
K
E

R
LI O

R
A

V-P
U

U
R

A
N

D
 

C
entral Part Interpolation Schem

es for W
eakly Singular Integral Equations

Tartu 2014

ISSN 1024-4212
ISBN 978-9949-32-723-2

KERLI ORAV-PUURAND

Central Part Interpolation Schemes for
Weakly Singular Integral Equations

DISSERTATIONES  
MATHEMATICAE 

UNIVERSITATIS  
TARTUENSIS

93

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/79107512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 
93 



 

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 
93 
 
 
 
 
 
 
 
 
 

KERLI ORAV-PUURAND 
 
 

Central Part Interpolation Schemes for 
Weakly Singular Integral Equations 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Faculty of Mathematics and Computer Science, University of Tartu, Tartu, 

Estonia 

Dissertation has been accepted for the commencement of the degree of Doctor of 

Philosophy (PhD) in Mathematics on November 5, 2014 by the Council of the 

Institute of Mathematics, Faculty of Mathematics and Computer Science, 

University of Tartu. 

 
Supervisors: 

Prof. Arvet Pedas, Cand. Sc. 

University of Tartu 

Tartu, Estonia 

Acad., Prof.  Emer. Gennadi Vainikko, D. Sc 

University of Tartu 

Tartu, Estonia 

 

Opponents: 

Prof. Dr. Rainer Kress 

Georg-August-Universität Göttingen  

Göttingen, Germany 

Prof. Dr. Alastair Spence 

University of Bath  

Bath, United Kingdom 

 

Commencement will take place on December 17, 2014, at 14.15 in Liivi 2405. 

Publication of this dissertation has been granted by the Estonian Doctoral School 

of Mathematics and Statistics. 

 

ISSN 1024-4212 

ISBN 978-9949-32-723-2 (print) 

ISBN 978-9949-32-724-9 (pdf) 

 

 

Copyright: Kerli Orav-Puurand, 2014 

University of Tartu Press 

www.tyk.ee 

 



Contents

1 Introduction 7

2 Notations and Basic Results 16

2.1 Notations and some results from analysis . . . . . . . . . . . . . . . 16

2.2 Bounded and Compact Operators . . . . . . . . . . . . . . . . . . . 18

2.3 Compact convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Central part interpolation 21

3.1 Central part interpolation by polynomials . . . . . . . . . . . . . . 21

3.2 Central part interpolation by piecewise polynomials . . . . . . . . . 25

4 Weakly Singular Integral Operators 30

4.1 Weakly singular kernels . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Compactness of a weakly singular integral operator . . . . . . . . . 32

4.3 Di�erentiation of weakly singular integrals . . . . . . . . . . . . . . 34

5 Smoothing change of variables 36

5.1 Change of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Smoothing Properties . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Collocation method based on the central part interpolation 43

6.1 Error estimate of the collocation method . . . . . . . . . . . . . . . 43

6.2 Matrix form of the collocation method . . . . . . . . . . . . . . . . 45

7 A product integration method based on the central part interpo-

lation 48

5



Contents

7.1 Equation with algebraic singularity . . . . . . . . . . . . . . . . . . 48

7.1.1 Operator form of the method, convergence and error estimate 50

7.1.2 Matrix form of the method . . . . . . . . . . . . . . . . . . 64

7.2 Equation with logarithmic singularity . . . . . . . . . . . . . . . . . 66

7.2.1 Operator form of the method, convergence and error estimate 69

7.2.2 Matrix form of the method . . . . . . . . . . . . . . . . . . 75

8 Numerical Examples 78

8.1 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2 Product Integration Method . . . . . . . . . . . . . . . . . . . . . . 81

References 85

Sisukokkuvõte (Summary in Estonian) 93

Acknowledgments 99

Curriculum Vitae 100

Elulookirjeldus (Curriculum Vitae in Estonian) 102

List of Publications 104

6



Chapter 1

Introduction

An integral equation is a functional equation in which an unknown function appears
under one or more integral signs. The early history of integral equations goes
back to the special integral equations studied by several mathematicians of the
late 18th and early 19th century - Abel, Fourier, Laplace, Liouville, Poisson and
others. As written in [15], the terminology "integral equation" was introduced
by Paul du Bois-Reymond in 1888. At the end of the nineteenth century the
interest in integral equations increased, mainly because of their connection with
some of the di�erential equations of mathematical physics. Systematic study of
integral equations started from the works of Volterra [97] and Fredholm [23]. In
particular, Fredholm gave the necessary and su�cient conditions for solvability of
linear integral equations of the form

u(x) =

1∫
0

K(x, y)u(y) dy + f(x), x ∈ [0, 1], (1.0.1)

which are nowadays often referred to as Fredholm integral equations of the second
kind. Here K and f are given real-valued functions, u is the function which we
have to �nd. Function K is called the kernel of the integral equation, the function
f is occasionally referred to as free-term, or as forcing function.

There are a number of problems from many di�erent �elds, for example chem-
istry, physics of polymers and mathematical physics, which are directly formulated
in terms of integral equations; and there are problems that are represented in terms
of di�erential equations with auxiliary conditions, but which can be reduced to in-
tegral equations. Fredholm equations arise in potential problems [53, 32], nuclear
physics [12], atmosphere physics [9, 28, 48, 89] and in radiative heat exchange [99].
These equations also arise naturally in the theory of signal processing [79], in linear
forward modeling and inverse problems [27], the problem of small de�ection of a
rotating shaft and radiation transport can also be described as Fredholm integral
equations and by a Fredholm integral equation we may represent a boundary value
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problem associated with a di�erential equation [33].

If K(x, y) = 0 for 0 ≤ x ≤ y ≤ 1, then equation (1.0.1) takes the form

u(x) =

x∫
0

K(x, y)u(y) dy + f(x), x ∈ [0, 1], (1.0.2)

which is usually called Volterra integral equation of the second kind. Such inte-
gral equations occur for example in areas as damped vibrations [50], population
dynamics [21], study of epidemics [98], viscoelasticity [18, 22, 31], identi�cation of
memory kernels in heat conduction [29, 30] and �nancial mathematics [52]. The
relationship between the two varities of equations (1.0.1) and (1.0.2) is a useful
one, but it is wrong to infer that the di�erences between them are minimal. Often
a direct study of Volterra equations yields many results which cannot be obtained
for Fredholm equations (see, e.g. [91, 92]). There are lots of works on Volterra
integral equations. We refer here to the monographs by Brunner [14], Brunner and
Houwen [15] and Linz [51]. A reader interested in additional works on Volterra
integral equations may consult, for example, papers [16, 39, 42, 43, 44, 56, 57, 58]
and PhD theses by Kolk [41], Saveljeva [75] and Tarang [83]. In the present thesis
we pay attention to Fredholm integral equations of the form (1.0.1).

There are relatively few integral equations for which we have methods of �nd-
ing exact solutions, hence, numerical schemes are required for dealing with these
equations in a proper manner. Numerical methods for solving Fredholm integral
equations have been developed by many researchers in the past. First of all we
refer to the monographs by Anselone [3], Atkinson [6], Baker [10], Hackbush [25],
Kantorovich and Krylov [40], Krasnoselskii, Vainikko, Zabreiko, Rutitskii, Stet-
senko [46], Kress [47], Mikhlin [53], Saranen and Vainikko [74], Vainikko, Pedas
and Uba [94], Vainikko [90], see also the survey papers [5, 13, 96] and PhD theses
by Hakk [26] and Parts [63].

The main objects of study in the present thesis are high order numerical meth-
ods for solving equations (1.0.1), where the functions K and f are at least contin-
uous on ([0, 1]× (0, 1)) \ diag and [0, 1], respectively. Here

diag =
{

(x, y) ∈ R2 : x = y
}
.

In particular, we are interested in kernelsK that arem-times (m ≥ 0) continuously
di�erentiable on ([0, 1]× [0, 1]) \ diag and there exists a real number ν ∈ (−∞; 1)
such that the inequality∣∣∣∣∣
(
∂

∂x

)k ( ∂

∂x
+

∂

∂y

)l
K(x, y)

∣∣∣∣∣ ≤ c


1 for ν + k < 0
1 + |log |x− y|| for ν + k = 0

|x− y|−ν−k for ν + k > 0

 (1.0.3)

holds for all non-negative integers k and l such that k + l ≤ m. The constant c
in (1.0.3) is independent of k and l (it depends on K and m). The set of such
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functions will henceforth be denoted by

Sm,ν = Sm,ν(([0, 1]× [0, 1]) \ diag),

where m is a non-negative integer and ν ∈ (−∞, 1). Clearly,

Sm,ν ⊂ Sm1,ν1 , 0 ≤ m1 ≤ m, ν < ν1 < 1.

Taking k = l = 0, we obtain from (1.0.3) that

|K(x, y)| ≤ c


1 for ν < 0

1 + |log |x− y|| for ν = 0

|x− y|−ν for ν > 0

 , (x, y) ∈ ([0, 1]× [0, 1]) \ diag.

Thus, if ν < 0, then a kernelK ∈ Sm,ν itself is bounded on ([0, 1]× [0, 1])\diag, but
the derivatives of K(x, y) may be singular at x = y; if K ∈ Sm,ν with 0 ≤ ν < 1,
then the kernel K(x, y) may have a (weak) singularity at x = y. In particular,
K ∈ Sm,ν may have the form

K(x, y) = a(x, y)|x− y|−ν + b(x, y) (0 < ν < 1) (1.0.4)

or
K(x, y) = a(x, y) log |x− y|+ b(x, y), (1.0.5)

where a and b are m-times continously di�erentiable functions on [0, 1]× [0, 1].

We also consider a more complicated situation for (1.0.4) and (1.0.5), where
a(x, y) and b(x, y) are some di�erentiable functions for (x, y) ∈ [0, 1] × (0, 1), but
their derivatives may have boundary singularities with respect to y (see Chapter
7 in the thesis).

To analyze the convergence of a numerical method for a given integral equation
we need information about the smoothness of the exact solution. This becomes
more signi�cant when we want to �nd the maximal order of convergence of a
method. For equations (1.0.1) with smooth kernels, the smoothness of the kernel
K and the free term f determines the smoothness of the solution u (if it exists) on
the closed interval of integration [0, 1]. If we allow weakly singular kernels, then the
resulting solutions are typically non-smooth at the endpoints of the interval of the
integration [0, 1], where their derivatives become unbounded [24, 68, 72, 76, 93, 94],
see also [34, 37, 38, 64, 65, 70, 90] and Theorem 5.0.1 in Chapter 5.

Methods that are often used to solve Fredholm integral equations of the sec-
ond kind are collocation and product-integration methods. In general a colloca-
tion method is a projection method for solving integral equations in which we
�rst choose a �nite-dimensional space of candidate solutions (usually, polynomial
splines up to a certain degree) and a number of points in the domain (properly cho-
sen collocation points). The collocation solution to an equation is determined by
the condition that the equation must be satis�ed at the collocation points. Thus,
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to determine the collocation solution of the equation we need to solve the certain
system of the algebraic equations. The principal di�culty with this approach is
that there are integrals which must usually be evaluated numerically, resulting in
what we call the discrete collocation method [6, 7]. In the case of kernels in the
form

K(x, y) = K1(x, y)K2(x, y),

where K1(x, y) may have some integrable singularities and K2(x, y) is a regular
function of its arguments, these integrals can be evaluated by product integration
techinques (see e.g. [4, 6, 47, 48, 54, 77, 80, 85]). In general, product integration
is a method for the approximate evaluation of integrals of the form (for example
see [8, 80])

Iκ(ζ) =

1∫
0

κ(t)ζ(t)dt,

where ζ(t) is 'smooth', but κ(t) has an integrable singularity in [0, 1]. The essence
of the method is to replace ζ(t) by

ζn(t) =

n∑
j=0

Ψj(t)ζ(tj),

where Ψj(ti) = δij (the Kronecker symbol) and to approximate Iκ(ζ) by

Iκ(ζn) =

n∑
j=0

αjζ(tj),

where

αj =

1∫
0

Ψj(t)κ(t)dt.

The functions Ψj(t) are chosen so, that αj can be calculated exactly or, at least,
su�ciently accurately. In particular, the functions Ψj(t) can be chosen to be
piecewise polynomials. For example, if the Ψj(t) are the piecewise linear functions

satisfying Ψj(ti) = δij , where ti = ih

(
h =

1

n

)
, i = 0, 1, 2, . . . , n, then ζn(t) is the

piecewise linear polynomial.

In collocation and product integration methods the singular behaviour of the
exact solution of a weakly singular integral equation (1.0.1) can be taken into
account by using polynomial splines and special graded grids with the nodes (cf.,
e.g. [6, 25, 62, 66, 81, 82, 84, 90, 94, 95])

xi =
1

2

(
i

N

)r
, i = 0, 1, . . . , N, xN+i = 1− xN−i, i = 1, 2, . . . N, (1.0.6)
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whereN is a positive integer and r ∈ [1,∞). In (1.0.6) the parameter r is describing
the non-uniformity of the grid: if r = 1, then the gridpoints x0, . . . , x2N are
uniformly located on [0, 1]; if r > 1, then the gridpoints xi (i = 0, . . . , 2N) are
more densely clustered near the endpoints of the interval [0, 1] where the solution
of (1.0.1) may be singular. High-order methods use large values of r. In particular,
in the case of kernels (1.0.4) with 0 < ν < 1 we obtain (see, e.g. [94]) a convergence
of order O(N−m) for

r ≥ m

1− ν
by using a collocation method based on piecewise polynomials of degreem−1 (m ≥
1) and gridpoints (1.0.6). However, the use of strongly non-uniform grids with
nodes (1.0.6) with large values of r may cause serious implementation problems
of the method and may lead to unstable behaviour of numerical results. Note
that the question of the stability of piecewise polynomial collocation methods on
nonuniform grids (1.0.6) has been discussed in [35].

In this thesis we propose two new classes of high order numerical methods,
which do not need graded grids for solving linear Fredholm integral equations of the
second kind with singularities. The methods are developed by means of the 'central
part' interpolation by polynomials on the uniform grid and smoothing change
of variables. With the help of a change of variables we improve the boundary
behaviour of the exact solution of the problem.

We introduce in R = (−∞,∞) the uniform grid

Rh := {jh : j ∈ Z} , h =
1

n
, n ∈ N, (1.0.7)

where, as usual, N is the set of all positive integers and Z is the set of integers.

Let m ∈ N, m ≥ 2 be �xed. For given interval [a, b], −∞ < a < b < ∞, let
C[a, b] be a space of continuous functions f : [a, b] → R. We de�ne a piecewise
polynomial interpolant Πh,mf ∈ C [0, 1] for a function f ∈ C[−δ, 1 + δ], δ > 0,

h ≤ 2δ

m
, as follows. On every subinterval

[jh, (j + 1)h] , 0 ≤ j ≤ n− 1,

the function Πh,mf is de�ned independently from other subintervals as a polyno-

mial Π
[j]
h,mf of degree ≤ m− 1 that interpolates f at m points lh neighbouring jh

from two sides:

Π
[j]
h,mf (lh) = f (lh) , l = j − m

2
+ 1, . . . , j +

m

2
if m is even,

Π
[j]
h,mf (lh) = f (lh) , l = j − m− 1

2
, . . . , j +

m− 1

2
if m is odd.

With these interpolants we will guarantee the interpolating at the central parts
of the interval. That means it is possible to show, that in the central parts of
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the interval, the estimates of interpolation error are approximately 2m times more
precise than on the whole interval. In the central parts of the interval, the interpo-
lation process on the uniform grid also has good stability properties as m increases
(see Lemmas 3.1.1 and 3.2.1 in Chapter 3). The formula for interpolant is given
by (

Π
[j]
h,mf

)
(t) =

∑
k∈Zm

f ((j + k)h)Lk,m (nt− j) , j = 0, . . . , n− 1.

Here Lk,m are the Lagrange fundamental polynomials

Lk,m (t) =
∏

l∈Zm\{k}

t− l
k − l

, k ∈ Zm,

and
Zm =

{
k ∈ Z : −m

2
< k ≤ m

2

}
.

For m ≥ 3, Πh,mf uses values of f outside of [0, 1]. For f ∈ C [0, 1], Πh,mf
obtains a sense after an extension of f onto [−δ, 1 + δ] with some δ > 0. We will
use the simplest extension operator

Eδ : C [0, 1]→ C [−δ, 1 + δ] , (Eδf) (t) =


f (0) for −δ ≤ t ≤ 0
f (t) for 0 ≤ t ≤ 1
f (1) for 1 ≤ t ≤ 1 + δ

 ,

that maintains the smoothness of f , and de�ne the operator

Ph,m := Πh,mEδ : C [0, 1]→ C [0, 1] . (1.0.8)

To solve equation (1.0.1) with the kernel K ∈ Sm,ν , m ≥ 2 and ν ∈ (−∞, 1)
we �rst perform in (1.0.1) a smoothing change of variables,

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1, (1.0.9)

where ϕ : [0, 1]→ [0, 1] is a smooth strictly increasing function such that ϕ(0) = 0,
ϕ(1) = 1; for more complete description of ϕ and its smoothing properties see
Chapter 5. The change of variables is necessary to suppress the singularities of the
derivatives of the solution. Equation (1.0.1) takes the form

v(t) =

1∫
0

Kϕ(t, s)v(s)ds+ fϕ(t), 0 ≤ t ≤ 1, (1.0.10)

where
fϕ(t) := f(ϕ(t)), Kϕ(t, s) := K(ϕ(t), ϕ(s))ϕ′(s);

the solutions of equations (1.0.1) and (1.0.10) are in the relations

v(t) = u(ϕ(t)), u(x) = v(ϕ−1(x)),
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where ϕ−1 is the inverse function of ϕ. We solve equation (1.0.10) by collocation
techniques based on a central part interpolation by polynomials on the uniform
grid. Actually, using the interpolation projector Ph,m de�ned in (1.0.8), we ap-
proximate equation (1.0.10), i.e. an equation of the form

v = Tϕv + fϕ,

by an equation
vh = Ph,mTϕvh + Ph,mfϕ, (1.0.11)

where vh is a function we have to �nd and Tϕ is the integral operator of (1.0.10),
given by the formula

(Tϕv)(t) =

1∫
0

Kϕ(t, s)v(s)ds, 0 ≤ t ≤ 1.

Equation (1.0.11) is the operator form of our piecewise polynomial collocation
method based on a central part interpolation on the uniform grid (1.0.7). The
matrix form of this method is given in Chapter 6 (see (6.2.3)). We study the
attainable order of convergence of this method. The obtained results are given by
Theorem 6.1.1.

To solve equation (1.0.1) by a product integration method based on the central
part interpolation and smoothing change of variables, we consider the kernels with
algebraic and logarithmic singularity, (1.0.4) and (1.0.5), respectively. As in the
collocation method, we perform the smoothing change of variables (1.0.9) in the
initial equations. In the case of the kernel with singularity of the algebraic type
we achieve an equation of the form

v(t) =

1∫
0

[
A(t, s)|t− s|−ν + B(t, s)

]
v(s)ds+ g(t), 0 ≤ t ≤ 1, (1.0.12)

where v(t) = u(ϕ(t)) is the new function we look for,

g(t) = f(ϕ(t)) A(t, s) = a(ϕ(t), ϕ(s))Φ(t, s)−νϕ′(s),

B(t, s) = b(ϕ(t), ϕ(s))ϕ′(s),

and

Φ(t, s) =


ϕ(t)− ϕ(s)

t− s
for t 6= s

ϕ′(s) for t = s

 , 0 ≤ t, s ≤ 1. (1.0.13)

In the case of the kernel with singularity of the logarithmic type we achieve an
equation of the form

v(t) =

1∫
0

(A(t, s) log |t− s|+B(t, s))v(s)ds+ g(t), 0 ≤ t ≤ 1, (1.0.14)
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where v(t) = u(ϕ(t)) is the new function we look for,

g(t) = f(ϕ(t)), A(t, s) = a(ϕ(t), ϕ(s))ϕ′(s),

B(t, s) = [a(ϕ(t), ϕ(s)) log Φ(t, s) + b(ϕ(t), ϕ(s))]ϕ′(s),

and Φ(t, s) is given by (1.0.13).

Using the interpolation projector Ph,m, determined by the formula (1.0.8), we
approximate equations (1.0.12) and (1.0.14) by equations

vh(t) =

1∫
0

|t−s|−νPh,m(A(t, s)vh(s))ds+

1∫
0

Ph,m(B(t, s)vh(s))ds+g(t), 0 ≤ t ≤ 1,

(1.0.15)
and

vh (t) =

1∫
0

log |t− s|Ph,m (A (t, s) vh (s)) ds+

1∫
0

Ph,m (B (t, s) vh (s)) ds+ g (t) ,

0 ≤ t ≤ 1. (1.0.16)

In these equations operator Ph,m is applied to the productsA(t, s)vh(s), B(t, s)vh(s)
and A(t, s)vh(s), B(t, s)vh(s) as functions of s, treating t as a parameter. With
(1.0.15) and (1.0.16) the operator forms of a product integration method corre-
sponding to the piecewise polynomial central part interpolation on the uniform
grid {ih : i = 0, . . . , n} are given. The matrix forms of the methods are given
by (7.1.56) and (7.2.28), respectively. Such approach is hopeful due to a simpler
assembling of the algebraic system of equations compared to collocation method
(1.0.11).

We establish the optimal convergence order of methods (1.0.15) and (1.0.16).
The obtained results are given by Theorems 7.1.2 and 7.2.2.

The thesis is organised as follows.

In Chapter 2 de�nitions and basic results used in this work are introduced.

In Chapter 3 we introduce the idea of central part interpolation. The central
part interpolation scheme has a suprisingly good error estimate. Additionally, in
the central parts of the interval, the interpolation process on the uniform grid has
good stability properties.

In Chapters 4 and 5 we introduce the smoothness-singularity class Sm,ν of
kernels and a weighted space of smooth functions Cm,ν(0, 1) for describing the
smoothness of the solution of a weakly singular integral equation. By Cm,ν(0, 1),
m ≥ 1, ν < 1, we denote the space of continuous functions f : [0, 1] → R which

14



are m-times continuously di�erentiable on (0, 1) such that

∣∣∣f (j)(x)
∣∣∣ ≤ c


1 for j + ν − 1 < 0

1 + |log ρ(x)| for j + ν − 1 = 0

ρ(x)−j−ν+1 for j + ν − 1 > 1

 ,

0 < x < 1, j = 0, . . . ,m,

where c = c(f) is a positive constant and

ρ(x) = min {x, 1− x}

is the distance from x ∈ (0, 1) to the boundary of the interval (0, 1). If K ∈ Sm,ν ,
m ∈ N, ν ∈ R, ν < 1, then for f ∈ Cm,ν(0, 1) also the solution u of equation (1.0.1)
belongs to Cm,ν(0, 1). Moreover, we study a class of functions ϕ for the change of
variables and the smoothing properties of such functions (see Theorem 5.2.1).

Chapters 6 and 7 are devoted to the numerical solution of the integral equation
(1.0.1) with singularities. Firstly we undertake a change of variables to suppress the
singularities - the solution of the transformed equation will bem times continuously
di�erentiable on [0, 1] including the boundary points 0 and 1. In Chapter 6 we
apply a collocation technique based on a central part interpolation by polynomials
on the uniform grid for the numerical solution of equations (1.0.1) with kernels
K ∈ Sm,ν . We study the convergence and the convergence order of this method. In
Chapter 7 we use product integration approach with the central part interpolation
to solve integral equations (1.0.1) with kernels K(x, y), which may have a diagonal
singularity as y → x and the boundary singularities as y → 0 and/or y → 1. We
study the attainable order of the convergence of this method.

In Chapter 8 a series of numerical tests is given. We compare the results of our
computational experiments with the theoretical results which have been obtained
in Chapters 6 and 7. The numerical results support the theoretical analysis.

Most of the results given in Chapters 3-8 are published in [59, 60, 61], the thesis
also contains new results which have not been published yet.
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Chapter 2

Notations and Basic Results

In this chapter we introduce some basic notations and formulate some well-known
results, which we need later.

2.1 Notations and some results from analysis

In this section we present the notations and some results from analysis. Through-
out this work c, c′, c0, . . . denote positive constants which may have di�erent val-
ues in di�erent occurrences. By N = {1, 2, . . . } we denote the set of all positive inte-
gers, by N0 = {0}∪N the set of non-negative integers, by Z = {. . . ,−1, 0, 1, 2, . . . }
the set of integers and by R = (−∞,∞) the set of real numbers.

We denote the set of polynomials of degree not exceeding m ∈ N0 by Pm.

By L∞(a, b) we denote the set of measurable functions v : [a, b]→ R, such that

inf
D⊂[a,b]:µ(D)=0

sup
x∈[a,b]\D

|v(x)| <∞,

where µ(D) is the Lebesgue measure of the set D. The set L∞(a, b) is a Banach
space with the norm

‖v‖L∞(a,b) ≡ ‖v‖∞ = inf
D⊂[a,b]:µ(D)=0

sup
x∈[a,b]\D

|v(x)|, v ∈ L∞(a, b).

By Cm(D) (D ⊂ Rn, m ∈ N0, n ∈ N, R1 ≡ R, C0(D) ≡ C(D)) we denote the
space of continuous and m times continuously di�erentiable functions v : D → R.

By C[a, b] (−∞ < a < b < ∞) we denote the Banach space of continuous
functions v : [a, b]→ R with the norm

‖v‖C[a,b] = ‖v‖∞ = max
a≤x≤b

|v(x)|.
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2.1. Notations and some results from analysis

By Cm[a, b] (m ∈ N, a < b) we denote the Banach space of m times continu-
ously di�erentiable functions v : [a, b]→ R with the norm

‖v‖Cm[a,b] =

m∑
i=0

‖v(i)‖∞.

The following result gives a representation of the error that occurs when su�-
ciently smooth functions are interpolated by polynomials (see e.g [8, 71]).

Theorem 2.1.1. Assume f ∈ Cm+1[a, b] m ∈ N0. Let {x0, . . . , xm} be any pair-

wise distinct points in [a, b] and let p ∈ Pm be the polynomial with p(xk) = f(xk)
for k = 0, . . . ,m. Then for each x ∈ [a, b] the approximation error is given by

f(x)− p(x) = (x− x0) . . . (x− xm)
f (m+1)(ξ)

(m+ 1)!
, (2.1.1)

with ξ = ξ(x) ∈ (a, b).

De�nition 2.1.1. A subset M ⊂ X is called relatively compact in a Banach space

X, if any sequence (xn) ⊂M contains a subsequence converging in X.

Theorem 2.1.2 (Arzelà-Ascoli). A set S ⊂ C[0, 1] is relatively compact in C[0, 1]
if and only if the following two conditions are ful�lled:

(i) the functions u ∈ S are uniformely bounded, i.e., there is a constant c such that

|u(x)| ≤ c for all x ∈ [0, 1], u ∈ S;
(ii) the functions u ∈ S are equicontinuous, i.e., for every ε > 0 there is a δ > 0
such that x1, x2 ∈ [0, 1], |x1 − x2| ≤ δ implies |u(x1)− u(x2)| ≤ ε for all u ∈ S.

The proof of this result can be found e.g. in [47].

For di�erentiating compositions we need the following result (see, for example,
[45, p. 111]).

Theorem 2.1.3 (Faà di Bruno). Let u be an m times continuously di�erentiable

function on an interval which contains the values of ϕ ∈ Cm[0, 1]. Then the compos-

ite function u(ϕ(x)) is m times continously di�erentiable on [0, 1] and the deriva-

tives of the composition function at any point x ∈ [0, 1] can be expressed by Faà di

Bruno di�erentiation formula (
d

dx

)j
u(ϕ(x))

=
∑

k1+2k2+...+jkj=j

j!

k1! . . . kj !
u(k1+...+kj)(ϕ(x))

(
ϕ′(x)

1!

)k1
. . .

(
ϕ(j)(x)

j!

)kj
,

(2.1.2)
where the sum is taken over all non-negative integers k1, . . . , kj, j = 1, . . . ,m, such

that k1 + 2k2 + . . .+ jkj = j.
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2.2. Bounded and Compact Operators

2.2 Bounded and Compact Operators

In this section, we present some results from the theory of linear operators (see,
for example, [6, 8, 25, 47])

LetX and Y be Banach spaces. A linear operator A : X → Y is called bounded
if there exists a positive constant c such that

‖Ax‖Y ≤ c ‖x‖X
for all x ∈ X. An operator A : X → Y is said to be continuous if

‖xn − x‖X → 0 for n→∞

implies
‖Axn −Ax‖Y → 0 for n→∞.

A linear operator A : X → Y is continuous if and only if it is bounded.

One says that a linear operator A : X → Y has the inverse A−1 : Y → X if
A−1A = IX and AA−1 = IY where IX and IY are the identity mappings in X and
Y , respectively.

For the linear operator A : X → Y we denote

N (A) = {x ∈ X : Ax = 0} - the null space of A,

R(A) = {y ∈ y : y = Ax} - the range of A.

By L(X,Y ) we denote the Banach space of all linear bounded operators A :
X → Y with the norm

‖A‖L(X,Y ) = sup
x∈X,‖x‖X≤1

‖Ax‖Y , A ∈ L(X,Y ).

Theorem 2.2.1 (Banach). Let X and Y be Banach spaces and A ∈ L(X,Y ). If

N (A) = 0 and R(A) = Y then A has the inverse A−1 ∈ L(Y,X).

Theorem 2.2.2 (Banach-Steinhaus). Let A : X → Y be a bounded linear operator

and let (An) be a sequence of linear bounded operators An : X → Y from a Banach

space X into a Banach space Y . For pointwise convergence

Anx→ Ax, n→∞ for all x ∈ X

it is necessary and su�cient that

‖An‖L(X,Y ) ≤ c for all n ∈ N

with some constant c and that

Anx→ Ax, n→∞ for all x ∈ V,

where V is some dense subset of X.
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2.2. Bounded and Compact Operators

Theorem 2.2.3. Let X be a Banach space, and let A ∈ L(X,X) be a bounded

linear operator from X into X with ‖A‖L(X,X) < 1. Then there exists (I −A)−1 ∈
L(X,X), and

‖(I −A)−1‖L(X,X) ≤
1

1− ‖A‖L(X,X)

,

where I is the identity mapping in X.

Theorem 2.2.4. Let X and Y be Banach spaces. If the operators A,B ∈ L(X,Y )
are such that A has a bounded inverse A−1 ∈ L(Y,X) and

‖B‖L(X,Y )‖A−1‖L(Y,X) < 1,

then A+B has a bounded inverse (A+B)−1 ∈ L(X,Y ) and

‖(A+B)−1‖L(Y,X) ≤
‖A−1‖L(Y,X)

1− ‖B‖L(X,Y )‖A−1‖L(Y,X)
.

De�nition 2.2.1. A linear operator A : X → Y is called compact if A transforms

every bounded set of X into a relatively compact set of Y .

Equivalently, A : X → Y is compact if for every bounded sequence (un) ⊂ X,
the sequence (Aun) contains a subsequence that converges in Y . A linear compact
operator A : X → Y is bounded and continuous.

Theorem 2.2.5. Let X,Y and V be Banach spaces. Let A be a compact operator

mapping X into Y and let Bn : Y → V be a pointwise convergent sequence of

bounded linear operators with limit operator B : Y → V . Then

‖(Bn −B)A‖L(X,V ) → 0 for n→∞.

Theorem 2.2.6. Let Tn : X → Y , n = 1, 2, . . ., be linear compact operators,

T : X → Y a linear bounded operator, and let ‖Tn − T‖L(X,Y ) → 0 as n → ∞.

Then T : X → Y is compact.

Theorem 2.2.7 (Fredholm alternative). Let X be a Banach space, and let A ∈
L(X,X) be a compact operator. Then the equation x = Ax+ f with f ∈ X has a

unique solution x ∈ X if and only if the homogeneous equation x = Ax has only

the trivial solution x = 0. In such a case, the operator I−A has a bounded inverse

(I −A)−1 ∈ L(X,X).

De�nition 2.2.2. A linear operator P : X → X from X to itself, is called a

projection operator if P 2 = P i.e. P (Px) = Px, for any x ∈ X.
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2.3. Compact convergence

2.3 Compact convergence

In this section we introduce a concept of compact convergence of operators by
Vainikko and present a result from his discrete convergence theory, which in a
more general setting can be found in [87] - [90]. In the following simple setting the
concept is closely related to the Anselone's concept of collectively compact family
of operators, see [3].

Let X be a Banach space.

De�nition 2.3.1. A sequence (Tn) of operators Tn ∈ L(X,X) with n ∈ N is called

compactly converging to T ∈ L(X,X) (we write Tn −→ T compactly) if

‖Tnu− Tu‖X → 0 as n→∞ for any u ∈ X, (2.3.1)

and for any bounded sequence (un) of elements un ∈ X, n ∈ N, it follows that the
sequence (Tnun) is relatively compact in X (i.e. every subsequence (Tnun)n∈N′⊂N
contains a subsequence (Tnun)n∈N′′⊂N′ converging in X).

Let us consider the equation

u = Tu+ f, (2.3.2)

where f ∈ X and T ∈ L(X,X). We approximate (2.3.2) by the equations

un = Tnun + f, (2.3.3)

where n ∈ N, Tn ∈ L(X,X). We are interested in the convergence un → u for
n → ∞, where u ∈ X and un ∈ X are the solutions of equations (2.3.2) and
(2.3.3), respectively. The following theorem, which we'll need later in Chapter 7,
gives us su�cient conditions.

Theorem 2.3.1. Assume that Tn −→ T compactly whereby Tn ∈ L(X,X) (n ∈ N)
and T ∈ L(X,X) are compact operators. Suppose that the homogeneous equation

v = Tv has in X only the trivial solution v = 0X .

Then equation (2.3.2) has a unique solution u ∈ X and there exists an n0 ∈ N
such that for n ≥ n0, equation (2.3.3) has a unique solution un ∈ X; moreover

‖un − u‖X → 0 for n→∞ and the following error estimate holds:

c1 ‖Tnu− Tu‖X ≤ ‖un − u‖X ≤ c2 ‖Tnu− Tu‖X , n ≥ n0. (2.3.4)

Here c1 and c2 are some positive constants not depending on n and f .
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Chapter 3

Central part interpolation

In this chapter we introduce a "central part interpolation" scheme considered in
[61]. The central part interpolation has good error estimates. Additionally, in the
central parts of the interval the interpolation process on the uniform grid has good
stability properties comparable with the stability of Chebyshev interpolation.

3.1 Central part interpolation by polynomials

Given an interval [a, b] (a < b) and m ∈ N, introduce the uniform grid consisting
of m points

xi = a+

(
i− 1

2

)
h, i = 1, . . . ,m, h =

b− a
m

. (3.1.1)

Denote by Pm−1 the set of polynomials of degree not exceeding m− 1 and by
Πm the Lagrange interpolation projection operator assigning to any f ∈ C [a, b]
the polynomial Πmf ∈ Pm−1 that interpolates f at points (3.1.1):

(Πmf)(x) =
m∑
j=1

f(xj)
m∏
k=1
k 6=j

x− xk
xj − xk

, a ≤ x ≤ b, m ≥ 2,

(Π1f)(x) = f(x1), a ≤ x ≤ b.

Lemma 3.1.1. In the case of interpolation knots (3.1.1) with m ∈ N, for f ∈
Cm [a, b] it holds

max
a≤x≤b

|f (x)− (Πmf) (x)| ≤ θmhm max
a≤x≤b

∣∣∣f (m) (x)
∣∣∣ , (3.1.2)

with

θm =
1 · 3 · . . . · (2m− 1)

2m m!
=

(2m)!

2m m!(2 · 4 · . . . · 2m)
∼= (πm)−

1
2 ,
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3.1. Central part interpolation by polynomials

where θm ∼= εm means that θm/εm → 1 as m→∞.

Further, for m = 2k, k ≥ 1,

max
xk≤x≤xk+1

|f (x)− (Πmf) (x)| ≤ ϑmhm max
a≤x≤b

∣∣∣f (m) (x)
∣∣∣ , (3.1.3)

with

ϑm = 2−2m
m!

((m/2)!)2
∼=
√

2/π m−
1
2 2−m, (3.1.4)

whereas for m = 2k + 1, k ≥ 1,

max
xk≤x≤xk+2

|f (x)− (Πmf) (x)| ≤ ϑmhm max
a≤x≤b

∣∣∣f (m) (x)
∣∣∣ , (3.1.5)

with

ϑm =
2
√

3

9

(k!)2

(2k + 1)!
∼=

2
√

6π

9
m−

1
2 2−m. (3.1.6)

Proof. These estimates are consequences of the error formula (see (2.1.1))

f(x)− (Πmf)(x) =
f (m)(ξ)

m!
(x− x1) . . . (x− xm), x ∈ [a, b], ξ = ξ(x) ∈ (a, b),

that holds for the interpolation with arbitrary pairwise di�erent knots x1, . . . xm
of [a, b].

Indeed for points (3.1.1), the maximum of |(x− x1) . . . (x− xm)| on [a, b] is
attained at the end points of the interval, thus

max
a≤t≤b

|(x− x1) . . . (x− xm)| = h

2
· 3

2
h · . . . · 2m− 1

2
h

=
1 · 3 · 5 · . . . · (2m− 1)

2m
hm,

and (3.1.2) holds with

θm =
1 · 3 · . . . · (2m− 1)

2m m!
=

(2m)!

2m m!(2 · 4 · . . . · 2m)
.

The Stirling formula
m! ∼=

√
2πmmme−m (3.1.7)

yields
2 · 4 · 6 · . . . · 2m = 2m(1 · 2 · . . . ·m) ∼= 2m

√
2πmmme−m,

and we get

θm ∼=
2
√
πm (2m)2me−2m

2m
√

2πmmme−m2m
√

2πmmme−m
=

2
√
πm

2πm
= (πm)−

1
2 .
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3.1. Central part interpolation by polynomials

Let us prove (3.1.3) and (3.1.4) for m = 2k (k ∈ N). Note that the maximum
of |(x− x1) . . . (x− x2k)| on [xk, xk+1] is attained at the centre of [xk, xk+1] (which
is also the centre of [a, b], see Figure 3.1) and equals(

1

2
h

)2(3

2
h

)2

. . .

(
2k − 1

2
h

)2

=
[1 · 3 · 5 · . . . · (2k − 1)]2

22k
hm.

Thus, (3.1.3) holds with

ϑm =
[1 · 3 · 5 · . . . · (2k − 1)]2

2m m!
=

[(2k)!]2

2m m!(2 · 4 · 6 · . . . · 2k)2
=

m!

22m
[(
m
2

)
!
]2 .

This together with (3.1.7) yields (3.1.4):

ϑm ∼=
√

2πmmme−m

22m
[√

2πm2
(
m
2

)m
2 e−

m
2

]2 =

√
2
√
πmmm e−m

22m πmmm 2−m e−m
= 2−mm−

1
2

(
2

π

) 1
2

.

Finally, let us prove (3.1.5) and (3.1.6). Now m = 2k + 1, k ≥ 1. We estimate
on [xk, xk+2] separately the product

|(x− xk)(x− xk+1)(x− xk+2)|

and the remaining product

|x− x1| . . . |x− xk−1| |(x− xk+3)| . . . |(x− xm)| .

Undertaking the shift x− xk+1 = y, we have

max
xk≤x≤xk+2

|(x− xk)(x− xk+1)(x− xk+2)| = max
−h≤y≤h

|(y − h)y(y + h)|

= max
−h≤y≤h

∣∣y3 − h2y∣∣ .
Function φ(y) = y3 − h2y has a local maximum on [−h, h] at y = −

√
3

3
h with

φ

(
−
√

3

3
h

)
=

2
√

3

9
h3. Thus

max
xk≤x≤xk+1

|(x− xk)(x− xk+1)(x− xk+2)| =
2
√

3

9
h3.

The maximum of |x− x1| . . . |x− xk−1| |(x− xk+3)| . . . |(x− xm)| on [xk, xk+2] is
attained at the center xk+1 of [xk, xk+2] (see Figure 3.1) and equals

(2h)2(3h)2 . . . (kh)2 = (k!)2h2(k−1) = (k!)2hm−3.
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3.1. Central part interpolation by polynomials

Figure 3.1: Central parts of an interval [a, b] with di�erent values of m

This results to the estimate

max
xk≤x≤xk+2

|(x− x1) . . . (x− xm)| ≤ 2
√

3

9
(k!)2hm

and (3.1.5) with

ϑm =
2
√

3

9

(k!)2

(2k + 1)!
.

Due to the Stirling formula (3.1.7)

ϑm =
2
√

3

9

(k!)2

(2k + 1)!
∼=

2
√

3

9

2π k k2ke−2k√
2π(2k + 1) (2k + 1)2k+1e−(2k+1)

=
2
√

3

9

√
2π√

2k + 1 e−1

(
k

2k + 1

)2k+1

.

Since
k

2k + 1
=

k

2k

(
2k

2k + 1

)
=

1

2

(
1− 1

2k + 1

)
,

(
k

2k + 1

)2k+1

=

(
1

2

)2k+1(
1− 1

2k + 1

)2k+1
∼=
(

1

2

)2k+1

e−1,
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3.2. Central part interpolation by piecewise polynomials

we obtain (3.1.6):

ϑm =
2
√

3

9

(k!)2

(2k + 1)!
∼=

2
√

3

9 e−1

√
2π√

2k + 1

(
k

2k + 1

)2k+1
∼=

2
√

6π

9
m−

1
2 2−m.

Comparing estimates (3.1.2) - (3.1.5) we observe that in the central parts of
[a, b], the estimates for the error f − Πmf are approximately 2m times preciser
than on the whole interval. In the central parts of [a, b], the interpolation process
on the uniform grid has also good stability properties as m increases: in contrast
to an exponential growth [19] of

‖Πm‖L(C[a,b],C[a,b]) as m→∞,

it holds by the Runck's theorem (see [19], [73])

‖Πm‖L(C[a,b],C[a+b2
−rh1/2,a+b

2
+rh1/2]) ≤ cr (1 + logm) , rh

1
2 ≤ b− a

2
, (3.1.8)

where the constant cr depends only on r > 0. As well known (see e.g [19]),
logarithmic growth is the best one that holds for projectors Pm : C[a, b] → Pm−1
and, for example, Chebyshev interpolation projectors have this growth.

3.2 Central part interpolation by piecewise polynomials

Introduce in R the uniform grid

{jh : j ∈ Z} , h =
1

n
, n ∈ N. (3.2.1)

Let
m ∈ N, m ≥ 2

be �xed. Given a function f ∈ C [−δ, 1 + δ], δ > 0, we de�ne a piecewise polyno-

mial interpolant Πh,mf ∈ C [0, 1] for h =
1

n
<

2δ

m
as follows. On every subinterval

[jh, (j + 1)h], 0 ≤ j ≤ n − 1, the function Πh,mf is de�ned independently from

other subintervals as a polynomial Π
[j]
h,mf ∈ Pm−1 of degree ≤ m − 1 by the con-

ditions

Π
[j]
h,mf (lh) = f (lh) , l = j − m

2
+ 1, . . . , j +

m

2
if m is even,

Π
[j]
h,mf (lh) = f (lh) , l = j − m− 1

2
, . . . , j +

m− 1

2
if m is odd.

25



3.2. Central part interpolation by piecewise polynomials

A uni�ed writing form of these interpolation conditions is

Π
[j]
h,mf (lh) = f (lh) , for l ∈ Z such that l − j ∈ Zm, (3.2.2)

where
Zm =

{
k ∈ Z : −m

2
< k ≤ m

2

}
.

Observe that Zm contains the following m elements (integers):

Zm =
{
−m

2
+ 1,−m

2
+ 2, . . . ,

m

2

}
if m is even,

Zm =

{
−m− 1

2
,−m− 1

2
+ 1, . . . ,

m− 1

2

}
if m is odd.

For an "interior" knot jh, 1 ≤ j ≤ n − 1, interpolation conditions (3.2.2) contain
the condition (

Π
[j−1]
h,m f

)
(jh) = f (jh)

as well as the condition (
Π

[j]
h,mf

)
(jh) = f (jh) ,

thus Πh,mf is uniquely de�ned at interior knots and Πh,mf is continuous on [0, 1].
Namely, for the "interior" knots jh, 1 ≤ j ≤ n−1, interpolation conditions (3.2.2)
yield

(Πh,mf)(jh) = f(jh)

for Πh,mf as a function on [(j − 1)h, jh] as well as a function on [jh, (j + 1)h].
The one side derivatives of the interpolant Πh,mf at the interior knots may be
di�erent.

Introduce the Lagrange fundamental polynomials Lk,m ∈ Pm−1, k ∈ Zm, sat-
isfying Lk,m (l) = δk,l for l ∈ Zm, where δk,l is the Kronecker symbol, δk,l = 0 for
k 6= l and δk,k = 1. An explicit formula for Lk,m is given by

Lk,m (t) =
∏

l∈Zm\{k}

t− l
k − l

, k ∈ Zm. (3.2.3)

We claim that (
Π

[j]
h,mf

)
(t) =

∑
k∈Zm

f ((j + k)h)Lk,m (nt− j) ,

j = 0, . . . , n− 1, t ∈ [jh, (j + 1)h].

(3.2.4)

Indeed, Π
[j]
h,mf de�ned by (3.2.4) is really a polynomial of degree ≤ m − 1 and it

satis�es interpolation conditions (3.2.2): for l with l − j ∈ Zm, it holds that(
Π

[j]
h,mf

)
(lh) =

∑
k∈Zm

f ((j + k)h)Lk,m (l − j) =
∑
k∈Zm

f ((j + k)h) δk,l−j
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3.2. Central part interpolation by piecewise polynomials

= f ((j + (l − j))h) = f (lh) .

For m = 2, the interpolant Πh,2f is the usual piecewise linear function joining
for 0 ≤ j ≤ n− 1 the pair of points

(jh, f (jh)) ∈ R2 and ((j + 1)h, f ((j + 1)h)) ∈ R2

by a straight line; Πh,2f does not use the values of f outside [0, 1], and Πh,2f is a
projection operator in C [0, 1], i.e. Π2

h,2 = Πh,2.

For m ≥ 3, Πh,mf uses values of f outside of [0, 1]. For f ∈ C [0, 1], Πh,mf

obtains a sense after an extension of f onto [−δ, 1 + δ] with δ ≥ m

2
h. In our work

we will consider the functions f ∈ Cm [0, 1], that satisfy the boundary conditions

f (j) (0) = f (j) (1) = 0, j = 1, . . . ,m.

Then we are in a lucky situation and the simplest extension operator

Eδ : C [0, 1]→ C [−δ, 1 + δ] , (Eδf) (t) =



f (0) for −δ ≤ t ≤ 0

f (t) for 0 ≤ t ≤ 1

f (1) for 1 ≤ t ≤ 1 + δ


(3.2.5)

maintains the smoothness of f . The operator

Ph,m := Πh,mEδ : C [0, 1]→ C [0, 1] (3.2.6)

is well de�ned and P 2
h,m = Ph,m, i.e., Ph,m is a projector in C [0, 1].

For wh ∈ R (Ph,m) (the range of Ph,m) we have

wh = Ph,mwh = Πh,mEδwh,

and due to (3.2.4) we get for t ∈ [jh, (j + 1)h] (j = 0, . . . , n− 1) that

wh(t) =
∑
k∈Zm

(Eδwh)((j + k)h)Lk,m(nt− j) (3.2.7)

where

(Eδwh)(ih) =


wh(ih) for i = 0, . . . , n

wh(0) for i < 0

wh(1) for i > n

 .
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3.2. Central part interpolation by piecewise polynomials

Thus wh ∈ R (Ph,m) is uniquely determined on [0, 1] by its knot values wh (ih),
i = 0, . . . , n. We conclude, that

dimR (Ph,m) = n+ 1.

It is also clear, that for a wh ∈ R (Ph,m) we have wh = 0 if and only if wh (ih) = 0,
i = 0, . . . , n.

For f ∈ C [−δ, 1 + δ], the interpolant Πh,mf is closely related to the central part
interpolation of f on the uniform grid treated in Section 3.1. On [jh, (j + 1)h],

the interpolant Πh,mf = Π
[j]
h,mf coincides with the polynomial interpolant Πmf

constructed for f on the interval [aj , bj ] where

aj =

(
j − m− 1

2

)
h, bj =

(
j +

m+ 1

2

)
h

in the case of even m and

aj =
(
j − m

2

)
h, bj =

(
j +

m

2

)
h

in the case of odd m. Moreover, [jh, (j + 1)h] is contained in the central part of
[aj , bj ] on which the interpolation error can be estimated by (3.1.3) and (3.1.5).
On this way we obtain the following result.

Lemma 3.2.1.

(i) For f ∈ Cm [−δ, 1 + δ] (m ≥ 2, δ > 0, h =
1

n
<

2δ

m
),

max
0≤t≤1

|f (t)− (Πh,mf)(t)| ≤ ϑmhm max
−δ≤t≤1+δ

∣∣∣f (m) (t)
∣∣∣ , (3.2.8)

with ϑm, de�ned by (3.1.4) and (3.1.6), respectively for even and odd m.

(ii) For f ∈ V (m) :=
{
v ∈ Cm [0, 1] : v(j) (0) = v(j) (1) = 0, j = 1, . . . ,m

}
it holds

max
0≤t≤1

|f (t)− (Ph,mf) (t)| ≤ ϑmhm max
0≤t≤1

∣∣∣f (m) (t)
∣∣∣ . (3.2.9)

Proof. The claim (i) is a direct consequence of Lemma 3.1.1. Further, to prove the
estimate (3.2.9), we have Eδf ∈ Cm[−δ, 1 + δ] for f ∈ V (m) and

max
−δ≤t≤δ

∣∣∣(Eδf)(m)(t)
∣∣∣ = max

0≤t≤1

∣∣∣f (m)(t)
∣∣∣ , (Eδf)(t) = f(t) for 0 ≤ t ≤ 1.

Applying (3.2.8) to Eδf , it takes the form

max
0≤t≤1

|(Eδf)(t)− (Πh,mEδf)(t)| ≤ ϑmhm max
−δ≤t≤1+δ

∣∣∣(Eδf)(m)(t)
∣∣∣ .
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3.2. Central part interpolation by piecewise polynomials

We can rewrite it as

max
0≤t≤1

|f(t)− (Ph,mf)(t)| ≤ ϑmhm max
0≤t≤1

∣∣∣f (m)(t)
∣∣∣ ,

which completes the proof.

From (3.1.8), (3.2.5) and (3.2.6) we obtain that the norms ‖Ph,m‖L(C[0,1],C[0,1])

are uniformly bounded with respect to n, h =
1

n
:

‖Ph,m‖L(C[0,1],C[0,1]) ≤ c (1 + logm) , (3.2.10)

with a constant c which is independent of h (of n).

Together with (3.2.9), noticing that V (m) is dense in C [0, 1], Theorem 2.2.2
yields the following result.

Lemma 3.2.2. For any f ∈ C [0, 1],

max
0≤t≤1

|f (t)− (Ph,mf) (t)| → 0, as n→∞.
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Chapter 4

Weakly Singular Integral

Operators

This chapter is devoted to the compactness of weakly singular integral operators
in C[0, 1] and in certain weighted spaces of smooth functions.

4.1 Weakly singular kernels

Consider an integral operator T de�ned by its kernel function K(x, y) via the
formula

(Tu)(x) =

1∫
0

K(x, y)u(y)dy, 0 ≤ x ≤ 1, (4.1.1)

where u is taken from some set of functions, for example, from space C[0, 1]. In
the literature (for example, see [2]), the weak singularity of the kernel K and the
corresponding operator T may have di�erent senses. A frequent understanding is
that K has the form

K(x, y) = a(x, y) |x− y|−ν ,

where a(x, y) is a continuous function on [0, 1]× [0, 1] and 0 < ν < 1. This kernel
has the property

sup
0≤x≤1

1∫
0

|K(x, y)| dy <∞ (4.1.2)

often used to de�ne the weak singularity in the wide sense: a kernel K(x, y) is at
most weakly singular if it is absolutely integrable with respect to y and satis�es
(4.1.2). The kernels which we will consider in Chapters 5-6 are somewhere in the
middle of these two understandings of the weak singularity. Following [47, 90], we
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4.1. Weakly singular kernels

say that a kernel K is weakly singular if K is continuous on ([0, 1]× [0, 1]) \ diag
and there exist some constants c > 0 and ν ∈ (0, 1) such that

|K(x, y)| ≤ c |x− y|−ν , (x, y) ∈ ([0, 1]× [0, 1]) \ diag. (4.1.3)

Here diag means the diagonal of R2: diag =
{

(x, y) ∈ R2 : x = y
}
.

For instance, the kernels

K(x, y) = a(x, y) |x− y|−ν , 0 < ν < 1, (4.1.4)

K(x, y) = a(x, y) log |x− y| , (4.1.5)

K(x, y) = a(x, y) |x− y|−ν logk |x− y| , 0 ≤ ν < 1, k ∈ N, (4.1.6)

with a ∈ C([0, 1]× [0, 1]) are weakly singular in the sense of such understanding.

Clearly, the kernel of the form (4.1.4) is weakly singular. The kernel (4.1.5) is
a special case of (4.1.6). The kernel (4.1.6) can be estimated as follows:

|K(x, y)| =
∣∣∣a(x, y) |x− y|−ν logk |x− y|

∣∣∣ ≤ |a(x, y)| |x− y|−ν |log |x− y||k

≤ c |x− y|−ν−ν
′
for any ν ′ ∈ (0, 1− ν), (x, y) ∈ ([0, 1]× [0, 1]) \ diag.

In what follows we are interested in kernels that are m-times continuously dif-
ferentiable on ([0, 1]× [0, 1])\diag. Introduce the following smoothness-singularity
class Sm,ν of kernels.

De�nition 4.1.1. For given m ∈ N0 and ν ∈ R, denote by

Sm,ν := Sm,ν(([0, 1]× [0, 1]) \ diag)

the set of m times continuously di�erentiable functions K on ([0, 1]× [0, 1]) \ diag
that satisfy there for all k, l ∈ N0, k + l ≤ m, the inequality

∣∣∣∣∣
(
∂

∂x

)k ( ∂

∂x
+

∂

∂y

)l
K(x, y)

∣∣∣∣∣ ≤ c


1 if ν + k < 0

1 + |log |x− y|| if ν + k = 0

|x− y|−ν−k if ν + k > 0

 ,

(4.1.7)
where c = c(K,m) > 0 is a constant.
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4.2. Compactness of a weakly singular integral operator

Taking k = l = 0, we obtain from (4.1.7) the following estimate:

|K(x, y)| ≤ c


1 if ν < 0

1 + |log |x− y|| if ν = 0

|x− y|−ν if ν > 0

 .

From here we can see, that for ν > 0, condition (4.1.7) coincides with (4.1.3). Thus
a kernel K ∈ Sm,ν is weakly singular if ν < 1. A kernel K ∈ Sm,ν with ν < 0 is
bounded itself, but its derivatives may have singularities on the diagonal; ν = 0
corresponds to a logarithmically singular kernel.

4.2 Compactness of a weakly singular integral operator

A weak singularity of the kernel implies that the corresponding integral operator
is compact in the space C[0, 1]. The proof of the following lemma is standard (cf.
[47] or [68]).

Lemma 4.2.1. A kernel K ∈ Sm,ν with m ≥ 0, ν < 1 de�nes a compact operator

T : L∞(0, 1) → C[0, 1], hence also a compact operator T : C[0, 1] → C[0, 1] and a

compact operator T : L∞(0, 1)→ L∞(0, 1).

Proof. Take a "cutting" function e ∈ C[0,∞) satisfying the conditions

e(r) = 0 for 0 ≤ r ≤ 1

2
,

0 ≤ e(r) ≤ 1 for r ≥ 1

2
,

e(r) = 1 for r ≥ 1.

De�ne

Kn(x, y) = e(n |x− y|)K(x, y), (x, y) ∈ [0, 1]× [0, 1], n ∈ N,

and

(Tnu)(x) =

1∫
0

Kn(x, y)u(y)dy, n ∈ N.

The kernels Kn(x, y) are continuous on [0, 1] × [0, 1] - the possible diagonal sin-
gularity is "cut" o� by the factor e(n |x− y|), Kn(x, y) = 0 in a neighbourhood
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4.2. Compactness of a weakly singular integral operator

of the diagonal x = y. Hence the operators Tn : L∞(0, 1) → C[0, 1] (n ∈ N) are
compact. Further, for u ∈ L∞(0, 1), 0 ≤ x ≤ 1, we have

(Tu)(x)− (Tnu)(x) =

1∫
0

[K(x, y)−Kn(x, y)]u(y)dy

=

1∫
0

K(x, y)[1− e(n |x− y|)]u(y)dy.

Taking into account that 1− e(n |x− y|) = 0 for |x− y| ≥ 1

n
, we therefore obtain

for 0 < ν < 1 that

|(Tu)(x)− (Tnu)(x)| ≤
1∫

0

|K(x, y)| [1− e(n |x− y|)]dy ‖u‖∞

≤ c
∫

|x−y|≤1/n

|x− y|−ν dy ‖u‖∞

= 2c

1/n∫
0

z−νdz ‖u‖∞

= 2c
(1/n)1−ν

1− ν
‖u‖∞ , 0 ≤ x ≤ 1.

This implies that Tu ∈ C[0, 1] as a uniform limit of Tnu ∈ C[0, 1], and

‖T − Tn‖L(L∞(0,1),C[0,1]) ≤ 2c
(1/n)1−ν

1− ν
→ 0 as n→∞.

In the case ν ≤ 0 we obtain likewise

‖T − Tn‖L(L∞(0,1),C[0,1]) → 0 as n→∞.

Thus T maps L∞(0, 1) into C[0, 1] and T : L∞(0, 1) → C[0, 1] is compact as a
norm limit of compact operators Tn : L∞(0, 1)→ C[0, 1], see Theorem 2.2.6.

For describing the smoothness of the solution we need a weighted space of
smooth functions with the following properties.
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4.3. Di�erentiation of weakly singular integrals

De�nition 4.2.1. For m ∈ N, ν ∈ R, ν < 1, denote by Cm,ν(0, 1) the space of

functions f ∈ C[0, 1] ∩ Cm(0, 1) that satisfy the inequalities

∣∣∣f (j)(x)
∣∣∣ ≤ c


1 if j + ν − 1 < 0

1 + |log ρ(x)| if j + ν − 1 = 0

ρ(x)−j−ν+1 if j + ν − 1 > 1

 , 0 < x < 1, j = 1, . . . ,m,

(4.2.1)
where c = c(f) > 0 is a constant and

ρ(x) = min {x, 1− x}

is the distance from x ∈ (0, 1) to the boundary of the interval (0, 1).

Introduce the weight functions

ωλ(x) =



1 for λ < 0

1

1 + |log ρ(x)|
for λ = 0

ρ(x)λ for λ > 0


, 0 < x < 1, λ ∈ R.

Equipped with the norm

‖f‖Cm,ν(0,1) = max
0≤x≤1

|f(x)|+
m∑
j=1

sup
0<x<1

ωj+ν−1(x)
∣∣∣f (j)(x)

∣∣∣ , f ∈ Cm,ν(0, 1),

Cm,ν becomes a Banach space.

About the compactness of T given by (4.1.1) the following result holds (cf.
[68, 90]).

Theorem 4.2.1. Let K ∈ Sm,ν , m ≥ 1, ν < 1. Then the integral operator T
de�ned by (4.1.1) maps Cm,ν(0, 1) into itself and T : Cm,ν(0, 1) → Cm,ν(0, 1) is

compact.

4.3 Di�erentiation of weakly singular integrals

Let us present a di�erentiation formula for weakly singular integrals with respect
to a parameter.

Theorem 4.3.1. Assume that g(x, y) is a continuously di�erentiable function on

((0, 1)× [0, 1]) \ diag and satis�es with a ν ∈ (0, 1) the inequalities

|g(x, y)| ≤ c |x− y|−ν ,
∣∣∣∣( ∂

∂x
+

∂

∂y

)
g(x, y)

∣∣∣∣ ≤ c |x− y|−ν . (4.3.1)
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4.3. Di�erentiation of weakly singular integrals

Then the function x 7→
1∫

0

g(x, y)dy is continuously di�erentiable in (0, 1) and

d

dx

1∫
0

g(x, y)dy =

1∫
0

(
∂

∂x
+

∂

∂y

)
g(x, y)dy+ g(x, 0)− g(x, 1), 0 < x < 1. (4.3.2)

Proof. See [68].
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Chapter 5

Smoothing change of variables

Boundary singularities of the derivatives of a solution of a weakly singular integral
equation are typical for such equations. To see that, let us consider the integral
equation

u(x) =

1∫
0

K(x, y)u(y) dy + f(x), 0 ≤ x ≤ 1, (5.0.1)

where K ∈ Sm,ν , m ∈ N, ν ∈ R, ν < 1 and f ∈ Cm[0, 1]. Then, in general,
u /∈ C1[0, 1].

Indeed, supposing that u ∈ C1[0, 1], we can di�erentiate (5.0.1) as an equality
due to Theorem 4.3.1 and we obtain on the basis of (4.3.2) that

u′(x) =

1∫
0

[(
∂

∂x
+

∂

∂y

)
K(x, y)

]
u(y)dy +

1∫
0

K(x, y)u′(y)dy

+K(x, 0)u(0)−K(x, 1)u(1) + f ′(x),

0 ≤ x ≤ 1.

(5.0.2)

Since the integral operators with the kernels

K(x, y) and

(
∂

∂x
+

∂

∂y

)
K(x, y)

are weakly singular and u, u′ ∈ C[0, 1], the �rst two terms on the r.h.s of (5.0.2)
are on the basis of Lemma 4.2.1 continuous on [0, 1]; the same is true for the term
f ′(x). On the other hand, the term K(x, 0)u(0) has a singularity at x = 0 provided
that u(0) 6= 0 andK(x, 0) really has a singularity allowed by inequality (4.1.7), and
similarly the term K(x, 1)u(1) has a singularity at x = 1 if u(1) 6= 0 and K(x, 1)
has a singularity. Thus the assumption u ∈ C1[0, 1] leads to a contradiction if

36



5.1. Change of variables

K(x, 0) or K(x, 1) is singular and u(0) 6= 0, u(1) 6= 0; these inequalities hold for
most of f ∈ Cm[0, 1].

We refer to [68] for the proof of the following theorem.

Theorem 5.0.1. Let K ∈ Sm,ν , f ∈ Cm,ν(0, 1), m ∈ N, ν ∈ R, ν < 1, and let

u ∈ C[0, 1] be a solution of equation (5.0.1). Then u ∈ Cm,ν(0, 1).

The derivatives of a solution u ∈ Cm,ν(0, 1) (see De�nition 4.2.1) to equation
(5.0.1) may have boundary singularities. Now we undertake a change of variables
that kills the singularities - the solution of the transformed equation will be Cm-
smooth on [0, 1] including the boundary points. The idea of smoothing the solution
by introducing the suitable change of variables has been considered, for example,
in [49, 78] to increase the order of convergence of the trapeziodal and midpoint
quadrature rule. It has been used also for the numerical solution of weakly singular
Fredholm integral equations in [55, 60, 69]. The smoothing change of variables
together with the central part interpolation has been considered in [59, 61].

5.1 Change of variables

Let ϕ : [0, 1]→ [0, 1] be a smooth strictly increasing function such that ϕ(0) = 0,
ϕ(1) = 1. Introducing the change of variables

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1, (5.1.1)

equation (5.0.1) takes the form

v(t) =

1∫
0

Kϕ(t, s)v(s)ds+ fϕ(t), 0 ≤ t ≤ 1, (5.1.2)

where
fϕ(t) := f(ϕ(t)), Kϕ(t, s) := K(ϕ(t), ϕ(s))ϕ′(s);

the solutions on equations (5.0.1) and (5.1.2) are in the relations

v(t) = u(ϕ(t)), u(x) = v(ϕ−1(x)).

Under conditions we have set on ϕ : [0, 1] → [0, 1], the inverse function ϕ−1 :
[0, 1]→ [0, 1] exists and is continuous and ϕ−1(0) = 0, ϕ−1(1) = 1.

5.2 Smoothing Properties

Theorem 5.2.1. Given m ∈ N, ν ∈ R, ν < 1, let p ∈ N satisfy

p >


m for ν ≤ 0

m

1− ν
for 0 < ν < 1

 . (5.2.1)
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5.2. Smoothing Properties

Let ϕ ∈ Cp[0, 1] satisfy the conditions ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) > 0 for 0 < t < 1
and

ϕ(j)(0) = ϕ(j)(1) = 0, j = 1, . . . , p− 1, ϕ(p)(0) 6= 0, ϕ(p)(1) 6= 0. (5.2.2)

Then the following claims hold true.

(i) For f ∈ Cm,ν(0, 1), the function fϕ(t) = f(ϕ(t)) belongs to Cm[0, 1] and

f (j)ϕ (0) = f (j)ϕ (1) = 0, j = 1, . . . ,m. (5.2.3)

(ii) For K ∈ S0,ν , the kernel Kϕ(t, s) = K(ϕ(t), ϕ(s))ϕ′(s) belongs to S0,ν and
hence de�nes a compact integral operator

Tϕ : C[0, 1]→ C[0, 1], (Tϕv)(t) =

1∫
0

Kϕ(t, s)v(s)ds.

Proof. (i) Clearly fϕ ∈ Cm(0, 1), thus claim (i) concerns only the boundary be-
haviour of fϕ. Due to the imbedding

Cm,ν(0, 1) ⊂ C[0, 1], m ≥ 1, ν < 1, (5.2.4)

after the extension of fϕ by continuity to points 0 and 1, we have fϕ ∈ C[0, 1]. We
need to show that

f (j)ϕ (0) := lim
t→0

f (j)ϕ (t) = 0, f (j)ϕ (1) := lim
t→1

f (j)ϕ (t) = 0, j = 1, . . . ,m.

We establish these relations for t → 0; for t → 1 the argument is similar. By the
formula of Faà di Bruno (see Theorem 2.1.3)

f (j)ϕ (t) =
∑

k1+2k2+...+jkj=j

j!

k1! . . . kj !
f (k1+...+kj)(ϕ(t))ϕ′(t)k1 . . . ϕ(j)(t)kj , 0 < t < 1,

where k1, . . . , kj ∈ N0.

In a vicinity of 0, the inclusion f ∈ Cm,ν(0, 1) yields

∣∣∣f (j)(ϕ(t))
∣∣∣ ≤ c


1 for j < 1− ν

1 + |logϕ(t)| for j = 1− ν

ϕ(t)1−ν−j for j > 1− ν

 , j = 1, . . . ,m. (5.2.5)

To estimate the function ϕ we need Taylor formula which holds for any f ∈
Cm[a, b], m ∈ N:

f(x) =
m−1∑
i=0

(x− a)i
f (i)(a)

i!
+

1

(m− 1)!

x∫
a

(x− t)m−1f (m)(t)dt, x ∈ (a, b). (5.2.6)
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Due to (5.2.2) and (5.2.6) with f = ϕ we can achieve

ϕ(t) ≤ ctp, ϕ(i)(t) ≤ ctp−i as t→ 0, i = 0, . . . , p.

Hence (see (5.2.5)), ∣∣∣f (j)ϕ (t)
∣∣∣ =

∣∣∣f (j)(ϕ(t))
∣∣∣

≤ c
∑

k1+2k2+···+jkj=j


1 for k1 + · · ·+ kj < 1− ν

1 + |log t| for k1 + · · ·+ kj = 1− ν

tp(1−ν−k1−···−kj) for k1 + · · ·+ kj > 1− ν

t
(p−1)k1 . . .t(p−j)kj

= c
∑

k1+2k2+···+jkj=j



tp(k1+···+kj)−j for k1 + · · ·+ kj < 1− ν

(1 + |log t|)tp(k1+···+kj)−j for k1 + · · ·+ kj = 1− ν

tp(1−ν)−j for k1 + · · ·+ kj > 1− ν


,

1 ≤ j ≤ m.

For ν > 0, we have k1 + · · ·+ kj > 1− ν and in accordance to lower line∣∣∣f (j)ϕ (t)
∣∣∣ ≤ ctp(1−ν)−j .

For ν = 0, there is one combination of k1, . . . , kj such that k1 + 2k2 + · · ·+ jkj = j
and k1 + · · ·+ kj = 1− ν, namely k1 = . . . = kj−1 = 0, kj = 1, yielding∣∣∣f (j)ϕ (t)

∣∣∣ ≤ ctp−j(1 + |log t|).

For ν < 0, the smallest exponent p(k1 + · · ·+ kj)− j with restrictions k1 + 2k2 +
· · · + jkj = j and k1 + · · · + kj < 1 − ν again corresponds to the combination
k1 = . . . = kj−1 = 0, kj = 1, yielding∣∣∣f (j)ϕ (t)

∣∣∣ ≤ ctp−j
from the upper line which dominates over terms in the lower and central lines.

As a summary, in a neighbourhood of 0, it holds

∣∣∣f (j)ϕ (t)
∣∣∣ ≤ c


tp−j for ν < 0

tp−j(1 + |log t|) for ν = 0

tp(1−ν)−j for ν > 0

 , j = 1, . . . ,m.
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5.2. Smoothing Properties

Now condition (5.2.1) implies that

lim
t→0

f (j)ϕ (t) = 0 for j = 1, . . . ,m.

(ii) Claim (ii) is trivial for ν < 0 since then Kϕ(t, s) is bounded together with
K(x, y).

To prove claim (ii) for 0 ≤ ν < 1, we �rst examine the properties of the function

Φ(t, s) :=


ϕ(t)− ϕ(s)

t− s
for t 6= s

ϕ′(t) for t = s

 , 0 ≤ t, s ≤ 1. (5.2.7)

Due to the conditions on ϕ, we have

Φ ∈ Cp−1([0, 1]× [0, 1]), Φ(t, s) > 0

for (t, s) ∈ ([0, 1]× [0, 1]) \ {(0, 0), (1, 1)}.

We show that there exists a positive constant c0 such that

Φ(t, s) ≥ c0 min
{

(t+ s)p−1, [(1− t) + (1− s)]p−1
}
, 0 ≤ t, s ≤ 1. (5.2.8)

It su�ces to establish estimate (5.2.8) in a neighbourhood of the point (0, 0);
for a neighbourhood of the point (1, 1) the estimate follows by the symmetry; on
the rest part of [0, 1]× [0, 1] function Φ is greater than a positive constant implying
(5.2.8) also there, possibly with a smaller but still positive constant c0.

We choose a neighbourhood

Uδ ⊂ [0, 1]× [0, 1]

of (0, 0) of a su�ciently small radius δ > 0 such that ϕ(p)(t) 6= 0 for 0 ≤ t ≤ δ (see
(5.2.2)). Then ϕ(p)(t) > 0 for 0 ≤ t ≤ δ, since ϕ(p)(t) < 0 for 0 ≤ t ≤ δ together
with the conditions ϕ′(0) = . . . = ϕ(p−1) = 0 should imply ϕ′(t) < 0 for 0 ≤ t ≤ δ.

Denote
d0 := min

0≤t≤δ
ϕ(p)(t) > 0.

Let 0 < s < t ≤ δ. Due to (5.2.2), the Taylor formula with the integral form of
the remainder term (see 5.2.6) yields

ϕ(t)− ϕ(s) =
1

(p− 1)!

t∫
0

(t− τ)p−1ϕ(p)(τ)dτ − 1

(p− 1)!

s∫
0

(s− τ)p−1ϕ(p)(τ)dτ

=
1

(p− 1)!

s∫
0

[(t− τ)p−1 − (s− τ)p−1]ϕ(p)(τ)dτ +
1

(p− 1)!

t∫
s

(t− τ)p−1ϕ(p)(τ)dτ.
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5.2. Smoothing Properties

The functions (t − τ)p−1 − (s − τ)p−1 and (t − τ)p−1 under last two integrals are
positive. Estimating ϕ(p)(τ) ≥ d0 > 0 we obtain

ϕ(t)− ϕ(s)

≥ d0
(p− 1)!

 s∫
0

[(t− τ)p−1 − (s− τ)p−1]ϕ(p)(τ)dτ +

t∫
s

(t− τ)p−1ϕ(p)(τ)dτ


=

d0
(p− 1)!

 t∫
0

(t− τ)p−1dτ −
s∫

0

(s− τ)p−1dτ

 =
d0
p!

(tp − sp),

and (5.2.8) follows for 0 < s < t ≤ δ:

ϕ(t)− ϕ(s)

t− s
≥ d0
p!

tp − sp

t− s
=
d0
p!

p−1∑
j=0

tjsp−1−j

≥ c0
p−1∑
j=0

(
p− 1
j

)
tjsp−1−j = c0(t+ s)p−1.

The case 0 < t < s ≤ δ is symmetrical to the treated case 0 < s < t ≤ δ. For
0 < s = t ≤ δ, (5.2.8) follows by a limit argument. This completes the proof of
(5.2.8).

Let us return to claim (ii) for 0 ≤ ν < 1. Consider �rst the case 0 < ν < 1.
Due to (4.1.7) and (5.2.8)

|Kϕ(t, s)| ≤ cK |ϕ(t)− ϕ(s)|−ν ϕ′(s) = cK

(
ϕ(t)− ϕ(s)

t− s

)−ν
|t− s|−ν ϕ′(s)

≤ cKc−ν0 |t− s|
−ν ϕ′(s)

[min {(t+ s)p−1, [(1− t) + (1− s)]p−1}]ν
≤ c |t− s|−ν ;

on the last step we took into account that

ϕ′(s) ≤ csp−1 as s→ 0, ϕ′(s) ≤ c(1− s)p−1 as s→ 1.

Thus Kϕ ∈ S0,ν .

In the case ν = 0,

|Kϕ(t, s)| ≤ cK(1 + |log |ϕ(t)− ϕ(s)||)ϕ′(s)

= cK(1 +

∣∣∣∣log
ϕ(t)− ϕ(s)

t− s

∣∣∣∣+ |log |t− s||)ϕ′(s)
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5.2. Smoothing Properties

≤ cK(1 + |log min {(t+ s), [(1− t) + (1− s)]}|+ |log |t− s||)ϕ′(s)

≤ c1 + c2(1 + |log |t− s||),

i.e. Kϕ ∈ S0,0.

Having established that Kϕ ∈ S0,ν for ν < 1, the compactness of the operator
Tϕ : C[0, 1]→ C[0, 1] follows by Lemma 4.2.1.

Corollary 5.2.1. Assume the conditions of Theorems 5.0.1 and 5.2.1. Then for

the solution v ∈ Cm[0, 1] of equation (5.1.2) we have

v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m. (5.2.9)

Example 5.2.1. Let us present an example of function ϕ that satis�es the condi-

tions on Theorem 5.2.1:

ϕ(t) = cp

t∫
0

τp−1(1− τ)p−1dτ, cp =
1

1∫
0

τp−1(1− τ)p−1dτ

, p ∈ N. (5.2.10)

Note that, for calculating the coe�cient cp we can use the Euler beta function
B(x, y):

B(x, y) =

1∫
0

τx−1(1− τ)y−1dτ, x > 0, y > 0.

It is well known that (see [1])

B(1 + x, 1 + y) =
Γ(1 + x)Γ(1 + y)

Γ(2 + x+ y)
, x, y > −1,

where

Γ(x) =

∞∫
0

τx−1e−τdτ (x > 0)

is the Euler gamma function and in case of positive integers n we can calculate:

Γ(n) = (n− 1)!.

Thus

cp =
1

B(p, p)
=

(2p− 1)!

[(p− 1)!]2
, p ∈ N.
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Chapter 6

Collocation method based on the

central part interpolation

Following [61] we construct in this chapter a high-order method for the numerical
solution of weakly singular integral equations of the second kind: we perform
in (5.0.1) a smoothing change of variables and solve the resulting equation by
collocation techniques based on a central part interpolation by polynomials on the
uniform grid.

6.1 Error estimate of the collocation method

Consider equation (5.0.1),

u(x) =

1∫
0

K(x, y)u(y) dy + f(x), 0 ≤ x ≤ 1,

and its smoothed counterpart (5.1.2),

v(t) =

1∫
0

Kϕ(t, s)v(s)ds+ fϕ(t), 0 ≤ t ≤ 1.

Denote by T the integral operator of equation (5.0.1),

(Tu)(x) =

1∫
0

K(x, y)u(y) dy, 0 ≤ x ≤ 1,
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6.1. Error estimate of the collocation method

and by Tϕ the integral operator of equation (5.1.2),

(Tϕv)(t) =

1∫
0

Kϕ(t, s)v(s)ds, 0 ≤ t ≤ 1.

We rewrite (5.1.2) in the operator form

v = Tϕv + fϕ. (6.1.1)

Using the interpolation projector Ph,m de�ned in (3.2.6), we approximate equation
(6.1.1) by equation

vh = Ph,mTϕvh + Ph,mfϕ. (6.1.2)

This is the operator form of our piecewise polynomial collocation method based
on a central part interpolation on the uniform grid.

Denote
N (I − T ) = {u ∈ C[0, 1] : u = Tu} .

Theorem 6.1.1. Let K ∈ Sm,ν , f ∈ Cm,ν(0, 1), m ≥ 2, ν < 1, and let the

smoothing transformation ϕ : [0, 1] → [0, 1] satisfy the assumptions of Theorem

5.2.1. Let N (I − T ) = {0} or equivalently, N (I − Tϕ) = {0}.

Then equation (6.1.1) (equation (5.1.2)) has a unique solution v ∈ C[0, 1] and
there exists an n0 such that for n ≥ n0, the collocation equation (6.1.2) has a

unique solution vh. The accuracy of vh can be estimated by

‖v − vh‖∞ ≤ ch
m
∥∥∥v(m)

∥∥∥
∞
, n =

1

h
≥ n0, (6.1.3)

where c is a positive constant not depending on n and f (it depends on K, m and

p). Moreover,

v(t) = u(ϕ(t)), 0 ≤ t ≤ 1,

with u(x), the solution to (5.0.1).

Proof. By Theorem 5.2.1, Tϕ : C[0, 1] → C[0, 1] is compact. Since N (I − Tϕ) =
{0}, the bounded inverse (I − Tϕ)−1 : C[0, 1] → C[0, 1] exists due to Fredholm
alternative (Theorem 2.2.7); denote

κ :=
∥∥(I − Tϕ)−1

∥∥
L(C[0,1],C[0,1])

.

The compactness of Tϕ : C[0, 1] → C[0, 1] and the pointwise convergence Ph,m to
I in C[0, 1] (see Lemma 3.2.2) imply by Theorem 2.2.5 the norm convergence

εh := ‖Tϕ − Ph,mTϕ‖L(C[0,1],C[0,1]) → 0, as n→∞ (as h =
1

n
→ 0).
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6.2. Matrix form of the collocation method

Hence there is an n0 such that κεh < 1 for n > n0. With the help of Theorem
2.2.4 we conclude that I − Ph,mTϕ is invertible in C[0, 1] for n ≥ n0 and

κh :=
∥∥(I − Ph,mTϕ)−1

∥∥
L(C[0,1],C[0,1])

→ κ as n→∞ (as h =
1

n
→ 0). (6.1.4)

Indeed, ∥∥(I − Ph,mTϕ)−1
∥∥
L(C[0,1],C[0,1])

≤

∥∥(I − Tϕ)−1
∥∥
L(C[0,1],C[0,1])

1− ‖Tϕ − Ph,mTϕ‖L(C[0,1],C[0,1]) ‖(I − Tϕ)−1‖L(C[0,1],C[0,1])

=
κ

1− κεh
→ κ as n→∞.

This proves the unique solvability of the collocation equation (6.1.2) for n ≥ n0.

Let v and vh be the solutions of (6.1.1) and (6.1.2) respectively. Then

(I − Ph,mTϕ)(v − vh) = v − Ph,mTϕv − Ph,mfϕ = v − Ph,mv,

v − vh = (I − Ph,mTϕ)−1(v − Ph,mv)

and

‖v − vh‖∞ ≤ κh ‖v − Ph,mv‖∞ , n =
1

h
≥ n0. (6.1.5)

By Theorem 5.0.1, for the solution u of (5.0.1) we have u ∈ Cm,ν(0, 1); by Corollary
5.2.1, for v(t) = uϕ(t) = u(ϕ(t)) we have v ∈ Cm[0, 1] and v(j)(0) = v(j)(1) = 0,
j = 1, . . . ,m; by Lemma 3.2.1(ii),

‖v − Ph,mv‖∞ ≤ ϑmh
m
∥∥∥v(m)

∥∥∥
∞
.

Now (6.1.5) yields

‖v − vh‖∞ ≤ κhϑmh
m
∥∥∥v(m)

∥∥∥
∞

that together with (6.1.4) implies (6.1.3).

6.2 Matrix form of the collocation method

The solution vh of equation (6.1.2) belongs to R(Ph,m), so the knot values

vh(ih) (i = 0, . . . , n)

determine vh uniquely. Equation (6.1.2) is equivalent to a system of linear algebraic
equation with respect to vh(ih), i = 0, . . . , n, and our task is to write down this
system.
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6.2. Matrix form of the collocation method

For wh ∈ R(Ph,m) we have wh = 0 if and only if wh(ih) = 0, i = 0, . . . , n. Since
(Ph,mw)(ih) = w(ih), i = 0, . . . , n, equation (6.1.2) is equivalent to the conditions

vh(ih) = (Tϕvh)(ih) + fϕ(ih), i = 0, . . . , n,

i.e. vh ∈ R(Ph,m) satis�es equation (5.1.2) at the knots ih, i = 0, . . . , n. Using for
vh the representation (3.2.7) we obtain

(Tϕvh)(ih) =

1∫
0

Kϕ(ih, s)vh(s)ds =

n−1∑
j=0

(j+1)h∫
jh

Kϕ(ih, s)vh(s)ds

=
n−1∑
j=0

∑
k∈Zm

(j+1)h∫
jh

Kϕ(ih, s)Lk,m(ns− j)ds(Eδvh)((j + k)h)

=
n−1∑
j=0

∑
k∈Zm

αi,j,k ·


vh(0) for j + k ≤ 0

vh((j + k)h) for 1 ≤ j + k ≤ n− 1

vh(1) for j + k ≥ n



=
n∑
l=0

bi,lvh(lh), i = 0, . . . , n,

where we denoted

αi,j,k =

(j+1)h∫
jh

Kϕ(ih, s)Lk,m(ns−j)ds, i = 0, . . . , n, j = 0, . . . , n−1, k ∈ Zm,

(6.2.1)

bi,l =



∑
k∈Zm

∑
{j:0≤j≤n−1, j+k≤0}

αi,j,k, for l = 0

∑
k∈Zm

∑
{j:0≤j≤n−1, j+k=l}

αi,j,k, for l = 1, . . . , n− 1

∑
k∈Zm

∑
{j:0≤j≤n−1, j+k≥n}

αi,j,k, for l = n


,

i, l = 0, . . . , n.

(6.2.2)
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6.2. Matrix form of the collocation method

Thus the matrix form of method (6.1.2) is given by

vh(ih) =
n∑
l=0

bi,lvh(lh) + fϕ(ih), i = 0, . . . , n, (6.2.3)

with bi,l de�ned by (6.2.2). Having determined vh(ih), i = 0, . . . , n, through
solving the system (6.2.3), the collocation solution vh(t) at any intermediate point
t ∈ [jh, (j + 1)h], j = 0, . . . , n− 1, is given by

vh(t) =
∑
k∈Zm


vh(0) for j + k ≤ 0

vh((j + k)h) for 1 ≤ j + k ≤ n− 1

vh(1) for j + k ≥ n

 · Lk,m(nt− j), (6.2.4)

where Lk, k ∈ Zm, are the Lagrange fundamental polynomials de�ned in (3.2.3).
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Chapter 7

A product integration method

based on the central part

interpolation

The product integration method for solving weakly singular integral equations
of the second kind is more simply realizable numerically than the corresponding
collocation method, see [6, 25, 77]. The product integration method on the uniform
grid seems to be hopeful, due to cheaper assembling of the corresponding system
of linear algebraic equations.

In this chapter we introduce the idea of a product integration method based
on the central part interpolation and smoothing change of variables by considering
the kernels with algebraic and logarithmic singularity, respectively:

K(x, y) = a(x, y)|x− y|−ν + b(x, y), 0 < ν < 1, (7.0.1)

and
K(x, y) = a(x, y) log |x− y|+ b(x, y). (7.0.2)

The assumptions about the functions a(x, y) and b(x, y) are given in the following
sections.

7.1 Equation with algebraic singularity

Let the kernel K(x, y) of equation (1.0.1) be in the form (7.0.1) in which case the
equation reads as

u(x) =

1∫
0

[a(x, y)|x− y|−ν + b(x, y)]u(y)dy + f(x), 0 ≤ x ≤ 1, 0 < ν < 1,

(7.1.1)
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7.1. Equation with algebraic singularity

where f ∈ C[0, 1]. About the coe�cient functions a(x, y) and b(x, y) we assume
that a, b ∈ C([0, 1] × (0, 1)) and they may have some boundary singularities with
respect to y (see Lemmas 7.1.1 and 7.1.2 below).

Denote by T the integral operator of equation (7.1.1):

(Tu)(x) =

1∫
0

[a(x, y)|x− y|−ν + b(x, y)]u(y)dy 0 ≤ x ≤ 1, 0 < ν < 1. (7.1.2)

We refer to [68] for the proofs of the following two lemmas.

Lemma 7.1.1. Let the operator T be de�ned by the formula (7.1.2) with a �xed ν ∈
(0, 1). Let λ0, λ1 ∈ R, λ0+ν < 1, λ1+ν < 1. Assume that a, b ∈ C([0, 1]×(0, 1))
and

|a(x, y)|+ |b(x, y)| ≤ cy−λ0(1− y)−λ1 , (x, y) ∈ [0, 1]× (0, 1)

where c = c(a, b) is a positive constant.

Then T maps C[0, 1] into C[0, 1] and T : C[0, 1]→ C[0, 1] is compact.

For m ∈ N, θ0, θ1 ∈ R, θ0 < 1, θ1 < 1, denote by Cm,θ0,θ1(0, 1) the weighted
space of functions u ∈ C[0, 1] ∩ Cm(0, 1) such that

m∑
k=1

sup
0<x<1

ωk−1+θ0(x)ωk−1+θ1(1− x)
∣∣∣u(k) (x)

∣∣∣ <∞,
where

ωρ(r) =



1 for ρ < 0

1

1 + |log r|
for ρ = 0

rρ for ρ > 0


, r, ρ ∈ R, r > 0.

Equipped with the norm

‖u‖Cm,θ0,θ1 (0,1) := max
0≤x≤1

|u(x)|

+

m∑
k=1

sup
0<x<1

ωk−1+θ0(x)ωk−1+θ1(1− x)
∣∣∣u(k) (x)

∣∣∣ , u ∈ Cm,θ0,θ1(0, 1),

Cm,θ0,θ1(0, 1) is a Banach space.

Thus, if u ∈ Cm,θ0,θ1(0, 1), m ∈ N, θ0, θ1 ∈ (0, 1), then u ∈ C[0, 1] ∩ Cm(0, 1)
and ∣∣∣u(k)(x)

∣∣∣ ≤ cx1−θ0−k(1− x)1−θ1−k, 0 < x < 1, k = 1, . . . ,m,
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7.1. Equation with algebraic singularity

where c = c(u) > 0 is a constant. Note also that

Cm[0, 1] ⊂ Cm,θ0,θ1(0, 1) for any m ∈ N, θ0 < 1, θ1 < 1.

In what follows we will use the notation

∂kx∂
l
y =

(
∂

∂x

)k ( ∂

∂y

)l
, k, l ∈ N0.

Lemma 7.1.2. Let T be de�ned by (7.1.2) with ν ∈ (0, 1). Let m ∈ N and

λ0, λ1 ∈ R, λ0 + ν < 1, λ1 + ν < 1. Assume that a, b ∈ Cm([0, 1] × (0, 1)) and

satisfy∣∣∣∂kx∂lya (x, y)
∣∣∣+
∣∣∣∂kx∂lyb (x, y)

∣∣∣ ≤ cy−λ0−l(1− y)−λ1−l, (x, y) ∈ [0, 1]× (0, 1),

(7.1.3)
with a positive constant c = c(a, b) for all k, l ∈ N0 such that k + l ≤ m.

Then operator T maps Cm,θ0,θ1(0, 1) with θ0 = λ0 + ν and θ1 = λ1 + ν into

Cm,θ0,θ1(0, 1) and T : Cm,θ0,θ1(0, 1)→ Cm,θ0,θ1(0, 1) is compact.

Denote
N (I − T ) = {u ∈ C[0, 1] : u = Tu} .

The following theorem is a consequence of Lemmas 7.1.1 and 7.1.2.

Theorem 7.1.1. Assume the conditions of Lemma 7.1.2 and N (I−T ) = {0} . Let
f ∈ Cm,θ0,θ1(0, 1), θ0 = λ0 + ν, θ1 = λ1 + ν. Then equation (7.1.1) has a solution

u ∈ Cm,θ0,θ1(0, 1) which is unique in C[0, 1] and

‖u‖Cm,θ0,θ1 (0,1) ≤ c ‖f‖Cm,θ0,θ1 (0,1) , (7.1.4)

with a constant c which is independent of f .

The main results of the following subsections are established under assumptions
of Theorem 7.1.1.

7.1.1 Operator form of the method, convergence and error esti-

mate

Let p0, p1 ∈ N be some given numbers. We perform in the equation (7.1.1) the
change of variables (5.1.1),

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,
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7.1. Equation with algebraic singularity

where ϕ : [0, 1]→ [0, 1] is de�ned by the formula (cf. (5.2.10))

ϕ(t) =
1

c∗

t∫
0

σp0−1(1− σ)p1−1dσ, 0 ≤ t ≤ 1,

c∗ =

1∫
0

σp0−1(1− σ)p1−1dσ =
Γ(p0)Γ(p1)

Γ(p0 + p1)
,

(7.1.5)

with Γ, the Euler gamma function. Observe that

0 ≤ ϕ(t) ≤ c0tp0 , 0 ≤ 1− ϕ(t) ≤ c′(1− t)p1 , 0 ≤ t ≤ 1,∣∣∣ϕ(k)(t)
∣∣∣ ≤ cktp0−k(1− t)p1−k, 0 < t < 1, k = 1, . . . ,m, m ∈ N.

(7.1.6)

Note also that the integral

t∫
0

σp0−1(1− σ)p1−1dσ in (7.1.5) can be evaluated in a

stable way by an exact Gauss rule, since the integrand is a polynomial of degree
p0 + p1 − 2.

Clearly, ϕ(0) = 0, ϕ(1) = 1 and ϕ(t) is strictly increasing in [0, 1]. Hence we
have for s 6= t that

ϕ(t)− ϕ(s)

t− s
> 0,

|ϕ(t)− ϕ(s)| = ϕ(t)− ϕ(s)

t− s
|t− s|,

|ϕ(t)− ϕ(s)|−ν =

[
ϕ(t)− ϕ(s)

t− s

]−ν
|t− s|−ν .

After change of variables equation (7.1.1) takes the form

v(t) =

1∫
0

[
A(t, s)|t− s|−ν + B(t, s)

]
v(s)ds+ g(t), 0 ≤ t ≤ 1, 0 < ν < 1,

(7.1.7)
where v(t) = u(ϕ(t)) is the new function we look for,

g(t) = f(ϕ(t)), (7.1.8)

A(t, s) = a(ϕ(t), ϕ(s))Φ(t, s)−νϕ′(s), (7.1.9)

B(t, s) = b(ϕ(t), ϕ(s))ϕ′(s), (7.1.10)

and

Φ(t, s) =


ϕ(t)− ϕ(s)

t− s
for t 6= s

ϕ′(s) for t = s

 , 0 ≤ t, s ≤ 1. (7.1.11)
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7.1. Equation with algebraic singularity

Note that Φ(t, s) > 0 everywhere in the square 0 ≤ t, s ≤ 1 except two points
(0, 0) and (1, 1) in which Φ vanishes causing singularities of Φ(t, s)−ν . According
to (7.1.5), (7.1.6) and (7.1.11),

Φ(t, s) = Φ(s, t), 0 ≤ t, s ≤ 1,

Φ ∈ Cm−1([0, 1]× [0, 1]) for p0, p1 ≥ m ∈ N,

and as function ϕ de�ned by (7.1.5) is a polynomial for p0, p1 ∈ N so is Φ a
polynomial for p0, p1 ∈ N.

Further, we have (cf. (5.2.8))

Φ (t, s)� (t+ s)p0−1 ((1− t) + (1− s))p1−1

as t, s→ 0 or as t, s→ 1,

(7.1.12)

where Ξ(t)�Ψ(t) as t→ 0 means that
Ξ(t)

Ψ(t)
and

Ψ(t)

Ξ(t)
are bounded as t→ 0.

Indeed, let 0 ≤ s < t ≤ 1

2
. According to (7.1.5) and (7.1.11) it holds

Φ(t, s) =
ϕ(t)− ϕ(s)

t− s
=

1

t− s

t∫
s

ϕ′(σ)dσ =
1

c∗

1

t− s

t∫
s

σp0−1(1− σ)p1−1dσ.

Thus

Φ(t, s) ≤ 1

c∗

1

t− s

t∫
s

σp0−1dσ =
1

c∗

1

p0

tp0 − sp0
t− s

.

By Lagrange's mean value theorem we can estimate

tp0 − sp0
t− s

≤ p0tp0−1 ≤ p0(t+ s)p0−1,

and therefore

Φ(t, s) ≤ 1

c∗
(t+ s)p0−1.

We also see that
Φ(t, s) ≥ c′(t+ s)p0−1

for a positive constant c′ > 0 and 0 ≤ s < t ≤ 1

2
.
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7.1. Equation with algebraic singularity

Indeed, for 0 ≤ s < t ≤ δ < 1 it holds

Φ(t, s) =
1

t− s

t∫
s

ϕ′(σ)dσ

=
1

c∗(t− s)

t∫
s

σp0−1(1− σ)p1−1dσ

≥ (1− δ)p1−1

c∗p0

(
tp0 − sp0
t− s

)
.

Since for 0 ≤ s < t, p0 ≥ 1,
tp0 − sp0
t− s

≥ tp0−1,

we get

Φ(t, s) ≥ cδtp0−1 ≥
cδ

2p0−1
(t+ s)p0−1 with cδ =

(1− δ)p1−1

c∗p0
.

Therefore
Φ (t, s)� (t+ s)p0−1 as t, s→ 0. (7.1.13)

In a similar way we obtain that

Φ (t, s)� ((1− t) + (1− s))p1−1 as t, s→ 1.

This together with (7.1.13) yields (7.1.12).

Using (7.1.6), we obtain∣∣∣∂ksΦ(t, s)
∣∣∣ ≤ c(t+ s)p0−k−1((1− t) + (1− s))p1−k−1,

0 ≤ s, t ≤ 1, k = 1, . . . ,m, m ∈ N.
(7.1.14)

This together with (7.1.12) and the formula of Faà di Bruno (2.1.2) implies the
following result.

Lemma 7.1.3. For j = 0, . . . ,m, m ∈ N0, 0 ≤ t ≤ 1, 0 < s < 1, it holds∣∣∂js (Φ(t, s)−ν
)∣∣ ≤ c(t+ s)−ν(p0−1)−j((1− t) + (1− s))−ν(p1−1)−j . (7.1.15)

Since the factor ϕ′(s) =
1

c∗
sp0−1(1− s)p1−1 damps the singularities, it holds∣∣∂js (Φ(t, s)−ν

)
ϕ′(s)

∣∣ ≤ cs(p0−1)(1−ν)−j(1− s)(p1−1)(1−ν)−j , j = 0, . . . ,m.

Let us characterise the boundary behaviour of functions v, A and B in equation
(7.1.7). For the proof of the following lemma we refer to [85].
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Lemma 7.1.4. Let m ∈ N. If u ∈ Cm,θ0,θ1 (0, 1), θ0, θ1 ∈ R, θ0 < 1, θ1 < 1, and
v (t) = u (ϕ (t)), then for j = 1, . . . ,m, 0 < t < 1,

∣∣∣v(j) (t)
∣∣∣ ≤ c ‖u‖Cm,θ0,θ1 (0,1)


tp0−j for θ0 < 0

tp0−j(1 + |log t|) for θ0 = 0

t(1−θ0)p0−j for θ0 > 0

×

×


(1− t)p1−j for θ1 < 0

(1− t)p1−j(1 + |log(1− t)|) for θ1 = 0

(1− t)(1−θ1)p1−j for θ1 > 0

 .

(7.1.16)

The following lemma is a consequence of (7.1.3), (7.1.5) and formula of Faà di
Bruno (2.1.2).

Lemma 7.1.5. Let a and b satisfy the conditions of Lemma 7.1.2 and let ϕ be

de�ned by (7.1.5). Then for j = 0, . . . ,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds∣∣∂jsa(ϕ(t), ϕ(s))
∣∣+
∣∣∂jsb(ϕ(t), ϕ(s))

∣∣ ≤ cs−p0λ0−j(1− s)−p1λ1−j . (7.1.17)

Next we present estimates for the functionsA(t, s), B(t, s) (see (7.1.9), (7.1.10))
and ∂ms [A(t, s)v(s)], ∂ms [B(t, s)v(s)] in somewhat speci�c form for the needs of
Theorem 7.1.2 below.

Corollary 7.1.1. Let a and b satisfy the conditions of Lemma 7.1.1. Let A and

B be de�ned by the formulas (7.1.9) and (7.1.10), respectively. Let ϕ be de�ned by

(7.1.5).

Then the following holds true.

(i) If

p0, p1 ≥ 1, p0 > (1− ν)/(1− ν − λ0), p1 > (1− ν)/(1− ν − λ1), (7.1.18)

then with δ0 := (1− ν − λ0)p0 − (1− ν) > 0, δ1 := (1− ν − λ1)p1 − (1− ν) > 0, it
holds

|A(t, s)| ≤ csδ0(1− s)δ1 , (t, s) ∈ [0, 1]× (0, 1). (7.1.19)

(ii) If

p0, p1 ≥ 1, p0 > 1/(1− λ0), p1 > 1/(1− λ1), (7.1.20)

then with δ0 := (1− λ0)p0 − 1 > 0, δ1 := (1− λ1)p1 − 1 > 0, it holds

|B(t, s)| ≤ csδ0(1− s)δ1 , (t, s) ∈ [0, 1]× (0, 1). (7.1.21)
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Proof. By inequalities (7.1.6), (7.1.17) and (7.1.15) we have

|A(t, s)| ≤ cs−p0λ0+p0−1(t+ s)−ν(p0−1)(1− s)−p1λ1+p1−1(2− t− s)−ν(p1−1)

that for p0, p1 satisfying (7.1.18) yields (7.1.19). Similarly, by (7.1.6) and (7.1.17)

|B(t, s)| ≤ cs−p0λ0+p0−1(1− s)−p1λ1+p1−1

that for p0, p1 satisfying (7.1.20) yields (7.1.21).

Corollary 7.1.2. Let a and b satisfy the conditions of Lemma 7.1.2. Let A and

B be de�ned by the formulas (7.1.9) and (7.1.10), respectively. Let ϕ be de�ned by

(7.1.5). Finally assume, that u ∈ Cm,θ0,θ1(0, 1), m ∈ N, θ0 = λ0 + ν, θ1 = λ1 + ν
and let v(t) = u(ϕ(t)).

Then the following estimates hold true for (t, s) ∈ [0, 1]× (0, 1).

(i) If

p0, p1 ≥ 1, p0 > m/(1− ν − λ0), p1 > m/(1− ν − λ1), (7.1.22)

then with δ0 := (1− ν − λ0)p0 −m > 0, δ1 := (1− ν − λ1)p1 −m > 0,

|A(t, s)| ≤ csm−(1−ν)+δ0(1− s)m−(1−ν)+δ1 (7.1.23)

and

|∂ms [A(t, s)v(s)]| ≤ cs−(1−ν)+δ0(1− s)−(1−ν)+δ1 ‖u‖Cm,θ0,θ1 . (7.1.24)

(ii) If

p0, p1 ≥ 1, p0 > m/(1− λ0), p1 > m/(1− λ1), (7.1.25)

then with δ0 := (1− λ0)p0 −m > 0, δ1 := (1− λ1)p1 −m > 0, it holds

|B(t, s)| ≤ csm−1+δ0(1− s)m−1+δ1 (7.1.26)

and

|∂ms [B(t, s)v(s)]| ≤ cs−1+δ0(1− s)−1+δ1 ‖u‖Cm,θ0,θ1 . (7.1.27)

Proof. These estimates are direct consequences of Lemmas 7.1.3 - 7.1.5.

Due to (7.1.19) and (7.1.21) we can de�ne A(t, s) = 0 and B(t, s) = 0 for s = 0
and for s = 1. Moreover, we extend A(t, s) and B(t, s) with respect to s outside
[0, 1] by the zero value. The corresponding extensions of A and B will be denoted
again by A and B. Thus, under conditions (7.1.18) and (7.1.20), we obtain that

A,B ∈ C([0, 1]× [−δ, 1 + δ]) for any δ ≥ 0.
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We determine the approximate solution vh for equation (7.1.7) by solving the
following problem

vh(t) =

1∫
0

|t−s|−νPh,m(A(t, s)vh(s))ds+

1∫
0

Ph,m(B(t, s)vh(s))ds+g(t), 0 ≤ t ≤ 1.

(7.1.28)
Here Ph,m (see (3.2.6)) is applied to the products A(t, s)vh(s) and B(t, s)vh(s)
as a functions of s treating t as a parameter. This is the operator form of a
product integration method corresponding to the piecewise polynomial "central
part" interpolation on the uniform grid {ih : i = 0, . . . , n}.

Below we will use the integral operators T and Th de�ned by the following
formulas:

(T v)(t) =

1∫
0

[|t− s|−ν A(t, s) + B(t, s)]v(s)ds, 0 ≤ t ≤ 1, (7.1.29)

(Thv)(t) =

1∫
0

[|t− s|−ν Ph,m(A(t, s)v(s)) + Ph,m(B(t, s)v(s))]ds, 0 ≤ t ≤ 1.

(7.1.30)
The convergence behavior of method (7.1.28) is characerised by the following the-
orem.

Theorem 7.1.2.

(i) Let 0 < ν < 1, λ0, λ1 ∈ R, λ0 + ν < 1, λ1 + ν < 1. Let f ∈ C[0, 1],
a, b ∈ C([0, 1]× (0, 1)) and satisfy

|a(x, y)|+ |b(x, y)| ≤ cy−λ0(1− y)−λ1 , (x, y) ∈ [0, 1]× (0, 1),

where c = c(a, b) is a positive constant. Let N (I−T ) = 0, with T , given by (7.1.2).
Finally, let ϕ be de�ned by the formula (7.1.5) with parameters p0, p1 ∈ N such that

p0 > (1− ν)/(1− ν − λ0), p1 > (1− ν)/(1− ν − λ1)

and

p0 > 1/(1− λ0), p1 > 1/(1− λ1).

Then for su�ciently large n =
1

h
, say n ≥ n0, equation (7.1.28) has a unique

solution vh ∈ C[0, 1], and

‖v − vh‖∞ = max
t∈[0,1]

|v(t)− vh(t)| −→ 0 as n −→∞, (7.1.31)

where v ∈ C[0, 1] is the solution of (7.1.7).
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(ii) Let m ∈ N, λ0, λ1 ∈ R, λ0 + ν < 1, λ1 + ν < 1, 0 < ν < 1. Assume that

a, b ∈ Cm([0, 1]× (0, 1)) and satisfy∣∣∣∂kx∂lya (x, y)
∣∣∣+
∣∣∣∂kx∂lyb (x, y)

∣∣∣ ≤ cy−λ0−l(1− y)−λ1−l, (x, y) ∈ [0, 1]× (0, 1),

with a positive constant c = c(a, b) for all k, l ∈ N0 such that k + l ≤ m. Let

f ∈ Cm,θ0,θ1(0, 1) with θ0 = λ0 + ν, θ1 = λ1 + ν. Let N (I − T ) = {0}, with T ,
given by (7.1.2). Finally, let ϕ be de�ned by the formula (7.1.5) with parameters

p0, p1 ∈ N such that

p0, p1 ≥ 1, p0 > m/(1− ν − λ0), p1 > m/(1− ν − λ1).

Then it holds

‖v − vh‖∞ ≤ ch
m ‖f‖Cm,θ0,θ1 (0,1) , n ≥ n1. (7.1.32)

Here n1 = max {n0, 2m}, and the constant c is independent of n =
1

h
and f .

Proof. We consider equations (7.1.7) and (7.1.28) as operator equations

v = T v + g (7.1.33)

and
vh = Thvh + g, (7.1.34)

where T and Th are de�ned by the formulas (7.1.29) and (7.1.30), respectively.
Since f ∈ C[0, 1], it follows from (7.1.5) and (7.1.8) that g ∈ C[0, 1]. It is clear
that T and Th are linear operators. Since A,B ∈ C ([0, 1]× [0, 1]), we obtain that
T and Th are compact as operators from C[0, 1] into C[0, 1].

Next we show, that Th → T compactly in C[0, 1], i.e. (see De�nition 2.3.1)

‖Thv − T v‖∞ → 0 for every v ∈ C[0, 1] as h = 1/n→ 0, (7.1.35)

(vh) ⊂ C[0, 1], ‖vh‖∞ ≤ 1⇒ (Thvh) is relatively compact in C[0, 1]. (7.1.36)

First we observe that the sets {A(t, ·) : 0 ≤ t ≤ 1} and {B(t, ·) : 0 ≤ t ≤ 1} are
relatively compact in C [−δ, 1 + δ], with a �xed δ > 0. Therefore we get by Lemma
3.2.2 for a �xed v ∈ C [0, 1] extended by v (s) = v (0) for −δ ≤ s ≤ 0 and
v (s) = v (1) for 1 ≤ s ≤ 1 + δ that

sup
0≤t≤1

max
0≤s≤1

|A (t, s) v (s)− Ph,m (A(t, s)v(s))| → 0 as n→∞, (7.1.37)

sup
0≤t≤1

max
0≤s≤1

|B(t, s)v(s)− Ph,m (B(t, s)v(s))| → 0 as n→∞. (7.1.38)
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Further, we have

1∫
0

|t− s|−ν ds ≤ 2

1− ν
, 0 ≤ t ≤ 1, 0 < ν < 1. (7.1.39)

Therefore,
‖Thv − T v‖∞

= max
0≤t≤1

∣∣∣∣∣∣
1∫

0

[|t− s|−ν Ph,m(A(t, s)v(s)) + Ph,m(B(t, s)v(s))]ds

−
1∫

0

[|t− s|−ν A(t, s) + B(t, s)]v(s)ds

∣∣∣∣∣∣
≤ max

0≤t≤1

1∫
0

|t− s|−ν |A(t, s)v(s)− Ph,m(A(t, s)v(s))| ds

+ max
0≤t≤1

1∫
0

|B(t, s)v(s)− Ph,m(B(t, s)v(s))| ds

≤
(

2

1− ν

)
max
0≤t≤1

max
0≤s≤1

|A(t, s)v(s)− Ph,m(A(t, s)v(s))|

+ max
0≤t≤1

max
0≤s≤1

|B(t, s)v(s)− Ph,m(B(t, s)v(s))| .

This together with (7.1.37) and (7.1.38) yields (7.1.35).

The proof of (7.1.36) can be built by Arzelà-Ascoli theorem (see Theorem 2.1.2).

Observe that the uniform boundedness of (Thvh) ⊂ C[0, 1] with (vh) ⊂ C[0, 1],

‖vh‖∞ ≤ 1 for n =
1

h
∈ N is a consequence of the estimate

‖Ph,m‖L(C[0,1],C[0,1]) ≤ c (1 + logm) , (7.1.40)

where c is a positive constant not depending on h =
1

n
(see (3.2.10)). Indeed, on

the basis of (7.1.39), (7.1.40) and the notations

‖A‖∞ = max
(t,s)∈[0,1]×[0,1]

|A(t, s)| , ‖B‖∞ = max
(t,s)∈[0,1]×[0,1]

|B(t, s)|
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we get

|(Thvh)(t)| =

∣∣∣∣∣∣
1∫

0

[
|t− s|−ν Ph,m(A(t, s)vh(s)) + Ph,m(B(t, s)vh(s))

]
ds

∣∣∣∣∣∣
≤

1∫
0

|t− s|−ν |Ph,m(A(t, s)vh(s))| ds+

1∫
0

|Ph,m(B(t, s)vh(s))| ds

≤ ‖Ph,m‖L(C[0,1],C[0,1]) ‖vh‖∞

‖A‖∞ 1∫
0

|t− s|−ν + ‖B‖∞


≤ c, 0 ≤ t ≤ 1 for any n =

1

h
∈ N,

with a constant c > 0 which is independent of n =
1

h
.

For the equicontinuity of

(Thvh), vh ∈ C[0, 1], ‖vh‖∞ ≤ 1, h =
1

n
, n ∈ N,

we must show that for any ε > 0 there is a η = η(ε) > 0 such that t, t′ ∈ [0, 1],∣∣t− t′∣∣ ≤ η implies
∣∣(Th)vh(t)− (Thvh)(t′)

∣∣ ≤ ε for all h =
1

n
, n ∈ N.

Let ε > 0 be �xed. According to the de�nition (7.1.30) of Th we have:∣∣(Thvh)(t)− (Thvh)(t′)
∣∣

≤

∣∣∣∣∣∣
1∫

0

[
|t− s|−ν Ph,m(A(t, s)vh(s))−

∣∣t′ − s∣∣−ν Ph,m(A(t′, s)vh(s))
]
ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∫

0

[
Ph,m(B(t, s)vh(s))− Ph,m(B(t′, s)vh(s))

]
ds

∣∣∣∣∣∣ , 0 ≤ t, t′ ≤ 1.

(7.1.41)

Function B is uniformly continous as a continous function on a closed set [0, 1]×
[0, 1]. Therefore using (7.1.40), we obtain for the second integral on the r.h.s of
(7.1.41) that ∣∣∣∣∣∣

1∫
0

[
Ph,m(B(t, s)vh(s))− Ph,m(B(t′, s)vh(s))

]
ds

∣∣∣∣∣∣
≤

1∫
0

∣∣Ph,m [B(t, s)− B(t′, s)
]∣∣ |vh(s)| ds
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≤ ‖Ph,m‖L(C[0,1],C[0,1]) ‖vh‖∞ max
0≤s≤1

∣∣B(t, s)− B(t′, s)
∣∣

≤ c(1 + logm) max
0≤s≤1

∣∣B(t, s)− B(t′, s)
∣∣

≤ ε

2
for

∣∣t− t′∣∣ ≤ η′, 0 ≤ t, t′ ≤ 1, ∀n =
1

h
∈ N, (7.1.42)

with a su�ciently small η′ > 0. To estimate the �rst integral on the r.h.s of the
(7.1.41) we add and subtract under the sign of integral a term of the form∣∣t′ − s∣∣−ν Ph,m(A(t, s)vh(s)).

Then we have:∣∣∣∣∣∣
1∫

0

[
|t− s|−ν Ph,m(A(t, s)vh(s))−

∣∣t′ − s∣∣−ν Ph,m(A(t′, s)vh(s))
]
ds

∣∣∣∣∣∣
≤

1∫
0

∣∣t′ − s∣∣−ν ∣∣Ph,m [(A(t, s)−A(t′, s))vh(s)
]∣∣ ds

+

1∫
0

∣∣∣|t− s|−ν − ∣∣t′ − s∣∣−ν∣∣∣ |Ph,m [A(t, s)vh(s)]| ds, 0 ≤ t, t′ ≤ 1.

(7.1.43)

Function A is uniformely continous on [0, 1]× [0, 1] and using (7.1.40), we obtain
for the �rst integral on the r.h.s of (7.1.43) that

1∫
0

∣∣t′ − s∣∣−ν ∣∣Ph,m [(A(t, s)−A(t′, s))vh(s)
]∣∣ ds

≤ ‖Ph,m‖L(C[0,1],C[0,1]) ‖vh‖∞
2

1− ν
max
0≤s≤1

∣∣A(t, s)−A(t′, s)
∣∣

≤ c(1 + logm)
2

1− ν
max
0≤s≤1

∣∣A(t, s)−A(t′, s)
∣∣

≤ ε

4
for

∣∣t− t′∣∣ < η′′, 0 ≤ t, t′ ≤ 1, ∀n =
1

h
∈ N, (7.1.44)

with a η′′ > 0 which is su�ciently small. Since there exists a number η′′′ > 0 such
that (assume that ‖A‖∞ 6= 0)

1∫
0

∣∣∣|t− s|−ν − ∣∣t′ − s∣∣−ν∣∣∣ ds
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≤ 1

c(1 + logm) ‖A‖∞
ε

4
for

∣∣t− t′∣∣ < η′′′, 0 ≤ t, t′ ≤ 1,

we obtain that

1∫
0

∣∣∣|t− s|−ν − ∣∣t′ − s∣∣−ν∣∣∣ |Ph,m [A(t, s)vh(s)]| ds

≤ ‖Ph,m‖L(C[0,1],C[0,1]) ‖A‖∞

1∫
0

∣∣∣|t− s|−ν − ∣∣t′ − s∣∣−ν∣∣∣ ds
≤ c(1 + logm) ‖A‖∞

1∫
0

∣∣∣|t− s|−ν − ∣∣t′ − s∣∣−ν∣∣∣ ds
≤ ε

4
for

∣∣t− t′∣∣ < η′′′, 0 ≤ t, t′ ≤ 1, ∀n =
1

h
∈ N.

This together with (7.1.42) and (7.1.44) yields∣∣(Thvh)(t)− (Thvh)(t′)
∣∣ ≤ ε for 0 ≤ t, t′ ≤ 1,

∣∣t− t′∣∣ < η, ∀n =
1

h
∈ N,

where η = min
{
η′, η′′, η′′′

}
. The proof of (7.1.36) is completed and thus Th → T

compactly in C[0, 1] .

Due to the condition N (I − T ) = {0} also N (I − T ) = {0}. Now it follows
from Theorem 2.3.1 that equation (7.1.33) (equation (7.1.7)) has a unique solution
v ∈ C[0, 1] and there exists a n0 ∈ N such that for n ≥ n0, equation (7.1.34)
(equation (7.1.28)) has a unique solution vh ∈ C[0, 1] and

‖v − vh‖∞ ≤ c ‖T v − Thv‖∞ , n ≥ n0, (7.1.45)

with a constant c > 0 not depending on n (on h =
1

n
). The convergence (7.1.31)

is a consequence of (7.1.35).

Next we establish the estimate (7.1.32). For the solutions u and v of equations
(7.1.1) and (7.1.7) we have v(t) = u(ϕ(t)) and u ∈ Cm,θ0,θ1(0, 1) by Theorem 7.1.1.
To prove (7.1.32), it remains to show that (see 7.1.45)

‖T v − Thv‖∞ ≤ ch
m ‖f‖Cm,θ0,θ1 (0,1) , n ≥ n1. (7.1.46)

According to the de�nitions of operators T and Th (see (7.1.29) and (7.1.30))
we have

(T v)(t)− (Thv)(t) =

1∫
0

[
|t− s|−ν A(t, s) + B(t, s)

]
v(s)ds
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−
1∫

0

[
|t− s|−ν Ph,m (A(t, s)v(s)) + Ph,m (B(t, s)v(s))

]
ds

=

1∫
0

|t− s|−ν (I − Ph,m) (A(t, s)v(s))ds

+

1∫
0

(I − Ph,m)(B(t, s)v(s))ds, 0 ≤ t ≤ 1.

Therefore

|(T v)(t)− (Thv)(t)| ≤

∣∣∣∣∣∣
1∫

0

|t− s|−ν (I − Ph,m) (A(t, s)v(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∫

0

(I − Ph,m)(B(t, s)v(s))ds

∣∣∣∣∣∣ , 0 ≤ t ≤ 1.

(7.1.47)

Let us estimate the �rst integral on the r.h.s of the inequality (7.1.47). We
divide the integration into four subintervals: [0,mh], [mh, 1/2], [1/2, 1−mh] and

[1−mh, 1], where mh ≤ 1

2
or equivalently n ≥ 2m. Thus, �rst we estimate

∣∣∣∣∣∣
mh∫
0

|t− s|−ν (I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣∣∣
≤

mh∫
0

|t− s|−ν |(I − Ph,m)(A(t, s)v(s))| ds

≤
(

1 + ‖Ph,m‖L(C[0,1],C[0,1])

)
max

0≤s≤mh
|A(t, s)| ‖v‖∞

mh∫
0

|t− s|−ν ds, 0 ≤ t ≤ 1.

(7.1.48)
It follows from (7.1.23) by δ0 := (1− ν − λ0)p0 −m > 0, that

max
0≤s≤mh

|A(t, s)| ≤ c max
0≤s≤mh

sm−(1−ν)+δ0 ≤ c(mh)m−(1−ν)+δ0 , 0 ≤ t ≤ 1.

Since
mh∫
0

|t− s|−ν ds ≤ 2m1−ν

1− ν
h1−ν , 0 ≤ t ≤ 1,
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we now get

max
0≤s≤mh

|A(t, s)|
mh∫
0

|t− s|−ν ds ≤ c1hm, 0 ≤ t ≤ 1,

with a constant c1 = c1(m, ν, δ0) > 0 which is independent of h =
1

n
. This together

with (7.1.40), (7.1.48) and ‖v‖∞ = ‖u‖∞ ≤ ‖u‖Cm,θ0,θ1 (0,1) yields∣∣∣∣∣∣
mh∫
0

|t− s|−ν (I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣∣∣
≤ c2hm ‖u‖Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1, (7.1.49)

where c2 is a positive constant which does not depend on h =
1

n
.

On the subinterval [mh, 1/2] we use (3.2.9) to estimate

|(I − Ph,m)A(t, s)v(s)| ≤ ϑmhm |∂ms [A(t, s)v(s)]| , 0 ≤ t ≤ 1, mh ≤ s ≤ 1

2
,

and using (7.1.24) we get that∣∣∣∣∣∣∣
1/2∫
mh

|t− s|−ν (I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣∣∣∣
≤ c3hm

1/2∫
0

|t− s|−ν s−(1−ν)+δ0ds ‖u‖Cm,θ0,θ1 (0,1)

≤ c4hm ‖u‖Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1, (7.1.50)

with some positive constants c3 and c4 which are independent of h =
1

n
.

In a similar way we get∣∣∣∣∣∣∣
1−mh∫
1/2

|t− s|−ν (I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣∣∣∣
≤ c5hm ‖u‖Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1, (7.1.51)∣∣∣∣∣∣
1∫

1−mh

|t− s|−ν (I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣∣∣
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7.1. Equation with algebraic singularity

≤ c6hm ‖u‖Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1, (7.1.52)

where c5 and c6 are some constants which do not depend on h =
1

n
.

Due to the estimates (7.1.49) - (7.1.52) and (7.1.4) we obtain �nally that∣∣∣∣∣∣
1∫

0

|t− s|−ν (I − Ph,m) (A(t, s)v(s))ds

∣∣∣∣∣∣
≤ chm ‖u‖Cm,θ0,θ1 (0,1)

≤ c′hm ‖f‖Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1,

(7.1.53)

with some constants c and c′ not depending on h =
1

n
.

To estimate the second integral on the r.h.s. of the inequality (7.1.47) we use
(3.2.9), (7.1.4) and (7.1.27) and get∣∣∣∣∣∣

1∫
0

(I − Ph,m)(B(t, s)v(s))ds

∣∣∣∣∣∣
≤ chm ‖f‖Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1,

with a constant c not depending on h =
1

n
.

This together with (7.1.47) and (7.1.53) proves (7.1.46) and completes the proof
of Theorem 7.1.32.

With respect to
uh(x) := vh(ϕ−1(x))

estimate (7.1.32) reads as

max
0≤x≤1

|u(x)− uh(x)| = max
0≤t≤1

|v(t)− vh(t)| ≤ chm ‖f‖Cm,θ0,θ1 (0,1) , n ≥ n1.

An advantage of the product integration method, compared to the collocation
method, is that the number of integrals which must be computed numerically are
respectively, of order 2mn and mn2.

7.1.2 Matrix form of the method

Let us derive the matrix form of the product interpolation method (7.1.28). This
method is of Nyström type - the solution vh of equation (7.1.28) is uniquely de-
termined by its knot values vh(ih), i = 0, . . . , n, through the Nyström extension
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7.1. Equation with algebraic singularity

(derived from (7.1.28) by (3.2.4) and (3.2.6))

vh(t) =
n−1∑
j=0

(j+1)h∫
jh

|t− s|−ν
∑
k∈Zm

A (t, (j + k)h) vh ((j + k)h)Lk,m(ns− j)ds

+

n−1∑
j=0

(j+1)h∫
jh

∑
k∈Zm

B (t, (j + k)h) vh ((j + k)h)Lk,m(ns− j)ds

+ g(t), 0 ≤ t ≤ 1.

(7.1.54)

We obtain an algebraic system of linear equations w.r.t. the grid values vh(ih),
i = 0, . . . , n, by collocating (7.1.54) at the points t = ih:

vh(ih) =

n−1∑
j=0

∑
k∈Zm

A (ih, (j + k)h)

(j+1)h∫
jh

|ih− s|−νLk,m(ns− j)ds

+ B(ih, (j + k)h)

(j+1)h∫
jh

Lk,m(ns− j)ds

 vh((j + k)h)

+ g(ih), i = 0, . . . , n.

(7.1.55)

We extended A(t, s) and B(t, s) with respect to s outside [0, 1] by the zero value,
thus

A(ih, (j + k)h = 0, B(ih, (j + k)h = 0 for j + k ≤ 0 and for j + k ≥ n,

therefore in the r.h.s. of (7.1.55) the values vh(lh) with l ≤ 0 and l ≥ n actually
are not exploited.
Occuring here integrals depend on the di�erence i−j: with the change of variables
ns− j = σ we see that

(j+1)h∫
jh

|ih− s|−ν Lk,m(ns− j)ds = h1−ν
1∫

0

|i− j − σ|−ν Lk,m(σ)dσ.

System (7.1.55) takes the form

vh(ih) = h1−ν
n−1∑
j=0

∑
k∈Zm

{A(ih, (j + k)h)αi−j,k

+B(ih, (j + k)h)βk} vh((j + k)h) + g(ih), i = 0, . . . , n,
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7.2. Equation with logarithmic singularity

or, collecting in the r.h.s. the coe�cients by vh((j + k)h) with �xed j + k = l,

vh(ih) =
n−1∑
l=1

ci,lvh(lh) + g(ih), i = 0, . . . , n, (7.1.56)

where

ci,l = h1−ν

A(ih, lh)
∑

{k∈Zm:0≤l−k≤n−1}

αi−l+k,k + B(ih, lh)
∑
k∈Zm

βk

 ,
i = 0, . . . , n, l = 1, . . . , n− 1,

(7.1.57)

αi′,k :=

1∫
0

|i′ − σ|−νLk,m(σ)dσ, i′ = −n+ 1, . . . , n, k ∈ Zm, (7.1.58)

and

βk := hν
1∫

0

Lk,m(σ)dσ, k ∈ Zm. (7.1.59)

We took into account that A(ih, lh) = 0 for l ≤ 0 and for l ≥ n.

Having found the solution {vh(ih)} , (i = 0, . . . , n) of system (7.1.56), we can
use (7.1.54) to �nd the solution at any point t ∈ [0, 1].

Note that we can also �nd an approximate solution ṽh(t) by (6.2.4):

ṽh(t) =
∑
k∈Zm


vh(0) for j + k ≤ 0

vh((j + k)h) for 1 ≤ j + k ≤ n− 1

vh(1) for j + k ≥ n

 · Lk,m(nt− j),

where Lk,m, k ∈ Zm, are the Lagrange fundamental polynomials de�ned in (3.2.3)
and 0 ≤ t ≤ 1.

7.2 Equation with logarithmic singularity

In this section we construct a product integration method based on the central
part interpolation and smoothing change of variables for the numerical solution of
integral equations of the form

u(x) =

1∫
0

[a(x, y) log |x− y|+ b(x, y)]u(y)dy + f(x), 0 ≤ x ≤ 1, (7.2.1)
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7.2. Equation with logarithmic singularity

where f ∈ C[0, 1]. The coe�cient functions a, b ∈ C([0, 1] × (0, 1)) and they may
have certain boundary singularities with respect to y characterised by Lemma 7.2.1
and Lemma 7.2.2 below. Due to diagonal and boundary singularities of the kernel

K(x, y) = a(x, y) log |x− y|+ b(x, y),

the solution u(x) of equation (7.2.1), as a rule, has certain singularities at x = 0
and/or x = 1, even if a, b and f are su�ciently smooth functions on [0, 1]× (0, 1)
and [0, 1] respectively. In order to characterize the possible singular behaviour of
a solution u to (7.2.1) we introduce similarly to Sections 4.2 and 7.1 a suitable
weighted space of functions Cm,λ0,λ1log (0, 1). Showing that u belongs to this space
the growth of the derivatives of u near the boundary of [0, 1] will be described (see
Theorem 7.2.1 below). In Section 7.2.1 we reduce equation (7.2.1) with the help
of a smoothing change of variables to a similar equation

v(t) =

1∫
0

(A(t, s) log |t− s|+B(t, s))v(s)ds+ g(t), 0 ≤ t ≤ 1,

in which the coe�cients A(t, s) and B(t, s) have no sigularities and vanish for s = 0
and s = 1; the logarithmic diagonal singularity of the kernel still remains to be
present. However, the singularities of the solution of the transformed equation will
be milder or disappear at all for suitable parameters of the change of variables.

Note that integral equations with a logartihmic diagonal singularity often arise
in modelling physical processes. For example, they occur in radiative transfer
theory, where the Milne integral equation (see, e.g. [12, 17, 28, 89]) has the form

u(x) =
1

2

H∫
0

a(y)E(|x− y|)u(y)dy + f(x), 0 ≤ x ≤ H.

Here E is the integral exponent function:

E(τ) =

∞∫
τ

e−σ

σ
dσ

= − log τ + c+ τ − τ2

2 · 2!
+

τ3

3 · 3!
− τ4

4 · 4!
+ . . . , τ > 0,

where

c = lim
n→∞

(
n∑
k=1

1

k
− log n

)
≈ 0.5772

is the Euler constant.

Denote by T the integral operator of equation (7.2.1):

(Tu)(x) =

1∫
0

[a(x, y) log |x− y|+ b(x, y)]u(y)dy, 0 ≤ x ≤ 1. (7.2.2)
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7.2. Equation with logarithmic singularity

For m ∈ N, λ0, λ0 ∈ R, λ0, λ1 < 1, denote by Cm,λ0,λ1log (0, 1) the weighted space
of functions u ∈ C[0, 1] ∩ Cm(0, 1) such that

m∑
k=1

sup
0<x<1

ωk−1+λ0(x)ωk−1+λ1(1− x)
∣∣∣u(k) (x)

∣∣∣ <∞,
where

ωρ(r) =


1 for ρ < 0

rρ

1 + |log r|
for ρ ≥ 0

 , r, ρ ∈ R, r > 0.

Thus, if λ0, λ1 ∈ (0, 1), then the inclusion u ∈ Cm,λ0,λ1log (0, 1) with a m ∈ N
yields that u ∈ C[0, 1] ∩ Cm(0, 1) and∣∣∣u(k)(x)

∣∣∣ ≤ cx1−λ0−k(1 + |log x|)(1− x)1−λ1−k(1 + |log(1− x)|),

0 < x < 1, k = 1, . . . ,m,

where c = c(u) > 0 is a constant.

Equipped with the norm

‖u‖
C
m,λ0,λ1
log (0,1)

:= max
0≤x≤1

|u(x)|

+
m∑
k=1

sup
0<x<1

ωk−1+λ0(x)ωk−1+λ1(1− x)
∣∣∣u(k) (x)

∣∣∣ , u ∈ Cm,λ0,λ1log (0, 1),

Cm,λ0,λ1log (0, 1) is a Banach space. Clearly,

Cm[0, 1] ⊂ Cm,λ0,λ1log (0, 1) for m ∈ N, λ0, λ0 ∈ R, λ0, λ1 < 1.

Lemma 7.2.1 (see [68]). Let the operator T be de�ned by the formula (7.2.2). Let
a, b ∈ C([0, 1]× (0, 1)) satisfy for (x, y) ∈ [0, 1]× (0, 1) the inequality

|a(x, y)|+ |b(x, y)| ≤ cy−λ0(1− y)−λ1 , λ0, λ1 ∈ R, λ0 < 1, λ1 < 1,

where c = c(a, b) is a positive constant.

Then T maps C[0, 1] into C[0, 1], and T : C[0, 1]→ C[0, 1] is compact.

Lemma 7.2.2 (see [68]). Let T be de�ned by (7.2.2). Let m ∈ N and λ0, λ1 ∈ R,
λ0 < 1, λ1 < 1. Assume that a, b ∈ Cm([0, 1]× (0, 1)) and∣∣∣∂kx∂lya (x, y)

∣∣∣+
∣∣∣∂kx∂lyb (x, y)

∣∣∣ ≤ cy−λ0−l(1− y)−λ1−l, (x, y) ∈ [0, 1]× (0, 1),

with a positive constant c = c(a, b) for all k, l ∈ N0 such that k + l ≤ m.

Then T maps Cm,λ0,λ1log (0, 1) into itself, and T : Cm,λ0,λ1log (0, 1)→ Cm,λ0,λ1log (0, 1)
is compact.
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7.2. Equation with logarithmic singularity

The following theorem is a consequence of Lemmas 7.2.1 and 7.2.2.

Theorem 7.2.1. Assume the conditions of Lemma 7.2.2 and N (I − T ) = {0},
with T , de�ned by the formula (7.2.2). Let f ∈ Cm,λ0,λ1log (0, 1), m ∈ N, λ0, λ1 < 1.

Then equation (7.2.1) has a solution u ∈ Cm,λ0,λ1log (0, 1) which is unique in

C[0, 1] and
‖u‖

C
m,λ0,λ1
log (0,1)

≤ c ‖f‖
C
m,λ0,λ1
log (0,1)

, (7.2.3)

with a constant c > 0 which is independent of f .

The main results of the present section (see Theorem 7.2.2 below) are estab-
lished under assumptions of Theorem 7.2.1.

7.2.1 Operator form of the method, convergence and error esti-

mate

In the integral equation (7.2.1) we perform the change of variables

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,

where ϕ : [0, 1]→ [0, 1] is de�ned by the formula (7.1.5), with p0, p1 ∈ N.

Equation (7.2.1) takes the form

u(ϕ(t)) =

1∫
0

[a(ϕ(t), ϕ(s)) log |ϕ(t)− ϕ(s)|+ b(ϕ(t), ϕ(s))]u(ϕ(s))ϕ′(s)ds

+ g(ϕ(t))

=

1∫
0

[
a(ϕ(t), ϕ(s)) (log |ϕ(t)− ϕ(s)|+ log |t− s| − log |t− s|)ϕ′(s)

+ b(ϕ(t), ϕ(s))ϕ′(s)
]
u(ϕ(s))ds+ g(ϕ(t)), 0 ≤ t ≤ 1,

or

v(t) =

1∫
0

(A(t, s) log |t− s|+B(t, s))v(s)ds+ g(t), 0 ≤ t ≤ 1, (7.2.4)

where v(t) = u(ϕ(t)) is the new function we look for,

g(t) = f(ϕ(t)), 0 ≤ t ≤ 1,
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A(t, s) = a(ϕ(t), ϕ(s))ϕ′(s), (t, s) ∈ [0, 1]× [0, 1], (7.2.5)

B(t, s) = [a(ϕ(t), ϕ(s)) log Φ(t, s) + b(ϕ(t), ϕ(s))]ϕ′(s), (t, s) ∈ [0, 1]× [0, 1],
(7.2.6)

and

Φ(t, s) =


ϕ(t)− ϕ(s)

t− s
for t 6= s

ϕ′(s) for t = s

 , (t, s) ∈ [0, 1]× [0, 1],

is the same function, which was de�ned in subsection 7.1.1. Its behaviour in the
vicinity of (0, 0) and (1, 1) was also studied there.

Lemma 7.2.3. Let a and b satisfy the conditions of Lemma 7.2.2. Then for

j = 0, . . . ,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds∣∣∂jsa (ϕ (t) , ϕ (s))
∣∣+
∣∣∂jsb (ϕ (t) , ϕ (s))

∣∣ ≤ cs−p0λ0−j (1− s)−p1λ1−j . (7.2.7)

The proof of (7.2.7) is based on the formula of Faà di Bruno, see (2.1.2).

The derivatives of the function Φ(t, s) have singularities at (0, 0) and (1, 1), the
only zeroes of Φ(t, s) in [0, 1]× [0, 1]. As shown in Section 7.1.1,

Φ (t, s)� (t+ s)p0−1 ((1− t) + (1− s))p1−1

as t, s→ 0 or as t, s→ 1,

and ∣∣∣∂ksΦ (t, s)
∣∣∣ ≤ c (t+ s)p0−k−1 ((1− t) + (1− s))p1−k−1 ,

0 ≤ s, t ≤ 1, k = 1, . . . ,m,

that together with the formula of Faà di Bruno implies the following result.

Lemma 7.2.4. For j = 0, . . . ,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds∣∣∂js (log (Φ (t, s)))
∣∣ ≤ c (t+ s)−j ((1− t) + (1− s))−j . (7.2.8)

Next we present some estimates for the functions A(t, s), B(t, s) (see Lemmas
7.2.5 and 7.2.6).

Lemma 7.2.5. Let a and b satisfy the conditions of Lemma 7.2.1. Then the

following holds true: if p0, p1 ≥ 1 satisfy

p0 > 1/ (1− λ0) , p1 > 1/ (1− λ1) , (7.2.9)

then for (t, s) ∈ [0, 1]× (0, 1) it holds

|A (t, s)| ≤ csδ0 (1− s)δ1 , |B (t, s)| ≤ csδ0 (1− s)δ1 |log s (1− s)| , (7.2.10)

with δ0 := (1− λ0) p0 − 1 > 0, δ1 := (1− λ1) p1 − 1 > 0.
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Proof. Following the de�nition (7.2.5) and approximations (7.2.7) and (7.1.6) we
can estimate

|A (t, s)| =
∣∣a(ϕ(t), ϕ(s))ϕ′(s)

∣∣ ≤ ∣∣∣cs−p0λ0(1− s)−p1λ1sp0−1(1− s)p1−1
∣∣∣

=
∣∣∣csp0−p0λ0−1(1− s)p1−p1λ1−1∣∣∣ = csδ0(1− s)δ1 .

The second estimation can be achieved in a similar way using de�nition (7.2.6)
and estimates (7.2.7) and (7.1.6).

Lemma 7.2.6 (see [85]). Let the conditions of Lemma 7.2.2 be ful�lled. If p0, p1 ≥
1 satisfy

p0 > m/(1− λ0), p1 > m/(1− λ1), (7.2.11)

then for (t, s) ∈ [0, 1]× (0, 1) it holds

|A(t, s)| ≤ csm−1+δ0(1− s)m−1+δ1 ,

|B(t, s)| ≤ csm−1+δ0(1− s)m−1+δ1 | log s(1− s)|,

with δ0 := (1− λ0)p0 −m > 0, δ1 := (1− λ1)p1 −m > 0.

About the boundary behaviour of v (t) = u (ϕ (t)) see [86]: for u ∈ Cm,λ0,λ1log (0, 1),
j = 1, . . . ,m, 0 < t < 1, it holds

∣∣∣v(j) (t)
∣∣∣ ≤ c ‖u‖

C
m,λ0,λ1
log (0,1)


tp0−j for λ0 < 0

t(1−λ0)p0−j |log t| for 0 ≤ λ0 < 1

×

×


(1− t)p1−j for λ1 < 0

(1− t)(1−λ1)p1−j |log(1− t)| for 0 ≤ λ1 < 1

 .

(7.2.12)

We see, that under conditions (7.2.11) on p0 and p1, it holds

v(j) (0) = v(j) (1) = 0, j = 1, . . . ,m, (7.2.13)

if 0 ≤ λ0 < 1, 0 ≤ λ1 < 1. For λ0 < 0, λ1 < 0 the conditions (7.2.13) hold if
p0, p1 > m.

Moreover, we have

|∂ms [A (t, s) v (s)]| ≤ cs−1+δ0 (1− s)−1+δ1 ‖u‖
C
m,λ0,λ1
log (0,1)

, (7.2.14)

|∂ms [B (t, s) v (s)]| ≤ cs−1+δ0 (1− s)−1+δ1 |log s (1− s)| ‖u‖
C
m,λ0,λ1
log (0,1)

. (7.2.15)

71



7.2. Equation with logarithmic singularity

Following (7.2.10) we can de�ne A(t, s) = 0 and B(t, s) = 0 for s = 0 and
s = 1. Moreover, we extend A (t, s) and B (t, s) with respect to s outside (0, 1) by
the zero value. The corresponding extensions of A and B will again be denoted by
A and B. Thus, under conditions (7.2.9), we obtain that

A,B ∈ C([0, 1]× [−δ, 1 + δ]) for any δ ≥ 0.

We determine the approximate solution vh of equation (7.2.4) by solving the
following problem

vh (t) =

1∫
0

log |t− s|Ph,m (A (t, s) vh (s)) ds

+

1∫
0

Ph,m (B (t, s) vh (s)) ds+ g (t) , 0 ≤ t ≤ 1,

(7.2.16)

with Ph,m, de�ned by the formula (7.1.40). In (7.2.16) Ph,m is applied to the
products A(t, s)vh(s) and B(t, s)vh(s) as functions of s, treating t as a param-
eter. This is the operator form of a product interpolation method correspond-
ing to the picewise polynomial "central part" interpolation on the uniform grid
{ih : i = 0, . . . , n} .

Below we will use the following notations for the integral operators of equations
(7.2.4) and (7.2.16):

(T v) (t) =

1∫
0

[A (t, s) log |t− s|+B (t, s)] v (s) ds, 0 ≤ t ≤ 1, (7.2.17)

(Thv) (t) =

1∫
0

[log |t− s|Ph,m(A(t, s)v(s)) + Ph,m(B(t, s)v(s))]ds, 0 ≤ t ≤ 1.

(7.2.18)

Theorem 7.2.2.

(i) Let λ0, λ1 ∈ R, λ0 < 1, λ1 < 1. Let f ∈ C [0, 1], a, b ∈ C([0, 1] × (0, 1)) and

satisfy

|a(x, y)|+ |b(x, y)| ≤ cy−λ0(1− y)−λ1 , (x, y) ∈ [0, 1]× (0, 1)

where c = c(a, b) is a positive constant. Assume that N (I − T ) = {0}, with T ,
de�ned by (7.2.2). Finally, let ϕ be de�ned by the formula (7.1.5) with parameters

p0, p1 ∈ N such that

p0 > 1/ (1− λ0) and p1 > 1/ (1− λ1) .
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Then for su�ciently large n =
1

h
, say n ≥ n0, equation (7.2.16) has a unique

solution vh ∈ C [0, 1] and

‖v − vh‖∞ := max
t∈[0,1]

|v (t)− vh (t)| −→ 0, (7.2.19)

where v ∈ C [0, 1] is the unique solution of equation (7.2.4).

(ii) Let m ∈ N and λ0, λ1 ∈ R, λ0 < 1, λ1 < 1. Assume that a, b ∈ Cm([0, 1] ×
(0, 1)) and satisfy∣∣∣∂kx∂lya (x, y)

∣∣∣+
∣∣∣∂kx∂lyb (x, y)

∣∣∣ ≤ cy−λ0−l(1− y)−λ1−l, (x, y) ∈ [0, 1]× (0, 1),

with a positive constant c = c(a, b) for all k, l ∈ N0 such that k + l ≤ m. Let

f ∈ Cm,λ0,λ1log (0, 1) and N (I − T ) = {0}, with T , de�ned by (7.2.2). Finally, let ϕ
be de�ned by the formula (7.1.5) with parameters p0, p1 ∈ N such that

p0 > m/(1− λ0), p1 > m/(1− λ1). (7.2.20)

Then it holds

‖v − vh‖∞ ≤ ch
m ‖f‖

C
m,λ0,λ1
log (0,1)

, n ≥ n0, (7.2.21)

with a constant c which is independent of n =
1

h
and f .

Proof.

(i) The proof of the claim about the convergence of the method and the uniqueness
of the solution can be built similarly to the proof of Theorem 7.1.2. We shall not
repeat it here.

(ii) Let us prove the error estimate (7.2.21) under conditions (7.2.20) on p0 and
p1.

For the solution u of (7.2.1) we have by the Theorem 7.2.1 that u ∈ Cm,λ0,λ1log (0, 1).
According to the de�nitions of the integral operators T and Th (see (7.2.17) and
(7.2.18)) we have

(T v)(t)− (Thv)(t) =

1∫
0

[A(t, s) log |t− s|+B(t, s)]v(s)ds

−
1∫

0

[log |t− s|Ph,m(A(t, s)v(s)) + Ph,m(B(t, s)v(s))]ds
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7.2. Equation with logarithmic singularity

=

1∫
0

log |t− s|(I − Ph,m)(A(t, s)v(s))ds

+

1∫
0

(I − Ph,m)(B(t, s)v(s)ds, 0 ≤ t ≤ 1.

Therefore

|(T v)(t)− (Thv)(t)| ≤
∣∣∣∣

1∫
0

log |t− s|(I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣
+

∣∣∣∣
1∫

0

(I − Ph,m)(B(t, s)v(s)ds

∣∣∣∣, 0 ≤ t ≤ 1.

(7.2.22)

Let us estimate the �rst integral on the r.h.s. of the inequality (7.2.22). Using
(3.2.9) with (7.2.13) and (7.2.14) we get

∣∣∣∣
1∫

0

log |t− s|(I − Ph,m)(A(t, s)v(s))ds

∣∣∣∣
≤

1∫
0

|log |t− s|| |(I − Ph,m)(A(t, s)v(s))| ds

≤ c1hm
1∫

0

|log |t− s|| s−1+δ0(1− s)−1+δ1ds‖u‖
C
m,λ0,λ1
log (0,1)

≤ c2hm‖u‖Cm,λ0,λ1log (0,1)
, 0 ≤ t ≤ 1, (7.2.23)

where c1 and c2 are some positive constants that are independent of h =
1

n
.

To estimate the second integral on the r.h.s of the inequality (7.2.22) we use
(3.2.9) with (7.2.13) and (7.2.15) and get

∣∣∣∣
1∫

0

(I − Ph,m)(B(t, s)v(s)ds

∣∣∣∣
≤ c3hm

1∫
0

s−1+δ0(1− s)−1+δ1 | log s(1− s)|ds‖u‖
C
m,λ0,λ1
log (0,1)
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7.2. Equation with logarithmic singularity

≤ c4hm ‖u‖Cm,λ0,λ1log (0,1)
, 0 ≤ t ≤ 1, (7.2.24)

with some constants c3 and c4 that do not depend on h =
1

n
.

Due to (7.2.22) - (7.2.24) and (7.2.3) we obtain that

|(T v)(t)− (Thv)(t)| ≤ chm‖f‖Cm,λ0,λ1 , 0 ≤ t ≤ 1,

with a positive constant c that does not depend on h =
1

n
.

Considering that (for more detailed argument we refer to the proof of Theorem
7.1.2)

‖v − vh‖∞ ≤ c ‖T v − Thv‖∞ ,

we have established (7.2.21). The proof of Theorem 7.2.2 is completed.

With respect to
uh(x) := vh(ϕ−1(x))

estimate (7.2.21) reads as

max
0≤x≤1

|u(x)− uh(x)| = max
0≤t≤1

|v(t)− vh(t)| ≤ chm ‖f‖
C
m,λ0,λ1
log (0,1)

, n ≥ n0.

7.2.2 Matrix form of the method

Let us derive the matrix form of method (7.2.16). It follows from the de�nition of
the operator Ph,m (see (3.2.4)) that

vh(t) =

n−1∑
j=0

(j+1)h∫
jh

log |t− s|
∑
k∈Zm

A (t, (j + k)h) vh ((j + k)h)Lk,m(ns− j)ds

+
n−1∑
j=0

(j+1)h∫
jh

∑
k∈Zm

B (t, (j + k)h) vh ((j + k)h)Lk,m(ns− j)ds

+ g(t), 0 ≤ t ≤ 1.

(7.2.25)
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7.2. Equation with logarithmic singularity

We obtain an algebraic system of linear equations with respect to the grid values
vh(ih), i = 0, . . . , n, by collocating (7.2.25) at the points t = ih:

vh(ih) =
n−1∑
j=0

∑
k∈Zm

A (ih, (j + k)h)

(j+1)h∫
jh

log |ih− s|Lk,m(ns− j)ds

+B (ih, (j + k)h)

(j+1)h∫
jh

Lk,m(ns− j)ds

 vh((j + k)h)

+ g(ih), i = 0, . . . , n.

(7.2.26)

Note that

A(ih, (j + k)h) = 0 and B(ih, (j + k)h) = 0 for j + k ≤ 0 and for j + k ≥ n,

thus in the r.h.s of the (7.2.26) the values vh(lh) with l ≤ 0 and l ≥ n actually are
not exploited.

With the change of variables ns− j = σ we see that

(j+1)h∫
jh

log |ih− s|Lk,m(ns− j)ds

= h

log h

1∫
0

Lk,m(σ)dσ +

1∫
0

log |i− j − σ|Lk,m(σ)dσ


and

(j+1)h∫
jh

Lk,m(ns− j)ds = h

1∫
0

Lk,m(σ)dσ, j = 0, . . . , n− 1, k ∈ Zm,

so we have to compute integrals

αi′,k := log h

1∫
0

Lk,m(σ)dσ +

1∫
0

log |i′ − σ|Lk,m(σ)dσ,

i′ = −n+ 1, . . . , n, k ∈ Zm,

and

βk :=

1∫
0

Lk,m(σ)dσ, k ∈ Zm.
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7.2. Equation with logarithmic singularity

Thus, system (7.2.26) takes the form:

vh(ih) = h
n−1∑
j=0

∑
k∈Zm

{A(ih, (j + k)h)αi−j,k

+B(ih, (j + k)h)βk} vh((j + k)h) + g(ih), i = 0, . . . , n,

(7.2.27)

or, collecting in the r.h.s. of (7.2.27) the coe�cients by vh((j + k)h) with �xed
j + k = l,

vh(ih) =
n−1∑
l=1

ci,lvh(lh) + g(ih), i = 0, . . . , n, (7.2.28)

where

ci,l = h

A(ih, lh)
∑

{k∈Zm:0≤l−k≤n−1}

αi−l+k,k +B(ih, lh)
∑
k∈Zm

βk

 ,
i = 0, . . . , n, l = 1, . . . , n− 1.

We took into account that A(ih, lh) = 0 and B(ih, lh) = 0 for l ≤ 0 and l ≥ n.

Having found the solution {vh(ih)} (i = 0, . . . , n) of system (7.2.28), we can
use (7.2.25) to �nd the approximate solution at any point t ∈ [0, 1].

However, we can also �nd an approximate solution ṽh(t) by (6.2.4):

ṽh(t) =
∑
k∈Zm


vh(0) for j + k ≤ 0

vh((j + k)h) for 1 ≤ j + k ≤ n− 1

vh(1) for j + k ≥ n

 · Lk,m(nt− j),

where 0 ≤ t ≤ 1 and Lk,m are the Lagrange fundamental polynomials de�ned by
(3.2.3).
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Chapter 8

Numerical Examples

In order to test the collocation method and product integration method described
in our thesis we solve in this chapter some weakly singular linear integral equations
with kernels of type

K(x, y) = |x− y|−1/2

and
K(x, y) = y−λ0(1− y)−λ1 log |x− y|,

where λ0 < 1, λ1 < 1.

8.1 Collocation Method

In this section we present some numerical results obtained by the collocation
method based on central part interpolation.

Example 1. We consider integral equation (1.0.1) (equation (5.0.1)) with the
kernel K(x, y) = |x− y|−1/2:

u(x) =

1∫
0

|x− y|−1/2 u(y)dy + f(x), 0 ≤ x ≤ 1. (8.1.1)

We put
u(x) = 1 + x1/2 + (1− x)1/2

to be the solution of (8.1.1), it corresponds to the free term

f(x) = 1− π

2
− 2x1/2 − 2(1− x)1/2 − x log

(
1 + (1− x)1/2

)
−(1− x) log

(
1 + x1/2

)
+

1

2
x log x+

1

2
(1− x) log(1− x).

(8.1.2)
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8.1. Collocation Method

To solve equation (8.1.1), we perform the change of variables x = ϕ(t), y = ϕ(s),
where ϕ is given by (5.2.10). As a result we get the equation

v(t) =

1∫
0

|t− s|−1/2 Φ(t, s)−νϕ′(s)v(s)ds+ fϕ(t), 0 ≤ t ≤ 1, (8.1.3)

where fϕ(t) = f(ϕ(t)), Φ(t, s) is given by (5.2.7) and v(t) = u(ϕ(t)) is the function
we look for.

For solving equation (8.1.3) by collocation method (6.1.2), we need to assemble
the system (6.2.3). For that we have to calculate the coe�cients (6.2.2). For those
the integrals (6.2.1) are computed by the exact m point Gauss rule. To achieve
the expected convergence order of our method, the parameter p in the de�nition
of ϕ must be p ≥ 2m+ 1 (see Theorem 5.2.1).

In Tables 1 - 4 the errors

εm,n,p := max
0≤i≤n

|v(ih)− vh(ih)| (8.1.4)

are presented. Here v is the exact solution of equation (8.1.3) and vh is the ap-
proximate solution to v obtained by method (6.1.2). Moreover, in Tables 1 - 4 the
quotients

εm,n/2,p

εm,n,p

for m = 2, 3, 4, 5, di�erent n and p = 2m + 1 are presented. The expected limit

value of
εm,n/2,p

εm,n,p
is 2m.

Table 1: m = 2, p = 5

n ε2,n,5
ε2,n/2,5

ε2,n,5

4 4.25E-02
8 2.05E-02 2.07
16 8.02E-03 2.55
32 2.63E-03 3.05
64 7.58E-04 3.47
128 2.03E-04 3.73
256 5.29E-05 3.84
512 1.36E-05 3.89
1024 3.46E-06 3.93

Table 2: m = 3, p = 7

n ε3,n,7
ε3,n/2,7

ε3,n,7

4 2.06E-01
8 2.95E-02 6.98
16 3.95E-03 7.48
32 5.47E-04 7.23
64 7.16E-05 7.63
128 9.17E-06 7.81
256 1.17E-06 7.86
512 1.48E-07 7.89
1024 9.38E-08 1.57
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8.1. Collocation Method

Table 3: m = 4, p = 9

n ε4,n,9
ε4,n/2,9

ε4,n,9

4 1.94E-02
8 1.01E-02 2.07
16 1.31E-03 7.74
32 1.09E-04 12.01
64 7.62E-06 14.27
128 5.07E-07 15.04
256 3.27E-07 1.55
512 3.55E-07 0.92

Table 4: m = 5, p = 11

n ε5,n,11
ε5,n/2,11

ε5,n,11

4 8.33E-02
8 1.99E-02 10.4
16 8.38E-04 23.7
32 2.89E-05 28.9
64 9.31E-07 31.1
128 3.69E-07 2.52
256 3.60E-07 1.02

Example 2. We consider a problem of the form

u(x) =

1∫
0

y−λ0(1− y)−λ1 log |x− y|dy + f(x), 0 ≤ x ≤ 1. (8.1.5)

This is an equation of the form (7.2.1), where

b(x, y) ≡ 0, a(x, y) = y−λ0(1− y)−λ1 , λ0 < 1, λ1 < 1.

We set
u(x) = xλ0(1− x)λ1 , λ0 < 1, λ1 < 1

to be the exact solution of (8.1.5), it corresponds to the free term

f(x) = xλ0(1− x)λ1 − x log x− (1− x) log(1− x) + 1, 0 < x < 1. (8.1.6)

After the change of variables x = ϕ(t), y = ϕ(s) with ϕ given by (7.1.5), the
equation takes the form (7.2.4). In de�nition (7.1.5) we use di�erent values of
smoothing parameters p0 and p1, with max {p0, p1} = p ∈ N. And again, to as-
semble the system (6.2.3) we had to calculate the coe�cients (6.2.2). For those the
integrals (6.2.1) were computed by Romberg's method, the basic idea behind this
method is adaptive Romberg extrapolation combined with cautious error estima-
tion. First such combination was introduced by de Boor in the program CADRE
(see [20]).

In Tables 5 - 8 the errors (8.1.4) and the quotients
εm,n/2,p

εm,n,p
for m = 2, 3,

di�erent n, λ0, λ1 and p for equation (8.1.5) are presented. The expected limit

value of
εm,n/2,p

εm,n,p
is 2m.
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8.2. Product Integration Method

Table 5: m = 2, p = 5,
λ0 = λ1 = 0.5

n ε2,n,5
ε2,n,5
ε2,2n,5

4 4.52E-02
8 1.30E-02 3.47
16 3.33E-03 3.91
32 8.26E-04 4.03
64 2.05E-04 4.03
128 5.10E-05 4.02
256 1.27E-05 4.01
512 3.17E-06 4.01
1024 7.93E-07 4.01

Table 6: m = 3, p = 7,
λ0 = λ1 = 0.5

n ε3,n,7
ε3,n,7
ε3,2n,7

4 6.25E-02
8 1.00E-02 6.24
16 1.42E-03 7.03
32 1.75E-04 8.14
64 2.14E-05 8.15
128 2.66E-06 8.06
256 3.30E-07 8.05
512 4.11E-08 8.04
1024 5.16E-09 7.96

Table 7: m = 2, p = 11,
λ0 = λ1 = 0.25

n ε2,n,11
ε2,n,11
ε2,2n,11

4 1.09E-01
8 2.29E-02 4.72
16 6.50E-03 3.54
32 1.64E-03 3.96
64 4.09E-04 4.01
128 1.02E-04 4.00
256 2.55E-05 4.00
512 6.38E-06 4.00
1024 1.59E-06 4.00

Table 8: m = 2, p = 3,
λ0 = λ1 = 0.75

n ε2,n,3
ε2,n,3
ε2,2n,3

4 2.93E-02
8 7.91E-03 3.71
16 1.97E-03 4.02
32 4.85E-04 4.05
64 1.20E-04 4.04
128 2.99E-05 4.02
256 7.46E-06 4.01
512 1.86E-06 4.00
1024 4.65E-07 4.00

8.2 Product Integration Method

As in previous section we solve the equations with singularities of algebraic and
logarithmic type, but now by product integration method.

Example 3. To test the algorithm (7.1.56) (the matrix form of product in-
tegration method (7.1.28)) we again consider equation (8.1.1). For solving the
corresponding system of equations we need to calculate coe�cients (7.1.57) and
for these the integrals (7.1.58) and (7.1.59) are computed by the exact m point
Gauss rule.
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8.2. Product Integration Method

In tables 9 - 12 the errors (8.1.4) and the quotients
εm,n/2,p

εm,n,p
for m = 2, 3, 4, 5,

di�erent n and p = 2m + 1 for the equation (8.1.1) are presented. The expected

limit value of
εm,n/2,p

εm,n,p
is 2m.

Table 9: m = 2, p = 5

n ε2,n,5
ε2,n/2,5

ε2,n,5

4 1.07E-01
8 3.23E-01 3.31
16 1.15E-01 2.81
32 3.66E-02 3.14
64 1.03E-02 3.54
128 2.74E-03 3.77
256 7.07E-04 3.87
512 1.80E-04 3.92
1024 4.57E-05 3.94

Table 10: m = 3, p = 7

n ε3,n,7
ε3,n/2,7

ε3,n,7

4 2.94E-00
8 3.41E-01 8.65
16 5.10E-02 6.68
32 7.34E-03 6.95
64 9.53E-04 7.70
128 1.22E-04 7.82
256 1.55E-05 7.86
512 1.97E-06 7.88
1024 2.83E-07 6.96

Table 11: m = 4, p = 9

n ε4,n,9
ε4,n/2,9

ε4,n,9

4 1.00E-00
8 2.49E-01 4.02
16 3.02E-02 8.28
32 2.57E-03 11.74
64 1.79E-04 14.34
128 1.19E-05 15.06
256 7.71E-07 15.42
512 3.31E-07 2.33

Table 12: m = 5, p = 11

n ε5,n,11
ε5,n/2,11

ε5,n,11

4 2.33E-00
8 8.91E-01 8.65
16 1.99E-02 44.8
32 7.25E-04 27.4
64 2.19E-05 33.0
128 7.06E-07 31.1
256 3.71E-07 1.90

Example 4. For testing the algorithm (7.2.28) (the matrix form of product
integration method (7.2.16)) we again consider equation (8.1.5). We compose
system (7.2.28) for m = 2, 3, 4, 5, di�erent values of n and λ0, λ1, p0, p1 with

p0 > m/(1− λ0), p1 > m/(1− λ1).
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In Tables 13 - 20 the errors (8.1.4) and the quotients
εm,n/2,p

εm,n,p
with p =

max {p0, p1} are presented. The expected limit value of
εm,n/2,p

εm,n,p
is 2m.

Table 13: m = 2, p = 9,
λ0 = λ1 = 0.75

n ε2,n,9
ε2,n,9
ε2,2n,9

4 3.26E-02
8 1.84E-02 1.77
16 5.77E-03 3.19
32 1.48E-03 3.89
64 3.69E-04 4.01
128 9.19E-05 4.02
256 2.29E-05 4.01
512 5.71E-06 4.01
1024 1.42E-06 4.02

Table 14: m = 3, p = 12,
λ0 = λ1 = 0.75

n ε3,n,12
ε3,n,12
ε3,2n,12

4 1.71E-01
8 3.11E-02 5.47
16 4.39E-03 7.08
32 5.42E-04 8.10
64 6.72E-05 8.07
128 8.37E-06 8.03
256 1.04E-06 8.05
512 1.30E-07 8
1024 1.62E-08 8.02

Table 15: m = 4, p = 17,
λ0 = λ1 = 0.75

n ε4,n,9
ε4,n,17
ε4,2n,17

4 0.14
8 1.42E-02 9.86
16 2.55E-03 5.92
32 2.13E-04 11.51
64 1.43E-05 14.76
128 9.06E-07 15.78
256 5.66E-08 16.01
512 3.53E-09 16.03
1024 2.18E-10 16.19

Table 16: m = 5, p = 21,
λ0 = λ1 = 0.75

n ε5,n,21
ε5,n,21
ε5,2n,21

4 0.20
8 2.39E-02 8.37
16 3.46E-03 6.91
32 1.27E-04 27.24
64 4.53E-06 28.04
128 1.43E-07 31.68
256 4.46E-09 32.06
512 1.43E-10 31.19
1024 6.52E-12 21.93
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Table 17: m = 2, p = 9,
λ0 = λ1 = 0.25

n ε2,n,9
ε2,n,9
ε2,2n,9

4 0.10
8 4.32E-02 2.31
16 1.17E-02 3.69
32 2.99E-03 3.91
64 7.55E-04 3.96
128 1.90E-04 3.97
256 4.77E-05 3.98
512 1.19E-05 4.01
1024 2.99E-06 3.98

Table 18: m = 3, p = 15,
λ0 = λ1 = 0.25

n ε3,n,15
ε3,n,15
ε3,2n,15

4 0.16
8 3.11E-02 5.14
16 6.01E-03 5.10
32 8.56E-04 7.13
64 1.11E-04 7.71
128 1.40E-05 7.93
256 1.76E-06 7.95
512 2.21E-07 7.96
1024 2.76E-08 8.01

Table 19: m = 2, p = 21,
λ0 = 0.2, λ1 = 0.9

n ε2,n,21
ε2,n,21
ε2,2n,21

4 0.24
8 8.51E-02 5.67
16 2.32E-02 2.82
32 6.18E-03 3.67
64 1.59E-03 3.89
128 4.06E-04 3.92
256 1.02E-04 3.98
512 2.56E-05 3.98
1024 6.40E-06 4

Table 20: m = 3, p = 31,
λ0 = 0.2, λ1 = 0.9

n ε3,n,31
ε3,n,31
ε3,2n,31

4 0.35
8 0.12 4.91
16 2.29E-02 2.92
32 2.92E-03 7.84
64 3.82E-04 7.64
128 4.87E-05 7.84
256 6.17E-06 7.89
512 7.75E-07 7.96
1024 9.71E-08 7.98

The convergence orders in numerical examples are in a quite good accordance
with theoretical ones; for great n the convergence order sometimes vanishes. This
circumstance is worth the subject of further study.

84



References

[1] M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables. Dover Publications, New York, USA,
1972.

[2] M. Ahues, A. Largillier, B. V. Limaye. Spectral Computations for Bounded
Operators. Chapman and Hall/CRC, 2001.

[3] P. M. Anselone. Collectively Compact Operator Approximation Theory. Pren-
tice Hall, New Jersey, 1971.

[4] K. E. Atkinson. The numerical solution of Fredholm integral equations of the
second kind with singular kernels. Numer. Math. 19 (1972), 248-259.

[5] K. E. Atkinson. A Survey of Numerical Methods for the Solution of Fred-
holm Integral Equations of the Second Kind. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1976.

[6] K. E. Atkinson. The Numerical Solution of Integral Equations of the Second
Kind. Cambridge Univ. Press, Cambridge, 1997.

[7] K. E. Atkinson, J. Flores. The discrete collocation method of nonlinear integral
equations. IMA Journal of Numerical Analysis, 13 (1993), 195-213

[8] K. E. Atkinson, W. Han. Theoretical numerical analysis. A functional analysis
framework. Springer-Verlag, New York, 2001.

[9] O. Avaste, G. Vainikko. A method of calculating radiative transfer in broken
clouds. Proc. of Symp. On Radiation in Atmosphere, Princeton, (1977), 220-
224.

[10] C. T. H. Baker. The Numerical Treatment of Integral Equations. Clarendon
Press, Oxford, 1977.

[11] C. T. H. Baker. A perspective on the numerical treatment of Volterra equa-
tions. Numerical analysis 2000, Vol. VI, Ordinary di�erential equations and
integral equations, J. Comput. Appl. Math., 125, No. 1-2 (2000), 217-249.

85



References

[12] G. I. Bell, S. Glasstone. Nuclear Reactor Theory. Van Norstrand-Reinhold,
New York, 1971.

[13] H. Brunner. Collocation methods for one-dimensional Fredholm and Volterra
integral equations. The state of the art in numerical analysis (Birmingham,
1986), Inst. Math. Appl. Conf. Ser. New Ser., 9, Oxford Univ. Press, New York
(1987), 563-600.

[14] H. Brunner. Collocation Methods for Volterra Integral and Related Functional
Equations. Cambridge Monographs on Applied and Computational Mathemat-
ics, 15. Cambridge University Press, 2004.

[15] H. Brunner, P. J. van der Houwen. The Numerical Solution of Volterra Equa-
tions. CWI Monographs, 3. Amsterdam, North Holland, 1986.

[16] H. Brunner, A. Pedas, G. Vainikko. The piecewise polynomial collocation
method for nonlinear weakly singular Volterra equations. Math. Comput., 68
(1999), 1079-1095.

[17] S. Chandrasekhar. Radiative Transfer. Courier Dover Publications, 1960.

[18] C. M. Dafermos. An abstract Volterra equation with application to linear
viscoelasticity. J. Di�erential Equations, 7 (1970), 554-589.

[19] I. K. Daugavet. Introduction to the Function Approximation Theory.
Leningrad University Press, Leningrad, 1977.

[20] C. de Boor. CADRE: an algorithm for numerical quadrature. Mathematical
Software, Academic Press, New York (1971), 417-449.

[21] O. Diekmann. Integral equations and population dynamics, in: Collo-
quium Numerical Treatment of Integral Equations (Math. Centre, Amsterdam,
1978/79), MC Syllabus, 41, Math. Centrum, Amsterdam (1979), 115-149.

[22] N. Distefano. A Volterra integral equation in the stability of linear hereditary
phenomena. J. Math. Anal. Appl., 23 (1968), 365-383.

[23] I. Fredholm. Sur une classe d'équations fonctionnelles, Acta Math., 27, (1903),
365-390.

[24] I. G. Graham. Singularity expansions for solutions of second kind Fredholm
integral equations with weakly singular convolution kernels. J. Integral Equa-
tions, 4 (1982), 1-30.

[25] W. Hackbusch. Integral Equations, Theory and Numerical Treatment.
Birkhäuser Verlag, Basel, 1995.

[26] K. Hakk. Approximation Methods for Weakly Singular Integral Equations
with Discontinuous Coe�cients. Dissertation, University of Tartu, Tartu, 2004,
Diss. Math. Univ. Tartu, 37, Tartu Univ. Press, Tartu, 2004.

86



References

[27] P. C. Hansen, J. G. Nagy, D. P. O�eary. Deblurring images: matrices, spectra,
and �ltering, SIAM, Philadelphia, 2006.

[28] E. Hopf. Mathematical Problems of Radiative Equilibrium. Stechert-Hafner
Service Agency, New York, 1964.

[29] J. Janno, L. von Wolfersdorf, Identi�cation of weakly singular memory kernels
in heat conduction. Z. Angew. Math Mech., 77, No 4. (1997), 243-257.

[30] J. Janno, L. von Wolfersdorf. Identi�cation of memory kernels in general linear
heat �ow. J. Inverse Ill-Posed Probl., 6, No. 2 (1998), 141-164.

[31] J. Janno, L. von Wolfersdorf. A general inverse problem for a memory kernel
in one-dimensional viscoelasticity. Z. Anal. Anwendungen, 21, No. 2 (2002),
465-483.

[32] M. A. Jaswon, G. T. Symm. Integral Equation Methods in Potential Theory
and Elastotatics. Academic Press, London, 1977.

[33] A. J. Jerri. Introduction to Integral Equations with Applications. John Wiley
and Sons, New York, 1999.

[34] H. Kaneko, R. D. Noren, Y. Xu. Regularity of the solution of Hammerstein
equations with weakly singular kernel. Integral Equations Operator Theory 13
(1990), 660-670.

[35] I. Kangro, R. Kangro. On the stability of piecewise polynomial collocation
methods for solving weakly singular integral equations of the second kind.
Math. Model. Anal., 13(1) (2008), 29-36.

[36] I. Kangro, R. Kangro. On fully discrete collocation methods for solving weakly
singular integral equations. Math. Model. Anal., 14(1) (2009), 69-78.

[37] R. Kangro. On the smoothness of solutions to an integral equation with a
kernel having a singularity on a curve. Acta et Comm., Univ. Tartuensis, 913
(1990), 24-37.

[38] U. Kangro. The smoothness of the solution to a two-dimensional integral
equation with logarithmic kernel. Z. Anal Anwendungen, 12 (1993), 305-318.

[39] R. Kangro, P. Oja. Convergence of spline collocation for Volterra integral
equations. Appl. Num Math., 58(10) (2008), 1434-1447.

[40] L. V. Kantorovich, V. I. Krylov. Approximative Methods of Higher Analysis.
Gos. Izd. Fiz.-Mat. Lit., Moscow, Leningrad, 1962 (in Russian).

[41] M. Kolk. Piecewise Polynomial Collocation for Volterra Integral Equations
with Singularities. Dissertation, University of Tartu, Tartu, 2010, Diss. Math.
Univ. Tartu, 63, Tartu Univ. Press, Tartu, 2010.

87



References

[42] M. Kolk, A. Pedas. Numerical solution of Volterra integral equations with
weakly singular kernels which may have a boundary singularity. Math. Model.
Anal., 14(1) (2009), 79-89.

[43] M. Kolk, A. Pedas. Numerical solution of Volterra integral equations with
singularities. Front. Math. China 8 (2013), 239-259.

[44] M. Kolk, A. Pedas, G. Vainikko. High order methods for Volterra integral
equations with general weak singularities. Numerical Functional Analysis and
Optimization, 30 (2009), 1002-1024.

[45] S. Krantz. Function Theory of Several Complex Variables. Paci�c Grove, CA:
Wadsworth & Brooks / Cole Advanced Books & Software, 1992.

[46] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya.
Stetsenko. Approximate Solution of Operator Equations. Nauka, Moscow, 1969
(in Russian).

[47] R. Kress. Linear Integral Equations, Appl. Math. Sciences, 82, Springer Ver-
lag, Berlin Heidelberg, 1989.

[48] P. K. Kythe, P. Puri. Computational Methods for Linear Integral Equations.
Birkhauser, Boston 2002.

[49] D. P. Laurie. Periodizing transformation for numerical integration. J. Comput.
Appl. Math. 66 (1996), 337-344.

[50] S. P. Lin. Damped vibration of a string. J. Fluid Mech., 72 (1975), 787-797.

[51] P. Linz. Analytical and numerical methods for Volterra equations. SIAM Stud-
ies in Applied Mathematics, 7, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1985.

[52] A. Makroglou. Integral equations and actuarial risk management: some mod-
els and numerics. Math. Model. Anal., 8, No. 2 (2003), 143-154.

[53] S. Mikhlin. Integral Equations. Pergamon Press, London, 1964.

[54] G. Monegato. Orthogonal polynomials and product integration for onedimen-
sional Fredholm integral equations with "nasty" kernels. Problems and Meth-
ods in Mathematical Physics, 9. TMP, Teubner-Texte zur Mathematik, Band
111, Leipzig, (1989), 185-192.

[55] G. Monegato, L. Scuderi. High order methods for weakly singular integral
equations with nonsmooth input functions. Math. Comput., 67 (1998), 1493-
1515.

[56] P. Oja. Stability of the spline collocation method for Volterra integral equa-
tions. J. Integral Equations Appl., 13(2) (2001), 141-155.

88



References

[57] P. Oja, D. Saveljeva. Cubic Spline Collocation for Volterra Integral Equations.
Computing 69, Springer-Verlag (2002), 319-337.

[58] P. Oja, D. Saveljeva. Quadratic spline collocation for Volterra integral equa-
tions. Z. Anal. Anwendungen, 23(4) 2004), 833-854.

[59] K. Orav-Puurand. A Central Part Interpolation Scheme for Log-Singular In-
tegral Equations. Mathematical Modelling and Analysis, 18(1) (2013), 136-148.

[60] K. Orav-Puurand, A. Pedas, G. Vainikko. Nyström type methods for Fred-
holm integral equations with weak singularities. Journal of Computational and
Applied Mathematics, 234(9) (2010), 2848-2858.

[61] K. Orav-Puurand, G. Vainikko. Central part interpolation schemes for integral
equations. Numerical Functional Analysis and Optimization, 30 (2009), 352-
370.

[62] R. Pallav, A. Pedas. Quadratic spline collocation for the smoothed weakly
singular Fredholm integral equations. Numerical Functional Analysis and Op-
timization, 30 (2009), 1048-1064.

[63] I. Parts. Piecewise Polynomial Collocation Methods for Solving Weakly Sin-
gular Integro-Di�erential Equations. Dissertation, University of Tartu, Tartu
2005. Diss. Math. Univ. Tartu., 39, Tartu Univ. Press, Tartu 2005.

[64] A. Pedas. On the smoothness of the solution of integral equations with a
weakly singular kernel. Acta et Comm. Univ. Tartuensis 492 (1979), 56-68 (in
Russian).

[65] A. Pedas, G. Vainikko. The smoothness of solutions to nonlinear weakly sin-
gular integral equations. Z. Anal. Anwendungen, 13(3) (1994), 463-476.

[66] A. Pedas, G. Vainikko. Superconvergence of piecewise polynomial collocations
for nonlinear weakly singular integral equations. J. Integral Equations Appl.,
9(4) (1997), 379-406.

[67] A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial
collocation for weakly singular Volterra integral equations. Computing, 73
(2004), 271-293.

[68] A. Pedas, G. Vainikko. Integral equations with diagonal and boundary singu-
larities of the kernel. Z. Anal. Anwendungen, 25(4) (2006), 487-516.

[69] A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial
projection methods for weakly singular Fredholm integral equations. Commun.
Pure Appl. Math, 5 (2006), 395-413.

89



References

[70] A. Pedas, G. Vainikko. On the regularity of solutions to integral equations
with nonsmooth kernels on a union of open intervals, J. Comput. Appl. Math.
229 (2009) 440-451.

[71] R. Plato. Concise Numerical Mathematics. American Mathematical Society,
2003.

[72] G. R. Richter. On weakly singular Fredholm integral equations with displace-
ment kernels. J. Math. Anal. Appl. 55 (1976), 35-42.

[73] P. Runck. Über Konvergenzfragen bei Polynominterpolation mit equidistanten
Knoten I, II. Journal für die reine und angewandte Mathematik 208; 210 (1961;
1962), 51-69; 175-204

[74] J. Saranen, G. Vainikko. Periodic Integral and Pseudodi�erential Equations
with Numerical Approximation, Springer, Berlin, 2002.

[75] D. Saveljeva. Quadratic and Cubic Spline Collocation for Volterra Integral
Equations. Dissertation, University of Tartu, Tartu, 2006, Diss. Math. Univ.
Tartu, 44, Tartu Univ. Press, Tartu, 2006.

[76] C. Schneider. Regularity of the solution to a class of weakly singular Fredholm
integral equations of the second kind. Integral Equations Operator Theory 2
(1979), 62-68.

[77] C. Schneider. Product integration for weakly singular integral equations.
Math. Comp 36 (1981), 207-213.

[78] A. Sidi. A new variable transformation for numerical integration. Numerical
integration IV. H. Brass and G. Hämmerlin, eds. Basel: Birkhäuser (1993),
359-373.

[79] D. Slepian. Some comments on Fourier analysis, uncertainty and modeling.
SIAM Review, 25(3),(1983), 379-393.

[80] A. Spence. Product integration for singular integrals and singular inte-
gral equations. Numerische Integration, Internat. Ser. Numer. Math., 45,
Birkhäuser, Basel-Boston, Mass., (1979), 288-300.

[81] E. Tamme. The discrete collocation method for weakly singular integral equa-
tions. Di�erential and Integral Equations: Theory and Numerical Analysis,
Tartu (1999), 97-105.

[82] E. Tamme. Fully Discrete Collocation Method for Weakly Singular Integral
Equations. Proc. Estonian Acad. Sci. Phys. Math., 50, 3 (2001), 133-144.

[83] M. Tarang. Stability of the Spline Collocation Method for Volterra Integro-
Di�erential Equations. Dissertation, University of Tartu, Tartu, 2004, Diss.
Math. Univ. Tartu, 34, Tartu Univ. Press, Tartu, 2004.

90



References

[84] P.Uba. About choice of grid for numerical solution of weakly singular integral
equation by cubic spline collocation method. J. Dif. Uravn 2, (1994), 302-310
(in Russian).

[85] E. Vainikko, G. Vainikko. A Spline product quasi-interpolation method for
weakly singular Fredholm integral equations. SIAM Journal on Numerical Anal-
ysis, 46 (2008), 1799-1820.

[86] E. Vainikko, G. Vainikko. Product quasi-interpolation in logarithmically sin-
gular integral equations. Mathematical Modelling and Analysis, 17(5) (2012),
696-714.

[87] G. Vainikko. Funktionalanalysis der Diskretisierungsmethoden. Teubner Ver-
lag, Leipzig, 1976.

[88] G. Vainikko. Approximative methods for nonlinear equations (two approaches
to the convergence problem). Nonlinear Analysis-theory Methods and Appli-
cations, 2, (1978) 647-687.

[89] G. Vainikko. Radiation Transfer. University of Tartu, 1990 (in Estonian).

[90] G. Vainikko. Multidimensional Weakly Singular Integral Equations, Lecture
Notes Math., 1549 Springer-Verlag, Berlin-Heidelberg-New York, 1993.

[91] G. Vainikko. Cordial Volterra integral equations 1. Numer. Funct. Anal. Op-
tim., 30 (2009), 1145-1172.

[92] G. Vainikko. Cordial Volterra integral equations 2. Numer. Funct. Anal. Op-
tim., 31 (2010), 191-219.

[93] G. Vainikko, A. Pedas. The properties of solutions of weakly singular integral
equations. J. Austrl. Math. Soc., 22, (1981), 419-430.

[94] G. Vainikko, A. Pedas, P. Uba. Methods for Solving Weakly Singular Integral
Equations. Univ. of Tartu, Tartu, 1984 (in Russian).

[95] G. Vainikko, P. Uba. A piecewise polynomial approximation to the solution
of an integral equation with weakly singular kernel. J. Austral. Math. Soc., 22,
(1981), 431-438.

[96] E. Venturino. Recent developments in the numerical solution of singular inte-
gral equations. J. Math. Anal. Appl., 115 (1986), 239-277.

[97] V. Volterra, Sulla inversione degli integrali de�niti. Atti R. Accad. Sci. Torino,
31, 1896, 311-323 (Nota I); 400-408 (Nota II); 557-567 (Nota III); 693-708 (Nota
IV).

[98] F. J. S. Wang. Asymptotic behavior of some deterministic epidemic models.
SIAM J. Math. Anal., 9 (1978), 529-534.

91



References

[99] D. J. Worth, A. Spence, S. T. Kolaczkowski. A second kind Fredholm integral
equation arising in radiative heat exchange. Integral and integrodi�erential
equations, 307-326, Ser. Math. Anal. Appl., 2, Gordon and Breach, Amsterdam,
2000.

92



Sisukokkuvõte

Keskosa interpolatsioonil põhinevad meetodid nõrgalt

singulaarsete integraalvõrrandite lahendamiseks

Käesolevas töös vaatleme lineaarset teist liiki Fredholmi integraalvõrrandit ku-
jul

u(x) =

1∫
0

K(x, y)u(y) dy + f(x), x ∈ [0, 1], (9.1.1)

kus otsitavaks funktsiooniks on u.

Vabaliikme f kohta seame eeldused, mis on täidetud kõigi lõigus [0, 1] pide-
vate ja m korda pidevalt diferentseeruvate funktsioonide korral ning võimaldavad
vaadelda ka selliseid funktsioone, mille tuletised mingist järgust alates võivad olla
tõkestamata punkti 0 ja/või 1 läheduses.

Võrrandi tuuma K(x, y) kohta eeldame, et K on m korda (m ≥ 0) pidevalt
diferentseeruv hulgal ([0, 1]× [0, 1]) \ diag, kus

diag =
{

(x, y) ∈ R2 : x = y
}

ning et leidub selline reaalarv ν ∈ (−∞; 1), nii et kõigi tingimust k + l ≤ m
rahuldavate mittenegatiivsete täisarvude k ja l korral kehtib võrratus∣∣∣∣∣
(
∂

∂x

)k ( ∂

∂x
+

∂

∂y

)l
K(x, y)

∣∣∣∣∣ ≤ c


1, kui ν + k < 0
1 + |log |x− y|| , kui ν + k = 0

|x− y|−ν−k , kui ν + k > 0

 ,

(9.1.2)
kus c = c(K) on mingi positiivne konstant ja (x, y) ∈ ([0, 1]× [0, 1]) \ diag.
Tingimustest (9.1.2) järeldub k = l = 0 korral, et kehtib hinnang

|K(x, y)| ≤ c


1, kui ν < 0

1 + |log |x− y|| , kui ν = 0

|x− y|−ν , kui ν > 0

 , (x, y) ∈ ([0, 1]× [0, 1]) \ diag.

Seega, kui ν < 0, siis tuum K(x, y) ise on tõkestatud hulgal ([0, 1]× [0, 1]) \ diag,
kuid tema tuletised võivad olla tõkestamata, kui y → x. Kui 0 ≤ ν < 1, siis võib
tuum K(x, y) omada astmelist või logaritmilist iseärasust diagonaalil x = y. Muu
hulgas võib tuum K(x, y) omada kuju

K(x, y) = a(x, y)|x− y|−ν + b(x, y) (0 < ν < 1) (9.1.3)

või
K(x, y) = a(x, y) log |x− y|+ b(x, y), (9.1.4)
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kus (x, y) ∈ ([0, 1]× [0, 1]) \ diag ning a ja b on m korda pidevalt diferentseeruvad
funktsioonid ruudus [0, 1]× [0, 1].

Vaatleme ka juhtu, kus funktsioonid a ja b tuumade (9.1.3) ja (9.1.4) avaldistes
on m korda (m ≥ 0) pidevalt diferentseeruvad hulgal [0, 1]×(0, 1) ning nendel võib
esineda rajaiseärasusi muutuja y suhtes. Täpsemalt, tuuma (9.1.3) korral eeldame,
et a, b ∈ Cm([0, 1]× (0, 1)) ja kõigi mittenegatiivsete täisarvude k ja l korral, mille
puhul k + l ≤ m,∣∣∣∂kx∂lya (x, y)

∣∣∣+
∣∣∣∂kx∂lyb (x, y)

∣∣∣ ≤ cy−λ0−l(1− y)−λ1−l, (x, y) ∈ [0, 1]× (0, 1),

kus c = c(a, b) on mingi positiivne konstant ning

λ0, λ1 ∈ R, λ0 < 1− ν, λ1 < 1− ν, 0 < ν < 1.

Tuuma (9.1.4) puhul eeldame, et funktsioonid a, b ∈ Cm([0, 1] × (0, 1)) ja kõigi
mittenegatiivsete täisarvude k ja l korral, mille puhul k + l ≤ m,∣∣∣∂kx∂lya (x, y)

∣∣∣+
∣∣∣∂kx∂lyb (x, y)

∣∣∣ ≤ cy−λ0−l(1− y)−λ1−l, (x, y) ∈ [0, 1]× (0, 1),

kus c = c(a, b) on mingi positiivne konstant ning λ0, λ1 ∈ R, λ0 < 1, λ1 < 1.

Sileda tuumaga integraalvõrrandite korral tagab tuuma K ja vabaliikme f sile-
dus ka lahendi u (kui see leidub) sileduse kinnisel lõigul [0, 1]. Nõrgalt singu-
laarse tuumaga integraalvõrrandi lahendi tuletised võivad integreerimislõigu [0, 1]
otspunktide läheduses olla tõkestamata, mis komplitseerib kiirete lähismeetodite
konstrueerimist selliste võrrandite lahendamiseks.

Nõrgalt singulaarse tuumaga integraalvõrrandi (9.1.1) ligikaudsel lahendamisel
tükiti polünomiaalse kollokatsioonimeetodiga saab lahendi u iseärast käitumist
arvesse võtta, kui kasutada selliseid ebaühtlaseid võrke, kus võrgupunktid asuvad
tihedamalt lõigu [0, 1] otspunktide ümbruses. Kuid tugevalt ebaühtlaste võrkude
kasutamine võib soodustada ümardamisvigade kuhjumist ning praktiliste arvu-
tuste läbiviimisel põhjustada teatavat numbrilist ebastabiilsust, kui võrgupunktide
arv on küllalt suur.

Singulaarsustega integraalvõrrandite (9.1.1) numbriliseks lahendamiseks on dok-
toritöös käsitletud keskosa interpolatsioonil põhinevaid kollokatsiooni- ja korrutise
integreerimise meetodeid, mis ei kasuta ebaühtlast võrku. Täpsemalt, me vaatleme

reaalarvude hulgal ühtlast võrku {jh : j ∈ Z}, kus h =
1

n
, n ∈ N. Siin Z on kõigi

täisarvude hulk ja N on positiivsete täisarvude hulk. Olgu m ≥ 2 �kseeritud. Su-
valise funktsiooni f ∈ C [−δ, 1 + δ] (δ > 0) korral de�neerime tükiti polünomiaalse
interpolandi Πh,mf ∈ C [0, 1] järgmiselt. Igal osalõigul

[jh, (j + 1)h] , 0 ≤ j ≤ n− 1,

de�neerime funktsiooni Πh,mf teistest osalõikudest sõltumatult ülimalt (m− 1)−
astme polünoomina Π

[j]
h,mf ∈ Pm−1, mis interpoleerib funktsiooni f võrgupunkti
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jh naabruses mõlemal pool asuvates sõlmedes lh:

Π
[j]
h,mf (lh) = f (lh) , l = j − m

2
+ 1, . . . , j +

m

2
, kui m on paarisarv,

Π
[j]
h,mf (lh) = f (lh) , l = j − m− 1

2
, . . . , j +

m− 1

2
, kui m on paaritu arv.

Need interpolandid tagavad interpoleerimise lõigu keskosas ning on võimalik näi-
data, et lõigu keskosas on interpolatsioonivea hinnang ligikaudu 2m korda täpsem
kui kogu lõigul. Lisaks on lõigu keskosas interpolatsiooniprotsess suuruse m kas-
vades stabiilne (vt Lemmad 3.1.1 ja 3.2.1 peatükis 3). Valem interpolandi arvu-
tamiseks on esitatav järgmiselt:(

Π
[j]
h,mf

)
(t) =

∑
k∈Zm

f ((j + k)h)Lk,m (nt− j) , j = 0, . . . , n− 1,

kus

Lk,m (t) =
∏

l∈Zm\{k}

t− l
k − l

, k ∈ Zm,

on Lagrange�i fundamentaalpolünoomid ja

Zm =
{
k ∈ Z : −m

2
< k ≤ m

2

}
.

Kui m ≥ 3, siis Πh,mf kasutab funktsiooni f väärtusi väljastpoolt lõiku [0, 1].
Seega funktsiooni f ∈ C [0, 1] korral omab interpolant Πh,mf tähendust pärast

funktsiooni f laiendust lõigule [−δ, 1 + δ], δ > 0, h <
2δ

m
.

Kui funktsioon f on lõigul [0, 1] m korda pidevalt diferentseeruv ning on täide-
tud tingimused f (j) (0) = f (j) (1) = 0, j = 1, . . . ,m, siis lihtsaim laiendusoperaator

Eδ : C [0, 1]→ C [−δ, 1 + δ] , (Eδf) (t) =


f (0) , kui −δ ≤ t ≤ 0
f (t) , kui 0 ≤ t ≤ 1
f (1) , kui 1 ≤ t ≤ 1 + δ


säilitab funktsiooni f sileduse.

Võrrandi (9.1.1) lahendamiseks de�neerime operaatori

Ph,m := Πh,mEδ : C [0, 1]→ C [0, 1] . (9.1.5)

Et parendada iseärasustega võrrandi (9.1.1) lahendi käitumist integreerimislõigu
otspunktides, teeme kõigepealt võrrandis muutujate vahetuse

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1, (9.1.6)

kus ϕ : [0, 1] → [0, 1] on selline sile rangelt kasvav funktsioon, et ϕ(0) = 0 ja
ϕ(1) = 1. Võrrand (9.1.1) teiseneb kujule

v(t) =

1∫
0

Kϕ(t, s)v(s)ds+ fϕ(t), 0 ≤ t ≤ 1, (9.1.7)
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kus
fϕ(t) := f(ϕ(t)), Kϕ(t, s) := K(ϕ(t), ϕ(s))ϕ′(s);

võrrandite (9.1.1) ja (9.1.7) lahendid on omavahel seotud võrdustega

v(t) = u(ϕ(t)), u(x) = v(ϕ−1(x)),

kus ϕ−1 on funktsiooni ϕ pöördfunktsioon.

Integraalvõrrandi (9.1.7) ligikaudseks lahendamiseks vaatleme kahte meetodit:
kollokatsioonimeetodit tuumade (9.1.2) korral ja korrutise integreerimise meetodit
tuumade (9.1.3) ning (9.1.4) korral. Kasutades valemiga (9.1.5) de�neeritud in-
terpolatsiooniprojektorit Ph,m, lähendame võrrandit (9.1.7) võrrandiga (sisuliselt
n+ 1 - mõõtmelise võrrandisüsteemiga)

vh = Ph,mTϕvh + Ph,mfϕ, (9.1.8)

kus Tϕ on integraaloperaator võrrandist (9.1.7):

(Tϕv)(t) =

1∫
0

Kϕ(t, s)v(s)ds, 0 ≤ t ≤ 1.

Võrrandiga (9.1.8) on esitatud keskosa interpolatsioonil baseeruva tükiti polüno-
miaalse kollokatsioonimeetodi operaatorkuju ühtlasel võrgul. Nimetatud meetodi
maatrikskuju on antud valemiga (6.2.3). Doktoritöös on tõestatud selle meetodi
koonduvus ja saadud optimaalset järku lähislahendi veahinnang.

Lahendamaks võrrandit (9.1.1) silendaval muutujate vahetusel ja keskosa in-
terpolatsioonil baseeruva korrutise integreerimise meetodiga, vaatleme algebralise
ja logaritmilise iseärasusega tuumasid kujul (9.1.3) ja (9.1.4). Nii nagu kollokat-
sioonimeetodi puhul teeme ka siin lähtevõrrandites kõigepealt muutujate vahetuse
(9.1.6). Algebralise iseärasusega tuuma korral teiseneb võrrand kujule

v(t) =

1∫
0

[
A(t, s)|t− s|−ν + B(t, s)

]
v(s)ds+ g(t), 0 ≤ t ≤ 1, (9.1.9)

kus v(t) = u(ϕ(t)) on uus otsitav funktsioon,

g(t) = f(ϕ(t)) A(t, s) = a(ϕ(t), ϕ(s))Φ(t, s)−νϕ′(s),

B(t, s) = b(ϕ(t), ϕ(s))ϕ′(s),

ja

Φ(t, s) =


ϕ(t)− ϕ(s)

t− s
, kui t 6= s

ϕ′(s), kui t = s

 , 0 ≤ t, s ≤ 1. (9.1.10)
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Logaritmilise iseärasusega tuuma korral teiseneb võrrand kujule

v(t) =

1∫
0

(A(t, s) log |t− s|+B(t, s))v(s)ds+ g(t), 0 ≤ t ≤ 1, (9.1.11)

kus v(t) = u(ϕ(t)) on uus otsitav funktsioon,

g(t) = f(ϕ(t)), A(t, s) = a(ϕ(t), ϕ(s))ϕ′(s),

B(t, s) = [a(ϕ(t), ϕ(s)) log Φ(t, s) + b(ϕ(t), ϕ(s))]ϕ′(s),

ja Φ(t, s) on antud seosega (9.1.10).

Võrrandite (9.1.9) ja (9.1.11) numbriliseks lahendamiseks kasutame valemiga
(9.1.5) esitatud interpolatsiooniprojektorit Ph,m ja lähendame võrrandeid (9.1.9)
ja (9.1.11) vastavalt võrranditega

vh(t) =

1∫
0

|t− s|−νPh,m(A(t, s)vh(s))ds+

1∫
0

Ph,m(B(t, s)vh(s))ds+ g(t), (9.1.12)

ja

vh (t) =

1∫
0

log |t− s|Ph,m (A (t, s) vh (s)) ds+

1∫
0

Ph,m (B (t, s) vh (s)) ds+ g (t) ,

(9.1.13)
kus 0 ≤ t ≤ 1. Võrrandites (9.1.12) ja (9.1.13) on Ph,m rakendatud vastavalt
korrutistele A(t, s)vh(s), B(t, s)vh(s) ja A(t, s)vh(s), B(t, s)vh(s) kui argumendi s
funktsioonidele, vaadeldes muutujat t kui parameetrit.

Seostega (9.1.12) ja (9.1.13) oleme esitanud keskosa interpoleerimisel baseeruva
korrutise integreerimise meetodi operaatorkuju ühtlasel võrgul {ih : i = 0, . . . , n} .
Meetodite maatrikskujud on toodud vastavalt valemitega (7.1.56) ja (7.2.28). Dok-
toritöös on tõestatud valemitega (9.1.12) ja (9.1.13) esitatud meetodite koondu-
mine ja saadud optimaalset järku hinnangud lähislahendite vea jaoks (vt Theorem
7.1.2 ja Theorem 7.2.2).

Doktoritöö koosneb kaheksast peatükist. Esimeses kahes peatükis antakse üle-
vaade tööst ja esitatakse rida abitulemusi, mida läheb vaja lähislahendi vea hin-
damisel.

Kolmandas peatükis tutvustame keskosa interpolatsiooni, millel on väga hea
veahinnang. Lisaks on lõigu keskosas interpolatsiooniprotsessil ka head stabiilsuse
omadused.

Neljandas peatükis esitleme tuumade kirjeldamiseks vajalikku siledus-singulaarsuse
klassi Sm,ν ning lahendite kirjeldamiseks vajaliku kaaluruumi Cm,ν(0, 1).
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Viiendas peatükis vaatleme siledate muutujate vahetuse funktsioonide klassi
ning uurime taoliste funktsioonide silendavaid omadusi.

Kuues ja seitsmes peatükk on pühendatud võrrandi (9.1.1) numbrilisele lahen-
damisele. Kuuendas peatükis käsitleme keskosa interpolatsioonil põhinevat kol-
lokatsioonimeetodit ja seitsmendas peatükis korrutise integreerimise meetodit. On
tõestatud vaadeldavate meetodite koondumine ning tuletatud koonduvuskiiruse
hinnangud.

Kaheksandas peatükis on teoreetilisi tulemusi testitud numbriliste eksperimen-
tide abil. Testülesannete lahendamisel saadud arvulised tulemused kinnitavad dok-
toritöös saadud teoreetiliste tulemuste kehtivust.

Enamus antud töö põhitulemustest sisalduvad autori kolmes ilmunud teadusar-
tiklis [59, 60, 61]. Neid tulemusi on tutvustatud kaheksal rahvusvahelisel teaduskon-
verentsil ja vastavates konverentsiteesides. Osa juba avaldatud tulemusi on laien-
datud üldisemale juhule ja osa tulemusi on uued.
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