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INTRODUCTION

Analysis and optimization of non-elastic plates and shells has become a problem
of practical interest. There are many books devoted to optimal design of elastic
and non-elastic structures. Various problems and methods of optimization have
been studied by Banichuk (1990), Bendsoe (1995), Cherkaev (2000), Lepik (1982),
G.1.N. Rozvany (1976, 1989), J. Lellep (1991) etc. The basic ideas and methods of
direct analysis of rigid-plastic structural elements are accommodated in the books
by P. Hodge (1963), N. Jones (1989) and others.

Due to the simplicity of their manufacturing the special significance have
the designs of piece wise constant thickness. Circular cylindrical shells of piece
wise constant thickness have been treated by C. Cinquini and M. Kouam (1983)
in the case of a Tresca material. J. Lellep and S. Hannus (1995) considered the
plastic tubes with piece wise constant thickness assuming the material obeyed von
Mises yield condition. Optimal designs for stepped plastic shallow shells have
been established by J. Lellep and H. Hein (1993a,b, 1994) in the cases of piece
wise linear approximations of the exact yield surface corresponding to the original
Tresca yield condition on the plane of principal stresses. Employing a lower bound
method for determination of the load carrying capacity by J. Lellep and E. Tungel
(1998a) defined an optimal design for a stepped spherical shell simply supported
at the edge.

Optimization of elastic and non-elastic beams, frames, plates and shells has
had the attention of many investigators during the last decades. Comprehensive
reviews of problems solved can be found in the books and papers by J. Kruzelecki
and M. Zyczkowski (1985), J. Lellep and U. Lepik (1984), G. Rozvany (1976),
J. Lellep (1991).

Different approaches to optimization of non-elastic structural elements have
been developed by Z. Mroz and A. Gawecki (1975), G. Rozvany (1976), M. Save
(1972), J. Lellep (1985, 1991). Mroz and Gawecki (1975) obtained a somewhat
unexpected result when studying the post-yield behaviour of rigid-plastic circular
plates. It appeared that optimized structures of variable thickness could be even
less strong than the structures of constant thickness. The optimization techniques
which avoid such unfavourable effect were developed later by Lellep (1991) and
Lellep and Majak (1995). Axisymmetric plates and shallow spherical shells of
minimum weight are studied by D. Lamblin, G. Guerlement, M. Save (1985) and
J. Lellep, H. Hein (1993, 1994) assuming that the thickness is piece-wise constant
and that the material obeys Tresca yield condition. Deep spherical shells of Tresca
material have been studied by J. Lellep and E. Tungel (1998 a,b),(1999),(2000).
Straight plate problems are solved by A. Sawczuk and J. Sokol-Supel (1993) for
both, Tresca and Mises materials.



Foundations of the theory of limit analysis and solutions of particular prob-
lems are presented in monograph books by Erkhov (1978), Hodge (1963), llyshin
(1963), Johnson and Mellor (1986), Lin T (1968), Sawczuk (1989), Sawczuk and
Sokol-Supel (1993), Zyczkowski (1981).

The new trends in the limit analysis in theory of plasticity and in the ap-
plication of the methods of plasticity in the structural analysis are presented by
Chakrabarty (2000), Save, Massonet and Saxce (1997) in the case of quasistatical
loadind. Impulsive and dynamic pressure loading of non-elastic beams, plates and
shells is the topic of books by Jones (1989) and Stronge and Yu (1993).

The load carrying capacity of plastic spherical shells is studied by Dumesnil
and Nevill (1970), Hodge (1963), Mroz and Bing Ye (1963), Palusamy (1971),
Palusamy and Luid (1972), Lee and Onat (1968) and others. Palusamy (1971)
considered the plastic collapse of a spherical cap under axial loading, whereas
Hodge (1963), Lee and Onat (1968) studied the problems of limit analysis of
spherical caps subjected to the uniformly distributed loading.

Spherical caps loaded by the rigid central boss were studied by Yeom and
Robinson (1996). Mroz and Bing-Ye (1963) considered the case of loading in
the form of loads distributed along the edge of a central hole. Popov (1967a)
solved the limit analysis of the spherical shell in the case of combined loading. In
these studies the shells of constant thickness are considered. It was assumed that
the yield condition was presented in the form of two hexagons on the planes of
moments and membrane forces, respectively. The same problem was considered in
the further works by Popov (1967b, 1969) in different cases of loading and support
conditions. Rozenbljum (1960) developed an approximation of the exact yield
surface in the space of membrane forces and bending moments. Later the non-
linear approximation was used in the determination of the load carrying capacity
of a spherical cap. Sankaranarayanan (1964) introduced a generalized square yield
condition for investigation of plastic spherical shells.

Onat and Prager (1954) have derived the parametrical equations of the exact
yield surface in the space of generalized stresses. Making use of these equations the
authors have determined the load carrying capacity of a spherical cap subjected
to uniformly distributed pressure loading.

Hodge and Lakshmikantham (1962) have defined the load carrying capacity
of spherical caps with cutouts.

Later Jones and Ich (1972) suggested a new approximation of the yield sur-
face which consists of two diamonds on the planes of bending moments and mem-
brane forces. The generalized diamond yield surface was successfully used for
solution of quasistatic and dynamic problems of plastic plates and shells.

Gabbasov (1963, 1966, 1967) studied the limit analysis of spherical caps
making use of kinematical approach. This leads to an upper bound of the exact,
load carrying capacity. In Gabbasov (1968) a lower bound approach was developed
assuming that the yield surface could be presented in the form of hexagons on the



planes of membrane forces and moments, respectively.

Gabbasov and Fraint (1968) defined the upper bound of the limit load for a
spherical shell with the central hole. The internal edge of the shell was clamped
whereas the outer edge was assumed to be absolutely free.

Kulikov and Khomyakov (1976) studied the limit analysis of cylindrical and
spherical shells subjected to the distributed internal pressure and concentrated

loading.

U. Lepik (1972, 1973) was a pioneer in the application of the methods of
the theory of optimal control in the optimal design of rigid-plastic plates and
shells. It appeared that the principle of maximum of Pontryagin (Bryson and Ho
(1975), Pontryagin (1969)) presented a useful tool for optimization of structures
with bounds imposed on the thickness. Such an approach was applied by U. Lepik
(1972, 1973), where the Prager’s yield condition was used. The latter papers and
the one by U. Lepik (1972) considered homogeneous structures. However, U.
Lepik (1973) studied the sandwich type structures. For the design variable the
thickness of the structure (or the thickness of the working sheets) is chosen, this
quantity is bounded from below and above. Optimal designs for circular plates
were obtained by U. Lepik (1972, 1973), whereas axisymmetric cylindrical shells
were considered by U. Lepik (1982).

U. Lepik (1978) has studied the beams with additional supports. The prob-
lem of optimal location of an additional support is solved in the case of non-elastic
beam. The perfomance index and the constraints are given in a quite general form.
The aim of the optimization is to reduce the beam’s complience.

J. Kirs (1979, 1984) investigated stepped plates, conical, spherical and cylin-
drical shells subjected to initial impulsive loading. Kirs studied spherical and
conical shells made of an ideal rigid-plastic material obeying Tresca yield condi-
tion and associated flow law. The shells under consideration are subjected to the
initial impulsive loading. For the cost function which is formed as a combination
on the structural weight and the initial acceleration optimal stepped designs have
been established.

Circular sandwich Tresca plates subjected to concentrated load were studied
by J. Lellep (1977). In this note the load carrying capacity is maximized for given
weight.

Axisymmetric shells were considered by U. Lepik (1975) taking shear forces
into account.

J. Lellep (1977) and U. Lepik (1978) demonstrated in their papers the
application of the optimal control theory to the optimal design of non-linear elastic,
viscous and ideal rigid-plastic beams.

Axisymmetric plates and shallow spherical shells with continuously variable
thickness made of a von Mises material were considered by J. Lellep and J. Ma-
jak (1989, 1995a, b). In the paper by Lellep and Majak (1995) an optimization



technique developed earlier for axisymmetric plates and circular cylindrical shells
was accommodated to shallow spherical shells subjected to uniform transverse
pressure. It was assumed that the material of the shell was in consistence with
a non-linear approximation of the exact yield surface and associated gradiental-
ity law corresponding to a von Mises material. Minimum weight designs were
established under the condition that the maximal deflection of the shell of vari-
able thickness coincided with that corresponding to the reference shell of constant
thickness. J. Lellep and H. Hein (1993, 1994) studied shallow spherical shells of
piece wise constant thickness in the case of a Tresca material whereas J. Lellep and
E. Tungel (1998, 1999) investigated deep spherical caps with stepped thickness. J.
Lellep and S. Hannus (1989, 1995) considered stepped cylindrical shells.

The methods of optimization of plastic shells have been reviewed by G.
Rozvany (1989), J. Lellep and U. Lepik (1984), J. Lellep (1991), J. KuZelecki and
M. Zyczkowski (1985). Making use of the methods of the theory of optimal control
J. Lellep and J. Majak (1995), J. Lellep and H. Hein (1993) studied rigid-plastic
shallow spherical shells.

Lellep and Puman (1994, 1999, 2000) studied stepped conical shells loaded
via a rigid central boss or subjected to uniformly distributed external pressure
loading. Material of shells under consideration is an ideal rigid-plastic material
obeying Tresca or von Mises yield condition. The exact yield surface in the space of
generalized stresses corresponding to Tresca condition admits proper approxima-
tion with squares or diamonds, respectively, on the planes on membrane forces and
bending moments (Lellep, Puman (1994)). Minimum weight designs of stepped
shells are established under the condition that the limit loads for the stepped shell
and the reference shell of constant thickness, respectively, coincide.

The review papers cited above show that relatively less attention has been
paid to the optimization of plates and shells material of which obeys von Mises
yield condition. Optimal design for shallow spherical shells of von Mises material
have been established by J. Lellep and J. Majak (1995). Circular cylindrical shells
of piece-wise constant thickness were studied by J. Lellep and S. Hannus (1995).

In the present work optimization procedures will be developed for plastic
spherical shells of piece-wise constant thickness.

The stepped shells clamped or simply supported at the edge and pierced
with a central hole are considered. The exact solutions are established for simply
supported shells under the assumption that the material of the shells obeys the
generalized square yield condition and the associated flow law.

Numerical results are obtained for clamped shells made of a von Mises ma-
terial. A non-linear approximation of the exact yield surface is used.
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CHAPTER 1

FORMULATION OF THE
PROBLEM AND
GOVERNING
EQUATIONS



1.1 PROBLEM FORMULATION

1.1.1 Deep spherical cap

When prescribing the problem to be solved there after we distinguish the cases of
a full shell and a shell pierced with a central hole, respectively. The case of a full
shell will be studied in the second chapter assuming that the material of the shell
obeys the Tresca’s yield condition and the associated flow law.

Let us consider a full spherical cap of radius A subjected to the uniformly
distributed external pressure of intensity P (Fig. 1). The external edge of the
shell is simply supported at (p= R.

The thickness of the shell is assumed to be piece-wise constant, e.g.

ho, if E (0,ai),
h={ hlI' ¥>e (a l,a2)1 xn

M) B € (6n,

where [o, hnand ¢ * i, Qn are treated as previously unknown constant
parameters. However, B and n are considered to be given constants.

Weight of the cap may be evaluated by the material volume as

n 1
v = JJ(cosad-cosaj+1)(3A2hj + — 3). (1.2)

J=0 3

Here V = 3M/2ttq and M is the mass of the shell and @ - material density.

We are looking for the design of the cap for which
(i) material volume attains the minimum value for given load carrying capacity,
(ii) load carrying capacity attains the maximum value for fixed weight of the shell.
In the second chapter the main attention will be paid to the problem (ii).

1.1.2 Spherical shell pierced with a hole

In the present work the shells pierced with a central hole will be studied as well. It
is assumed that a spherical shell of radius A is subjected to the uniform external

4 13



Figure 1.1: Spherical shell of piece wise constant thickness.
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pressure of intensity P (Fig. 1). The external edge of the shell (the circle at
tp — RB) is clamped or simply supported and the inner edge (at = a)is
absolutely free. Here the angles a and R are considered as given angles.

In order to get maximal simplicity in the statement of the problem in the
case of material obeying Tresca yield condition we are looking for the design of
the shell confining our attention to the case of the stepped shell with one step in
the thickness. Thus thickness of the shell is

rp, € (a, Qi)
\ hi, ip£ (a\,R)

where [o0? al are be considered as unknown constant parameters.
These parameters have to be determined so that the load carrying capacity P of
the cap attains the maximal value over the set of shells of the same weight (or
mass, or material volume).

The volume of the material can be easily defined when considering the spher-
ical bodies with radii A-\- hf2 and A —h/2, respectively. Therefore, the weight
of the shell can be described by

v i ¢ J . { A3\
= (cosa —cos ai) (3A2h0 + +(cos ai —cos 3) (3A2hi + ~ |

The optimization problem consists in the minimization of the cost function

Jdg— P

so that there are satisfied the governing equations of plastic spherical shells
and the relation, where V' is considered as a given constant.

However, in the case of the material obeying von Mises yield condition we
consider the shell with n different thickness, as in the previous section. The case
of the Tresca material will be studied in the Chapter Ill whereas the case of von
Mises material will be investigated in the last chapter.

1.2 GOVERNING EQUATIONS

The set of governing equations consists of the equilibrum equations, geometrical
relations and the assotsiated flow law. The equilibrium equations for spherical
shells subjected to axisymmetric loading can be presented as

15



(Nv sinif)’ —N@ cos if = Ssinip,
(Nv + A -f PA) singp = — (s sinif)’, (1.3)
(Mvsinif)r —MQ cos ip — —A s Sinif,

where N7, YMp stand for membrane forces and M7, M are the principal
moments. Here S is the shear force. When deriving (4) it is assumed that the
geometry changes of the structure can be neglected, thus the strain components
£ 6, Kdo, Kd and the displacements U, W are small in comparison with
unity.

For small strains and displacements the strain rates (geometrical relations)
can be presented as

iv=I{ir-w), i*="ulcotv-w),
1. . 1 : : (1-4)
Kv = (U + W)\ Kd= - — cot<p(V + W).

In (1.3), (1.4) and henceforth primes denote differentiation with respect to
the current angle if whereas dots correspond to the derivatives with respect to
time or time like parameter. Note that in the limit analysis of plastic shells the
role of time can be fulfilled by the loading parameter P.

According to the associated flow law the vector with coordinates (1.4) is to be
directed along the external normal to the yield surface at the present point. Since
various approximations to exact yield surfaces corresponding to original Tresca or
Mises yield conditions will be used the associated flow law will be stated separately
in each particular case.

In order to introduce non-dimensional variables let us consider a reference
shell of constant thickness A* The reference shell has the same middle surface
as the shell under consideration. Let the yield moment and yield force for the
reference shell be M* = <To4*/4 and TV = (Tghm respectively. Here Co stands
for the yield stress of the material.

For the sake of convenience let us introduce following non-dimensional quan-

tities
N”™e M~"e S W Vv
‘ - . 3= w= —, n= —,
Hy N h* PA (1.5)
— T~ i = - * = = ~
o—fz 7= fn "k P

16



Making use of (1.5) one can present the equilibrium equations (1.3) as

(rii sinip)’ —nNn2cos ip — s sin y?,
(w + N2+ p)sintp= —(5 sine/?), (1.6)
K [(mi sin <)’ —m2cos i\ = ssinip

The strain rates (1.4) take the form

en=0"-w, éd —iicottp - ro),
kN — —k(ii -f w')', Kp = —Kkcotip(ii + w').

Here the following notation is used:
kv = K= ~"A'd. (1.8)

The boundary conditions for the considered case of geometry of the shell are
following

mi(a) — ni(a) = 50 = o, rrii(R) = —7J. (1.9)

1.3 APPROXIMATIONS OF YIELD
SURFACES

1.3.1 Approximations of the yield surface
corresponding to Tresca condition

It is assumed that the material of shells to be considered is a rigid-plastic material
which obeys the Tresca's or von Mises yield condition and associated flow (gradi-
entality) law. The shells of a Tresca material will be studied in Chapters 2, 3 and
shells of von Mises material will be treated in Chapter 4.

I is well know that the Tresca's yield condition in its original form is presented
as a hexagon on the plane of principal stresses (Fig. 1.4). The yield surface in
the space of generalized stresses (membrane forces and moments) can be derived
by the use of the method of E. Onat and W. Prager (1954). E. Onat and W.
Prager employed theusual assumptions of the theory of thin shells and derived
parametrical equations of the yield surface in the space of membrane forces and
moments assuming the material obeys Tresca's yield condition. However, the
result appeared to be complicated for the practical use. The authors themselves.

5 17



Figure 1.2: Generalized square yield condition

aslo other researchers tried to replace the exact yield surface with a simpler one
so that the load carrying capacities obtained on the basis of an approximate yield
surface compare favourably with exact ones.

Various aspects of the problems of derivation and the use of different yield
surfaces are discussed in the books by P. Hodge (1963), A. llyshin (1963), J.
Chakrabarty (2000), M. Zyczkowski (1981), N. Jones (1989), M. Save, C. Masson-
net, G. Saxce (1997), A. Sawczuk (1989) and others.

P. G. Hodge (1963) suggested so-called two-moment limited interaction yield
surface which might be presented in the form of hexagons on the planes of moments
and membrane forces, respectively. Later R. Sankaranarayanan (1964), N. Jones
and N. T. Ich (1972) suggested further simplifications of the yield surface for
rotationally symmetric shells.

In the present study two moment limited interaction yield condition (Fig.
1.4) and the generalized square yield condition (Fig. 1.2) will be used. It is as-
sumed that the vectors/c = (/Cb k2) and £ = (ei,£2) are normal to the hexagons
and squares on planes of bending moments and membrane forces, respectively.

18



Figure 1.3: Two moment limited interaction yield surface

1.3.2 Approximation of the von Mises yield sur-
face

According to R. Mises plastic yielding starts when crt = <ig where daT stands for

the stress intensivity at the current point and (Jo is the yield stress of the material.

In the case of a plane stress state the von Mises yield condition can be
presented as an ellipse on the plane of principal stresses

G\ —<Ti<r + o\ < (Ig. (1.10)
A. llyshin (1963) derived parametrical equations of the yield surface making
use of the concept of thin plates and shells starting from the condition (18).

In the theory of thin plates and shells it is more convenient to use the gen-
eralized stresses (membrane forces and bending moments). Thus it is desirable to
present the yield condition in the space of generalized stresses.

A. llyshin succeeded in solving this task. However, due to its complicated
structure the exact yield surface is unconvenient for practical calculations.

An approximation to the exact yield surface in the space of membrane forces

19



Figure 1.4: Generalized diamond yield condition

and moments was suggested by A. llyshin himself. The approximation can be
presented as

Pn+ Pn+ ~ | =i, (1.11)

where
Pn= n\- nY¥2+ n\

Pm=ml - mxm2Hm\,

Pnm = ~ (2n\7Tn\ + 2n2m 2 n\rn2 na2t ~ . (1-12)

A relatively simple yield surface
Pn+ Pm =1 (1-13)

was suggested by V. I. Rozenbljum (1960). V. Rozenbljum assumed that the stress
distribution was linear across the shell thickness and the von Mises yield condition
was satisfied in the average across the shell thickness.

20



It was shown that approximations of the exact yield surface (1.11) and (1.13)
lead to the results whose deviations from exact results are of the same order. Since
(1-13) is somewhat more simple than (1.11) it is used in the present paper.

The further progres in the simplification of th exact yield surface derived
by A. llyushin was made by Z. Mroz and X. Bing-Ye (1963) who suggested the
surface

V K + Pn =1 (1.14)
as an approximation to the llyshin’s surface.

Later G. lvanov (1967) developed more complicated approximations

p+Y +]IT +PL=1 (UB)

and

Pm 1/4(PnPm-Pnm) . IPm . | (116)

Pn+ 2 Pn+ ONI8PT VvV 4 m— (Ub)

It was shown that (1.15) and (1.16) lead to very good predictions of the limit
load for the shell under consideration.

Various approximation were developed by G. Landgraf (1968), M. Robinson
(1971), H. M. Haydl and A. N. Sherbourne (1979), which are presented in the
book by M. Zyczkowski (1981).

In the present work the approximation (1.13) of the exact yield surface will
be used. The approximation of the von Mises yield condition in the dimensionless
variables (1.3) can be presented as:

M —mim2-fml + N\ —wmn? + n2 —1. (1.17)

The yield surface (1.17) was used in different papers by various authors, for
instance, in H. Haydl and A. Sherbourne (1979), J. Lellep and J. Majak (1995),
M. Zyczkowski (1981) etc.
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OPTIMIZATION OF PLASTIC
SPHERICAL SHELLS OF PIECE
WISE CONSTANT THICKNESS

Jaan Lellep and Ernst Tungel
Institute of Applied Mathematics
Tartu University
Vanemuise 46, Tartu, Estonia

Abstract. An optimal design procedure is developed for stepped rigid-plastic
spherical shells. The shells are subjected to the uniformly distributed external
pressure. Material of shells obeys the Tresca yield condition and associated flow
law. The problems solved herein consist in the maximization of the load carrying
capacity under the condition that the material volume of the shell is fixed and in
the weight minimization under given load carrying capacity, respectively.

21 INTRODUCTION

The load carrying capacity of plastic spherical shells is studied by Dumesnil and
Nevill [1], Hodge [2], Mrozand Bing Ye [4]. Hodge [2] has studied the problems
of limit analysis of spherical caps subjected to the uniformly distributed loading.
Mroz and Bing-Ye [4] considered the case of loading in the form of loads distributed
along the edge of a central hole. Popov [5] solved the same problem in the case
of combined loading. In these studies the shells of constant thickness are consid-
ered. It was assumed that the yield condition was presented in the form of two
hexagons on the planes of moments and membrane forces, respectively. Sankara-
narayanan [6] introduced a generalized square yield condition for investigation of
plastic spherical shells.

Later Jones and Ich [3] suggested a new approximation of the yield surface
which consists of two diamonds on the planes of bending moments and membrane
forces.

In the present paper spherical caps of piece-wise constant thickness are con-



sidered in the case of the material obeying the yield condition which consists of
two hexagons in the planes of moments and membrane forces, respectively.

22 PROBLEM FORMULATION

Let us consider a spherical cap of radius A subjected to the uniformly distributed
external pressure of intensity P (Fig. 1). The external edge of the shell is simply
supported at ip= R.

The thickness of the shell is assumed to be piece-wise constant, e.g.

hoi v?€(0,ai),

hu <pe(au a2),
hnt n
where ho,..., hnand a i,..., an are treated as previously unknown constant pa-

rameters. However, B and n are considered to be given constants. We are looking
for the design of the cap for which

(i) material volume attains the minimum value for given load carrying capacity,
(i) load carrying capacity attains the maximum value for fixed weight of the shell.

Weight of the cap may be evaluated by the material volume as
I5Q A

V = Y~(cosad~ COSOj+i)(3A2~ + -73). (2.2)
Here V = 3M/2iTQ and M is the mass of the shell and Q- material density.

2.3 GOVERNING EQUATIONS AND
BASIC ASSUMPTIONS

For small strains and displacements the equilibrium equations of a shell element
have the form [2]

(Nvsinip) —Ngcos (p= Ssin(

(NN + N® -f PA) sinlp— —(5 sin (p)' (2-3)
(Mvsin @)’ —Mqgcos p— AS sin @
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Figure 2.1: Spherical shell of piece wise constant thickness.
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In (3) Nv, Nqg stand for the membrane forces, M g are the moments and

S stands for the shear force. Here and henceforth primes denote differentiation
with respect to the angle (p.

The strain rate components consistent with (3) are

ev="(U"'-W), ie = j(Ucoty,-W),
(2.4)
kv=-~(U + W)\ KB= ~ cot <p(U + W")

where U and W denote the displacement rates in the meridional and normal
direction, respectively.

The material of the shell is assumed to be rigid-plastic obeying the Tresca
yield condition. The effects of elastic strains, strain hardening and geometrical
non-linearity will be neglected in the present paper.

Yield surfaces in the space of generalized stresses 17, N(q, M® are
of complicated structure. Different simplifications have been developed for the
yield surface.

In the present study the two moment limited interaction yield surface will
be used.

It appears to be convenient to use the following non-dimensional quantities

2 _ ho hi
niz— ., mh2= ", 0= 1= g - h
(2.5)
. hif PA S w U
“Taa P e s—Nm W=AU=A

where M* = (Tq/~/4, TV = cr0/i*, <Igbeing the yield stress.
Making use of the non-dimensional variables (5) the equilibrium equations

(3) may be presented as

(rii sin QY —n2cos o= 5sin P
(M\ + N2+ p)sinip = —(5sinip)1 (2-6)
K[(mi sin 99 —ra2cos 9] = ssinip
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and the strain rates (4) may be put into the form

= ji'"—w, £g=iicotip—w
(2.7)
—k(ii -fu)'> &= —Acot <« + wl)

where
M. ,, ; M, .,
— AN, AN,

Boundary conditions for a simply supported spherical cap are

mi(0) = m2(0), mx(B) = O,
ni(0) = n2(0)

It is evident that in the case of the stepped shell the material of the cap is
used maximally if the moment M/ attains its maximal value at ip = a. Thus in

the case h\ < ho one has
rai(a) = (2.9)

Material volume of the shell (2) may be presented as
v = (1 —cosa)(370+ 4A270) + (cosa —cos/?)(37i + 4A27j), (2.10)

where V — V/ A 2h~.

24 LOAD CARRYING CAPACITY OF
A SPHERICAL CAP OF A CON-
STANT THICKNESS

Consider the spherical cap of constant thickness h — 6h*. It was shown by Hodge
[2] that for small values of the angle 3 an approximate solution of the posed
problem may be obtained if NQ = 0, M© = MQq holds well over the shell. Thus

n2= 0,  T2-—S2 (2.11)

Integrating the set (6) where (11) is taken into account and satisfying (8)

one eventually obtains
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m = I—_j(ipcotif - 1) (2.12)

mx= 62- 2 (1 - (fcotip)

Substituting m\(B) = 0 in (12) gives

2kS2
N 1—Rcoth

(2.13)

The value of the load intensity (13) is a lower bound to the load carrying
capacity since (13) corresponds to the statically.admissible stress distribution (12).
For the solution (13) being the exact solution it is necessary that it meets the
kinematical requirements. Making use of (7) and the associated flow law one can
state that the solution is kinematically admissible for small values of the angle
3. Thus for small values of B (13)presents the exaxt limit load. In the case of
greather values of angle B the current solution gives the lower bound to the limit
load.

25 STEPPED SPHERICAL CAP

Consider now the simply supported spherical shell of piece-wise constant thickness
(1) whereas non-dimensional thicknesses are 70 and 71. In this case according to

N® — 0, M0 = Mo and (5) T2 —0 and
[ 70> V>€[0,a],
m2—\ (2.14)

1 7i? <pela,l’]

Substituting (14) in (6) and integrating under the boundary conditions (8)
one easily finds

(2.15)

ui = -ppco* B~
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for € [0, R\ and

m\=7o0-~(l-vcotv?) (2.16)
for ip £ [0, a]. Similarity for ip 6 [0, 3] one obtains

9 P /- \ Sillc/ o v
ML =71  gill*® ~coM + gurs (70-71i), (2.17)

where the continuity requirement for m\ at ip = a is taken into account. Satis-
fying the boundary condition m j(/?) = 0 in (17) leads to the lower bound of the
load carrying capacity of the shell of piece-wise constant thickness

2K sma

_ 2.18
P = 1 _gcotR (2.18)

In order to solve the optimization problem one has to maximize the load
carrying capacity under the condition that the material volume of the shell (10)
is given. Instead of the exact load carrying capacity the lower bound (18) will
be used in present paper. It is reasonable to assume that the shell material is
maximally stressed if the condition (9) is satisfied. Thus according to (9), (16)

(1 —ocoto) sm a

=0 2.19
1—Rcoth ( )

Assume that the quantity v in (10) is equal to the non-dimensional volume
associated with the uniform thickness 7 = 1. This conjecture leads to the relation

(1 - cosa)(370 + 4&270) + (cosa - cos/?)(37i + 4fc27j) - (1 - cos/?)m
(3 + 4k2) = 0(2.20)

In order to maximize (18) under constraints (19) and (20) let us introduce
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the augmented functional

2K

o+ PsinB + sina(70 - 7i2)]+
/ sinB —RB cos 3 y ( )]

+ Ai[(1 —co0s0;)(370 + 4f270) + (cosa —cos/?)(37i + 4k'2jf)-

-(1 - cos/3)@3 + 4fc2)] + A2{7<- 1\~

1—acota
[7, sinB + sina(70 ~ 7i)]}

sin —RB cos i
(2.21)

Necessary conditions of the minimum of (21)
0J* =0, 1A=0, N =0
da p' b .Cl"b

may be presented as

2k cosc*(7q—7j)

] 4- Ai[sina(3704- 4&27q9) —sin a(37i 4- 4A27f)]4-
sinf3 — Qcos

n a
2 cot a ) (72sinR —sina(72- 72)) -
sinf3 — B cos sin2a
— (1 —acota) mcosa(7g—7?)] = O,
4A70 sin a

X, .. , 9
— - - —+ Ai(l —cos a)(3 4 1271 70)+
sinp —p cos p

1l —acota

+2A, 70 - . 7osina = 0,
sinB —R cos R
4K . . .

. (71 sin /9 —71 sina) 4- Ai(cosa —cos/3)(3 + 12£272)—
sin@ —B cos /?

1l —acotd .
m2A, 7i + /S\In_ S — -C-O-S--Bo(ﬂ sm & b sin = 0.

(2.22)

The set of algebraic equations (22) must be solved together with (19), (20)

with respect to a, 70, 7i, Ai, X2- This has been done numerically by the aid
of the Newton method.
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o 0.05 0.1 0.15 0.2

Figure 2.2: Membrane force

2.6 DISCUSSION

The results of calculations are presented Fig. 2,3 and in Tables 1,2 for several
values of the angle 0. Table 1 corresponds to the case K = 0, 005, whereas Table

2 is associated with K — 0,001. The quantity e in Tables 1,2 can be considered
as the economy coefficient defined as

Here p stands for the lower bound to the load carrying capacity of the stepped
shell whereas po is the limit load of the reference shell of constant thickness. In
the latter case 70 = 71 = 1.

Calculations carried out show that the lower bound to the load carrying
capacity of the shell can be increased more than 22 % (in the case B = 717 2). For

smaller values of /3 the economy coefficient attains smaller values. However, limit
load can be increased more than 15 % anyway.



Table 2.1: Optimal values of the design parameters kK = 0,005.

B 0 70 7i e

oA 0,08056 1,1395 0,7417 1,15345
0,15 0,12086 1,1394 0,7415 1,1537
0,2 016112 1,1393 0,7415 1,1540
0,3 0,24156 1,1390 0,7417 1,1550
04 032188 11,1386 07419 1,1564
05 0,40201 11,1380 0,7422 11,1583
06 048195 1,1373 0,7425 1,1606
0,8 0,64107 11,1355 0,7431 1,1668
1,0 07991 1,1330 0,7437 1,1754
1,2 09559  1,1298 0,7440 1,1871
1,4 1,1116  1,1257 0,7437 1,2028
m/2  1,2442  1,1215 0,7428 1,2205

Numerical analysis reveals somewhat unexpected matter that the optimal
values of O, 70, 7] only weakly depend on the geometrical parameter K. For in-
stance, in the case K = 0,005 and/3 = 0,80 = 0,64107; 70 = 1,1355; 71 =
0,7431. However, if K = 0,001 one has o = 0,6411; 70 = 1,1355; 7l =
0,7432.

Distributions of the membrane force '\ and bending moment I\ are pre-
sented in Fig. 2 and 3, respectively. Here B — 0,2 and K = 0,005. According
to Table 10 = 0, 16112 whereas 70 = 1, 1393 and 71 = 0,7415. Note that
at @ = a the bending moment m\ has the limit value, eq M\ = 7~  Solid
lines in Fig. 2,3 correspond to the optimized shell whereas the dashed lines are
due to the reference shell of constant thickness. It can be seen from Fig. 2,3 that
the bending moment and membrane force in the optimized structure exceed those
corresponding to the reference shell of constant thickness.
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Figure 2.3: Bending moment

Table 2.2: Optimal values of the design parameters kK = 0,001.

R a 70 7i €

01 0,0814 11396 0,7284 11,1533
0,2 041611 1,1393 0,7413 1,1541
04 03219 11,1386 0,7419 1,1565
0,6 10,4820 1,1373 10,7425 1,1606
0,8 06411 1,1355 0,7432 1,1660
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OPTIMIZATION OF PLASTIC
SPHERICAL SHELLS
PIERCED WITH A CENTRAL HOLE

J. Lellep and E. Tungel
Institute of Applied Mathematics,
Tartu University
Vanemuise 46, Tartu, ESTONIA

Abstract. An optimization method regarding to plastic spherical shells is pre-
sented. The shells under consideration are clamped at the outer edge and pierced
with a central hole. The material of shells obeys generalized square yield condition
and associated flow rule. The problem of maximization of the load carrying capac-
ity under the condition that the weight (material volume) of the shell is fixed is
transformed into a problem of non-linear programming. The latter is solved with
the aid of Lagrangeian multipliers. The obtained solution is compared with the
optimal solution of the minimum weight problem for given load carrying capacity.

3.1 INTRODUCTION

Analysis and optimization of non-elastic plates and shells has become a problem
of practical interest. Comphensive reviews of problems solved can be found in
the works by G.I.N. Rozvany (1976, 1989), M. -Zyczkowski and KruZzelecki (1985),
J. Lellep (1991) etc. The methods of direct analysis of rigid-plastic structural
elements are accommodated in the books by P. Hodge (1963), N. Jones (1989)
and others.

Due to the simplicity of their manufacturing the special significance have
the designs of piece wise constant thickness. Circular cylindrical shells of piece
wise constant thickness have been treated by C. Cinquini and M. Kouam (1983)
in the case of a Tresca material. J. Lellep and S. Hannus (1995) considered the
plastic tubes with piece wise constant thickness assuming the material obeyed von
Mises yield condition. Optimal designs for stepped plastic shallow shells have been
established by J Lellep and H. Hein (1993, 1994) in the cases of piece wise linear
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approximations of the exact yield surface corresponding to the original Tresca yield
condition on the plane of principal stresses. Employing a lower bound method for
determination of the load carrying capacity the authors (1998) defined an optimal
design for a stepped spherical shell simply supported at the edge.

In the present paper the stepped shells clamped at the edge and pierced

with a central hole are considered. The exact solutions are established under
the assumption that the material of the shells obeys the generalized square yield

condition and the associated flow law.

3.2 FORMULATION OF THE
PROBLEM

Consider a spherical shell of radius A subjected to the uniform external pressure
of intensity P (Fig. 1). The external edge of the shell (the circle at ip = R) is
clamped and the inner edge (at o= a) is absolutely free. Here the angles a and

B are considered as given angles.

We are looking for the design of the shell confining our attention to the case
of the stepped shell with one step in the thickness. Thus thickness of the shell is

" REEAY @

where /zq, ~i, CH are to be considered as unknown constant parameters. These

parameters have to be determined so that the load carrying capacity P of the cap
attains the maximal value over the set of shells of the same weight (or mass, or

material volume).

The volume of the material can be easily defined when considering the spher-
ical bodies with radii A -f h/2 and A —h/2, respectively. Therefore, the weight
of the shell can be described by

\A i A\ f . h3
— = (cos a—cos o?) I 3A2h0 + j +(cos —cosR) (3A2hi + —

(3.2)

The optimization problem consists in the minimization of the cost function
Jo= -P (3.3)

so that there are satisfied the governing equations of plastic spherical shells and

the relation (2), where V' is considered as a given constant.
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3.3 BASIC EQUATIONS

The equilibrium equations for spherical shells subjected to axisymmetric loading
can be presented as

(Ny sinip)’ — Nf>cos {p — S sin p,
(NN + Ap + PA) sinip= —(S sinip)\ (3.4)
(Mvsinlp) —Md cosip= —AS sin<q

where Ncp stand for membrane forces and M v, Md are the principal
moments. Here S is the shear force. When deriving (4) it is assumed that the
geometry changes of the structure can be neglected, thus the strain components
£p, £¢, Hy, Kd and the displacements £/, W are small in comparison with
unity.

For small strains and displacements the strain rates can be presented as

ev= ~(U"-wW), e* = i(f/lcot <p-W),
n Al = -A 1 u - (35)
Kv=-—{U+ Wy, K = ~— cotip(U + W).

In (4), (5) and henceforth primes denote differentiation with respect to the
current angle @ whereas dots correspond to the derivatives with respect to time
or time like parameter. Note that in the limit analysis of plastic shells the role of
time can be fulfilled by the loading parameter P.

In order to introduce non-dimensional variables let us consider a reference
shell of constant thickness h*. The reference shell has the same middle surface
as the shell under consideration. Let the yield moment and yield force for the

reference shell be M* = <70™*/4 and TV = <04*, respectively. Here Jo stands
for the yield stress of the material.

For the sake of convenience let us introduce following non-dimensional quan-

tities

JTD IVNith S w n

hQ hi h* PA Vv/~.0)

o A\ kU p=A-



Making use of (6) one can present the equilibrium equations (4) as

(rii sin Y —n2cosip= ssin @,
(ni -f N2+ p) sin p= —(s sin v, (3.7)
K [(mi sin (pY —mi cos 99 = ssin<p

The strain rates (5) take the form

i —iil—w &b = iicotip—w),

(3.8)
Ky = —Kk(ii + w'Yi ~ cot i + wl).

Here the following notation is used:

(3.9)

Material of the shell is assumed to be an isotropic, homogeneous rigid-
plastic one obeying the generalized square yield condition suggested by R. Sa-
karanarayanan (1964). This yield condition has its own application area but it
can be handled as an approximation to the Tresca yield condition as well.

The exact yield surface in the space of generalized stresses is of complicated
structure even in the case of material obeying the original Tresca yield condition.
Due to the complexity of the exact yield surface exact solutions of complicated
shell problems are quite rare. As we are rather more interested in the developing
an optimization procedure than in solving a particular problem we are seeking in
maximal simplicity of the yield surface. Moreover, it is evident that the solutions
for simply supported full caps coinside in the cases of materials obeying the gen-
eralized square yield condition and the "two moment limited interaction” yield
surface, respectively. The latter surface was suggested by P. Hodge (1963).

It is resonable to assume that the stress state of the shell corresponds to
the sides AB and CD "' of the squares on the planes of moments and membrane
forces, respectively (Fig. 2). Thus

Mp — Ma N — —No, (3.10)

where Mg and No stand for the yield moment and yield force, respectively, e.g.
MO ~ alOh2/ 4, No = aOh.

According to (6), (10) one has in the case of the stepped shell
"= 70> "2 = -To (3.11)
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for ip£ (a, a\) and
m2= 72, n2= -71 (3.12)

for £ («1,/?)=

We are looking for the design of the shell with maximal load carrying capac-
ity. It means that all the sections of the shell must be stressed maximally. The
statical restrictions imposed on the yield regime (11), (12) are following

- 70<mi< 70> ~70< U< 70 (3.13)

for £ (a, ai) and

-7 < mi< 7?» “7i< < 7i (3.14)

for £ (a;L/3).

Evidently, at the section o — Qff moment m j attains its maximal admissible
value, e.g. the hinge circle appears at = 0ot\ Assuming that Kg < h\ one has
an intermediate condition

miK) = —7o- (3.15)

The boundary conditions for the considered case of geometry of the shell are
following

m\(@) —w(a) = s(a) = 0, rrii{B) = —7?. (3.16)

Making use of the non-dimensional quantities (6) one can present the weight
of the shell as

v — (cos a—cos qi)(370+4A27q)-]-(cos ar—cos B)(3M1+4:k2™), (3.17)

where v = V'/2TTA 2h+.

34 THE REFERENCE SHELL OF
CONSTANT THICKNESS

Let us consider a spherical shell with a central hole such that the thickness of the
shell is h = h*6 where 8 is a constant.

Assume that the stress strain state of the shell corresponds to the sides AB

and CD " of corresponding squares (Fig. 2). Thus throughout the shell

n2= -8 m2= 82 (3.18)
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Substituting (18) in (7) one can integrate the system of equations (7). It is
easy to recheck that the solution of (7) satisfying the boundary conditions (16)
has the form

|,.f w 4 E)sina
5 z “PW - ay+ 9ltmsmly>-a);
1 a
M — — (26 —p)<pcotip -f cotip —(26 —p)+
f { smacosa ZCOS o
7] B+ T -(26-p)(l -~cotv?)+

f cotip (28 — p)a -f ~ sina cos -f

2 in@
f -sm a-f ——(—k6 —B6)
sm ip
(3.19)
Finally, substituting rrii(B) — —S2in (19) one easily obtains the limit load

for the clamped shell

2k S ¥ dEy.2A2 26 (1+ (a- 0)cot/?)

p ] (3.20)
cotB(R —a+ sinacosa) —cos2a
According to the associated flow law = 0, K"=0, £ < 0, Ap > 0.
Thus it follows from (8) that
r/-fw' =909, U—w-=o0. (3.21)
Integrating (20) and satisfying the boundary conditions one easily obtains
"0 singz- B (3.22)
sin(y? - .
sin(/3 —a)
and
wO
u— [cos(y> — R) —cos ], (3.23)
s'm(B —a)
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provided w(B) = 0, G{Bf) — 0 and w(a) = wq.

Making use of (8) and (22), (23) one can check that £b < 0, A >
0. Therefore, the solution (19), (20), (22), (23) is statically and kinematically
admissible. It means that (20) presents the exact load carrying capacity for the

current problem.

3.5 SPHERICAL CAP OF PIECE WISE
CONSTANT THICKNESS

Consider the spherical shell of piece wise constant thickness which is clamped at
the outer edge and free at the inner edge. Let the non-dimensional thicknesses be
70 and 7i, respectively.

Guiding by the considerations discussed above we assume that
n2= ~70, r2- 70 (3.24)

for ip G (a, c*i) and
n2= ~7b m2= T7i2 (3.25)
for ip £ (Ql, B).

Substituting (24) in (7) and integrating leads to the result

1 psina
= 8‘\/270 -« )+ >%in ipsm (v?-a);
ni = 7o cot ipg_a—ipz)) + ~ cot p(<p —a + sina cos a) 5 cos2a;
) , 1 ) o ) p . (3.26)
. -(270 - p)(l - ipcotip--acotip) -f - sin q+

P . a cot @ sma / 2 7o\
—sm 0; cos
2 sm ip \To H—@/

+

\

for 7 £ (a, ct\).



Similarity one obtains

5 = -(27! - pip ~ + (D2+ 7i)-cot g
w = -@271 —p)(l —Llpcotip) + D\ cot(*+ D2;
(3.27)
mi = 7i+ -(271 - p)(I —ipcotip) + Di cotip+ D2+ 7i +
D-
+

for G (o!i,/?). In (27) D1, Z)2, -O3 stand for arbitrary constants of integra-
tion.

Satisfying the continuity requirements for mi, L and S at 9= ct\ by the
use of (26), (27) one can get

D] —7o(of —ai) + ’F‘)(sin acosa~a) airb (3.28)

and
p2= Psin?a - 71, (3.29)

also
03= 7 [(70 + ~70)(sinal - sina) - (71 + fczi)sinai] . (3.30)

Two conditions in the set (15), (16) have not used yet. The requirement (15)
leads to the load carrying capacity

25sin «(70 + &0) ~ (sinai -f (ct —c*i) cos ai) —4&7q sin ai

P= . . . . . .
(ai —a) cos dl\ -f sin2a sin a4 -f sina cos a cos ct\ —sin

(3.31)

The last boundary condition in (16) leads to the additional constraint

2&j + (71 - 0 (1 - BCOtR) + cotR [70(a - ai)+

-fE)(sin acosa—a)+ +a”] + ?sfn2a+ (3.32)
|
+-—- £(7o+ Avo)(sinai - sina) - (71 -f & 2)smc*i] = o.
smp

It is worthwhile to mention that the associated flow law leads to the equations
(21) in the case of the stepped shell as well. Therefore, the solution is kinematically

admissible if the displacement rates are defined in the form (22), (23).
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3.6 NUMERICAL RESULTS

In order to maximize the load carrying capacity (31) under the constraints (17)
and (32) one has to introduce an augmented functional

270 (sin «i -f (a - c*i)cosax) - 2sin0(70 + & q) + 4&70 sin ai
(ai —a) cos + sin2asin  + sinacosa cosa\ —sin a\
-f Ai [(cosa - cosai)(370+ 4A270) + (cosai —co0s/?)-

e (371 + 4k2jf) - v+ X2{zkrf + (71 - 0 (1- BcotR)+ (3.33)
+ cotl3 7o(a —cti) + E)(sin acosa —a) + ai7i + PsM2o
+ [(To + A70)(sinai - sina) - (7! + krf) sinai]},

where p is defined by (31).

Necessary conditions for minimum of (33) can be expressed as

dp_ —1+ “ (sinacoso —a + BcotB —1+ sin2a) +
dcti
-fAi sin 01(870 + 4A27q - 371 - 4&27MN)-f-

I
=

- i - i | -
1 sing Lcos 01(70 + &70 - 7i &7i) + cos /9(7! 70)!J
dp

1-f ~(sinocoso —o + BcotB —1+ sin20) +
(3.34)
+A1l(cos o —cos Oi)(3 -f 12A:27q) +
4 smO] -sina,
+ A2 cotB(a - Oi) 4 i S L+ 2770) _p-
sin f§ :
Ai(cos 01 —cos /?)(3 -f 12&272)+
sm Oi .
4771 -f 1 —R cot B + cot R mO! _ (1 + 2kji) = o0.
sin 8
Here the following notation is used:
dp . , _
dai = {[-270 (- sin01(0 - QI)) - 4kjQ cosc*i] »
(oi —a) cosai -fsin2asinai + sina cosa cosoy —sinai] —
- 2sin 0(70 + &70) - 270 (sinc*i + (a - Qj)cosax) -
- 4f?7gsin«! e [(a —ai)sinaj -fsin2acosai- (3.35)
- sinacosasinar m{(a™ - a) cosai + sin2a sin ax+
-f sin a cos a cos «i —sin 2,
dp _ 2sino(l + 2770) - 2sinOi - 2(a - ar)cosox ~ 8k™0sin aj
<0 (ai —a) cosai -fsin2a sin + sinacosa cosai —sina\
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The set of algebraic equations (34) is to be solved together with (17) and
(32) making use of (35). A standard numerical procedure based on a modification
of the Newton method has been employed.

The results of calculations are presented in Fig. 3 and Tables 1-3 for the
shells with the geometrical parameter K — 0, 05; K — 0,02 and K = 0,01,
respectively. Here a simplified version corresponding to 71 = 1 is considered. In
this case /2* = h\ and the thickness of the reference shell of constant thickness is
denoted by 7*/21. The quantity 7* is calculated so that the material volumes of
the stepped and reference shells of constant thickness, respectively, coincide.

The coefficient of economy in Tables 1-3 is defined as
e= N-1 + 100 (3.36)

where po stands for the load carrying capacity of the reference shell and p is the
maximal value of the limit load for the shell of piece wise constant thickness.

The economy of the design depends on geometrical parameters of the shell
under consideration. It can be seen from Tables 1-3 that in the case kK = 0, 05
and a = 0,4; B = 0,6 the limit load can be increased more than 30% when
using the design with one step in the thickness. However, in the case /1 = 0, 02
where a — 0,4 and B — 0,6 the load carrying capacity can be increased by
17,5% and in the case K = 0,01 (a = 0,4; /9 = 0,6) by 8,5% in comparison
to that corresponding to the reference shell of constant thickness.

The distributions of the membrane force nj and bending moment [T\ are
presented in Figs. 3 and 4, respectively. Solid lines in Figs. 2 and 3 correspond
to the optimized stepped shell, whereas the dashed lines are due to the reference
shells of constant thickness.

In similar way one can solve the problem of minimum weight for given load
carrying capacity. In this case one has to minimize (17) under the condition that
the load intensity p in (31) has a given value.

The results of calculations are presented in Tables 4-6. As p is now fixed
instead of (36) the coefficient of economy is defined as

e= N — 100. (3.37)

In (37) Uo stands for the material volume for the reference shell of constant thick-
ness. The constant thickness can be determined from (20) under the assumption

48



that the stepped shell and the reference shell, respectively, have the common load
carrying capacity. In the case of the shell with 7* = 1 one has

v0 = (cos a —cos /?)(3 -f 4k2). (3.38)

It can be seen from Tables 4-6 that for the optimized shell with one step in
the thickness the outer thickness exceeds unity whereas the inner thickness is less
than one. The same feature can be observed when maximizing the load carrying
capacity for given material volume. However, the values of design parameters
61, 70, 71 are slightly different in these cases.

It is worthwhile to note that for a fixed value of inner angle the eventual
material saving is the greater the less is the difference between outer and inner

angles, respectively (Tables 4-6).

Similarity, it can be seen from Tables 1-3 that the less is B —a the greater
is the relative increase of the load carrying capacity for fixed value of the inner
angle a. One can observe the same feature when the outer angle B is fixed and
the inner angle a is variable.

It is somewhat surprising that the material saving is relatively high even in
the case of one step in the thickness. For instance, in the case kK = 0,05; a =
0,8;B = 1,0 one can save 17,08% of the material when utilizing the design with
one step. At the same time the uniform shell and the stepped shell, respectively,
have the same value of the load carrying capacity po = 4, 239.

3.7 CONCLUDING REMARKS

A method of optimization of spherical shells with free internal edge and clamped
external edge has been developed. The shells of piece wise constant thickness with
one step in the thickness have been considered. Exact solutions have been estab-
lished assuming the material of shells obeys the generalized square yield condition
and associated flow rule.

The results obtained numerically showed that the load carrying capacity of
the shell can be increased significantly (even more than 35% in the case K = 0, 05;

o —0,8; B — 1,0) when using the design of the shell with step wise varying
thickness. Similary, the weight of the shell can be reduced as well for fixed load
carrying capacity.

It is interesting to remark that the two following problems:

(i) minimization of the weight for given load carrying capacity.
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(i) maximization of the load carrying capacity for fixed weight or material
volume of the shell (3.38)

lead to different values of design parameters. Numerical results show that
the coefficient of efficiency for the problem (i) is less than that of the problem (ii).
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Table 3.1: Design of maximal load carrying capacity (k = 0,01)

a B & 70 1+ e P Po
04 06 05441 0,7514 0,83 8,56 1,639 1,510
04 08 10,7630 10,9321 0,94 0,84 1,400 1,388
06 10 0,958 0,9204 0,93 09 1,268 1,256
0,8 10 10,9378 0,7174 0,81 9,60 1,397 1,274

Table 3.2: Design of maximal load carrying capacity (k = 0,02)
a R al 70 7* e P Po
04 06 05221 06471 0,80 17,54 2,308 1,964
04 08 07384 08640 0,89 3,00 1,555 1,510
04 10 09542 10,9445 0,95 0,65 1,488 1,479
06 1,0 09326 08510 0,88 3,18 1,387 1,344
08 10 09277 0,6614 0,79 2020 1,959 1,630

Table 3.3: Design of maximal load carrying capacity (k = 0,05)
a B a1 70 7% e P Po
04 06 05129 05956 0,79 30,49 4,531 3,472
04 08 06908 07461 0,83 9,99 2,114 1,922
04 10 09060 10,8497 088 3,553 1,719 1,660
06 10 08846 07322 0,82 10,99 1,842 1,660
08 10 09234 10,6319 0,78 3583 3,750 2,760
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Table 3.4: The design of minimum weight (k = 0,01)

e« p al 7i 72 P e

04 06 05363 10,8188 1,1421 1,959 6,54
04 08 07575 0581  1,0645 1,493 0,79
04 10 09695 09986 1,0110 1438 0,06
06 1,0 09549 09789 1,0727 1366 0,88
08 10 09313 07934 1,1542 1,694 7,62

e 3.5: The design of minimum weight [k = 0,02)
a pf al 7i 72 P e
04 06 05209 07174 11,1208 2,785 10,55
04 08 07258 09319 1,1143 1,754 2,65
04 1,0 09458 09852 10571 1570 0,63
06 10 09194 09245 11251 1,578 2,91
08 10 09161 10,6838 1,1221 2,330 1241

e 3.6: The design of minimum weight [k = 0,05)
a g « 7i 72 P e
04 06 05118 0,6397 11,0853 5,262 14,40
04 08 06789 0,8157 11,1332 2,538 6,91
04 10 08911 09248 11,1196 1,966 3,02
06 10 08675 0,7922 1,1402 2,215 7,80
08 10 09077 0,6016 1,0752 4,239 17,08
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Figure 3.1: Spherical cap

Figure 3.2: Generalized square yield condition
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Figure 3.3: Bending moment for a cap (k = 0,05)
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OPTIMIZATION OF PLASTIC
SPHERICAL SHELLS
OF VON MISES MATERIAL

J. Lellep and E. Tungel
Institute of Applied Mathematics,
Tartu University
46 Vanemuise str., Tartu 51014, ESTONIA

Abstract. An optimization procedure is developed for spherical shells pierced with
a central hole. Outer edge of the shell is simply supported whereas the inner edge is
absolutely free. The material of the shell is assumed to be and ideal plastic material
obeying von Mises yield condition. Resorting to the lower bound theorem of limit
analysis the shells with constant and piece-wise constant thickness are considered.
The designs of spherical shells corresponding to maximal load carrying capacity
are established for given weight. Necessary optimality conditions are derived with
the aid of variational methods of the theory of optimal control. The obtained set
of equations is solved numerically.

41 INTRODUCTION

Optimization of elastic and non-elastic beams, frames, plates and shells has had
the attention of many investigators during the last decades. Comprehensive re-
views of problems solved can be found in the books and papers by J. KruZelecki
and M. Zyczkowski (1985), J. Lellep and U. Lepik (1984), G. Rozvany (1976),
M. Bendsoe (1995), J. Lellep (1991).

Different approaches to optimization of non-elastic structural elements have
been developed by Z. Mroz (1975), G. Rozvany (1976), M. Save (1972), J. Lellep
(1985, 1991). Optimal plastic design of shells was discussed by Prager and Rozvany
(1980), Nakamura et al. (1981), Dow et. al. (1981). Axisymmetric plates and shal-
low spherical shells of minimum weight are studied by D. Lamblin, G. Guerlement,
M. Save (1985) and J. Lellep, Il. Hein (1993, 1994) assuming that the thickness
is piece-wise constant and that the material obeys Tresca yield condition. Deep
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spherical shells of Tresca material have been studied by J. Lellep and E. Tun-
gel (1999). Straight plate problems are solved by A. Sawczuk and J. Sokol-Supel
(1993) for both, Tresca and Mises materials.

It is somewhat surprising that relatively less attention has been paid to
the optimization of plates and shells material of which obeys von Mises yield
condition. Optimal design for shallow spherical shells of von Mises material have
been established by J. Lellep and J. Majak (1995). Circular cylindrical shells of
piece-wise constant thickness were studied by J. Lellep and S. Hannus (1995).

In the present paper an optimization procedure will be developed for plastic
spherical shells of piece-wise constant thickness in the case of von Mises material.

42 FORMULATION OF THE PROB-
LEM AND BASIC EQUATIONS

Let us consider a spherical shell of radius A subjected to the uniformly distributed
transverse pressure of intensity P. Assume that the external edge of the shell (the
circle corresponding to ip — B) is simply supported and the inner edge at ip — Q
is absolutely free.

Let the shell wall be of piece-wise constant thickness (Fig. 1), e.g.

h=hj, ipe(aj,aj+i) (4.1)
where ¢o — Qf, crn+i = B andj = 0 , n. The number n and angles a, B are
considered as given constants whereas hj (j — 0, ...,n) and o (j — 1,...,n)

are to be defined so that the load carrying capacity Pqattains the maximal value
for given weight or material volume of the shell.

Material of the cap is assumed to be an ideal rigid-plastic material obeying
von Mises yield condition. The weight or material volume of the shell can be
defined when calculating the volume of a body located between spherical surfaces

with radii A —h/2 and A-\- h/2 for each region (ctj, a~+i), respectively. How-
ever, it is assumed that the shell wall is of ideal sandwich type whereas h stands
for the thickness of carrying layers and H is the total thickness.
In the case of a sandwich spherical shell the material volume of a carrying
layer can be presented as
n
V = hj(cos ctj —cosaj+i). (4-2)
j=o0

60



We are looking for the minimum of the cost function

I\ ——Po (4-3)
under the condition that V = Vo and that there exists a statically admissible
stress field corresponding to the external loading P = Po- In other words, we

are using the lower bound approach to the load carrying capacity. According to
the lower bound theorem of limit analysis actual limit load corresponds to the
maximum of the load factor associated with a statically admissible stress field (see

Hodge, 1963).
In the case of spherical shells subjected to an axisymmetric loading the stress
resultants contributing to the internal energy are the membrane forces W, NQ

and bending moments M”,, Mq. The shear force S which influences on the
equilibrium of a shell element does not contribute the internal power of the shell.

The equilibrium equations of a spherical shell element can be presented as
(here the configuration changes of the shell are neglected)

(Nvsinip) —Ng cosip = 5 sin<?,
(Nv + Ng + PA) sin9 —S'sin ip)’ (4.4)
(My siny?)' —Mqcosip = —ASsmip.

In (4) and henceforth primes denote differentiation with respect to current angle
V-

For the sake of convenience the following non-dimensional quantities will be

used
hj t PA h
7i = hi’ 2A P= X * 7= V. u cs
_WV,e _ Mvege S Y, (4'5)
ni,a- N mi,2 , a - , V-

Here stands for the thickness of layers of the reference shell of constant
thickness. The quantities M* and N+ stand for the yield moment and yield force
for the reference shell, respectively. Thus Na = 2<7o/i*, Mm= (Toh*t, & being
the yield stress of the material of carrying layers.

Material of the shell (of carrying layers) is assumed to be an ideal rigid-
plastic material obeying von Mises yield condition. In its original form the yield
condition suggested by von Mises can be presented as

o\ —(Ti(T24" & —ao (4-6)
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<T7i, (72 being principal stresses.

The exact yield surface in the space of membrane forces and moments for
an axisymmetric shell material of which obeys the plasticity condition (6) was
derived by A. llyushin [1957]. It was shown later by several authors that there are
several non-linear surfaces which present good approximations to the exact yield
surface (see H.M. Haydl and A.N. Sherbourne, 1979; also M. Robinson, 1971,

M. Zyczkowski, 1981).

In the present paper the yield surface

- NvNe + Ng)+ -y (M1 - MvMe + M |) = 1 (4.7)

will be used. Here Mo, Nq stand for the yield moment and yield force, respec-
tively, for the current section of the shell, e.g. Mo = doth, No — 2(Joh.

Making use of (5) equilibrium equations (4) can be presented as

(uj sinip)’ — Hy COS ip —  ssin 92
T\ - 72 “f p) sin ip = —(ssin”)’ (4-8)
K[{m\ sin ip)) —m 2cos <] = ssimp.

In the similar way the constraint imposed on the weight of the cap takes
according to (2) and (5) the form

Vo = E?j(cos aj — coSalj+i). (4-9)
3=0
The equation of the yield surface (7) can be put into the form

N\ —TMM2 + n2-f m\ —ITLIMe + ml —72—0 (4-10)

for the segment D3 = (aj, 6j+i) where j = 0,

Boundary conditions for the shell with simply supported outer edge and

inner edge are 5(a) = 0 and

mi(a) = w(a) = 0; m~"B) = 0. (4-11)

62



4.3 NECESSARY CONDITIONS OF
OPTIMALITY

The problem set up above will be considered as a particular problem of optimal
control with the objective function (3), state equations (8) and additional con-
tracts (9), (10). Variables n\, mj, 5 will be treated as state variables and
M2, m2 as controls (Lellep, 1991). However, it appears that the variable S can be
eliminated from the set (8).

Multiplying the first equation with Sin ip and the second one with cos ip
adding one to another leads to the equation

n[ sin2ip+ 2rii sinipcosip+ psinipcos = ssin2ip+ (5sinip)' cosip = 0
which can be presented as
(ri\ sin2<pY + psiiiip cosip + (5 sinipcosip)1= 0. (4-12)

Integrating (12) with respect to ip and taking into account that Hi(a) =
s(a) = 0 one easily can determine the shear force
p sin2a

S — tany? + —---mmommeeeee- . 4.13
Y Z smipcos ip (4.13)

Due to the non-linearity of the constraint (10) the problem will be solved
numerically up to the end. For the sake of convenience of calculations it is rea-
sonable to interprete the intensity of the pressure p as a state variable whereas

pl= 0. Since the loading intensity is equal to be load carrying capacity of the
shell one can demand that p{ot) = Po, or p(8) = Po- In this case p = pO for

0 £ (a, B). When p is treated as a phase coordinate the objective function (3)
is to be replaced with

J - -p(a). (4.14)
Substituting (13) in (8) leads to the set

p sin2a

2k sin ipcosipl
(4.15)
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which must be integrated with boundary conditions (11) and additional constraints
(9) and (10).

In order to get necessary conditions of optimality let us introduce adjoint
variables ®x, ®2, ®3 and create the extended functional (see A. Bryson and
Y.C. Ho, 1975; J. Lellep, 1991)

n
> = “P(a)+ —(n2~ i) cot (p+ (wi + 9 tan ip—
j—o
p sm?ct . t R
- - =) -f ®2(T" - (m2- mt) cotip+ T(nl-f -) tan <p-
2 Smip cos ip K z
p  SiN2a------moae-

, -0 2 .
— - =) 4 D3P+ wAN{ - nrn2+ nf+ ml- mim2\-
Zk smipcos ip

N n 1
+ o™ - A\'S 7j(cosaj - cosaj+i) - vOf =
[j=0 J

(4Nn6)
In (16) Vj [ = O, ...,n) stand for Lagrange’ian multipliers corresponding to
constraints (10) and A is associated with the equality (9).

Calculating the total variation of the functional (16) one obtains

AJ* = -Ap(a) +Yy2 [/ (c°t <p{Onr —Sn2)-\-
j=0Jd>
-f (8ni + U-) tanip — — o 1+
1 2 SmipcCosip

+  P2((<5mi - Sm2)cot™ + i (Sn, + f ) tarnp - -
T

—  ®3Spdip + {(e~Nx -fty26mi -f ®37p) -0

3=0

— (®~N] + ©26wl -f ®3BAJa ,0+ / il[j{2n] - n2)(*ni+
J Jd,

4 (2n2 —ni)<$n24- 2mi —m 2)6mi 4- (2m2—m\)8m2—
— 2jjA'y3)dip 4- 4- AA7j(COS aj —COS ctj+i) —
— Avj(sin (XjAaj —sinaj+iAalJ+1) = 0.
(4.17)

When deriving (17) two types of variations are distinguished. The quantity
8z stands for a weak variation of the variable £ whereas Az(a*) is the total
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variation of I at the point a*. It is easy to recheck that
Ar(a*x) = 8z(a*t) 4-z'(a+t)Aot#. (4-18)
Here O a* stands for the increment of the parameter a*.

In the case of continuous variables in (18) Ar(a*-) = Az(a*-\~). How-

ever, if z is discontinuous then the quantities A4.r(a* —) and Ar(a*-(-) can be
independent variations. Note that rii, TN and p are considered to be continuous

for each 6 (a, B) whereas n2 and m2 may have finite discontinuities.

From (17) one easily obtains the adjoint equations

2
$i(tan @+ cot (p) -f% tan ip + Vj{2n\ —n2),

PN =
o2 = o2cotip+ i/j(2mi - m2), (4-19)
o 1|( sin2a \ / L (O
= — fmmmmmm + T
3 o an e ) LPLIY L m pcosipd \«

forip€ Dj (j =0 , n).

The boundary conditions for adjoint system (transversality conditions) have

the form
#1(/?) = 0, ®3(a) = -1, ®3(/?) =0 (4.20)

asat p=a and (p= R] Srii = 4721, 6mi = Ami and 6p = Ap.

Due to arbitraryness of quantities 61 and <$m2 in (17) following equations
hold good

-'Slcoiifi + y{2n2-n 1) = 0,
—d2cotip -f Uj(2m2 —mi) = 0 vae ]
for pe Dj (j = 0,..., n).
Variations [l 7] must be considered as constant quantities, therefore
A(cos cxj —c0s Qj.j.i) —27j 1 Vjdip = 0 (4.22)
JDj
forj = 0, n.

When accounting for (18)-(21) the equation (17) can be cast into the form

£ -1 {[®~a~n"a,)] + [®P~an6Ta,)] +

J=1 n (4.23)
+ [d3(ay)<5p(a™)]} + £ Y b -i - 1j)sinotjAatj = 0
j=i
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where the quadratic brackets stand for finite discontinuities of variables, e.g.
[/(@*)1 = y(a* + 0) - y(a* - 0). (4.24)

According to their physical meaning variables '\, T\ and p are continuous
at each point ip = aj (j — 1, ...,n). Therefore, according to (18) and (23)

$1(0,-0) = & ~ + 0),
®2(a,-0) = @2(< + 0), (4.25)
P3(a-- 0) = ®3(a3+ 0)

foreachj = 1 , Tand

AsinO ,(7 - Jj)+[H@)]I =0, j=1 (4.26)
where H is the Hamiltonian function defined as
H Jl ('(nz Ziiycot - P\| tMii .
= - > - + - + +
heoty VZ' 2/ P 2 sm ipcos ipJ
T (/ 4 . 1f . p\ . P sin2a \
4 W2 2- cotip- - ni+ - ltanip4-rr- -----------
\ (m L P K\ 2/ P Ik sinipcosipJ
(4.27)

According to (25) the adjoint variables are continuous at each ip £ (a, R).
Therefore, making use of (27) one can present (26) as

Asinaj(7j_i—73)+d1(a™)[n2(a,)]+ ®2(ay)[T2(ar;)] = 0; j = 1
(4.28)

Dividing the first equation in (21) with the second one gives
. P1
2n2 —ri\ — — (2m2—T7 1). (4.29)
w2
On the other hand, from (10) one easily can find

n2=y + yjmj—- m\ - m\4mxm247? (4.30)

forip£ Dj (j —0,...,n). Combining (29) and (30) leads to the relations



fortp£ Dj (j = 0,...,n) and

ni ®1/ WA 3n2- 3mJ+ 7]
= T + o 7 T 2 - T ) = bd? + '|_|I

for each ip 6 (6, R).

4.4 SHELL OF CONSTANT
THICKNESS

Consider the reference shell of constant thickness h, associated with non-dimensional
thickness 7 = 1. In order to investigate the stress state of the shell at yield point
load we shall use the lower bound theorem of limit analysis as above.

In the present case we have to minimize the cost function (3) or (14) so that
the equilibrium equations (8) and yield condition (10) are satisfyed. Note that in
(10) as well as in (30)-(32) 7j = 1. Since we have now only one region for the

variable ip we can omit subscripts when speaking about o j. 7,. vj in (10), (19),
(21) and (30)-(32).

For the current optimization problem the necessary conditions derived above
hold good as well. The only exceptions are (22) and (26) (or (28)) which are
associated with variations of parameters 7” and Ctj, respectively.

From (21) making use of (31) and (32) one can find

b2 1 2
d=+coth/4- (4.33)

whereas (31) and (32) take the form

and

n\ , ®1 —3n? —3m? + 4
n2 ~ T TV ¢ |T ¢ | ’ (4,35)
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respectively.

Substituting (33)-(35) in (15) and (19) leads to the equations

/ 4 —3n\ - 3m\
nn
+ PR
2sinipcos p 1
- 4 —3n? —3m?\ 1/ p\
- T W ) coUp - k (ni + 2/ tan™+
+ - .
2K sinipcosip’
\ = 0;
T/ #1 % T ®2\ , 3nj [ ®2+ P2
dr = — cotc™>+ TP1L+ -j- Jta,n<pt —  cot("

4 —3nJ —3m2’

02 = F2cotVe ﬂ"*cot’\|4_%]n*?_q°§m?;

T/ 1/7 or\ N sin2a \
b3 = g (PLImIUT) (tan” - sy

(4.36)

The system of equations (36) is to be integrated under the boundary con-
ditions (11) and (20). The solution of the boundary value problem results in the
limit load p and the stress distribution corresponding to the limit state.

45 SHELL OF PIECE WISE
CONSTANT THICKNESS

Let us consider now a shell of piece wise constant thickness. In addition to the
stress resultants M1, n2, mi, m2 and adjoint variables ®1, ®2, ®3 we have
to determine the design parameters @3 (j = I,...,n); 7J J = 0 , n) as
well as the Lagrange’ian multipliers Aand v3 (j = 0, ...,n). It appears that
the Lagrange’ian multipliers Aand Vj can be eliminated from the equations to be
solved numerically.
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It easily follows from (21) and (31), (32) that

Combining (37) with (22) and (9) leads to the relations

M "W s r Ne I * (U8)
and
> g 7?1 *1[1472 13»2 - 3m2~ (C°S«i - OB ) -
/ | P? + * ,
- Q07 ,.y~rcotnr47,  3n?_ 3fnr =01
(4.39)
where j — 0, Substituting (38) in (28) one easily obtains

+ Zgm ujlij.,-7j)q“.>e_7|2>/. V/ i--f’.’."’ +-.$?.§_A "
© e cottf VAT 3m
bR Pai)] + 02(a3)[T2(aMN)] = 0
(4.40)
foreachj =1, n.

Equations (39) and (40) serve for determination of design parameters 7j (j =
0,...,n) and aj (j = I,...,n), respectively. For given set of aJ5 7] one can
integrate the equilibrium equations (15) and adjoint equations (19) substituting
preliminarily quantities V3, m”, n2 according to relations (37), (31), (32), re-
spectively. When integrating the set (15), (19) boundary conditions (11) and (20)
must be taken into account.

Due to their mechanical background the state variables mij, p are
to be continuous at each point (p = aj (j = I,...,n). According to (25) the
adjoint variables ®@1, ®2, ®3are continuous as well. Therefore the six boundary
conditions in (11), (20) admit to solve the current boundary value problem.
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The efficiency of the design established can be assessed by the coefficient
e= —1J 100%. (4.41)

In (41) p is the load carrying capacity of the optimized shell whereas Pq stands
for the limit load of the reference shell of constant thickness. Note that both,
the optimized shell of piece-wise constant thickness and the reference shell, have
common weight (material volume) Va.

46 DISCUSSION

The results of calculations are presented in Fig.2-4 and Tables 1-4. Tables 1-4
correspond to the shell with one step in the thickness. Calculations carried out
showed that the results depend on the upper bound 70 imposed on the thickness.
In Table 1the values of quantities C*i, 71, p, po and e are presented for different
values of «<o = e and = [ in the case if 70 = 1.5 It can be seen from Table
1that for fixed outer radius of the shell the load carrying capacity increases when
inner radius decreases. However, eventual effectivity of the stepped design of the
shell is greater for a narrow annulus of moderately large inner radius. For instance,
in the case a = 0.8 and B = 1.0 the limit load increases 35% with respect to
that of the shell of constant thickness (Table 1).

In Tables 2 and 3 the design parameters are presented for shells with fixed
inner radii. Here one can see the dependence of quantities Qj, 71, p, e on the
upper bound 7g. As it might be expected greater values of the upper bound gave
more effective optimal designs. It can be seen fron Table 3 that the limit load can

be increased 64 %, if 70 = 4 and Q= 0.8, R = 1.0.

Generalized stresses mi, Ti\, m 2, 2 are depicted in Fig. 2-4. It can be

seen from Fig. 2-4 that mi, T\ are continous over the domain ¢ 6 (a, R)
whereas m 2 and M2 have finite jumps at the cross-sections where thickness has
the step. It is some what surprising that I\ and n2 are approximately constants
in the neighbourhood to the outer edge.

4.7 CONCLUDING REMARKS

An optimization technique has been developed for plastic spherical shells subjected
to the uniformly distributed transverse pressure. Material of the shells obeys
Mises yield condition. Resorting to the lower bound theorem of limit analysis
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Table 4.1: Optimal design for k = 0.02 and 70 = 1.5

0 «2 al 7i p p* e

08 10 0929 0,159 1,399 1,033 35%
06 10 0,834 0,417 1557 1,205 29%
0,4 10 0671 0,716 1,722 1,413 22%
04 08 0,624 0523 1,663 1,351 23%
04 06 0525 0,303 1,429 1,290 11%

Table 4.2: Optimal design for k = 0.02, ao = 0.4 and a2= 0.6

70 A 71 P e

15 0525 03031 1429  11%
20 04905 0,3136 1,591  23,3%
25 047 03321 1,6656 29,1%
30 0457 03426 1,7111 32,6%
35 04475 0.3592 1,7411 35%
4,0 04415 0,3545 1,7615 36,5%

and variational methods of the theory of optimal control necessary conditions for
optimality are derived.

Numerical results are presented for a spherical cap with unique step in the
thickness. Calculations carried out showed that the optimization procedure ap-
peared to be more effective in the case of shells resembling to a narrow annulus,
e.g. shells with small difference in values of a and B. Similar matter has been
revealed earlier in the case of annular plates and shallow shells (see Lellep, Majak
(1995)).

Evidently, the optimization technique can be extended to shells of different
shape operating in the limit state.
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Figure 4.1: Spherical cap

Figure 4.2: Radial stress resultants
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Figure 4.3: Circumferential moment
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Table 4.3: Optimal design for k = 0.02, ao = 0.8 and ¢2 = 10

70«1 7i P e

1,5 0,929 10,1594 14 35%
20 0,893 0,1976 15476 49,8%
2,5 0871 10,2389 1,6169 56,5%
3,0 0,858 0,2476 11,6557 60,3%
35 0,848 0.2734 11,6787 62,5%
4,0 0,841 10,2883 11,6937 64%

Table 4.4: Optimal design for k = 0.02, @0 = 0.2 and a2= 0.6

70 al 7i P e

15 0,395 10,7078 1,826 24,6%
20 0,319 0,7543 1,876 28,1%
25 0,284 0,7757 1,892 29,2%
3,0 0,265 10,7857 19 29,7%
35 0,253 0.7917 1,904 30%
4,0 0,244 0,7996 1,907 30,2%
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SUMMARY
Optimization of plastic spherical shells

In the present work the methods of optimization are developed for spherical shells
of piece-wise constant thickness. Shells with various support conditions are con-
sidered. The cases of materials obeying Tresca or von Mises yield condition, re-
spectively, are studied in greater detail.

In the introduction a review of existing literature in this area is presented.

In the first chapter an optimal design procedure is developed for stepped
rigid-plastic spherical shells. The shells are subjected to the uniformly distributed
external pressure. Material of shells obeys the Tresca yield condition and associ-
ated flow law. The problems solved herein consist in the maximization of the load
carrying capacity under the condition that the material volume of the shell is fixed
and in the weight minimization under given load carrying capacity, respectively.

In the second chapter an optimization method regarding to plastic spherical
shells pierced with a central hole is presented. The shells under consideration are
clamped at the outer edge and absolutely free at the inner edge. The material
of shells obeys generalized square yield condition and associated flow rule. The
problem of maximization of the load carrying capacity under the condition that the
weight (material volume) of the shell is fixed is transformed into a problem of non-
linear programming. The latter is solved with the aid of Lagrangeian multipliers.
The obtained solution is compared with the optimal solution of the minimum
weight problem for given load carrying capacity.

In the third chapter an optimization procedure is developed for shells of von
Mises material. It is assumed that the outer edge of the shell is simply supported
whereas the inner edge is absolutely free. Resorting to the lower bound theorem
of limit analysis the shells with constant and piece-wise constant thickness are
considered. The designs of spherical shells corresponding to maximal load carrying
capacity are established for given weight. Necessary optimality conditions are
derived with the aid of variational methods of the theory of optimal control. The
obtained set of equations is solved numerically.
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KOKKUVOTE (Summary in Estonian)

Plastsete sfaariliste koorikute
optimeerimine

Reaalse materjali kditumise Kirjeldamiseks on loodud palju erisuguseid mude-
leid: elastne, elastne-plastne, kalestuv jt. Kéesolevas t66s on kasitletud ideaalselt
jaikplastse materjali mudelit. Ideaalselt jaikplastse materjali korral kuni voolavus-
piirini deformatsioonid puuduvad ja see lihtsustab Ulesande seadet. Optimeerimis-
Ulesannetee on otsitud materjali jaotust, mille korral uurimisobjekti kandevdime

saavutab maksimumi etteantud ruumala korral vdi ruumala saavutab miinimumi
fikseeritud kandev6ime korral. Lahendamisel on eeldatud, et paksuse jaotus on

tikiti konstantne, niisugust konstruktsiooni on lihtsam toota, samuti lihtsustab
see optimeerimistlesannet.

Uurimisobjekt on sféériline koorik, eri osades on vaadeldud nii avausega,
kui ka tdiskoorikut, m@lemas seades on koorik telgsimmeetriline, st avaus keskel.
K®oigis plstitustes on sfadr koormatud (htlaselt jaotatud valiskoormusega. Eri-
nevad Ulesanded on lahendatud mitme kinnitusviisi (nii jaigalt kinnitatud kui ka
vabalt toetatud) koorikujaoks. Kasutatakse nii Tresca kui ka Misese voolavustingi-
musi.

Teises peatukis uuritakse sfaarilist tdiskoorikut thtlaselt jaotatud ristkoor-
muse mdju all, koorik on valisservast vabalt toetatud. Eeldatakse, et materjal allub
Tresca voolavustingimusele, kasutatakse aproksimatsiooni N2 = 0, M2 = Mq.
Pistitatakse (lesanne leida niisugune tikiti konstantne paksuse jaotus, et kan-
devbime saavutaks maksimumi. Vdrdluskoorikuna kasutatakse konstantse pak-
susega koorikut ja maksimeeritakse kandev6imete suhet. Vdrdluskooriku ja muu-
tuva paksusega kooriku kaalud loetakse vGrdseks. Paksuse jaotusel on kasutatud
lhte astet ja kahesugust paksust, saadud tulemused on esitatud tabelina s6ltuvalt

sfaari valisnurgast.

Kolmandas peatiikis uuritakse avausega sfaarilist koorikut, mis on valisser-
vast jaigalt kinnitatud, siseserv vaba. Koormuseks on Uhtlaselt jaotatud valis-
koormus. Kasutatakse voolavustingimuse aproksimatsiooni N2 — —Ao, M2 —
Mg. Lahendatakse kaks duaalset ulesannet: kandevéime maksimeerimine fikseeri-
tud ruumala korral ja ruumala minimeerimine etteantud kandevGime korral. Pak-
suse jaotusel on kasutatud kahesugust paksust (liks aste). Numbrilised tulemused
on esitatud kuues tabelis sdltuvalt optimeerimisiilesande pistitusest ja kooriku

geomeetrilisest parameetrist (K = h/\A).

Neljandas peatikis uuritakse avausega sfadrilist koorikut, mis on valisservast
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vabalt toetatud, siseserv vaba. Kasutatakse Misese voolavuspinna aproksimat-
siooni. Koorik on koormatud uhtlaselt jaotatud véliskoormusega.

Et t60 eri osades on vaadeldud erisuguseid koorikuid erinevate rajatingimus-
tega (Kinnitusviisid) ning erisuguseid voolamistingimuse aproksimatsioone, siis
pole kahjuks v@imalik peatlikkide otsene vOrdlus. Rajatingimuste erinevused on
tingitud paljuski lihtsustustest, nii on Misese voolavustingimuse korral vaadeldud
vabalt toetatud, Tresca aproksimatsiooni korral aga jaigalt kinnitatud koorikut.
Madningane vordlus on siiski vBimalik - suurim efekt astme sissetoomisel saavu-
tatakse kolmandas peatiikis vabalt toetatud avausega sfaérilise kooriku korral.

79



REFERENCES

10.

11.

12.

13.

14.

Banichuk, N. (1990). Introduction to Optimization of structures. Springer,
Berlin, New York.

Bendsoe, M.P. (1995). Optimization of Structural Topology, Shape and
Material. Springer Verlag, Berlin, Heidelberg.

Bryson, A.E. and Ho, Y.C. (1975). Applied Optimal Control. Wiley, New
York.

Chakrabarty, J. (2000). Applied Plasticity. Springer, Berlin, New York.

Cherkaev, A. V. (2000). Variational Methods for Structural Optimization.
Springer, New York.

Cinquini, C.; Kouam, M. (1983). Optimal plastic design of stiffened shells.
Int. J. Solids and Struct. 19, 9, 773-783.

Dumesnil C.E. and Nevill G.E. (1970). Collapse loads of partially loaded
clamped shallow spherical caps. AIAA Journal, 8, No 2, 361-363.

. EpxoB, M. WN. (1978). Teopus upeanbHO NAACTUYECKUX TeN U KOH-

cTpykunii. Hablka, MockBa.

la66acos, P.®., ®paiiHT, M.A. (1968). K pacueTy 060/104eK BpaLleHMNs
no npeaenbHomMy paBHoBecuto. CTPOUT, MeX. U pacyeT COOPYX., 2,
5-6.

Ma66acos, P.®. (1963). K Bonpocy o npefenbHOM paBHOBECUM MNONOTUX
obonovek BpauweHus. W3B. BbicW. Yy4yebH. 3aBefeHuin. CTp-BO U
apxuteke., 5, 16-27.

Ma66acos, P.®. (1966). K pacuyeTy nnactmyeckux o60os04eK Ha cocpe-
LOTOYEHHbIe Harpysku. CTpouT, Mex. M pacyeT coonyx., 1, 9-12.

Fa66acos, P.®. (1967). O npefenbHOM paBHOBecUU cepuyeckoli ob6o-
NIOYKN C LWAPHUPHO-NOABUXHBIM 0CECMMMETPUYHBLIM onupaHuem. Ws3B..
BbiCW. y4ebH. 3aBefeHunin. CTpP-BO U apXuUTekT., 2, 42-48.

MNa66acos, P.®. (1968). O HMXHMX OLEHKAxX Hecylleid CMOCOOGHOCTM
o6onovek BpauweHnsa. C6. Tp. MOCK. MHX.-CTPOWUT, WH-T, 53, 47-56.

Haydl, H.M. and Sherbourne, A.N. (1979). Some approximations to the
llyushin yield surface for circular plates and shells. Z. angew. Math, und
Mech. 59 (2), 131-132.

80



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

21

Hodge, P.G. (1963). Limit Analysis of Rotationally Symmetric Plates and
Shells. Prentice Hall, Englewood Cliffs.

Hodge P.G. and Lakshmikantham, C. (1963). Yield point loads of spherical
caps with cutouts. Proc. 4th US Nat. Congr. Appl. Mech. (Berkeley, 1962)
951-954.

Hodge P.G. and Lakshmikantham, C. (1963). Limit analysis of shallow
shells of revolution. Trans. ASME J. Appl. Mech, 30, 2, 215-218.

MnerowwnH, A. A. (1963). MnactuyHocTb. MockKBa.

Johnson, W. and Mellor P. B. (1986). Engineering Plasticity. Ellis Hor-
wood, Chichester.

Jones, N., (1989). Structural Impact. Cambridge University Press, Cam-
bridge.

Jones N. and Ich N.T. (1972). The load carrying capacities of symmetrically
loaded shallow shells. Int. J. Solids and Struct., 8, No 12, 1339-1351.

Kirs, J. (1984). Optimal design of plastic conical and spherical shells under
impulsive loading (in Russian). Tartu U likooli Toim., 675, 86-98.

Kirs, J. (1979). Minimum weight and deformation design of shallow shells.
Tartu Ulikooli Toim., 487, 110-118.

KruZelecki, J. and Zyczkowski, M. (1985). Optimal structural design of
shells - a survey. SM Archives, 10, 101-170.

Kynukos, FO. n Xomakos, A. (1976). Hecywas cnoco6HOCTb TOHKUX
060104€EK, HAarpy>XeHHbIX NOKaNbHOW HOPManbHOW cuNoi. Tpukn. Mmex.
N, 131-134.

Lamblin, D.O., Guerlement, G. and Save, M.A. (1985). Solutions de di-
mensionnement plastique de volume minimal de plaques circulaires pleines
et sandwiches en presence de contraintes technologiques. J. Mec. Theor.
Appl. 4, 433-461.

Lee, L.C. and Onat E.T. (1968). Analysis of plastic spherical shells. Engi-
neering Plasticity, CUP, Cambridge, 413-442.

Lellep, J.(1977). Optimal design of plates subjected to local loading (in
Russian). Tartu Ulik. Toim., 430, 144-151.

81



29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Lellep, J. (1991). Optimization of Plastic Structures. Tartu Univ. Press,
Tartu.

Lellep, J. (1985). Parametrical optimization of plastic cylindrical shells in
the post-yield range. Int. J. Eng. Sei. 23, 12, 1289-1303.

Lellep, J. and Hannus, S. (1989). Optimal design of rigid-plastic cylindrical

shells with piece-wise constant thickness (in Russian). Tartu Ulik. Toim.,
853, 59-67.

Lellep, J. and Hannus, S. (1995). Optimization of plastic cylindrical shells
with stepwise varying thickness in the case of von Mises material. Struct.
Optimiz. 10, 2, 122-127.

Lellep, J. and Hein, H. (1993a). Optimal plastic design of shallow shells
with step-wise varying cross section. Proc. Estonian Acad. Sei. Phys.
Math., 42, 1, 22-31.

Lellep, J. and Hein, H. (1993b). Optimization of rigid-plastic shallow shells
of piece wise constant thickness. Struct. Optim., 6, 2, 134-141.

Lellep, J. and Hein, H. (1994). Optimization of clamped rigid-plastic shal-
low shells of piece wise constant thickness. Int. J. Non-Linear Mech., 29,
4, 625-636.

Lellep, J. and Lepik, U. (1984). Analytical methods in plastic structural
design. Eng. Optimiz. 7, 3, 209-239.

Lellep, J. and Majak, J. (1985). Optimal design of plastic beams with
piece-wise constant thickness (in Russian). Tartu Ulik. Toim., 721, 16-24.

Lellep, J. and Majak, J. (1989). Optimal design of rigid-plastic annular

plates in the case of von Mises yield condition. Tartu Ulik. Toim., 853,
38-48.

Lellep, J. and Majak, J. (1995a). Optimal design of axisymmetric plastic
shallow shells of von Mises material. Int. J. Solids Structures, 32, 24,
3693-3705.

Lellep, J. and Majak, J. (1995b). Optimization of plastic shallow shells
exhibiting non-stable behaviour. Struct. Optimiz. 9, 3/4, 200-206.

Lellep, J. and Puman, E. (1994). Optimal design of rigid-plastic conical
shells of piece-wise constant thickness. Tartu Ulik. Toim. (Proc. Tartu
Univ.), 973, 21-39.

82



42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

Lellep, J. and Puman, E. (1999). Optimization of plastic conical shells of
piece- wise constant thickness. Struct. Optim., 18, 74-79.

Lellep, J. and Puman, E. (2000). Optimization of plastic conical shells
loaded by a rigid central boss. Int. J. Solids and Struct., 37, 17, 2695-2708.

Lellep, J. and Tungel, E. (1997). Optimization of stepped rigid-plastic
spherical shells. Proc. NSCM X. Tallinn, 138-141.

Lellep, J. and Tungel, E. (1998a). Optimization of plastic spherical shells
of piece wise constant thickness. Proc. Estonian Acad. Sei. Phys. Math.,
47, 4, 260-269.

Lellep, J. and Tungel, E. (1998b). Optimal design of plastic spherical shells
of piece-wise constant thickness. Proc. NSCM XI, KTH, Stockholm, 5-8.

Lellep, J. and Tungel, E. (1999). Optimization of clamped plastic spherical
shells. Proc. NSCM XII, HUT, Helsinki, 23-26.

Lellep, J. and Tungel, E. (2000). Optimization of stepped spherical shells
of von Mises Material. Proc. NSCM XIII, Oslo, 175-178.

Lellep, J. and Tungel, E. Optimization of plastic spherical shells pierced
with a central hole. Struct. Optimiz. (in press).

Lepik, U. (1972). Minimum weight design of circular pJates with limited
thickness. Int. J. Non-Linear Mech., 7, 4, 353-360.

Lepik, U. (1973). Application of Pontryagins maximum principle for mini-
mum weight design of rigid-plastic circular plates. Int. J. Solids Struct., 9,
5, 615-624.

Lepik, U. and Mréz, Z. (1977). Optimal design of plastic structures under
impulsive and dynamic pressure loading. Int. J. Solids and Struct., 13, 7,
657-674.

Lepik, U. (1978). Optimal design of beams with minimum compliance. Int.
J. Non-Linear Mech., 13, 1, 33-42.

Lepik, U. (1980). Application of the control theory for optimal design of
nonelastic beams under dynamic loading. Structural control, ed. H. H. E.

Leipholz IUTAM, North-Holland Publishing Company, 447-457.

Lepik, U. (1981). Optimal design of rigid-plastic simply supported beams
under impulsive loading. Int. J. Solids and Struct., 17, 617-629.

83



56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Lepik, U. (1982). Optimal design of inelastic structures under dynamic
loading (in Russian). Valgus, Tallinn.

Lin, T. H. (1968).Theory of Inelastic Structures. Wiley, New York.

Mroz Z. and Bing-Ye X. (1963). The load carrying capacities of symmetri-
cally loaded spherical shells. Arch. Mech. Stosow., 15, No 2, 245-266.

Mroz, Z. and Gawecki, A. (1975). Post-yield behaviour of optimal plastic
structures. In: Optimization in Structural Design. Proc. IUTAM Symp.
(Ed. A. Sawczuk, Z. Mroz), 518-540. Springer, Berlin.

Onat, E.T. and Prager, W. (1954). Limit analysis of shells of revolution.
Proc. Royal Netherlands Acad. Sei., B57, 534-548.

Palusamy, S. (1971). Limit analysis of spherical shells subjected to external
axial force. Nucl. Eng. Des., 16, 1, 13-23.

Palusamy, S. and Luid, N.C. (1972a). Limit analysis of non-axisymmetrically
loaded spherical shells. J. Appl. Mech. 39, 422.

Palusamy, S. and Luid, N.C. (1972b). A consistent theory for spherical
shells in equilibrium. Nucl. Eng. Des., 27, 3, 350-357.

Pawlowski H. and Spychala A. (1983). Optymalne ksztaltowanie sandwic-
zowej powloki kulistej. Biul. WAT J. Dabrowskiego, 32, No 12, 57-68.

Popov G.(1967). Limit analysis of a spherical shell with cutout. Prikl.
Mekh., No 4, 58-63 (in Russian).

MoHos, I'.I". (1969). MpeaenbHoe paBHOBecue cepuyeckoii 060M104KU
C XEecTKUm BKNw4yeHunem. CTpoUT, MeX. U pacyeTt coopyx., 3, 28-31.

Monos, I I'. (1967). WccnegoBaHne Hecyleid cnocobHocTn chepuu-
eCKMx o6onoyek V3B. BbICW. Yy4ebH. 3aBefeHuit. MalMHOCTPOeHNe,
9, 47-50.

MoHTpArnH, 1.C.map, (1969). MaTemaTuuyeckas Teopmsa ONTUMaNbHbIX
npoueccos. MocCKBa.

Robinson, M. (1971). A comparison of yield surfaces for thin shells. Int. J.
Mech. Sei. 13, 4, 345-354.

Rozvany, G.I.N. (1976). Optimal Design of Flexural Systems: Beams, Gril-
lages, Slabs, Plates, Shells. Pergamon Press, Oxford.

84



71

72.

73.

74.

75.

76.

77.

78.

79.

80.

8L

Rozvany, G.I.N. (1989). Structural Design via Optimality Criteria. Kluwer,
Dordrecht.

Rozenblum, V.I. (1960). On the plasticity condition for thinwalled shells.
Prikl. Math. Mekh, 24, 2, 364-366.

PoseH6ntom, B. N. (1965). O pacuyeTe Hecyllewein cnocobHOCTM npe-
aNbHO NacTUYeCKUX OCeCUMMMETPUYHBbIX ob6ofovek. MccnegosaHus no
ynpyroctu v nnactuyHoctu. 4, J1, 207-218.

Save, M.A. (1972). A unified formulation of the theory of optimal plastic
design with convex cost functions. J. Struct. Mech. 1, 2, 267-276.

Save, M., Massonet, C. and Saxce, G. (1997). Plastic Limit Analysis of
Plates, Shells and Discs. Elsevier.

Sawczuk, A. (1989). Mechanics and Plasticity of Structures. Ellis Horwood,
Chichester.

Sawczuk, A. and Sokol-Supel, J. (1993). Limit Analysis of Plates. PWN,
Warszawa.

Sankaranarayanan, R. (1964). A generalized square yield condition for
shells of revolution. Proc. Indian Acad. Sei. A 59, 3, 127-140.

Stronge, W. J. and Yu, T. X. (1993). Dynamical Models for Structural
Plasticity. Springer, Berlin.

Yeom, D.J. and Robinson, M. (1996). Limit analysis of a spherical shell
under axial loading on central boss. J. Pressure Vessel Technol., 118, 454,

Zyczkowski, M. (1981). Combined Loadings in the Theory of Plasticity.
PWN, Warszawa.

85



Curriculum Vitae

Ernst Tungel

Born: December, 19, 1970, Tallinn, Estonia.

Nationality: Estonian.

Marital Status: single.

Address: Vanemuise 46, 51014 Tartu, Estonia, ph 375 867, email: etungel@ut.ee.
Education

1989 Tartu Secondary School No 14.

1989-1993 Student Faculty of Mathematics, University of Tartu.

1993-1995 Master student of the Institute of Applied Mathematics, University of
Tartu.

1995 Magister Scientarium.

1995-1999 PhD student of the Institute of Applied Mathematics, University of
Tartu.

Special courses

April-May 1997 University of Sunderland,

Discrete event simulation.
June-July 1997 Technical University of Denmark,

Non-linear Finite Element Analysis of Structures.

June-July 1998 Technical University of Denmark,

Advanced Topics in Structural Optimization.

Professional employment

From 1999 Research worker of the Institiute of Applied Mathemathics, University
of Tartu.

Scientific work
Analysis and optimization of rigid-plastic spherical shells.

86


mailto:etungel@ut.ee

Curriculum Vitae (in Estonian)

Ernst Tungel
Sindinud: 19 detsember, 1970, Tallinn, Eesti.

Kodakondsus: Eesti.
Perekonnaseis: vallaline.
Aadress: Vanemuise 46, 51014, Tartu, tel 375 867, email: etungel@ut.ee.

Haridus
1989 Tartu 14. Keskkool (Tartu Kunstigiimnaasium),
1989-1993 Tartu Ulikooli matemaatikateaduskond, Glipilane,

1993-1995 Tartu Ulikooli matemaatikateaduskond, magistridpe,

1995 Magister Scientarum, matemaatika erialal.

1995-1999 Tartu Ulikool, rakendusmatemaatika instituut, doktoridpe.
Erialane enesetaiendus

Aprill 1997 Sunderlandi Ulikool,

Diskreetsete siindmuste modelleerimine.
Juuni-juuli 1997 Taani Tehnikailikool,

Mittelineaarsed I6plikud elementid konstruktsioonide analuisis.
Juuni-juuli 1998 Taani Tehnikallikool,
Uued meetodid konstruktsioonide optimiseerimises.

Uurimistoo teema
Jaikplastsete sfadriliste koorikute analuis ja optimiserimine.

87


mailto:etungel@ut.ee

List of publications

L

Lellep, J. and Tungel, E. (1997). Optimization of stepped rigid-plastic
spherical shells. Proc. NSCM X. Tallinn, 138-141.

Lellep, J. and Tungel, E. (1998a). Optimization of plastic spherical shells
of piece wise constant thickness. Proc. Estonian Acad. Sei. Phys. Math.,
47,4, 260-269.

Lellep, j. and Tungel, E. (1998b). Optimal design of plastic spherical shells
of piece-wise constant thickness. Proc. NSCM XIl, KTH, Stockholm, 5-8.

Lellep, J. and Tungel, E. (1999). Optimization of clamped plastic spherical
shells. Proc. NSCM XII, HUT, Helsinki, 23-26.

Lellep, J. and Tungel, E. (2000). Optimization of stepped spherical shells
of von Mises Material. Proc. NSCM XIll1, Oslo, 175-178.

Lellep, J. and Tungel, E. Optimization of plastic spherical shells pierced
with a central hole. Struct. Optimiz. (in press).



10.

11.

12.

13.

14.

15.
16.

17.

18.

23

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical
tubes and circular discs. Tartu, 1991. 23 p.

Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,
1991. 14 p.

Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,
1992. 47 p.

Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,
1992. 15 p.

Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992. 32 p.

Juri Majak. Optimization of plastic axisymmetric plates and shells in the
case of Von Mises yield condition. Tartu, 1992. 32 p.

Ants Aasma. Matrix transformations of summability and absolute
summability fields of matrix methods. Tartu, 1993. 32 p.

Helle Hein. Optimization of plastic axisymmetric plates and shells with
piece-wise constant thickness. Tartu, 1993. 28 p.

Toomas Kiho. Study of optimality of iterated Lavrentiev method and
its generalizations. Tartu, 1994. 23 p.

Ame Kokk. Joint spectral theory and extension of non-trivial multiplicative
linear functionals. Tartu, 1995. 165 p.

Toomas Lepikult. Automated calculation of dynamically loaded rigidplastic
structures. Tartu, 1995. 93 p. (in russian)

Sander Hannus. Parametrical optimization of the plastic cylindrical shells
by taking into account geometrical and physical nonlinearities. Tartu, 1995.
74 p.

Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996. 134 p.

Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996. 96 p.

Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999. 90 p.

Mart Po6ldvere. Subspaces of Banach spaces having Phelps’ uniqueness
property. Tartu, 1999. 74 p.

Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence
spaces. Tartu, 1999. 72 p.

Krista Fischer. Structural mean models for analyzing the effect of
compliance in clinical trials. Tartu, 1999. 124 p.

89



19.

20.
21.
22.
23.

24.

25.

Helger Lipmaa. Secure and efficent time-stamping systems. Tartu, 1999.
56 p.

Juri Lember. Consistency of empirical k-centres. Tartu, 1999. 148 p.

Ella Puman. Optimization of plastic conical shells. Tartu, 2000. 102 p.

Kaili Mudrisep. Eesti keele arvutigrammatika: stintaks. Tartu, 2000. 107 Ik.

Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000. 116 Ik.
Olga Sokratova. J1-rings, their flat and projective acts with some applica-
tions. Tartu 2000. 120 Ik.

Maria Zeltser. Investigation of double sequence spaces by soft and hard
analitical methods. Tartu 2001. 154 Ik.



ISSN 1406—4212
ISBN 9985-56-577-0



	CONTENTS
	INTRODUCTION
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	SUMMARY
	REFERENCES
	Curriculum Vitae
	List of publications

