
R
IIN

 T
A

M
M

E
 

T
he relationship betw

een sm
all-scale environm

ental heterogeneity and plant species diversity

Tartu 2014

ISSN 1024-6479
ISBN 978-9949-32-741-6

DISSERTATIONES 
BIOLOGICAE

UNIVERSITATIS 
TARTUENSIS

268

RIIN TAMME

The relationship between small-scale
environmental heterogeneity and 
plant species diversity

br
ou

gh
t t

o 
yo

u 
by

 
C

O
R

E
V

ie
w

 m
et

ad
at

a,
 c

ita
tio

n 
an

d 
si

m
ila

r 
pa

pe
rs

 a
t c

or
e.

ac
.u

k

pr
ov

id
ed

 b
y 

D
S

pa
ce

 a
t T

ar
tu

 U
ni

ve
rs

ity
 L

ib
ra

ry

https://core.ac.uk/display/79107902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 
268 

 



 
DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 

268 
 
 
 
 
 
 
 
 
 

RIIN TAMME 
 
The relationship between small-scale 
environmental heterogeneity and 
plant species diversity 



Department of Botany, Institute of Ecology and Earth Sciences, Faculty of 
Science and Technology, University of Tartu, Estonia 
 
Dissertation was accepted for the commencement of the degree of Doctor 
philosophiae in botany and mycology at the University of Tartu on November 
17, 2014 by the Scientific Council of the Institute of Ecology and Earth 
Sciences, University of Tartu. 
 
Supervisor:  Prof. Meelis Pärtel, University of Tartu, Estonia 
 
Opponent:  Dr. Heather Reynolds, University of Indiana, USA 
 
Commencement: Room 218, 40 Lai Street, Tartu, on January 26, 2015 at 

10.15 a.m. 
 
Publication of this thesis is granted by the Institute of Ecology and Earth 
Sciences, University of Tartu and by the Doctoral School of Earth Sciences and 
Ecology created under the auspices of European Social Fund. 
 

 
 
 
 
 

 
 
ISSN 1024-6479 
ISBN 978-9949-32-741-6 (print)  
ISBN 978-9949-32-742-3 (pdf) 
 
 
Copyright: Riin Tamme, 2014 
 
University of Tartu Press 
www.tyk.ee 

 
 
 

 



5 

CONTENTS 

LIST OF ORIGINAL PUBLICATIONS .......................................................  6 
1.  INTRODUCTION .....................................................................................  7 

1.1.  Theoretical background .....................................................................  7 
1.2.  Objectives of the thesis ......................................................................  9 

2.  MATERIALS AND METHODS ..............................................................  10 
2.1.  Meta-analytical approach ..................................................................  10 
2.2.  Modelling approach ...........................................................................  11 
2.3.  Experimental approach ......................................................................  12 

2.3.1.  Experimental design and sampling .........................................  12 
2.3.2.  Data analysis ...........................................................................  14 

3.  RESULTS .................................................................................................  18 
3.1.  Heterogeneity-diversity relationship at different spatial scales ........  18 
3.2.  Evidence for a negative heterogeneity-diversity relationship  

in modeled communities ...................................................................  18 
3.3.  Evidence for a negative heterogeneity-diversity relationship  

in experimental grassland communities ............................................  19 
3.4.  Trait responses to soil resource heterogeneity ..................................  19 
3.5.  Species-specific responses to soil resource heterogeneity ................  21 

4.  DISCUSSION ...........................................................................................  22 
4.1. Negative heterogeneity-diversity relationship  

at small spatial scales .......................................................................  22 
4.2. Microfragmentation ...........................................................................  23 
4.3. Heterogeneity as a separate niche axis ..............................................  25 

5. CONCLUSIONS .......................................................................................  27 
REFERENCES ...............................................................................................  29 
SUMMARY IN ESTONIAN .........................................................................  33 
ACKNOWLEDGEMENTS ...........................................................................  36 
PUBLICATIONS ...........................................................................................  37 
CURRICULUM VITAE ................................................................................  111 
 

2



6 

LIST OF ORIGINAL PUBLICATIONS 

This thesis is based on the following publications denoted in the text by Roman 
numerals: 
 

I. Tamme, R., Hiiesalu, I., Laanisto, L., Szava-Kovats, R. & Pärtel, M. 2010. 
Environmental heterogeneity, species diversity and coexistence at different 
spatial scales. Journal of Vegetation Science 21: 796–801. 

II. Laanisto, L., Tamme, R., Hiiesalu, I., Szava-Kovats, R., Gazol, A. & 
Pärtel, M. 2013. Microfragmentation concept explains non-positive 
environmental heterogeneity-diversity relationships. Oecologia 171: 217–
226. 

III. Gazol, A., Tamme, R., Price, J.N., Hiiesalu, I., Laanisto, L. & Pärtel, M. 
2013. A negative heterogeneity–diversity relationship found in experi-
mental grassland communities. Oecologia 173: 545–555. 

IV. Price, J.N, Gazol, A., Tamme, R., Hiiesalu, I. & Pärtel, M. 2014. The 
functional assembly of experimental grasslands in relation to fertility and 
resource heterogeneity. Functional Ecology 28: 509–519. 

V. Tamme, R., Gazol, A., Price, J.N, Hiiesalu, I. & Pärtel, M. Species-specific 
responses to soil heterogeneity in experimental grassland communities. 
Manuscript. 

 
 
Published papers are reproduced with the permission of the publishers. 
 
Author’s contribution to the publications: 

I. had the main responsibility in developing the idea, data collection and 
analysis as well as manuscript preparation 

II. participated in developing the idea and manuscript preparation 
III. participated in conducting the experiment, data collection and manuscript 

preparation 
IV. participated in conducting the experiment, data collection and manuscript 

preparation 
V. participated in conducting the experiment and data collection, had the main 

responsibility in data analysis and manuscript preparation 



7 

1. INTRODUCTION 

1.1. Theoretical background 

Understanding species diversity patterns and coexistence mechanisms is a 
central topic in ecology (Begon et al. 2009), and has important implications for 
biodiversity conservation (Margules & Pressey 2000) – in preventing local 
species loss (Krauss et al. 2010) or global extinctions (Dirzo & Raven 2003). 
Many mechanisms have been proposed to explain species coexistence, among 
them, environmental heterogeneity is considered one of the main factors in 
maintaining species richness in terrestrial plant communities (Tilman & Pacala 
1993; Wilson 2011). Environmental heterogeneity is traditionally viewed as a 
way for species to avoid competitive exclusion by allowing niche differentiation 
and coexistence of functionally different species (Ricklefs 1977; Shmida & 
Wilson 1985; Tilman & Pacala 1993; Silvertown 2004; Wilson 2011; Adler et 
al. 2013). However, the generality of the positive heterogeneity-diversity 
relationship (hereafter HDR) has been questioned, as several experiments and 
observational field studies have also found non-significant or negative effects of 
heterogeneity on plant species diversity (reviewed in Lundholm 2009, see also 
Eilts et al. 2011; Costanza et al. 2011; Rose & Malanson 2012; Gazol et al. 
2012). 

Empirical evidence for environmental heterogeneity promoting coexistence 
comes mostly from studies where heterogeneity is measured at relatively large 
spatial scales (Stein et al. 2014). Large-scale heterogeneity is expressed as 
gradients in environmental conditions (e.g. climate, soil, topography, habitat 
type), and explains turnover in species composition among communities 
(Wilson 2000). For species coexistence within communities, small-scale hetero-
geneity due to patchy resource distribution is more important (Wilson 2000; 
Hutchings et al. 2003). Small-scale resource patchiness impacts directly on 
plant individuals and species interactions, and is expected to structure com-
munities (Hutchings et al. 2003). Observational and experimental studies at 
small spatial scales often report non-positive HDRs (e.g. Maestre & Reynolds 
2007; Reynolds et al. 2007; Eilts et al. 2011; Rose & Malanson 2012; Gazol et 
al. 2012). However, compared to large-scale analyses, studies on small-scale 
HDRs in plant communities are scarce (Lundholm 2009) and the precise 
mechanisms by which small-scale heterogeneity affects species diversity are not 
yet clear.  

In natural conditions, environmental heterogeneity occurs at different spatial 
scales (Ettema & Wardle 2002), and coexisting species vary in their sizes 
(Schenk & Jackson 2002; Hutchings et al. 2003). The effect of small-scale 
environmental heterogeneity on community structure is predicted to vary 
depending on whether patchiness occurs at scales larger or smaller than plant 
individuals (Hutchings et al. 2003). The relative scale of heterogeneity 
determines whether individuals view the surrounding environment as homo-
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geneous (patches larger) or encounter patchiness in resource distribution (patches 
smaller). Based on the relative size of plants and patches, three predictions can 
be made for small-scale HDRs.  

Environmental heterogeneity occurring at larger scales than plant individuals 
can promote species coexistence, based on the idea of niche differentiation with 
species preferring different patch types (Silvertown 2004). Individuals and 
populations occupy homogeneous patches within heterogeneous conditions and 
are not affected by heterogeneity. The patches can be considered as sub-
communities (Hutchings et al. 2003) that are made of functionally different 
species depending on their preference for patch type (Questad & Foster 2008; 
Adler et al. 2013). There is evidence for positive small-scale HDRs in plant 
communities (Lundholm 2009), but while it is intuitive that niche diffe-
rentiation should be reflected in functional differences between coexisting 
species, very few studies have examined this based on traits (Adler et al. 2013).  

If patches are still larger than plant individuals, but too small to support 
viable populations, heterogeneity can have a negative or neutral effect on 
species diversity (Kadmon & Allouche 2007; Costanza et al. 2011). Within a 
fixed area, increasing heterogeneity by adding new patch types inevitably 
results in a decreased area of each patch and isolation of the same patch types. 
Even if the total area of each patch type remains constant, increasing hetero-
geneity means fragmentation of patches. Species that prefer a specific patch 
type, are negatively affected by heterogeneity since it can decrease population 
size, restrict dispersal between isolated patches and increase extinction rates 
within subcommunities (Saunders et al. 1991). This process is analogous to 
habitat fragmentation at the landscape level (e.g. Helm et al. 2006; Krauss et al. 
2010). Empirical evidence for this idea at local scales comes from animal 
studies, for example Tews et al. (2004) reviewed HDRs for animals and found 
that while habitat heterogeneity provides niche differentiation for some animal 
groups, it leads to habitat fragmentation for others. Further studies are needed to 
test this idea and its applicability in plant communities. 

Environmental heterogeneity occurring at smaller scales, enabling plant 
individuals to forage among patches, can reduce species diversity by altering 
competitive interactions in a community (Hutchings et al. 2003). Many experi-
mental studies have shown that plant species differ in their ability to forage for 
resources in heterogeneous conditions (reviewed in Hodge 2004; Kembel & 
Cahill 2005). If some species in a community are better able to forage for 
resources and outcompete others, the HDR can be negative (Hutchings et al. 
2003; Reynolds et al. 2007; Rajaniemi 2010; Eilts et al. 2011). Moreover, 
communities should be characterised by functionally similar species, since traits 
associated with good foraging ability are favoured. There is some experimental 
evidence that species with more effective root foraging behaviour (Fransen et 
al. 2001; Rajaniemi 2010), or clonal species with extensive rhizomes (Reynolds 
et al. 2007; Eilts et al. 2011) are advantaged in heterogeneous soils. However, 
only a few experimental studies have considered how coexisting species differ 
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in their responses to heterogeneity in plant communities (Wijesinghe et al. 
2005; Maestre & Reynolds 2007; Reynolds et al. 2007; Rajaniemi 2010; Eilts et 
al. 2011). It has been suggested that if all species can forage through the 
patches, small-scale heterogeneity has no effect on species diversity, as plants 
are influenced by surrounding average conditions (Tilman & Pacala 1993; 
Stevens & Carson 2002). However, both resource heterogeneity and availability 
can impact on plant individuals and community structure in a non-additive way 
(Maestre & Reynolds 2007). 

In natural conditions, species of various sizes coexist, and perceive or 
respond to heterogeneity in different ways. Therefore, multiple simultaneously 
occurring mechanisms can determine the HDR in plant communities. 
 
 

1.2. Objectives of the thesis 

The purpose of this thesis was to shed further light on the heterogeneity-
diversity relationship (HDR) at small spatial scales and explain the mechanisms 
behind a negative HDR. We used a meta-analytical approach to study the 
relationship between spatial scale and the HDR (I) and hypothesized that the 
HDR is positive at larger spatial scales, but negative HDRs become more 
common when heterogeneity occurs as small-scale patchiness in environmental 
conditions. We defined mechanisms behind a negative HDR at small spatial 
scales in paper I. Depending on the relative scale of plant individuals and 
patchiness in environmental conditions, we hypothesized that heterogeneity can 
decrease species diversity by restricting dispersal between patches (patches 
larger than plant individuals) or intensifying competitive interactions (patches 
smaller than plant individuals). We then used a model simulation (II) and a 
greenhouse experiment (III, IV, V) to test these ideas. 
 
The main aims of the thesis were: 
1. to describe the small-scale HDR using meta-analytical (I), modelling (II) 

and experimental approaches (III) 
2. to explore the trend of the HDR at different spatial scales of heterogeneity 

(I)  
3. to assess the role of dispersal and local stochastic extinctions in HDRs (I, II, 

III)  
4. to assess the role of competition in HDRs (I, III, IV, V) 
5. to identify characteristics and traits that enable species to take advantage of 

heterogeneous conditions (II, IV, V) 
 

3
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2. MATERIALS AND METHODS 

2.1. Meta-analytical approach 

In paper I, we used a dataset of previously published experimental and 
observational heterogeneity studies in plant communities from Lundholm 
(2009) to examine the heterogeneity-diversity relationship (HDR) at varying 
spatial scales. To quantify the HDR, we used the standardized difference in mean 
diversity (between homogeneous and heterogeneous treatments) as the effect 
size for experimental studies, and Fisher’s Z (estimated from the correlation 
coefficient or P and t values) for observational studies. We used spatial grain as 
our scale of heterogeneity. This was equal to the patch size in experimental 
studies, and to average distance between environmental measurements in 
observational studies. Grain size was log10-transformed for the analyses. 

Studies often reported several measures of diversity and heterogeneity. Since 
these can be correlated and bias statistical tests, we included a single measure of 
the HDR from distinct treatments (experimental studies) or sites (observational 
studies). If a study included multiple sites or treatments with varying con-
figurations of heterogeneity, several data points were included. We used the 
following selection criteria to decide which observations to include from 
multiple measurements: (1) if studies reported more than one measure of 
species diversity we selected ‘total species richness’ (from a few case studies 
we used ‘mean compositional diversity’, ‘Simpson’s diversity index’ and ‘area–
species richness slope’ instead); (2) when species diversity was measured at 
different spatial scales, we included the smallest scale as this was most likely to 
correspond to the scale at which heterogeneity was measured; (3) of the 
environmental variables, we selected those measuring heterogeneity of soil 
topography or soil nutrient content.  

We included 23 data points from nine experimental studies, and 46 data 
points from 29 observational studies in the analyses (Appendix S1 in I). In the 
meta-regression analysis, we excluded observational studies where data for 
grain size were not available, thus, 35 data points from 19 case studies were 
included. 

We checked both experimental and observational studies for publication bias 
using funnel plots and Begg and Mazumdar’s rank correlation test (Borenstein 
et al. 2009). We then applied meta-regressions with mixed effects (unrestricted 
maximum likelihood model) between the HDR and spatial scale of hetero-
geneity (Borenstein et al. 2009). All analyses were performed separately for 
experimental and observational studies using Comprehensive Meta-Analysis v.2 
(Biostat Inc., USA). 
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2.2. Modelling approach 

In paper II, we used the freeware simulation model CAPS, designed to examine 
multiple processes driving spatial patterns of abundance and diversity of sessile 
species in heterogeneous landscapes (Plotnick & Gardner 2002; Gardner & 
Engelhardt 2008). To run a simulation of species dynamics within CAPS, it is 
necessary to create a habitat map, define species’ habitat preferences as well as 
dispersal and fecundity parameters, and describe a disturbance regime. 

For the habitat map, we created 100 × 100-node lattice landscapes combined 
of two habitat types in a chessboard pattern (see Fig. 1 in II). Each node of the 
lattice represented a homogeneous habitat site of a sufficient size to support a 
single individual. Different sized patches of habitat type were used to model 
heterogeneity at various spatial scales, but the overall area of each habitat type 
was kept constant. We used the following patch sizes: 50 × 50 nodes, 25 × 25 
nodes, 10 × 10 nodes, 5 × 5 nodes, 2 × 2 nodes, and 1 × 1 nodes. The probabil-
ity, that one of the adjacent nodes represented another habitat type, increased 
with decreasing patch size (0.08%, 0.32%, 2%, 8%, 50%, 100%, respectively). 
We also varied the temporal scale, using simulation steps of 500, 1000, 3000, 
5000 and 10000 units (e.g. years). Each simulation time step represented an 
independent simulation. 

The species pool for all datasets contained 30 species. At the beginning of a 
simulation, every node was filled with a random individual, but all 30 species 
were presented in equal probability. Species in the CAPS simulation model can 
be assigned with different values of habitat preference (niche breadth), relative 
fecundity and dispersal ability. We kept fecundity constant for all species in 
each run of the model. Dispersal distance was always one node length per each 
time step and landscapes had wrapped boundaries allowing dispersal ‘over the 
edge’ (to eliminate edge effects). We varied species’ habitat preferences in four 
scenarios (scenario 1, 2, 3, 4) and two frameworks (categorical, continuous; see 
Table 1 in II): 
 Scenario 1 – only specialists, with 15 species preferring habitat A and the 

other 15 species preferring habitat B. For categorical species preferences, 
habitat A species could not survive in habitat B and vice versa; for 
continuous species preferences, habitat A species could also survive (their 
fitness was 1 out of 9) in habitat B and vice versa. 

 Scenario 2 – mostly specialists, with 10 species preferring habitat A, 10 
species habitat B, and 10 species equally capable of living in both habitat 
types. For categorical species preferences, habitat A species could not 
survive in habitat B and vice versa, while generalists were equally capable of 
living in both habitats; for continuous species preferences, habitat A species 
could also survive (their fitness was 1 out of 9) in habitat B and vice versa. 
Generalist species fitness for both habitats was 8, which was slightly lower 
than specialist species whose fitness in the preferred habitat was 9.  
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 Scenario 3 – mostly generalists. This scenario was similar to scenario 2, but 
contained 20 generalist species, and 5 species preferring habitat A and 5 
species preferring habitat B.  

 Scenario 4 – only generalists, with all 30 species equally capable of living in 
both habitats. We only included a categorical framework for this scenario 
since the continuous framework would have been in essence identical to the 
categorical framework. 

 
In addition to environmental heterogeneity and species preferences to certain 
habitats, community diversity was also regulated by random disturbance, which 
removed 10% of the population at each time step. The empty node was then 
occupied by the descendant of the species from a neighbouring node that 
exhibited the best fitness for the habitat type. Only a single individual could 
occupy each node in the landscape at any point in time. For each unique set of 
variables (scale of heterogeneity, time, and type of community), we performed 
ten simulations that differed only by the random initial species distribution. The 
outcome richness in every set of variables was the average of those ten 
simulations. Diversity was expressed as Simpson’s Reciprocal Index, which has 
been commonly used in comparable HDR studies (e.g. Lundholm 2009; Smith 
& Lundholm 2012). 
 
 

2.3. Experimental approach 
2.3.1. Experimental design and sampling 

For papers III, IV and V, we conducted a mesocosm greenhouse experiment at 
the University of Tartu, Estonia between the 15th February and 11th June 2011. 
The experiment consisted of five treatments (each replicated ten times) 
including three homogeneous treatments of different levels of fertility (low, 
medium and high), and two heterogeneous treatments (small- or large-scale 
patches, see Fig. 1 in III). 

We used 50 galvanized steel square boxes (25 × 25 × 20 cm) and different 
combinations of commercial sand and black soil (Biolan Must Muld®;  
N = 100 mg/l; P = 200 m/l; K = 400 mg/l) for growing medium. The low 
fertility treatment (Low) was created using a 1:4 mixture of soil and sand, the 
medium fertility treatment (Med) consisted of a 1:1 mixture of soil and sand, 
and the high fertility treatment (High) was a 4:1 mixture of soil and sand. The 
small- and large-scale heterogeneity treatments (HetS and HetL, respectively) 
were created using checkerboard combinations of Low and High treatment 
mixtures. HetS treatment consisted of 16 6.25 × 6.25 cm patches, while HetS 
treatment was made of four 12.5 × 12.5 cm patches. The two heterogeneous 
treatments had the same overall fertility as treatment Med, but varied in their 
spatial configuration. Quadrats were filled to 5 cm depth with gravel in order to 
ensure water drainage, and then filled with the respective sand and soil 
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mixtures. We used a partition separating each quadrat before adding growing 
medium, but this was removed to allow root growth among soil patches.  

We obtained seeds of 15 Northern European grassland species (see Table 2 
in III) from a commercial supplier (B & T World Seeds, Paguignan C.P. 34210, 
Aigues-Vives, France). The chosen species resembled a diverse community in 
terms of plant traits and are known to commonly co-occur in seminatural 
grasslands (Pärtel et al. 1999). For each replicate box, we ensured at least 32 
seeds of each species. To include microbial communities, we mixed 0.5 l of 
sieved natural grassland soil with the seeds prior spreading the mixture 
uniformly on top of the growing medium.  

For the first 15 days, the boxes were covered with a plastic sheet and 
watered every other day to aid germination. Growing conditions were full light 
(18 h light), air temperature 17 °C, relative air humidity 75%, and photo-
synthetically active radiation 7.98 MJ m–2 day–1. Light conditions for each box 
were measured every 2 weeks after germination until 15 May, with a LI-190SA 
quantum sensor and LI-250A light meter (LI-COR Biosciences, USA). As a 
measure of relative photosynthetic active radiation (below/above vegetation), 
we took four measurements below and one above the vegetation layer in each 
box. To minimize position effects in the greenhouse, the boxes were rearranged 
weekly. We randomly selected four quadrats in each box (200 quadrats in total) 
for subsequent sampling. In the heterogeneous treatments, two of both the low 
and high fertility quadrats were included. We recorded shoot number for each 
species in these quadrats every two weeks following germination.  

After the experiment had run for 105 days and communities had reached 
their peak productivity, we recorded species’ presence and harvested the 
aboveground biomass in all quadrats in each box. In the four preselected 
quadrats, the biomass was collected separately for each species (data used in 
paper V). Additionally, we sampled root biomass in two randomly selected 
quadrats in each box (in heterogeneous treatments, we ensured that one low 
fertility and one high fertility quadrat are included). To obtain the root samples, 
the entire block of soil and roots was removed from the box, and the quadrats 
were cut and separated from each other. Hence, the soil samples contained the 
roots of both species rooted in the quadrat and those foraging from neighboring 
quadrats. Soil samples were air-dried, and roots were carefully separated from 
the soil. Shoot and root biomass was oven dried at 80 °C for 24 h and weighed 
(precision = 0.01 g). 

For trait measurements in paper IV, we obtained plant material of 10 
individuals per species from each experimental treatment. In the heterogeneous 
treatments, 10 individuals were selected from both low and high fertility 
patches. In some cases, less than 10 individuals were available, and we 
excluded species from the analysis if less than 5 individuals were found. 
Following the protocols of Cornelissen et al. (2003), we measured specific leaf 
area (SLA, the ratio of leaf area to dry weight, mm2 mg–1), leaf size (mm2) and 
plant height (mm). Leaf area was measured as the one-sided projected surface 

4 
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area from leaf scans using Image-J (Rasband 2014). Leaves were oven-dried at 
80 °C for 24 h, and weighed. Plant height was measured to the highest photo-
synthetically active tissue. 
 

2.3.2. Data analysis 

Using data from the mesocosm experiment, we examined how soil resource 
heterogeneity impacts on taxonomic (III) and functional diversity (IV), 
community biomass (III), niche overlap (IV), and species-specific responses 
(V). We performed analyses at the community (experimental box) and patch 
level. For the community-level analyses, we used data from all the treatments 
(HetS, HetL, Low, Med, High) and compared the heterogeneous treatments to 
each homogeneous treatment following our a priori hypotheses specific to each 
study. In the patch-level analyses, we compared low or high fertility patches 
within heterogeneous treatments to the homogeneous low or high fertility 
treatment (respectively) in all of the studies (III, IV, V). 

In paper III, we used data from all the quadrats to calculate plant diversity, 
shoot and root biomass, as well as root:shoot biomass ratio. To measure plant 
diversity, we calculated the inverse of Simpson’s dominance index using the 
number of shoots of each species as a measure of abundance. In the community-
level analyses, we used generalized linear models to test the effect of the 
treatments on the community variables. We then compared both of the 
heterogeneous treatments to the Med treatment. Additionally, we compared the 
HetL treatment to the Low and High treatments. In the patch-level analyses, we 
used mixed-effect models with box identity as a random factor (Zuur et al. 
2009), except in the root biomass analysis (since only one sample of low or 
high fertility quadrat was included per box). We included a fixed variance 
structure among groups to account for the different number of samples (i.e. 
heterogeneous treatments had half the number of low- or high fertility quadrats 
than Low or High treatment). The data was tested for homogeneity of variances 
and normal distribution, and we used Gaussian models with identity link 
functions in all of the analyses.  

To test if there is an indirect effect of soil resource heterogeneity on 
diversity due to an increase in light competition, we used structural equation 
modelling (SEM) in paper III. To construct our theoretical model, we included 
plant diversity, shoot biomass, and relative light conditions (measured 21 days 
before harvesting) of the three treatments that varied in the spatial configuration 
of resources but had the same overall fertility (i.e. Med, HetL and HetS). The 
treatments were represented in the model as a composite variable with two 
dummy indicators, accounting for all three treatments. We hypothesized that 
heterogeneity can directly impact on species diversity and shoot biomass 
(competition for soil resources), but also affect diversity indirectly via shoot 
biomass → relative light availability (light competition) pathway. To assess the 
overall fit of the model, we used the Χ2 statistic and its associated probability 
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and the root mean square error of approximation (RMSEA) and its associated 
probability.  

To describe the functional composition of the experimental communities in 
paper IV, we used community weighted mean (CWM) trait values (Garnier et 
al. 2004; Lavorel et al. 2008). CWMs were calculated separately for three 
traits – SLA, leaf size and plant height, using the following equation (Lavorel et 
al. 2007): 
 

 
 
where pi is the relative abundance of species i, traiti is the mean trait value of 
species i, and n is the number of species in an experimental community. Mean 
trait values were the average of the 10 individuals measured in each treatment 
for the homogeneous treatments and average of 20 individuals measured in the 
heterogeneity treatments. Relative abundance for each species was calculated 
using the number of shoots per box. In addition, CWMs were calculated 
separately for the low- and high-fertility patches in the heterogeneity 
treatments, using the average of 10 individuals measured in each patch type 
(traiti). Mean trait values of leaf size and plant height were log-transformed 
prior to the calculations of the CWM values.  

We further examined functional community assembly in paper IV, 
comparing niche overlap in functional traits among co-existing species to that 
expected if species are randomly distributed in a community. We used the 
kernel function method by Mouillot et al. (2005). The estimation of the 
community-level niche overlap is based on the following three steps (see 
Mouillot et al. 2005; Mason et al. 2011 for more details): 
1. Calculation of the niche space occupied by the population of each species. 

Using a kernel function, a bell-shaped density distribution is calculated 
around every trait measurement. Adding together all the distributions for 
each measurement gives the niche space occupied by the species for a 
particular functional trait. We calculated the niche overlap of SLA, leaf size 
and plant height using the measurements of the 10 individuals of each 
species per treatment. For community-level analysis, 10 measurements were 
randomly selected from the original 20 measurements in the heterogeneous 
treatments to keep the number of samples equal. 

2. Calculation of niche overlap between each pair of species. Niche overlap is 
calculated by considering the niche space occupied by both species. The 
value of the index is 0 when there is no niche overlap and 1 when the two 
species occupy exactly the same trait space. 

3. Calculation of community-level niche overlap. For each trait, community 
niche overlap is calculated by considering the niche overlap between each 
pair of species and the proportional abundance of each species in the 
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community. We calculated the mean niche overlap at the box scale and 
shoot number was used as a proportional abundance for each species. 

 
For the randomly assembled communities, we simulated the community niche 
overlap values of SLA, leaf size and plant height by randomizing (10000 
permutations) the proportional abundance of the species within the 
experimental communities (Mason et al. 2011). The mean niche overlap for 
each trait was calculated as for observed communities (explained above), 
therefore, the differences between the observed and the simulated niche overlap 
is attributed to species abundances. Finally, we used the standardized effect size 
(SES, Gotelli & McCabe 2002) to compare niche overlap in observed 
communities to that expected by chance: 
 

 
 
where Obs is the observed community-level niche overlap for a trait in each 
box, Exp is the mean value of niche overlap in randomizations and σExp its 
standard deviation. 

In paper IV, we used one-way ANOVA to compare CWM and SES values 
for SLA, leaf size and plant height among the treatments, and Tukey’s post hoc 
test for multiple comparisons. In the community-level analyses, we made all 
pairwise comparisons. In addition to comparing low- or high-fertility patches 
within heterogeneous treatments to the respective homogeneous treatment in the 
patch-level analyses, we also compared patches of different fertility level to 
each other. We also examined the relationship between SES in niche overlap 
and aboveground biomass using linear regression. 

For the species-specific analyses in paper V, we used average aboveground 
biomass data per quadrat from the nine most abundant species in the experiment 
(Antennaria dioica, Briza media, Centaurea jacea, Cirsium acaule, Festuca 
rubra, Hypericum perforatum, Plantago media, Primula veris, Prunella 
vulgaris, Trifolium montanum, hereafter referred to by genus name) and 
excluded six species that were in very low numbers in all of the experimental 
treatments by the time of biomass sampling (Erophila verna) or throughout the 
duration of the experiment (Anthyllis vulneraria, Filipendula vulgaris, Galium 
verum, Primula veris, Viola rupestris). Note that species-specific biomass data 
was collected from four quadrats per box (see above). To account for species’ 
survival, we assigned a biomass of 0 to a species that had germinated in the 
quadrat, but did not survive until the final sampling. All statistical analyses 
were performed for the nine species separately and we included data from 
quadrats and boxes where the species under study had established. We tested 
for homogeneity of variance across treatments using Levene’s test (Zar 1999) 
and log10(x+1)-transformed the data to meet the assumption of normality. We 
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used simple models with treatment as a fixed factor in the community-level 
analysis and mixed-effects models with box identity as a random factor in the 
patch-level analysis. We also included a constant variance function structure to 
account for the different number of quadrats within treatments (Zuur et al. 
2009). We used ANOVA to test the overall effect of treatment on species’ 
responses. We used one-way ANOVA with Welch correction (Zar 1999) for 
Antennaria in the community-level analysis since the data failed to meet the 
assumptions of homogeneity of variance, and included a heteroskedasticity-
consistent covariance matrix estimation for comparisons (Herberich et al. 
2010). 

Analyses were performed in the R environment (R Core Team 2014). We 
used the nlme package for fitting the mixed-effects models (Pinheiro et al. 
2014) and the multcomp package (Hothorn et al. 2008) for multiple com-
parisons (III, V). CWMs (IV) were calculated using the funcomp function in 
the FD package (Laliberté & Shipley 2011). Niche overlap (IV) was calculated 
using the function provided by Mouillot et al. (2005), available online 
(http://www.ecosym.univ-montp2.fr/software/nicheoverlap.R). We used the car 
package (Fox & Weisberg 2011) for performing Levene’s test for homogeneity 
of variance and the vcovHC function from the sandwich package (Zeileis 2004; 
Zeileis 2006) to include a heteroskedasticity-consistent covariance matrix 
estimation where necessary (V). SEM (III) was performed using the IBM SPSS 
Amos version 19 (Arbuckle 2010). 

5 
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3. RESULTS 

3.1. Heterogeneity-diversity relationship  
at different spatial scales 

We found no evidence for publication bias in experimental (Fig. 1 in Appendix 
S2 in I) or observational heterogeneity-diversity (HDR) studies (Fig. 2 in 
Appendix S2 in I). We found a significant positive effect of grain size on the 
HDR in experimental (Fig. 1a in I) and observational studies (Fig. 1b in I). A 
negative HDR was more common at smaller grain sizes.  
 
 

3.2. Evidence for a negative heterogeneity-diversity 
relationship in modeled communities 

We found that the relationship between small-scale environmental hetero-
geneity and species diversity was non-positive in our modeled communities. 
However, the trend of the HDR depended on the species’ characteristics in the 
community. Communities with only specialist species (Scenario 1) showed 
mostly unimodal relationships (Fig. 2 in II). When a few generalist species 
were present (Scenario 2), the HDR was mostly negative (Fig. 3 in II). In 
generalist-dominated communities (Scenario 3), heterogeneity had a neutral or 
negative effect on diversity (Fig. 4 in II). In communities with only generalists 
(Scenario 4), heterogeneity had no effect on diversity (Fig. 5 in II).  

The HDR also differed depending on the time scale considered and whether 
a categorical or continuous framework was used (see Online Resource 3 in II 
for more details): 
 Scenario 1 – only specialists. For shorter time scales, diversity remains 

higher and more stable with changing heterogeneity, especially in the 
continuous framework. Species diversity in the categorical framework 
almost falls to zero after a peak in medium patch sizes (10 × 10 and 5 × 5 
nodes, Fig. 2 in II). 

 Scenario 2 – mainly specialists. In simulations with 20 specialist and 10 
generalist species, the effect of heterogeneity on diversity is negative with 
shorter time scales and more neutral when using longer time steps. In 
categorical frameworks, specialists tend to disappear in almost all com-
unities and only generalists survive and attain a stable diversity plateau at 
smaller patch sizes. In continuous frameworks, species diversity shows a 
slight peak at 25 × 25 patch size, but then decreases and reaches a plateau by 
5 × 5 patch size (Fig. 3 in II). 

 Scenario 3 – mainly generalists. Overall dynamics are similar to Scenario 2, 
but since there are more generalist species, the effect of heterogeneity on 
diversity is more neutral. There is some variation in the continuous frame-
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work, with a slight peak in diversity around 25 × 25 and 10 × 10 patch size 
(Fig. 4 in II). 

 Scenario 4 – only generalists. There is no effect of heterogeneity on diver-
sity, but diversity depends on the time scale (Fig. 5 in II).  

 
 

3.3. Evidence for a negative  
heterogeneity-diversity relationship  

in experimental grassland communities 

We found a significant effect of heterogeneity on species diversity, root and 
shoot biomass as well as their ratio at the community and patch level. In the 
community-level analysis, plant diversity was lower in the HetS treatment 
compared to the homogeneous treatment of the same overall fertility, but not for 
the HetL treatment (Fig. 2a, Table 3 in III). Additionally, the HetL treatment 
did not differ from Low or High treatments (Fig. 2a, Table 3 in III). Shoot and 
root biomass in both HetL and HetS treatments was significantly higher than in 
Med although the overall fertility was the same (Fig. 2b, c; Table 3 in III). 
Shoot and root biomass in HetL was higher than in treatment Low and lower 
than in treatment High following an increase in fertility (Fig. 2b, c; Table 3 in 
III). In the patch-level analysis, we found that low fertility quadrats in HetS had 
lower diversity, but higher shoot and root biomass than quadrats in treatment 
Low (Fig. 3, Table 4 in III). In the HetL treatment, only shoot biomass was 
significantly higher in low-fertility quadrats in heterogeneous conditions 
compared to the low fertility homogeneous treatment. There were no 
differences in diversity or biomass between high fertility quadrats in HetS or 
HetL and the High treatment.  

Results from SEM further indicated that soil resource heterogeneity directly 
increased shoot biomass, but only had an indirect negative effect on diversity 
via shoot biomass → relative light availability pathway (Fig. 4 in III). The 
model showed a good fit (Χ2 = 2.11, P = 0.72; RMSEA = 0.001, P = 0.74) and 
accounted for 29% of the variation in diversity, 37% in shoot biomass and 80% 
in relative light. Full details of the SEM results are found in Online Resource 3 
in III. 

 
 

3.4. Trait responses to soil resource heterogeneity 

We found significant differences in the community weighted mean trait values 
as well as niche overlap between the treatments (Fig. 2, 3; Appendix S1 in IV). 
In the community-level analyses, we found that CWM in SLA differed among 
the fertility treatments, with highest SLA in the medium-fertility treatments 
(Fig. 2a, Appendix S1 in IV). The HetS treatment had lower SLA than the Med 
treatment, but HetL did not differ from Med. Leaf size and plant height showed 
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similar patterns and increased with fertility (Fig. 2c, e; Appendix S1 in IV). In 
both heterogeneous treatments, leaves were larger and plants taller than in the 
homogeneous Med treatment and did not differ significantly from the High 
treatment.  

For SLA, there was greater niche overlap in Low and Med than in the High 
treatment, and both heterogeneous treatments differed from all homogeneous 
treatments (Fig. 3a, Appendix S1 in IV). Niche overlap in leaf size was 
significantly greater in High compared to the Low and Med treatments, but 
heterogeneous treatments only differed from the homogeneous low-fertility 
treatment (niche overlap was greater in heterogeneous treatments; Fig. 3c, 
Appendix S1 in IV). For plant height, we found that niche overlap was lower in 
treatment Low compared to all other treatments, and only HetL showed 
significant differences from Med and High treatment (greater niche overlap in 
HetL; Fig. 3e, Appendix S1 in IV). 

In the patch-level analysis, low- and high-fertility patches had significantly 
different CWM values in SLA and leaf area, with greater SLA in low-fertility 
patches (Fig. 2b, Appendix S2 in IV), and higher leaf area in high-fertility 
patches (Fig. 2d, Appendix S2 in IV). However, CWM values in plant height 
did not differ between low- and high-fertility patches (Fig. 2f, Appendix S2 in 
IV). We found that CWM values in all traits (SLA, leaf area, plant height) 
increased with reducing patch size in the Low treatment compared to patches of 
low-fertility (Low – HetL or Low – HetS; Table 2, Appendix S2 in IV). SLA 
was slightly lower in the high-fertility patches in HetS compared to the High 
treatment. 

Niche overlap in SLA differed significantly between low- and high-fertility 
patches in heterogeneous conditions (Fig. 3b, Appendix S2 in IV), and niche 
overlap decreased with reducing the patch size in low-fertility patches (Table 3, 
Appendix S2 in IV). In high-fertility patches, niche overlap was greatest in 
HetS. For leaf area, niche overlap differed between patches of different fertility 
only in HetS treatment (Fig. 3d, Appendix S2 in IV). In low-fertility patches, 
niche overlap was greatest in HetL treatment, but there were no differences in 
high-fertility patches (Table 3, Appendix S2 in IV). Niche overlap in plant 
height did not differ significantly between low- and high-fertility patches (Fig. 
3f, Appendix S2 in IV), but was greater in low-fertility patches within HetL and 
HetS compared to Low treatment (Table 3, Appendix S2 in IV). In high-fertility 
patches, niche overlap in plant height was significantly greater in HetS 
compared to High treatment. 

We found that SES niche overlap in SLA decreased with increasing 
productivity, while niche overlap in leaf area and plant height increased (Fig. 4 
in IV). Hence, in environments with greater light competition, species were 
more similar in leaf area and plant height, but not in SLA.  
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3.5. Species-specific responses to soil resource 
heterogeneity 

In the species-specific analyses, we found that five out of the nine analysed 
species responded to soil heterogeneity at the community level, but this 
response varied between species and depended on the spatial pattern of hetero-
geneity (Fig. 1, Table 2 in V). Festuca had higher aboveground biomass in the 
HetS treatment compared to the Med treatment (of the same overall fertility), 
whereas Antennaria had significantly lower biomass in both heterogeneous 
treatments. Festuca and Plantago showed a strong positive response to patchy 
resource availability at both spatial scales of heterogeneity, compared to the 
Low treatment. Briza had marginally higher aboveground biomass in HetS and 
HetL compared to the Low treatment and Trifolium had marginally lower 
biomass in the HetL. Festuca was the only species negatively affected by 
heterogeneity (HetL) compared to the High treatment. Aboveground biomass 
did not differ between HetS and High treatments for any of the species despite 
the heterogeneous treatment having lower overall fertility. 

In the patch-level analyses, we found that Briza, Festuca and Plantago 
increased their aboveground biomass within the low fertility patches in both 
HetS and HetL compared to the Low treatment (Fig. 2, Table 3 in V). 
Additionally, Prunella produced more aboveground biomass in the low fertility 
patches in the HetL compared to the Low treatment. Antennaria showed a 
contrasting pattern, with less aboveground biomass in the low fertility patches 
in both heterogeneous treatments than in homogeneous low fertility conditions, 
while Trifolium had lower aboveground biomass only in the HetL treatment. 
Antennaria and Cirsium were the only species that showed differences in the 
high fertility conditions, and produced significantly more aboveground biomass 
in the high fertility patches in the HetS or HetL treatment, respectively, 
compared to the homogeneous High treatment. 
 

6
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4. DISCUSSION 

4.1. Negative heterogeneity-diversity  
relationship at small spatial scales 

We found no evidence for a universal positive heterogeneity-diversity relation-
ship (HDR) in plant communities (I) and negative HDRs were more common at 
small spatial scales (I, II, III). In a recent meta-analysis of HDRs across 
different taxa, Stein et al. (2014) further support our findings by showing that 
the HDR is positively related to the spatial scale of heterogeneity. 

Our results show that classical niche differentiation theory alone cannot 
account for the varying effects of small-scale soil heterogeneity on community 
structure, and alternative concepts are needed to account for negative HDRs. 
The varying trends in the HDR have usually been attributed to confounding 
factors, most often to resource availability (Lundholm 2009). If heterogeneity 
occurs at very small spatial scales, all plants can equally forage among the 
different quality patches and may not respond to heterogeneity per se, but to the 
average surrounding conditions (I, Tilman & Pacala 1993). However, results 
from previous modelling and experimental studies suggest that heterogeneity 
can have a direct effect on diversity (I). In paper I, we summarised the findings 
and ideas from previous small-scale HDR studies to propose two concepts that 
explain negative HDRs.  

If the scale of heterogeneity is larger than individual plant size and species 
prefer different patch types, increasing environmental heterogeneity can have a 
negative effect on population dynamics (e.g. dispersal, survival) and lead to a 
decrease in species diversity. In a fixed area, adding new patch types inevitably 
decreases the area of each patch (Kadmon & Allouche 2007) or increases 
isolation among different patches even if the total area of each patch type 
remains constant. We proposed the term microfragmentation in paper I and 
defined it in paper II as follows: microfragmentation is a community 
influencing process of changing habitat into a more heterogeneous environment 
that can have negative effects on diversity through habitat loss and subsequent 
isolation.  

If the scale of heterogeneity is smaller than individual plant size, 
heterogeneity can decrease species diversity if some species in a community 
exhibit strategies that allow them to tolerate or benefit from the patchy resource 
distribution and gain a competitive advantage in plant communities. In paper I, 
we state this idea as heterogeneity as a separate niche axis: species differ in 
their ability to tolerate or benefit from heterogeneous conditions and this 
impacts on competitive interactions and community structure.  

We used model simulation and a greenhouse experiment to explicitly test the 
concepts of microfragmentation (II, III) and heterogeneity as a separate niche 
axis (III, IV, V), and the results are discussed below. 
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4.2. Microfragmentation 

We found strong evidence for microfragmentation in the model simulation (II), 
where the HDR was often negative but the strength and trend of the relationship 
depended on other factors (community structure and time-scale). We also found 
some evidence for microfragmentation in the experimental communities, where 
patch size was designed to be larger than most plant individuals (12.5 × 12.5 
cm), and heterogeneity impacted on species-specific (V) and trait responses 
(IV) but we did not find a negative HDR (III). 

The premise of microfragmentation (and niche theory) is that species sort 
into different patch types in heterogeneous conditions and patches act as 
subcommunities (Hutchings et al. 2003). In the model simulation (II), we varied 
species’ habitat preferences and included different combinations of habitat-
specialists and generalists. We found that the HDR can be negative, unimodal, 
or neutral depending on the community structure, and whether specialist or 
generalist species are dominant. In the greenhouse experiment (III, IV, V), all 
species grew in both patch types, but there were species that were more 
productive in the high fertility treatment compared to the low fertility 
homogeneous treatment and vice versa (V). The differences in plant trait values 
and niche overlap between homogeneous treatments suggested that patches in 
heterogeneous conditions should act as distinct subcommunities. Indeed, low- 
and high-fertility patches differed in their leaf trait values (area and SLA), and 
niche overlap in SLA. Moreover, heterogeneous conditions were more diverse 
(less niche overlap) in terms of SLA (IV). These results suggest that species had 
preferences for soil type, but the effects did not scale up to affect species 
diversity patterns (III). 

Microfragmentation causes a negative HDR mainly by restricting dispersal 
between patches. Smaller and more isolated habitat patches support smaller 
populations with higher vulnerability to stochastic events. Dispersal between 
habitat patches would allow population dynamics to occur and promote species’ 
persistence in the community (Palmer 1992; Seabloom et al. 2005). In the 
model simulation (II), individuals could disperse only to neighbouring nodes. 
This simulates short-distance dispersal in herbaceous plant communities where 
gaps are usually occupied by nearby species that are capable of colonizing very 
quickly, mainly by clonal dispersal (Otsus & Zobel 2002). Small-scale 
heterogeneity is expected to have a stronger effect on short-distance dispersal, 
whereas large-distance dispersal would occur as in homogeneous conditions. 
Similarly, dispersal in the experiment (III) could only occur by clonality since 
the experiment lasted for one growing season. Failure to find strong evidence 
for a negative HDR in the experimental community can also be attributed to the 
short time-scale since the negative HDR becomes more evident in longer time 
frames (II).  

Fahrig et al. (2011) emphasized the importance of distinguishing between the 
effects of compositional heterogeneity (number of patch types) and configura-
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tional heterogeneity (spatial arrangement of patch types) on species diversity. 
Increase in the compositional heterogeneity almost always has a positive effect 
on species diversity by increasing available niche space (Silvertown 2004) and 
the community species pool (Zobel et al. 1998; Rose & Malanson 2012), 
whereas increasing the configurational heterogeneity can have a negative effect 
on diversity (Palmer 1992; Kadmon & Allouche 2007). Therefore, composi-
tional and configurational heterogeneity can have opposite effects on species 
diversity and can balance each other out, so different trends of the HDR are not 
distinguishable (Smith & Lundholm 2012). In the model simulation (II), we 
used two habitat types and varied only their spatial configuration. Hence, we 
were able to show that species diversity is reduced with decreasing the spatial 
scale of environmental heterogeneity, even if the number of patch types remains 
constant. In their analytical models, Kadmon & Allouche (2007) as well as 
Smith & Lundholm (2012) reported unimodal or negative HDRs even without 
partitioning the compositional and configurational heterogeneity and suggested 
that whereas heterogeneity provides more habitat niches for more species, it 
simultaneously reduces diversity due to a decrease in the area of each habitat 
type. 

In natural conditions, environmental heterogeneity entails both composi-
tional and configurational heterogeneity, and differentiating between them is 
difficult. In a greenhouse experiment (III), we tested microfragmentation in a 
more natural setting and compared the heterogeneous treatment with larger 
patch size to homogeneous low or high fertility (same fertility as individual 
patches in heterogeneous conditions). Therefore, heterogeneity entailed an 
addition of a new patch type, as well as a decrease in the size, and increase in 
the isolation of each patch. In this case, we did not find strong evidence for 
microfragmentation, and species diversity in the heterogeneous treatment did 
not differ from any of the homogeneous treatments. In a recent observational 
study, Redon et al. (2014) used forest habitat maps to determine environmental 
heterogeneity within landscapes and studied its effect on understory species 
richness. They found a unimodal HDR and suggested that landscape hetero-
geneity has a positive effect on diversity if it increases the number of habitat 
patches, but only if the patches are large enough to maintain viable specialist 
species populations.  

The earlier analytical models of the HDRs by Kadmon & Allouche (2007) 
were criticized by Hortal et al. (2009) who questioned the applicability of the 
model to natural systems since only habitat specialists were considered. By 
varying the habitat requirements of the model species, we were able to show 
that negative HDRs can be encountered whenever there are specialist species 
among generalist (II), but even with only including generalists, we failed to find 
a positive HDR. Specialist species exhibited much stronger responses to 
environmental heterogeneity than generalists. This is not surprising since the 
populations of generalist species that survive in different conditions and are 
more successful colonisers are expected to better cope with heterogeneous 
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environments (Tews et al. 2004; Hortal et al. 2009). In nature, both specialist 
and generalist species co-occur (Cramer & Willig 2005), and depending on the 
community structure different responses to heterogeneity can be expected.  
 
 

4.3. Heterogeneity as a separate niche axis 

Using a greenhouse mesocosm experiment, we found support for the idea of 
heterogeneity as a separate niche axis, since the heterogeneous treatment with 
small patches (6.25 × 6.25 cm) decreased species diversity compared to the 
homogeneous treatment with the same overall fertility (III). Moreover, plants in 
heterogeneous conditions were more similar in terms of plant height and leaf 
area (IV). The negative HDR found in the experimental communities was due 
to a tall grass Festuca gaining a disproportionate advantage and excluding a 
small forb Antennaria in competition (V). Similar results have been reported in 
previous experimental studies (e.g. Baer et al. 2004; Reynolds et al. 2007; Eilts 
et al. 2011), where soil resource heterogeneity promoted the dominance of 
rhizomatous or clonal species and decreased species richness. In our experi-
ment, the species that showed positive responses to soil resource heterogeneity 
(Festuca, Plantago, Briza) were also the ones that dominated the communities 
in terms of aboveground biomass (see Table 1 in V) and had higher plant height 
and leaf size (see Table 1 in IV). In contrast, species that were disadvantaged in 
heterogeneous conditions, Antennaria and Trifolium, were characterised by 
being subordinates in all of the treatments (see Table 1 in V) and Antennaria 
was also one of the smallest plants in our experimental communities (see Table 
1 in IV). The mechanisms that allow some species to benefit from soil resource 
heterogeneity are related to root foraging (Hutchings et al. 2003). Although we 
did not measure root foraging directly, plant size (both shoot and root biomass) 
is found to be correlated with root foraging scale in grassland species 
(Rajaniemi & Reynolds 2004), suggesting that plant aboveground biomass is a 
good indicator of species’ root responses as well as its competitive ability 
(Grime 1973). Therefore, species that showed positive biomass responses to 
heterogeneity most likely had an advantage in locating roots in resource-rich 
patches and depleting them from resources, leading to asymmetric belowground 
competition (Schwinning & Weiner 1998). 

Resource-rich patches in heterogeneous conditions are expected to become 
hotspots for species interactions since many species compete for resources in a 
smaller area than in equivalent homogeneous conditions (Hutchings et al. 
2003), whereas low-fertility patches are predicted to act as safe sites from 
intense competition, benefitting subordinate species in the long-term (Fransen 
& de Kroon 2001; Day, Hutchings, & John 2003a; Day, Hutchings, & John 
2003b; Hutchings et al. 2003). However, if some species can rapidly access 
resource-rich patches belowground and grow taller, smaller species may be 
excluded from low-fertility patches due to light competition (Wilson 2000; 

7
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Hutchings et al. 2003; Lamb et al. 2009). The high-fertility patches in hetero-
geneous treatments did not differ from the high-fertility homogeneous treatment 
in terms of species composition (III, V), community biomass (III), functional 
diversity or mean trait values (IV), suggesting that competitive interactions 
were similar in heterogeneous and homogeneous treatments. However, we 
found that low-fertility patches were characterized by more intense light 
competition in heterogeneous conditions. Soil heterogeneity had an indirect 
negative effect on species diversity (III) by increasing aboveground biomass of 
larger dominant species (Briza, Festuca, Plantago) and decreasing light 
availability for subordinates (Antennaria and Trifolium, V). Moreover, in envi-
ronments with higher community productivity, species were more similar in 
leaf area and plant height indicating a more intense competition for light (IV). 

Although we expected the concept of heterogeneity as a separate niche axis 
to apply for the heterogeneous treatment with smaller patch sizes (6.25 × 6.25 
cm), we found some evidence for heterogeneity altering competitive inter-
actions also in the heterogeneous treatment with larger patch sizes 
(12.5 × 12.5 cm). Heterogeneous conditions with larger patch size were more 
productive in terms of community biomass (III), and showed similar functional 
composition (IV) and species-specific responses (V) to the heterogeneous 
treatment with smaller patch size. These results indicate that even with the 
larger patch size some species were able to rapidly access patchily distributed 
resources causing changes in some aspects of plant community structure.  
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5. CONCLUSIONS 

Environmental heterogeneity is a common feature in natural habitats and occurs 
at different spatial scales. Large-scale heterogeneity promotes the coexistence 
of different plant communities, whereas small-scale heterogeneity directly 
impacts on plant populations and individuals, and has varying effects on 
community structure. 

The results of this thesis shed further light on the small-scale heterogeneity-
diversity relationship (HDR), and describe negative HDRs in observed (I), 
experimental (I, III) and modeled plant communities (II). In a meta-analysis of 
previously published heterogeneity-diversity studies we found that negative 
HDRs are more common at smaller spatial scales (I). Moreover, in a model 
simulation (II) and greenhouse experiment (III), we detected negative or 
neutral small-scale HDRs.  

We compiled evidence from previous model simulations and heterogeneity 
experiments, and defined two clear mechanisms by which small-scale 
heterogeneity can have a direct negative effect on species coexistence (I). 
Depending on the relative spatial scale of heterogeneity and plant individuals, 
we proposed the ideas of heterogeneity as (1) microfragmentation – a com-
munity influencing process of changing habitat into a more heterogeneous 
environment that can have negative effects on diversity through habitat loss and 
subsequent isolation, or (2) separate niche axis – species differ in their ability to 
tolerate or benefit from heterogeneous conditions and this impacts on com-
petitive interactions and community structure. 

Microfragmentation explained the results from our model simulation (II) 
where varying sets of species were modeled at different scales of heterogeneity 
(different patch sizes). Our results show that environmental heterogeneity can 
reduce community diversity, by restricting dispersal and increasing local 
extinctions. We did not find strong evidence for microfragmentation in the 
greenhouse experiment, as species diversity in the heterogeneous treatment 
(where patch size was designed to be larger than most plants) did not differ 
from homogeneous treatments (III). However, patches within heterogeneous 
treatments differed from each other in terms of leaf trait values (IV), and 
species’ preference for soil type (V).  

The idea that environmental heterogeneity decreases diversity through 
competitive exclusion was supported in the greenhouse experiment (III, IV, V). 
Species diversity (III) and functional trait diversity (IV) were lower in the 
heterogeneous treatment (where patch size was designed to be smaller than 
most plants) compared to homogeneous conditions. Environmental heterogeneity 
benefitted some species, but some were excluded in competition (IV, V). 

Environmental heterogeneity had varying impacts on different species in a 
community. Heterogeneity as microfragmentation affected more strongly 
specialist than generalist species (II). If foraging between patches was possible, 
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heterogeneity benefitted larger dominant species, but smaller subordinates were 
disadvantaged (IV, V).  

The varying effects of environmental heterogeneity on plant communities 
has received little attention in plant ecology, yet ubiquitous small-scale 
heterogeneity can have important impacts on different aspects of community 
structure. Since plant growth, dispersal, survival, species interactions and 
species composition in heterogeneous conditions may not be comparable to those 
found in a homogeneous environment, considering small-scale heterogeneity in 
future ecological studies is important. Moreover, as heterogeneous conditions 
do not necessarily support higher species diversity, understanding the mecha-
nisms behind a negative HDR can help to predict future changes in plant com-
munities and aid conservation decisions. 
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SUMMARY IN ESTONIAN 

Keskkonna heterogeensuse ja taimede mitmekesisuse seos väikesel 
ruumiskaalal 

Eluslooduse mitmekesisuse hoidmine on üks olulisemaid eesmärke loodus-
kaitses ning liikide kooseksisteerimist mõjutavate tegurite väljaselgitamine on 
paelunud ökolooge läbi aegade. Ruumiline varieerumine keskkonnatingimustes 
ehk keskkonna heterogeensus on üks neist teguritest, mis üldlevinud arusaama 
järgi suurendab liigilist mitmekesisust looduses. Seda positiivset heterogeensuse-
mitmekesisuse seost seletatakse enamasti nišiteooria abil – keskkonna hetero-
geensus lubab paljudel erinevate nõudlustega liikidel leida oma nišš või koht 
koosluses, soodustades nii liikide kooseksisteerimist. Keskkonna heterogeensus 
on eriti oluline taimekooslustes, mis on eluta keskkonna poolt enim mõjutatud, 
kuid mitmed eksperimendid ja vaatlused looduses on näidanud, et hetero-
geenses keskkonnas taimede liigiline mitmekesisus hoopis väheneb. 

Milliseks kujuneb heterogeensuse-mitmekesisuse seos taimekoosluses, sõl-
tub eelkõige heterogeensuse ruumiskaalast. Kui heterogeensus esineb suures 
ruumiskaalas keskkonnatingimuste (nt. kliima, muld, topograafia) gradiendina 
ning ala koosneb erinevatest elupaikadest, siis leiab alalt ka palju erinevaid 
taimeliike. Koosluste sees on taime jaoks olulised keskkonnatingimused ja  
-ressursid laiguliselt jaotunud ka väikesel skaalal. Selline väikeseskaalaline 
heterogeensus, näiteks mulla toitainete või valgustingimuste jaotuses, on taime-
kooslustes tavaline nähtus. Väikeseskaalaline heterogeensus mõjutab taime-
populatsioone, liikidevahelisi suhteid ja isendite kasvu ning võib seeläbi koos-
luse liigilist mitmekesisust nii suurendada kui ka vähendada. Väikeseskaalalise 
heterogeensuse mõju taimekooslustele on aga siiani vähe uuritud. 

Olenevalt heterogeensuse ruumiskaalast ja taimeisendite mõõtmetest, võib 
keskkonna heterogeensus avaldada mitmekesisusele mõju kolmel viisil: (1) vasta-
valt nišiteooriale soodustab keskkonna heterogeensus taimede mitmekesisust, 
kui heterogeensust moodustavad laigud on suuremad kui isendid ja erinevad 
liigid eelistavad erinevaid keskkonnalaike; (2) sarnaselt maastikuskaalal toimu-
vale elupaikade killustumisele võib keskkonna heterogeensus vähendada liigi-
list mitmekesisust, kui laigud muutuvad väiksemaks ja üksteisest rohkem eral-
datuks (kuid on siiski suuremad kui taimeisendid), vähendades populatsioonide 
elujõulisust ja piirates levimist; (3) keskkonna heterogeensus võib vähendada 
taimede mitmekesisust, kui heterogeensus esineb väga väikesel skaalal selliselt, 
et taimeisendite juured või maapealsed võsud ulatuvad läbi erinevate kesk-
konnalaikude ning osad taimeliigid saavad sellistes tingimustes paremini 
hakkama ja võidavad liikidevahelises konkurentsis.  

Võrreldes suureskaalaliste uurimustöödega on heterogeensuse-mitmekesi-
suse seost väikesel skaalal siiani vähe uuritud ning negatiivse seose selgitamine 
pälvinud vähe tähelepanu. Käesolevas töös näitan väikeseskaalalise keskkonna 
heterogeensuse olulisust taimekooslustes. Töö peamised eesmärgid olid:  
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1. kirjeldada heterogeensuse-mitmekesisuse seost, kasutades varasemate tööde 
meta-analüüsi (I) ning andmeid simulatsioonimudelist (II) ja kasvuhoone-
katsest (III); 

2. uurida, kuidas heterogeensuse-mitmekesisuse seos sõltub ruumiskaalast (I); 
3. uurida, kuidas heterogeensus mõjutab levimist ja seeläbi heterogeensuse-

mitmekesisuse seost (I, II, III); 
4. uurida, kuidas heterogeensus mõjutab liikidevahelist konkurentsi ja seeläbi 

heterogeensuse-mitmekesisuse seost (I, III, IV, V); 
5. välja selgitada, milliste tunnustega liigid on heterogeensetes tingimustes 

eelistatud (II, IV, V). 
 

Kõik väitekirja kaasatud tööde tulemused näitasid, et keskkonna väikese-
skaalalisel heterogeensusel on oluline mõju taimekooslustele (I, II, III, IV, V) 
ning enamasti on väikeseskaalalise heterogeensuse ja taimede mitmekesisuse 
seos negatiivne (I, II, III).  

Kasutades varasemate eksperimentide ja vaatluste uurimistulemusi meta-
analüüsis, leidsime, et negatiivne heterogeensuse-mitmekesisuse seos on tõe-
näolisem just väikesel ruumiskaalal (I). Töös I defineerisime kaks selgitust 
negatiivsele heterogeensuse-mitmekesisuse seosele. Nagu eespool kirjeldatud, 
mõjub keskkonna heterogeensus pigem levimisele ja taimepopulatsioonide 
püsimisele või liikidevahelistele suhetele olenevalt sellest, kas heterogeensust 
moodustavad keskkonnalaigud on taimeisenditest suuremad või väiksemad. Kui 
keskkonna laigulisus esineb suuremal skaalal kui taimeisendid, siis võib hetero-
geensus avaldada mitmekesisusele negatiivset mõju, vähendades popu-
latsioonide elujõulisust ja taimede levimist. Me selgitame sellist negatiivset 
heterogeensuse-mitmekesisuse seost mikrofragmenteerumisega, mis tähendab, 
et keskkonna heterogeensusega kaasneb elupaigalaikude vähenemine ja üks-
teisest eraldumine, mis avaldab kooslustele negatiivset mõju. Kui aga kesk-
konnalaigud on taimeisenditest väiksemad, võib heterogeensus vähendada 
taimede mitmekesisust, mõjutades liikidevahelise konkurentsi. Sellisel juhul on 
heterogeensus kui eraldi nišitelg – kuna taimeliigid taluvad väikeseskaalalist 
heterogeensust erinevalt, mõjutab see liikidevahelist konkurentsi ja koosluste 
struktuuri. Järgnevalt kasutasime simulatsioonimudelit (II) ning kasvuhoone-
katset (III, IV, V), et testida heterogeensuse kui mikrofragmenteerumise ja 
eraldi nišitelje ideid. 

Simulatsioonimudeli abil näitasime, et keskkonna tingimuste järk-järguline 
fragmenteerumine (heterogeensuse suurenemine) enamasti vähendas liigi-
rikkust, sest levimine oli piiratud (II). Heterogeensuse-mitmekesisuse seos 
sõltus ka teistest mudelis seatud tingimustest (nt. koosluste algne liigiline 
koosseis, simulatsiooni ajaline pikkus), kuid ei olnud kunagi positiivne. Kasvu-
hoonekatse tulemused näitasid, et mõned liigid tõepoolest eelistasid üht mulla-
keskkonda teisele (V) ja samuti erinesid taimed eri tüüpi mullalaikudes mõnin-
gate tunnuste poolest (IV) nagu mikrofragmenteerumise (ja nišiteooria) puhul 
eelduseks. Samas, taimeliikide mitmekesisus ei erinenud heterogeense ja 
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homogeense mullatöötluse vahel, kuigi heterogeenne keskkond koosnes sellise 
mõõtmetega laikudest, mis eelduste kohaselt olid suuremad kui taimeisendid. 

Tulemused kasvuhoonekatsest andsid kinnitust ka heterogeensuse kui eraldi 
nišitelje ideele (III, IV, V). Võrreldes homogeensete tingimustega, oli nii 
taimeliikide (III) kui ka taimetunnuste (IV) mitmekesisus väiksem hetero-
geenses keskkonnas, kus mullalaigud olid taimeisendi mõõtmetest väiksemad. 
Mõned liigid said heterogeenses keskkonnas paremini hakkama kui teised (V). 
Näiteks kõrreline Festuca rubra kasvas paremini just heterogeenses kesk-
konnas, aga (meie katses) väikesekasvuline rohund Antennaria dioica peaaegu 
kadus kooslusest. Varem on arvatud, et selline väikeseskaalaline heterogeensus 
mullatingimustes vähendab liigirikkust eelkõige läbi juurekonkurentsi, sest 
taimeliigid võitlevad toitainete pärast toitainerikastes mullalaikudes. Meie töös 
selgus, et konkurents võib toimuda ka valguse pärast. Liigid, mis läbivad 
kiiresti erinevaid mullalaike jõudmaks toitainerikaste tingimusteni, kasvavad 
suuremaks terves koosluses (nii toitainerikastes kui ka toitainevaestes laikudes; 
IV, V). Seega vähendavad need liigid valguse kättesaadavust samuti terves 
koosluses ja toitainevaesed mullalaigud ei paku väiksematele liikidele isegi 
ajutist varjupaika konkurentsi eest (III, IV, V). 

Kuna taimekooslustes kasvavad koos erinevate tunnustega liigid, siis ei 
mõjuta keskkonna heterogeensus kõiki liike ka päris ühtmoodi. Kui heterogeen-
sust moodustavad keskkonnalaigud on taimeisenditest suuremad, siis mõjutab 
heterogeensus pigem elupaigaspetsialiste, kuid mitte selliseid liike, mis on 
võimelised igal pool kasvama (II). Kui keskkonnalaigud on taimeisenditest 
väiksemad, soodustab heterogeensus suurekasvulisi ja konkurentsivõimelisi 
taimeliike, kuid vähendab väikeste ja konkurentsis allajäävate liikide ellu-
jäämisvõimalust (IV, V). 

Kuigi keskkonna väikeseskaalaline heterogeensus on seni vähe tähelepanu 
pälvinud, on see looduses pigem reegel kui erand ja mõjutab otseselt taime-
populatsioone ja -isendeid (I). Käesoleva töö tulemused kinnitasid, et väikese-
skaalaline heterogeensus avaldab taimede mitmekesisusele enamasti negatiivset 
mõju (I, II, III), kuid erinevate tunnustega liigid reageerivad heterogeensusele 
erinevalt (II, IV, V). Keskkonna väikeseskaalalise heterogeensuse mõju taime-
kooslustele peaks arvesse võtma ka looduskaitseliste otsuste tegemisel – vastu-
pidiselt üldlevinud arusaamale ei taga heterogeensus alati koosluste elurikkust. 
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