but lack sensitivity at the specified significance level (as indicated by low MCC). 
This was observed with RankProd, which had favorable AUC values, but low 
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MCC scores compared to other methods. Ultimately, in order to be compre-
hensive, we recorded additional performance indicators such as AUC, TPR, FPR, 
true negative rate (TNR) and false negative rate (FNR). 

Preprocessing of MAQC datasets was performed either by RMA (Irizarry et 
al., 2003b), FARMS (Hochreiter et al., 2006), DFW (Chen et al., 2007) or 
PLIER (Affymetrix, 2005). Preprocessing, together with differential expression 
estimation using either Limma (Smyth, 2005) or RankProd (Hong et al., 2006), 
yielded eight distinct differential expression analysis pipelines that were 
compared to DEMI using the above mentioned performance metrics. DEMI and 
RankProd showed little variation in performance metric values across different 
microarray platforms. DEMI’s performance was least favorable on Human 
Genome U133 Plus 2.0 microarrays where the sensitivity was slightly lower and 
false negative ratio was higher when compared to other arrays. This might be 
due to the Human Genome U133 Plus 2.0 microarray being an older design 
with fewer probes. However, DEMI’s performance was nearly indistinguishable 
between the Human Exon 1.0 ST and Human Gene 1.0 ST arrays. 

In addition to exhibiting stable performance across different microarray 
platforms, DEMI’s was also the most accurate when the sample size was very 
small (݊ = 2). Under these conditions, DEMI demonstrated good performance 
whereas Limma and RankProd both suffered from a decreased TPR and an 
increasing FNR i.e. loss of sensitivity. Overall, Limma had the highest sensitivity 
but also the highest FPR whereas RankProd had almost no false positives that 
came at a cost of very low sensitivity. Also, it seems that the choice of prepro-
cessing method (RMA, FARMS, DFW, PLIER) had a smaller influence on dif-
ferential expression analysis results compared to the selection of the differential 
expression estimation method (Limma, RankProd). PLIER, however, seemed to 
yield most variable results in comparison to other preprocessing methods. 

RNA-seq analysis of MAQC samples did not provide enough advantageous 
evidence over microarray technology as has been previously claimed (Trapnell 
et al., 2013). At low mRNA abundance, microarrays are more accurate in 
detecting differentially expressed genes while RNA-seq produces a systematic 
false-negative problem that can likely be improved with a higher sequencing 
depth (Liu et al., 2011; Liu et al., 2014). In addition, although RNA-seq has a 
wider dynamic range, not restricted by the number of hybridizing molecules as 
in microarrays, a relatively small number of abundant transcripts can account 
for the majority of the reads (Bradford et al., 2010). For example Łabaj et al. 
(2011) have calculated that approximately 75% of measurement power is 
concentrated on 7% of the known transcriptome. Furthermore, RNA-seq esti-
mates are skewed in favor of longer transcripts that are more likely to produce 
reads. Hence, there will be more power to detect differential expression in longer 
transcripts (Bradford et al., 2010). The length bias is consistent with the uniform 
sampling problem where shorter nucleic acid molecules yield fewer fragments 
and therefore less reads that can be employed to estimate differential expres-
sion. Even when the sequencing depth is increased, genes with low or moderate 
mRNA levels are difficult to quantify with good precision (Łabaj et al., 2011). 
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The difference between two RNA populations in MAQC datasets was 
relatively large with over 38% of the probes on the microarray being dif-
ferentially expressed. In contrast, in the tissue culture model of hypoxia only 
11% of the probes where differentially expressed, although prolonged hypoxia 
is considered to induce wide-spread changes in gene expression (Lendahl et al., 
2009), which was also observed in Paper II. Therefore, we evaluated the nine 
differential expression analysis pipelines in a cell culture model of hypoxia, 
which is expected to yield more experimental variability than evident in the 
RNA pools used by MAQC. Hypoxia response is well characterized and there 
are several related pathways available in GO database, such as “glycolysis” 
(GO:0006096) (reviewed in (Lendahl et al., 2009)) and “cellular response to 
hypoxia” (GO:0071456). Although all methods were able to yield enrichment of 
these categories among upregulated genes in response to hypoxia, only DEMI 
and DWF coupled with RankProd performed perfectly with very small sample 
size ( ݊ = 2) . Similar outcome was observed when upregulated genes in 
hypoxia were studied for enrichment of HIF-1 and HIF-2 targets in mouse 
orthologs. This demonstrates the applicability of DEMI even when the number 
of technical replicates is limited as in pilot studies or clinical settings. 

 

1.2. Application range of DEMI 

The possibility to analyze large genomic regions is a novel feature in DEMI, 
which is difficult to achieve with other differential expression analysis pipe-
lines. We tested it on a dataset consisting of normal prostate epithelial cells 
(PrEC) and prostate cancer cell line (LNCaP) published by Coolen et al. (2010). 
More specifically, they studied the suppression of neighboring genes due to 
chromatin remodeling in cancerous cells and named the process Long-range 
Epigenetic Silencing (LRES) (Coolen et al., 2010). Although the dataset 
consisted of only two biological replicates, DEMI successfully identified 80% 
of downregulated genomic regions as being putative LRES regions proposed in 
the original paper. This makes DEMI a good choice for studying differential 
expression on genomic regions to determine common behavior of neighboring 
genes, which is especially applicable for cancer, where coordinated epigenetic 
regulation over large regions is characteristic (Coolen et al., 2010). The large 
number of publicly available cancer microarray datasets provides a good 
prospect to study such events more extensively. 

Last but not least we used DEMI to study gene expression response to varying 
durations of hypothermia. We identified hypothermia-dependent upregulation of 
several genes involved in antioxidant response, which might indicate a novel 
therapeutic route of hypothermia. These results require further validation to 
pinpoint the exact transcriptional mechanism leading to the observed gene 
expression response. 

DEMI is publicly available as a downloadable R package from CRAN. The 
package was built so that the users can develop and incorporate custom methods 
to estimate differential expression on probe-level data. For example, we have 
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used Wilcoxon-Mann-Whitney rank sum test to estimate differential expression 
between groups, which is very different to estimating differential expression 
with Kendall’s tau statistic that can evaluate whether the expression levels show 
a monotonic up- or downward trend. The user is free to incorporate any other 
method in DEMI analysis pipeline as long as it fits his/her experimental design 
thus providing a versatile and useful methodology for addressing a large variety 
of problems (Rung and Brazma, 2013). 

 

1.3. The strengths and limitations of DEMI 

A major challenge that microarray analysis workflows face is the sum-
marization of probe-level data on the gene level. Methods such as FARMS 
(Hochreiter et al., 2006) and DFW (Chen et al., 2007) were specifically 
designed for such purpose. However due to summarization of probe values into 
a probe-set value, differential expression estimation will be made on 
considerably fewer variables, which can have unfavorable effects on statistical 
power when sample size is small. DEMI resolves this issue by performing 
differential expression analysis on probe-level before making final inference 
about the targets e.g. genes. By taking advantage of the high number of 
simultaneous measurements DEMI preserves more statistical power, enabling it 
to detect differential expression even when the sample size is very small  
(݊ < 2). In essence, DEMI is “borrowing” information across targets to make 
inference about one target (Allison et al., 2006). 

DEMI does not make any assumptions on the signal distribution, which in 
contrary to model-based methods, such as RMA and FARMS, can provide 
biased estimates when the assumptions are not met (Chen et al., 2007). For 
example, when estimating background noise, RMA assumes a global 
background distribution for all probes that is normally distributed (Wu, 2009). 
In addition, many normalization procedures assume that the biological effect 
does not alter the shape of the distribution, which might be true if the samples 
are very similar to each other, but can deviate if the differences in increasing 
and decreasing target amounts are asymmetrical (Wu, 2009). 

Most of the conventional microarray analysis methods rely on predefined 
Chip Definition File (CDF). As time goes by, these can become outdated, and 
the probes measuring specific genes become unreliable (Dai et al., 2005). 
Although DEMI faces similar problems, it currently benefits from the realign-
ment of all probe sequences, independent of the CDF, to the latest versions of 
the genome, transcriptome and exome. Additionally, when using standard CDF, 
each probe belongs to a single probe-set whereas in DEMI analysis, a probe can 
interrogate several distinct targets. Although detrimental to sensitivity, the user 
is given the choice to specify the number of targets a probe is allowed to inter-
rogate in the DEMI R package. By default, such restrictions are not applied. 

In contrast to quantile-normalization, which is a popular method to norma-
lize microarray data, DEMI normalizes probe intensities separately in each 
sample by relative ranking and does not summarize them on the target level. As 
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a technical feature, this process is highly parallelizable and therefore scalable to 
large datasets provided that enough computing power is available. However, a 
clear benefit of using quantile-normalization together with summarization as 
used by RMA, FARMS, DFW and PLIER, is that it produces target estimates of 
expression, which can be used to make arbitrary inferences later. Currently, 
DEMI does not produce target-specific estimates of expression levels. 

Of note, when evaluating differential gene expression in Ngb-deficient 
mouse retina in response to light-pulse in Paper III, we set an additional cutoff 
that at least half of the target-specific probes had to be differentially expressed 
in the same direction. This constraint was enforced, because we wanted to lower 
the number of false positive findings since the number of differentially 
expressed probes was relatively small due to the samples being very similar. 
Even a modest enrichment of on-target differentially expressed probes becomes 
statistically significant when the background ratio of differentially expressed 
probes on the microarray is very small. In other words, DEMI’s sensitivity 
grows as the similarity between samples increases. From a practical viewpoint, 
this restriction made sense, because the primary aim of a microarray experiment 
is to rank the genes based on observed evidence against the null hypothesis, not 
just assign a p-value (Smyth, 2004; Smyth et al., 2003). Thus, it makes sense to 
declare targets as equally expressed, when less than half of the probes indicate 
differential expression despite the p-value being significant. 

From the benchmarking analysis we observed, that RNA-seq was more 
sensitive in detecting differentially expressed genes. However, this came at a 
cost of increased false positive findings, resulting in a lower MCC values when 
compared to the microarray analysis workflows. Although RNA-seq holds huge 
potential for gene expression studies, compared to microarrays, the reporting 
standards are almost non-existent (Rung and Brazma, 2013). The distinctive 
feature of RNA-seq is the uniform sampling of nucleic acid fragments for 
sequencing. Accordingly, RNA-seq exhibits less accuracy at detecting dif-
ferential expression of genes with low expression levels, which are less likely to 
be sampled (Liu et al., 2011; Oshlack and Wakefield, 2009). However the signal 
intensity of microarrays are proportional only to the expression level of the 
transcript in addition to the hybridization properties of the probe itself, such as 
GC content (Dunning et al., 2008; Oshlack and Wakefield, 2009; Wu and 
Irizarry, 2005). Overall, combining results retrieved by both RNA-seq and 
microarray technology, will provide a more extensive view on the transcriptional 
machinery than just pertaining to a single method (Swindell et al., 2014). 

Regardless, with better standards for RNA-seq, it has the potential to attain 
absolute measurements of gene expression levels (Rung and Brazma, 2013), 
perhaps surpassing microarrays in detection accuracy and providing the 
opportunity to measure new functional elements in the genome. In principle, 
RNA-seq retrieves direct counts of mRNA molecules, thus allowing for a wider 
interpretation of the samples, even between experiments (Wang et al., 2009). 
Due to practical reasons (i.e. low sampling depth), as for now, this potential is 
not captured in practice. 
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1.4. Thoughts on using DEMI for RNA-seq data analysis 

In a differential expression analysis, each probe on a microarray describes a 
genes behavior dependent on the experimental conditions. With a two-group 
experimental design a probe can be either up- or downregulated or unchanged. 
Since probes are not an intrinsic feature of an RNA-seq data analysis pipelines 
the use of conventional microarray data analysis workflows is improbable or 
even impossible with RNA-seq data. However since RNA-seq data consists of 
read alignments with specific genomic coordinates, it is possible to count the 
number of hits a read aligns to a specified genomic location. By dividing the 
genome or more specifically all the known genes into probes with a pre-
determined size, we can count the times a read overlaps with every probe. By 
utilizing DEMI’s methodology we can use the ratios of off-target differentially 
expressed probes and on-target differentially expressed probes to indicate 
differential expression of the target gene, similar to microarray analysis. This 
approach to RNA-seq data analysis requires complex benchmarking. For 
example, decisions on the best probe length have to be made, or maybe the use 
of varying probe size depending on gene length is deemed appropriate. A 
similar argument can be made for extending DEMI to analyze differential 
expression in proteomics data. 
 
 

2. Effect of Neuroglobin deficiency 

Another important subject addressed in this work, is the effect of Neuroglobin 
(Ngb) deficiency in mice. Ngb is a neuron-specific globin (Burmester et al., 
2000), that was believed to be involved in the oxygen storage and intracellular 
diffusion of oxygen (Brunori and Vallone, 2007). We conducted a genome wide 
gene expression study using Affymetrix Mouse Gene ST 1.0 microarrays where 
we observed an upregulation of several well-established hypoxia responsive 
genes. Our results confirmed the hypoxia-dependent regulation of pathways that 
among others included apoptosis, cell growth (“mTOR signaling”), synthesis of 
ATP (“oxidative phosphorylation”) and angiogenesis (“VEGF signaling 
pathway”) in both genotypes. Based on a broader categorization, it can be 
claimed that global gene expression profiles of Ngb-null and wt mice indicate 
that chromatin remodeling and mRNA metabolism are among the key 
regulatory mechanisms that are activated upon prolonged hypoxia. 

When quantifying gene expression levels with qPCR, we observed a 
significant upregulation of Hif1A both in Ngb-null and wt mice after 90 minutes 
of hypoxia, although similar result was only observed for Ngb-null mice when 
microarrays were used. Hif1A is part of a transcriptional cascade that mediates 
a broad network of systemic and local responses to hypoxia (Ratcliffe, 2002). In 
addition, at 24 hours of hypoxia, Ngb-null mice showed a higher expression of 
Hif1A in relation to wt mice, as measured by qPCR. 

To further study the potential connection between Ngb and neuroprotection 
during hypoxic conditions we examined the effect of Ngb deficiency on light-
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induced gene expression in the retina (Paper III). Since retina is metabolically 
one of the most active tissues (Ames, 1992; Anderson and Saltzman, 1964), we 
anticipated that Ngb deficiency would have a notable effect on light-induced 
gene expression. More specifically, oxygen consumption rate in retina is 
dependent on the exposure to light, since dark-adapted retina requires more 
oxygen compared to light-adapted retina (Ahmed et al., 1993; Linsenmeier, 
1986). We speculated that if Ngb was an important oxygen reservoir or if it 
were important for oxygen metabolism and/or delivery, its deficiency would 
have a detectable effect on gene expression when oxygen consumption require-
ments are changed due to exposure to light.  

To that end, we conducted a genome wide differential gene expression study 
using Mouse Exon ST 1.0 arrays, that compared varying durations of light 
exposure to dark-adapted retina in wt and Ngb-null mice. Our observations 
indicated, that the effect of light on gene expression was more prevalent than 
the effect of genotype, which was reflected in the number of differentially 
expressed genes. To corroborate our results on light exposure, we used DEMI to 
reanalyze two publicly available datasets (Bedolla and Torre, 2011; Porterfield 
et al., 2007) from related experiments. We were able to cross-validate light-
induced gene expression response between the independent experiments and our 
study regardless of the genotype. In other words, we saw no indication that Ngb 
deficiency would lead to an altered light response or to expressional changes 
indicative of increased amounts of cellular stress caused by decreased oxygen 
levels. Despite the lack of an obvious link between Ngb and oxygen 
consumption in retina, we were further interested in the differential expression 
of marker genes associated with oxygen availability (Semenza, 2012), oxidative 
stress (Murphy, 2009) and endoplasmatic reticulum (ER)-stress (Xu et al., 
2005). Using qPCR, we did not observe any indication of an altered gene 
expression response between the genotypes, suggesting that Ngb is not 
important in the normal retinal function upon light exposure.  

When ignoring the light effect and pooling experimental treatments together, 
the differential gene expression analysis between Ngb-null and wt mice 
revealed several statistically significant genes. The top three differentially 
expressed genes were Akap6, Entpd4 and Atp8a2, of which only Akap6 was 
upregulated. Since Akap6 lies within 35 Mbp of the Ngb locus, its differential 
expression can be the effect of congenic footprint (Schalkwyk et al., 2007). 
Entpd4 and Atp8a2 were both downregulated, but there is no direct evidence of 
functional link between these genes and Ngb. Entpd4 is thought to be involved 
in the rescue of nucleotides from the lysosomal/autophagic vacuole lumen 
(Biederbick et al., 1999). Atp8a2 is an adenosine triphosphate (ATP)-dependent 
lipid flippase that translocates aminophospholipids from the exoplasmic to 
cytoplasmic leaflets of membranes (Coleman et al., 2014). Additionally, Atp8a2 
is primarily expressed in testes, spinal cord and retina (Cacciagli et al., 2010; 
Coleman et al., 2009; Zhu et al., 2012) and is necessary for the correct 
functioning of photoreceptor cells (Coleman et al., 2014), which, curiously, do 
not express Ngb (Hundahl et al., 2012). 
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CONCLUSIONS 
We have designed and implemented a new methodology called Differential Ex-
pression from Multiple Indicators (DEMI) to help researchers conduct differential 
expression analysis using high-density microarrays. Although many well-
performing methods have already been popularized, DEMI approaches the data 
from a new angle, which provides additional benefits not easily achieved with 
other differential expression analysis workflows. I am convinced that the research 
community will benefit from a new differential expression analysis workflow for 
microarrays, even when considering the recent advent of RNA-seq data. 

In my thesis I have demonstrated the properties of DEMI and eight other 
differential gene expression pipelines using a comprehensive benchmarking and 
a “gold-standard” reference dataset. Although several of the workflows 
demonstrated good results, DEMI performed equally well with the top 
performing workflows and was the most stable regardless of the sample size or 
microarray platform. The ability to correctly identify differentially expressed 
genes even when there are very few replicates is a valuable property for pilot 
studies or when samples are hard to obtain, as for example, in clinical cases. 
Additional benefit comes from DEMI’s ability to analyze differential expression 
on large genomic regions that might encompass several neighboring genes. This 
feature is especially useful with cancer datasets where gene expression 
regulation through epigenetic changes encompassing wide regions is cha-
racteristic. Although there are many cancer datasets available in the public 
databases, in most cases they are focused studies looking at individual genes 
whereas looking neighboring regions together, would provide new insight to the 
epigenetic modifications caused by chromatin remodeling. 

Additionally, DEMI is a self-contained pipeline whereas other methods 
require to choose from a combination of a preprocessing method and a dif-
ferential expression estimator. Also, I believe that DEMI’s logic of using ratios 
of differentially expressed on-target and off-target probes is easy to understand 
and intuitive. More complex analysis can be easily incorporated in DEMI 
pipeline, as we have demonstrated by using Kendall’s tau statistic for time-
series analysis. In principle, any differential expression statistic that is con-
cordant with the experimental design could be integrated into DEMI. 

We have used DEMI to study whether the notion that Ngb is an important 
oxygen reservoir in the brain and exhibits neuroprotective capabilities is 
confirmed. In that case, one would expect the lack of Ngb to have significant 
consequences under circumstances that require functional oxygen metabolism. 
By measuring gene expression response to light-pulse in the mouse retina, 
which is metabolically one of the most active tissues, we did not detect any 
major differences between Ngb-deficent and wild-type mice. However, we did 
observe a statistically significant enrichment of differentially expressed genes 
between our and publicly available datasets that responded similarly to light-
pulse. All in all, the present study indicates that Ngb deficiency does not lead to 
major alterations in light-dependent gene expression response, but leads to 
subtle systemic differences of currently unknown functional significance. 

16
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SUMMARY IN ESTONIAN 

Diferentsiaalse geeniekspressiooni erinevuste  
hindamine mitmete indikaatorite alusel 

Geenide aktiivsus erinevates rakutüüpides varieerub. Geeniaktiivsuse hoolikas 
ja kontrollitud reguleerimine võimaldab rakkudel saavutada, säilitada ja muuta 
oma funktsiooni ja füsioloogiat, aidates ühtlasi kohaneda muutuva kesk-
konnaga. Geeniaktiivsus ehk geeniekspressioon on eelkõige määratletud kui 
mRNA hulk rakus, mida tänapäeval on võimalik mitme erineva tehnoloogia abil 
mõõta. Alates 1990-ndate keskpaigast on geeniekspressiooni mõõtmisel teiste 
meetodite kõrval kasutatud ka mikrokiibi tehnoloogiat, mis võimaldab mõõta 
ekspressiooni paljudel geenidel üheaegselt. Tänaseks on mikrokiibi andmete 
hulk märkimisväärselt kasvanud ning välja on töötatud mitmeid lahendusi dife-
rentsiaalse ekspressiooni analüüsimiseks ning standardeid andmete salvesta-
miseks avalikes andmebaasides. Enamasti on neid andmeid vaadeldud ühe 
uuringu piiratud vaatenurgast, mistõttu avalike andmete kasutamine ja ana-
lüüside kordamine alternatiivsetele küsimustele vastamiseks leiab aina suuremat 
kasutust. 

Antud töö on keskendunud uue diferentsiaalse ekspressiooni analüüsi 
meetodi väljaarendamisele ja selle võrdlemisele olemasolevate meetoditega. 
Meetod Differential Expression from Multiple Indicators (DEMI) kasutab ära 
sondide arvukust kõrg-tihedusega mikrokiipidel ning on võimeline hindama 
diferentsiaalset geeniekspressiooni ka väheste replikaatide olemasolu korral. 
Lisaks võimaldab DEMI mikrokiipide abil analüüsida suuri genoomi piirkondi, 
pakkudes sedasi ülevaadet epigeneetilistest kromatiini modifikatsioonidest 
tingitud laialdastest ekspressiooni muutustest, mis võib enda alla haarata ka 
lähedalasuvaid geene. Viimast analüüsi on võimalik teha ka traditsioonilisi 
mikrokiibi analüüsi meetodeid kasutades, kuid see on üldjuhul keerulisem ja 
aeganõudvam ning vajab lisaks diferentsiaalse ekspressiooni analüüsile ühte 
täiendavat etappi. 

Võrdlesime DEMI-t kaheksa alternatiivse mikrokiibi diferentsiaalse ekspres-
siooni analüüsi meetodiga, kasutades MicroArray Quality Control (MAQC) 
konsortsiumi proove. Võrdluses kasutasime veel RNA-seq-i andmestikke ja 
analüüsi meetodeid ning positiivse kontrollina MAQC proovidel tehtud umbes 
850 geeni kvantitatiivse polümeraasi ahelreaktsiooni (qPCR) mõõtmisi. 
Meetodi headust hinnati Matthewsi korrelatsioonikordaja (MCC), kõvera-aluse 
pindala (AUC) ning tundlikkuse ja spetsiifilisuse näitajate abil. Antud näitajate 
alusel oli DEMI sooritus pidevalt parimate hulgas ning kõige stabiilsem, seal-
hulgas olukordades, kus tehnilisi või bioloogilisi replikaate oli väga vähe 
(݊ = 2). Lisaks oli DEMI sooritus stabiilne sõltumata mikrokiibi platvormist ja 
varieerus vähem kui alternatiivsed mikrokiibi diferentsiaalse ekspressiooni 
meetodid, mis sõltusid eelkõige diferentsiaalse ekspressiooni hindamise, ja 
vähem normaliseerimise, meetodi valikust. RNA-seq-i tundlikkus oli suurem 
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kui mikrokiipidel, kuid sellega kaasnes ka suurem valepositiivsete arv, mistõttu 
MCC väärtused olid mikrokiipidega võrreldes madalamad. 

DEMI raamistik on rakendatud R-i paketina, mis on internetist vabalt alla-
laetav (http://cran.r-project.org/web/packages/demi/index.html). Käesolevas 
doktoritöös kasutati DEMI-t kolmes artiklis geenide diferentsiaalse ekspres-
siooni hindamiseks. Kasutasime DEMI R-i paketti kaugele-ulatuva epigeentilise 
vaigistamise (ingl. k. long-range epigenetic silencing, LRES) uurimiseks vähi 
andmestikul, mis publitseeriti 2010 aastal Coolen et al. poolt. Kasutades ainult 
kahte replikaati grupi kohta, suutis DEMI edukalt tuvastada 38 genoomi 
piirkonda originaalis avaldatud 47-st, mis olid kromatiini remodelleerimise tõttu 
vähikoes alla reguleeritud. Lisaks eelnevale rakendasime DEMI-t, et analüüsida 
hüpotermiast tingitud geeniekspressiooni muutusi erinevates ajapunktides hiire 
embrüonaalsetes fibroblastides. Uudse tulemusena leidsime, et hüpotermia 
tingimustes on mitmete antioksüdatiivsete geenide ekspressioon suurenenud. 
Kasutasime DEMI-t ka Neuroglobiini (Ngb) geeni funktsiooni uurimiseks Ngb-
puudulikel hiirtel. Varem on arvatud, et Ngb on oluline hapniku hoidla ajus 
ning omab olulist rolli sealses hapniku metabolismis. Meie tulemused näitavad, 
et Ngb puudulikkusest tingitud genotüübi efekt on üsna väike, kui arvestada 
geeniekspressiooni erinevusi, mis on tingitud madalast hapniku tasemest kesk-
konnas või vähenenud hapniku tarbimisest hiire reetinas, mis on eksponeeritud 
valgusele. 

Antud doktoritöö demonstreerib DEMI võimalusi erinevate eksperimen-
taalsete probleemide lahendamisel, kus on võimalik analüüsida diferentsiaalset 
geeniekspressiooni kõrg-tihedusega mikrokiipidel. Kuigi varasemalt on mitmeid 
diferentsiaalse geeniekspressiooni analüüsi meetodeid juba välja töötatud ning 
aina suuremat populaarsust on kogunud diferentsiaalse ekspressiooni hindamine 
RNA-seq-i abil, siis vaatamata sellele, ma usun, et DEMI pakub teadlaskonnale 
piisavalt lisandväärtust ja paindlikkust, et seda oma andmete analüüsimisel 
kasutada.  
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