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INTRODUCTION

Analysis and optimization o f non-elastic plates and shells has become a problem 
of practical interest. There are many books devoted to optimal design of elastic 
and non-elastic structures. Various problems and methods of optimization have 
been studied by Banichuk (1990), Bendsoe (1995), Cherkaev (2000), Lepik (1982), 
G.I.N. Rozvany (1976, 1989), J. Lellep (1991) etc. The basic ideas and methods of 
direct analysis o f rigid-plastic structural elements are accommodated in the books 
by P. Hodge (1963), N. Jones (1989) and others.

Due to the simplicity o f their manufacturing the special significance have 
the designs of piece wise constant thickness. Circular cylindrical shells of piece 
wise constant thickness have been treated by C. Cinquini and M. Kouam (1983) 
in the case of a Tresca material. J. Lellep and S. Hannus (1995) considered the 
plastic tubes with piece wise constant thickness assuming the material obeyed von 
Mises yield condition. Optimal designs for stepped plastic shallow shells have 
been established by J. Lellep and H. Hein (1993a,b, 1994) in the cases of piece 
wise linear approximations o f the exact yield surface corresponding to the original 
Tresca yield condition on the plane o f principal stresses. Employing a lower bound 
method for determination of the load carrying capacity by J. Lellep and E. Tungel 
(1998a) defined an optimal design for a stepped spherical shell simply supported 
at the edge.

Optimization of elastic and non-elastic beams, frames, plates and shells has 
had the attention o f many investigators during the last decades. Comprehensive 
reviews of problems solved can be found in the books and papers by J. Kruželecki 
and M. Žyczkowski (1985), J. Lellep and Ü. Lepik (1984), G. Rozvany (1976), 
J. Lellep (1991).

Different approaches to optimization of non-elastic structural elements have 
been developed by Z. Mroz and A. Gawecki (1975), G. Rozvany (1976), M. Save 
(1972), J. Lellep (1985, 1991). Mroz and Gawecki (1975) obtained a somewhat 
unexpected result when studying the post-yield behaviour o f rigid-plastic circular 
plates. It appeared that optimized structures o f variable thickness could be even 
less strong than the structures o f constant thickness. The optimization techniques 
which avoid such unfavourable effect were developed later by Lellep (1991) and 
Lellep and Majak (1995). Axisymmetric plates and shallow spherical shells of 
minimum weight are studied by D. Lamblin, G. Guerlement, M. Save (1985) and 
J. Lellep, H. Hein (1993, 1994) assuming that the thickness is piece-wise constant 
and that the material obeys Tresca yield condition. Deep spherical shells of Tresca 
material have been studied by J. Lellep and E. Tungel (1998 a ,b),(1999),(2000). 
Straight plate problems are solved by A. Sawczuk and J. Sokol-Supel (1993) for 
both, Tresca and Mises materials.
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Foundations o f the theory o f limit analysis and solutions o f particular prob
lems are presented in monograph books by Erkhov (1978), Hodge (1963), Ilyshin 
(1963), Johnson and Mellor (1986), Lin T  (1968), Sawczuk (1989), Sawczuk and 
Sokol-Supel (1993), Zyczkowski (1981).

The new trends in the limit analysis in theory of plasticity and in the ap
plication o f the methods of plasticity in the structural analysis are presented by 
Chakrabarty (2000), Save, Massonet and Saxce (1997) in the case of quasistatical 
loadind. Impulsive and dynamic pressure loading of non-elastic beams, plates and 
shells is the topic of books by Jones (1989) and Stronge and Yu (1993).

The load carrying capacity o f plastic spherical shells is studied by Dumesnil 
and Nevill (1970), Hodge (1963), Mroz and Bing Ye (1963), Palusamy (1971), 
Palusamy and Luid (1972), Lee and Onat (1968) and others. Palusamy (1971) 
considered the plastic collapse of a spherical cap under axial loading, whereas 
Hodge (1963), Lee and Onat (1968) studied the problems o f limit analysis of 
spherical caps subjected to the uniformly distributed loading.

Spherical caps loaded by the rigid central boss were studied by Yeom and 
Robinson (1996). Mroz and Bing-Ye (1963) considered the case of loading in 
the form of loads distributed along the edge of a central hole. Popov (1967a) 
solved the limit analysis o f the spherical shell in the case of combined loading. In 
these studies the shells of constant thickness are considered. It was assumed that 
the yield condition was presented in the form of two hexagons on the planes of 
moments and membrane forces, respectively. The same problem was considered in 
the further works by Popov (1967b, 1969) in different cases of loading and support 
conditions. Rozenbljum (1960) developed an approximation of the exact yield 
surface in the space of membrane forces and bending moments. Later the non
linear approximation was used in the determination o f the load carrying capacity 
of a spherical cap. Sankaranarayanan (1964) introduced a generalized square yield 
condition for investigation of plastic spherical shells.

Onat and Prager (1954) have derived the parametrical equations of the exact 
yield surface in the space of generalized stresses. Making use of these equations the 
authors have determined the load carrying capacity o f a spherical cap subjected 
to uniformly distributed pressure loading.

Hodge and Lakshmikantham (1962) have defined the load carrying capacity 
o f spherical caps with cutouts.

Later Jones and Ich (1972) suggested a new approximation of the yield sur
face which consists of two diamonds on the planes of bending moments and mem
brane forces. The generalized diamond yield surface was successfully used for 
solution of quasistatic and dynamic problems of plastic plates and shells.

Gabbasov (1963, 1966, 1967) studied the limit analysis o f spherical caps 
making use o f kinematical approach. This leads to an upper bound of the exact, 
load carrying capacity. In Gabbasov (1968) a lower bound approach was developed 
assuming that the yield surface could be presented in the form o f hexagons on the



planes of membrane forces and moments, respectively.

Gabbasov and Fraint (1968) defined the upper bound o f the limit load for a 
spherical shell with the central hole. The internal edge o f the shell was clamped 
whereas the outer edge was assumed to be absolutely free.

Kulikov and Khomyakov (1976) studied the limit analysis o f cylindrical and 
spherical shells subjected to the distributed internal pressure and concentrated 
loading.

U. Lepik (1972, 1973) was a pioneer in the application o f the methods of 
the theory o f optimal control in the optimal design of rigid-plastic plates and 
shells. It appeared that the principle o f maximum of Pontryagin (Bryson and Ho 
(1975), Pontryagin (1969)) presented a useful tool for optimization o f structures 
with bounds imposed on the thickness. Such an approach was applied by U. Lepik 
(1972, 1973), where the Prager’s yield condition was used. The latter papers and 
the one by U. Lepik (1972) considered homogeneous structures. However, U. 
Lepik (1973) studied the sandwich type structures. For the design variable the 
thickness o f the structure (or the thickness o f the working sheets) is chosen, this 
quantity is bounded from below and above. Optimal designs for circular plates 
were obtained by U. Lepik (1972, 1973), whereas axisymmetric cylindrical shells 
were considered by U. Lepik (1982).

U. Lepik (1978) has studied the beams with additional supports. The prob
lem of optimal location o f an additional support is solved in the case o f non-elastic 
beam. The perfomance index and the constraints are given in a quite general form. 
The aim of the optimization is to reduce the beam ’s complience.

J. Kirs (1979, 1984) investigated stepped plates, conical, spherical and cylin
drical shells subjected to initial impulsive loading. Kirs studied spherical and 
conical shells made o f an ideal rigid-plastic material obeying Tresca yield condi
tion and associated flow law. The shells under consideration are subjected to the 
initial impulsive loading. For the cost function which is formed as a combination 
on the structural weight and the initial acceleration optimal stepped designs have 
been established.

Circular sandwich Tresca plates subjected to concentrated load were studied 
by J. Lellep (1977). In this note the load carrying capacity is maximized for given 
weight.

Axisymmetric shells were considered by U. Lepik (1975) taking shear forces 
into account.

J. Lellep (1977) and U. Lepik (1978) demonstrated in their papers the 
application o f the optimal control theory to the optimal design of non-linear elastic, 
viscous and ideal rigid-plastic beams.

Axisymmetric plates and shallow spherical shells with continuously variable 
thickness made of a von Mises material were considered by J. Lellep and J. Ma- 
jak (1989, 1995a, b). In the paper by Lellep and Majak (1995) an optimization
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technique developed earlier for axisymmetric plates and circular cylindrical shells 
was accommodated to shallow spherical shells subjected to uniform transverse 
pressure. It was assumed that the material of the shell was in consistence with 
a non-linear approximation of the exact yield surface and associated gradiental- 
ity law corresponding to a von Mises material. Minimum weight designs were 
established under the condition that the maximal deflection of the shell o f vari
able thickness coincided with that corresponding to the reference shell o f constant 
thickness. J. Lellep and H. Hein (1993, 1994) studied shallow spherical shells of 
piece wise constant thickness in the case of a Tresca material whereas J. Lellep and 
E. Tungel (1998, 1999) investigated deep spherical caps with stepped thickness. J. 
Lellep and S. Hannus (1989, 1995) considered stepped cylindrical shells.

The methods of optimization of plastic shells have been reviewed by G. 
Rozvany (1989), J. Lellep and Ü. Lepik (1984), J. Lellep (1991), J. Kuželecki and 
M. Zyczkowski (1985). Making use o f the methods o f the theory o f optimal control 
J. Lellep and J. Majak (1995), J. Lellep and H. Hein (1993) studied rigid-plastic 
shallow spherical shells.

Lellep and Puman (1994, 1999, 2000) studied stepped conical shells loaded 
via a rigid central boss or subjected to uniformly distributed external pressure 
loading. Material of shells under consideration is an ideal rigid-plastic material 
obeying Tresca or von Mises yield condition. The exact yield surface in the space of 
generalized stresses corresponding to Tresca condition admits proper approxima
tion with squares or diamonds, respectively, on the planes on membrane forces and 
bending moments (Lellep, Puman (1994)). Minimum weight designs of stepped 
shells are established under the condition that the limit loads for the stepped shell 
and the reference shell o f constant thickness, respectively, coincide.

The review papers cited above show that relatively less attention has been 
paid to the optimization of plates and shells material o f which obeys von Mises 
yield condition. Optimal design for shallow spherical shells of von Mises material 
have been established by J. Lellep and J. Majak (1995). Circular cylindrical shells 
of piece-wise constant thickness were studied by J. Lellep and S. Hannus (1995).

In the present work optimization procedures will be developed for plastic 
spherical shells o f piece-wise constant thickness.

The stepped shells clamped or simply supported at the edge and pierced 
with a central hole are considered. The exact solutions are established for simply 
supported shells under the assumption that the material of the shells obeys the 
generalized square yield condition and the associated flow law.

Numerical results are obtained for clamped shells made of a von Mises ma
terial. A non-linear approximation of the exact yield surface is used.
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CHAPTER 1

FORMULATION OF THE 
PROBLEM AND 
GOVERNING 
EQUATIONS



1.1 PROBLEM FORMULATION

1.1.1 Deep spherical cap
When prescribing the problem to be solved there after we distinguish the cases of 
a full shell and a shell pierced with a central hole, respectively. The case of a full 
shell will be studied in the second chapter assuming that the material o f the shell 
obeys the Tresca’s yield condition and the associated flow law.

Let us consider a full spherical cap o f radius A  subjected to the uniformly 
distributed external pressure of intensity P  (Fig. 1). The external edge o f the 
shell is simply supported at (p =  ß.

The thickness o f the shell is assumed to be piece-wise constant, e.g.

h0, if E ( 0 , a i ) ,  

h = {  hl' ¥>e ( a 1, a 2) 1 (1 Л )

^П) (ß €  (ö n ,

where До, hn and c * i , Qtn are treated as previously unknown constant 
parameters. However, ß  and n are considered to be given constants.

Weight o f the cap may be evaluated by the material volume as

П 1 
v  =  J J ( cosaJ - c o s a j+1)(3A2hj +  — 3 ). (1 .2 )

J = 0  3

Here V =  3M/2ttq  and M  is the mass o f the shell and Q - material density.

We are looking for the design of the cap for which
(i) material volume attains the minimum value for given load carrying capacity,
(ii) load carrying capacity attains the maximum value for fixed weight o f the shell. 
In the second chapter the main attention will be paid to the problem (ii).

1.1.2 Spherical shell pierced with a hole
In the present work the shells pierced with a central hole will be studied as well. It 
is assumed that a spherical shell o f radius A is subjected to the uniform external
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Figure 1.1: Spherical shell of piece wise constant thickness.
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pressure of intensity P  (Fig. 1). The external edge o f the shell (the circle at 
tp — ß) is clamped or simply supported and the inner edge (at =  a) is 
absolutely free. Here the angles a and ß  are considered as given angles.

In order to get maximal simplicity in the statement o f the problem in the 
case of material obeying Tresca yield condition we are looking for the design of 
the shell confining our attention to the case o f the stepped shell with one step in 
the thickness. Thus thickness of the shell is

Г Д0, € (a, Qi)
\ hi, ip £ (a\,ß)

where До? а 1 аге be considered as unknown constant parameters. 
These parameters have to be determined so that the load carrying capacity P  of 
the cap attains the maximal value over the set o f shells o f the same weight (or 
mass, or material volume).

The volume of the material can be easily defined when considering the spher
ical bodies with radii A-\- hf 2 and A — h / 2, respectively. Therefore, the weight 
of the shell can be described by

V  (  (  Д3 \
=  (cos a  —cos ai) ( 3 A 2 h0 +  J +(cos ai — cos ß)  ( 3 A 2hi +  ~  j .

The optimization problem consists in the minimization of the cost function

Jq — P

so that there are satisfied the governing equations of plastic spherical shells 
and the relation, where V'  is considered as a given constant.

However, in the case of the material obeying von Mises yield condition we 
consider the shell with n different thickness, as in the previous section. The case 
of the Tresca material will be studied in the Chapter III whereas the case o f von 
Mises material will be investigated in the last chapter.

1.2 GOVERNING EQUATIONS
The set of governing equations consists of the equilibrum equations, geometrical 
relations and the assotsiated flow law. The equilibrium equations for spherical 
shells subjected to axisymmetric loading can be presented as

15



(N.v sin if)' — N@ cos if =  S sin ip,
( N v  +  А^ф - f  PA)  sin <p =  — ( S  sin i f ) ' , 

(Mv sin i f ) '  — Mq  c o s  ip — — A S  sin i f ,

(1 .3 )

where N^, УУф stand for membrane forces and M^, M ф are the principal 
moments. Here S is the shear force. When deriving (4) it is assumed that the 
geometry changes of the structure can be neglected, thus the strain components 
£ф, 6ф, Кф, Кф and the displacements U, W  are small in comparison with 
unity.

For small strains and displacements the strain rates (geometrical relations) 
can be presented as

iv = l{ir-w ), i* = ^{ücotv -w),
1 . . 1 . . (1 -4 )

K v =  (U +  W')\ К Ф =  - — cot<p(V +  W ) .

In (1.3), (1.4) and henceforth primes denote differentiation with respect to 
the current angle if whereas dots correspond to the derivatives with respect to 
time or time like parameter. Note that in the limit analysis of plastic shells the 
role of time can be fulfilled by the loading parameter P.

According to the associated flow law the vector with coordinates (1.4) is to be 
directed along the external normal to the yield surface at the present point. Since 
various approximations to exact yield surfaces corresponding to original Tresca or 
Mises yield conditions will be used the associated flow law will be stated separately 
in each particular case.

In order to introduce non-dimensional variables let us consider a reference 
shell o f constant thickness Д*. The reference shell has the same middle surface 
as the shell under consideration. Let the yield moment and yield force for the 
reference shell be M * =  <ТоД*/4 and TV* =  (Tqhm, respectively. Here Co stands 
for the yield stress of the material.

For the sake o f convenience let us introduce following non-dimensional quan
tities

N^e M ^ e  S W  V
“  - , 3 =  w =  — , и =  — ,

(1 .5 )Hq h\ h* P A
lo — T~- 7i =  T -, * =  t t ,  P =  ~TT hx h* 4 A  iV*

16



Making use of (1.5) one can present the equilibrium equations (1.3) as

(rii sin ip)' — n2 cos ip — s sin y?, 
(щ +  n2 +  p) sin tp =  — (5 sine/?)', (1.6) 
к [(mi sin <p)' — m 2 cos ip\ =  s sin ip.

The strain rates (1.4) take the form

e^ =  ü ' - w ,  ёФ — iicottp -  го), 
k^ — — k(ii  - f  w ')',  кф =  — к cot ip(ii +  w').

Here the following notation is used:

kv =  кф =  ^ А 'ф .  ( 1 .8 )

The boundary conditions for the considered case o f geometry o f the shell are 
following

m i (a )  — n i ( a )  =  5( 0?) =  0 , rrii(ß) =  — 7J. (1 .9 )

1.3 APPROXIMATIONS OF YIELD 
SURFACES

1.3.1 Approximations of the yield surface 
corresponding to Tresca condition

It is assumed that the material o f shells to be considered is a rigid-plastic material 
which obeys the Tresca‘s or von Mises yield condition and associated flow (gradi- 
entality) law. The shells of a Tresca material will be studied in Chapters 2, 3 and 
shells of von Mises material will be treated in Chapter 4.

I is well know that the Tresca‘s yield condition in its original form is presented 
as a hexagon on the plane of principal stresses (Fig. 1.4). The yield surface in 
the space o f generalized stresses (membrane forces and moments) can be derived 
by the use of the method o f E. Onat and W. Prager (1954). E. Onat and W. 
Prager employed theusual assumptions of the theory of thin shells and derived 
parametrical equations o f the yield surface in the space o f membrane forces and 
moments assuming the material obeys Tresca’s yield condition. However, the 
result appeared to be complicated for the practical use. The authors themselves.
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Figure 1.2: Generalized square yield condition

aslo other researchers tried to replace the exact yield surface with a simpler one 
so that the load carrying capacities obtained on the basis o f an approximate yield 
surface compare favourably with exact ones.

Various aspects of the problems of derivation and the use of different yield 
surfaces are discussed in the books by P. Hodge (1963), A. Ilyshin (1963), J. 
Chakrabarty (2000), M. Zyczkowski (1981), N. Jones (1989), M. Save, C. Masson- 
net, G. Saxce (1997), A. Sawczuk (1989) and others.

P. G. Hodge (1963) suggested so-called two-moment limited interaction yield 
surface which might be presented in the form o f hexagons on the planes of moments 
and membrane forces, respectively. Later R. Sankaranarayanan (1964), N. Jones 
and N. T. Ich (1972) suggested further simplifications o f the yield surface for 
rotationally symmetric shells.

In the present study two moment limited interaction yield condition (Fig. 
1.4) and the generalized square yield condition (Fig. 1.2) will be used. It is as
sumed that the vectors/с =  (/Cb  k2) and £ =  ( e i , £2) are normal to the hexagons 
and squares on planes of bending moments and membrane forces, respectively.

18



Figure 1.3: Two moment limited interaction yield surface

1.3.2 Approximation of the von Mises yield sur
face

According to R. Mises plastic yielding starts when crt =  <7q where сгг stands for 
the stress intensivity at the current point and (Jo is the yield stress of the material.

In the case o f a plane stress state the von Mises yield condition can be 
presented as an ellipse on the plane o f principal stresses

(j\ — <Ti<T2 +  o\ <  (Tq. (1 .1 0 )

A. Ilyshin (1963) derived parametrical equations of the yield surface making 
use of the concept o f thin plates and shells starting from the condition (1 8 ).

In the theory of thin plates and shells it is more convenient to use the gen
eralized stresses (membrane forces and bending moments). Thus it is desirable to 
present the yield condition in the space o f generalized stresses.

A. Ilyshin succeeded in solving this task. However, due to its complicated 
structure the exact yield surface is unconvenient for practical calculations.

An approximation to the exact yield surface in the space of membrane forces

19



Figure 1.4: Generalized diamond yield condition

and moments was suggested by A. Ilyshin himself. The approximation can be 
presented as

Pn +  P,n +  ^ |  =  i ,  ( 1. 11)

where

Pn =  n\ -  nYn2 +  n\,

Pm =  ml -  m xm 2 Hb m\,

P n m  =  ~  ( 2 п\тп\ +  2 n 2 m 2 П \ г п 2 п 2 т ^ .  ( 1 - 1 2 )

A relatively simple yield surface

Pn +  P m =  1 (1-13)

was suggested by V. I. Rozenbljum (I960). V. Rozenbljum assumed that the stress 
distribution was linear across the shell thickness and the von Mises yield condition 
was satisfied in the average across the shell thickness.

20



It was shown that approximations of the exact yield surface (1.11) and (1.13) 
lead to the results whose deviations from exact results are of the same order. Since 
(1-13) is somewhat more simple than (1.11) it is used in the present paper.

The further progres in the simplification of th exact yield surface derived 
by A. Ilyushin was made by Z. Mroz and X. Bing-Ye (1963) who suggested the 
surface

V K  +  Pn =  l (1 .1 4 )

as an approximation to the Ilyshin’s surface.

Later G. Ivanov (1967) developed more complicated approximations

pn + Y  + ]lT  + PL = 1 (U5)
and

Pm 1 / 4 (P n P m -P n m )  . l Pm . _  I ( 1 1 6 )
P n +  2 Р п +  0 Л 8 Р т V  4 m — ( U 6 )

It was shown that (1.15) and (1.16) lead to very good predictions of the limit 
load for the shell under consideration.

Various approximation were developed by G. Landgraf (1968), M. Robinson 
(1971), H. M. Haydl and A. N. Sherbourne (1979), which are presented in the 
book by M. Zyczkowski (1981).

In the present work the approximation (1.13) of the exact yield surface will 
be used. The approximation o f the von Mises yield condition in the dimensionless 
variables (1.3) can be presented as:

rn\ — m im 2 -f ml +  n\ — щи? +  n22 — 1 . (1.17)

The yield surface (1.17) was used in different papers by various authors, for 
instance, in H. Haydl and A. Sherbourne (1979), J. Lellep and J. Majak (1995), 
M. Zyczkowski (1981) etc.
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OPTIMIZATION OF PLASTIC 
SPHERICAL SHELLS OF PIECE 
WISE CONSTANT THICKNESS

Jaan Lellep and Ernst Tungel
Institute of Applied Mathematics 

Tartu University 
Vanemuise 46, Tartu, Estonia

Abstract. An optimal design procedure is developed for stepped rigid-plastic 
spherical shells. The shells are subjected to the uniformly distributed external 
pressure. Material o f shells obeys the Tresca yield condition and associated flow 
law. The problems solved herein consist in the maximization of the load carrying 
capacity under the condition that the material volume of the shell is fixed and in 
the weight minimization under given load carrying capacity, respectively.

2.1 INTRODUCTION
The load carrying capacity of plastic spherical shells is studied by Dumesnil and 
Nevill [1], Hodge [2], Mrozand Bing Ye [4]. Hodge [2] has studied the problems 
of limit analysis of spherical caps subjected to the uniformly distributed loading. 
Mroz and Bing-Ye [4] considered the case o f loading in the form of loads distributed 
along the edge of a central hole. Popov [5] solved the same problem in the case 
of combined loading. In these studies the shells o f constant thickness are consid
ered. It was assumed that the yield condition was presented in the form of two 
hexagons on the planes o f moments and membrane forces, respectively. Sankara- 
narayanan [6] introduced a generalized square yield condition for investigation of 
plastic spherical shells.

Later Jones and Ich [3] suggested a new approximation of the yield surface 
which consists o f two diamonds on the planes of bending moments and membrane 
forces.

In the present paper spherical caps of piece-wise constant thickness are con-

7 25



sidered in the case o f the material obeying the yield condition which consists of 
two hexagons in the planes of moments and membrane forces, respectively.

2.2 PROBLEM FORMULATION
Let us consider a spherical cap of radius A subjected to the uniformly distributed 
external pressure o f intensity P  (Fig. 1). The external edge of the shell is simply 
supported at ip =  ß.

The thickness of the shell is assumed to be piece-wise constant, e.g.

I
 h0i v ? € ( 0 , a i ) ,  

hu < p e ( a u a2),

hnt ^

where ho, . . . ,  hn and a i , ..., an are treated as previously unknown constant pa
rameters. However, ß  and n are considered to be given constants. We are looking 
for the design of the cap for which
(i) material volume attains the minimum value for given load carrying capacity,
(ii) load carrying capacity attains the maximum value for fixed weight o f the shell.

Weight o f the cap may be evaluated by the material volume as 

n  ̂ ^
V =  Y ^ ( cosaJ ~  COS0 j + i ) ( 3 A 2^  +  - 7 3 ). ( 2 .2 )

j=0

Here V  =  3M/2iTQ and M  is the mass o f the shell and Q - material density.

2.3 GOVERNING EQUATIONS AND  
BASIC ASSUMPTIONS

For small strains and displacements the equilibrium equations of a shell element 
have the form [2]

(Nv sin ip)' — Nq cos (p =  S sin (p 
(N^ +  N® -f PA)  sin Lp — — (5  sin (p)' (2-3) 
(Mv sin сp)' — M q cos <p — AS  sin (p>

26



I

Figure 2.1 : Spherical shell of piece wise constant thickness.
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In (3) Nv , Nq stand for the membrane forces, M q are the moments and
S stands for the shear force. Here and henceforth primes denote differentiation 
with respect to the angle (p.

The strain rate components consistent with (3) are 

ev =  ^ ( U ' - W ) ,  i e  =  j ( U c o t y , - W ) ,

(2.4)

k v =  - ~ ( U  +  W')\ K B =  ~  cot <p(U +  W')

where U and W  denote the displacement rates in the meridional and normal 
direction, respectively.

The material of the shell is assumed to be rigid-plastic obeying the Tresca 
yield condition. The effects of elastic strains, strain hardening and geometrical 
non-linearity will be neglected in the present paper.

Yield surfaces in the space of generalized stresses Л^,, N q , M® are
of complicated structure. Different simplifications have been developed for the 
yield surface.

In the present study the two moment limited interaction yield surface will 
be used.

It appears to be convenient to use the following non-dimensional quantities

nl,2 —
/V* ’

mh2

s
T

*II ho
7o =  7 - ,

hi
71 =  h,

PA S w U
TV* ’ S ~ Nm' W = A' U = A

(2.5)
. hif 
к =  —- ,  p

4 A

where M* =  (T q /^ /4 , TV* =  cr0/i*, <Tq being the yield stress.

Making use of the non-dimensional variables (5) the equilibrium equations 
(3) may be presented as

(rii sin <pY — n2 cos <p =  5 sin <p 
(n\ +  n2 +  p) sin ip =  — (5 sin ip)1 (2-6) 
k[(mi sin <p>)' — ra2 cos 9 ] =  s  sin ip
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(2 .7 )

and the strain rates (4) may be put into the form 

=  ii' — ш, £q =  ii cot ip — w

=  — k(ii -f u/)'> &© =  —A: cot </?(« +  w1)

where
M . , ,  ; M ,  , ,  

— AN,  _  AN,

Boundary conditions for a simply supported spherical cap are

m i(0) =  m2(0), m x(ß) =  0, 
n i ( 0 ) =  n 2( 0 )

It is evident that in the case o f the stepped shell the material o f the cap is 
used maximally if the moment M^  attains its maximal value at ip =  a. Thus in
the case h\ <  ho one has

rai(a) =  (2.9)

Material volume of the shell (2) may be presented as 

v =  (1 — cosa)(37o +  4A:27o) +  (cos a — cos/?)(37i +  4A;27 j) , (2.10)

where V — V / Ä 2 h*.

2.4 LOAD CARRYING CAPACITY OF 
A SPHERICAL CAP OF A CON
STANT THICKNESS

Consider the spherical cap o f constant thickness h — 6h*. It was shown by Hodge
[2] that for small values o f the angle ß  an approximate solution of the posed 
problem may be obtained if Nq =  0, M © =  Mq holds well over the shell. Thus

n2 =  0, т 2 — S2 (2.11)

Integrating the set (6) where (11) is taken into account and satisfying (8) 
one eventually obtains
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m  =  -(ipcotif -  1) (2 .1 2 )
Lj

p m x =  62 -  — (1 -  (f cot ip)

Substituting m\(ß) =  0 in (12) gives

_  2 kS2 
^ 1 — ß  cot ß

The value o f the load intensity (13) is a lower bound to the load carrying 
capacity since (13) corresponds to the statically.admissible stress distribution (12). 
For the solution (13) being the exact solution it is necessary that it meets the 
kinematical requirements. Making use of (7) and the associated flow law one can 
state that the solution is kinematically admissible for small values o f the angle 
ß. Thus for small values o f ß  (13)presents the exaxt limit load. In the case of 
greather values o f angle ß  the current solution gives the lower bound to the limit 
load.

2.5 STEPPED SPHERICAL CAP
Consider now the simply supported spherical shell o f piece-wise constant thickness 
(1) whereas non-dimensional thicknesses are 70 and 71 . In this case according to 
N® — 0, M 0 =  Mo and (5) TI2 — 0 and

[ 7o> V > € [ 0 , a ] ,  
m 2 — \ (2 .1 4 )

I 7i ?  <pe[a,ß]

Substituting (14) in (6) and integrating under the boundary conditions (8) 
one easily finds

(2 .1 5 )

ui = -фрсо'‘ Ч> ~ ^

(2 .1 3 )
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for <p> €  [0 , ß\ and

m \ = 7 o - ^ ( l - v c o t v ? ) (2.16)

for ip £  [0, a ] . Similarity for ip 6  [o , ß] one obtains

9 P / - \ S ill Of / ry ry

1711 = 7 1  “  o i l 1 “  ^ соМ  +  ------- ( 7 o - 7 i ) ,  (2.17)ZK sin ip

where the continuity requirement for m\ at ip =  a is taken into account. Satis
fying the boundary condition m j( /? )  =  0 in (17) leads to the lower bound o f the 
load carrying capacity o f the shell o f piece-wise constant thickness

P =
2 к

1 — ß  cot ß
sm a

(2.18)

In order to solve the optimization problem one has to maximize the load 
carrying capacity under the condition that the material volume o f the shell ( 10) 
is given. Instead o f the exact load carrying capacity the lower bound (18) will 
be used in present paper. It is reasonable to assume that the shell material is 
maximally stressed if the condition (9) is satisfied. Thus according to (9), (16)

(1 — о: cot о) 
1 — ß  cot ß

sm a = о (2.19)

Assume that the quantity v in (10) is equal to the non-dimensional volume 
associated with the uniform thickness 7  =  1. This conjecture leads to the relation

(1 -  cosa)(37o +  4&27o) +  (cosa -  cos/?)(37i +  4fc27j) -  (1 -  cos/?)■ 
.(3 +  4k2) =  0(2.20)

In order to maximize (18) under constraints (19) and (20) let us introduce
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the augmented functional 

2 к
t /  * [7 i2 sin ß  +  sin a(7o -  7i2)] +

sin ß  — ß  cos ß  

+ Ai [(1 — coso;)(37o +  4fc27o) +  (cos a — cos/?)(37i +  4k'2jf)- 

- ( 1  -  cos /3)(3 +  4fc2)] +  A2{ 7<? -  1\~  

1 — a cot a
sin ß  — ß  cos ß

[7 , sin ß  +  sin a (70 ~ 7 i)]}

(2.21)

Necessary conditions o f the minimum of (21)

0 J * = 0 , 1^ =  0 , ^  =  0
da д ъ д ъ

may be presented as

2k cos c*(7q — 7 j )
sin ß — Q cos ß  

^2

4- Ai [sin a (37o 4- 4&27q) — sin a (37i 4- 4A:27 f )]4-

cot a
a

sin2 asin ß — ß  cos ß  
— (1 — a cot a) ■ cos a (7q — 7?)] =  0, 

4A:7o sin a x , . . , 9 
— -  -  — +  Ai(1 — cos a)(3 4- 12Л; 70) +  
sin p — p cos p

)  (7 2 sin ß  — sina(7 2 -  7 2)) -

+ 2 A, 7o -  

4 к

1 — a cot a 
sin ß — ß  cos ß

7o sin a =  0 ,

(71 sin /9 — 71 sin a) 4- Ai(cosa — cos /3)(3 +  12£27 2)—
sin ß — ß  cos /?

■2A,
1 — a cot ol . .

7 i +  ^— 5------ Ъ---------Ъ ( 7 l  sm  & Ъ  sinsin p — p cos p
=  0 .

(2.22)

The set of algebraic equations (22) must be solved together with (19), (20) 
with respect to a , 70 , 7 i ,  A i, X2- This has been done numerically by the aid 
of the Newton method.
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Figure 2.2: Membrane force

2.6 DISCUSSION
The results of calculations are presented Fig. 2,3 and in Tables 1,2 for several 
values o f the angle 0. Table 1 corresponds to the case к =  0, 005, whereas Table
2 is associated with к — 0,001. The quantity e in Tables 1,2 can be considered 
as the economy coefficient defined as

Here p stands for the lower bound to the load carrying capacity o f the stepped 
shell whereas po is the limit load o f the reference shell o f constant thickness. In 
the latter case 70 =  71 =  1 .

Calculations carried out show that the lower bound to the load carrying 
capacity o f the shell can be increased more than 22 % (in the case ß  =  7Г/ 2). For 
smaller values o f /3 the economy coefficient attains smaller values. However, limit 
load can be increased more than 15 % anyway.
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Table 2.1: Optimal values of the design parameters к =  0,005.

ß о 7о 7i е

од 0,08056 1,1395 0,7417 1,15345
0,15 0,12086 1,1394 0,7415 1,1537
0,2 0,16112 1,1393 0,7415 1,1540
0,3 0,24156 1,1390 0,7417 1,1550
0,4 0,32188 1,1386 O', 7419 1,1564
0,5 0,40201 1,1380 0,7422 1,1583
0,6 0,48195 1,1373 0,7425 1,1606
0,8 0,64107 1,1355 0,7431 1,1668
1,0 0,7991 1,1330 0,7437 1,1754
1,2 0,9559 1,1298 0,7440 1,1871
1,4 1,1116 1,1257 0,7437 1,2028
7Г/2 1,2442 1,1215 0,7428 1,2205

Numerical analysis reveals somewhat unexpected matter that the optimal 
values of O', 7 0 , 7 ] only weakly depend on the geometrical parameter k. For in

stance, in the case к =  0 ,0 0 5  and/3 =  0 , 8 0  =  0 ,6 4 1 0 7 ; 70 =  1 ,1 3 5 5 ; 7 l =  
0 ,7 4 3 1 . However, if к =  0 ,0 0 1  one has о  =  0 ,6 4 1 1 ; 70 =  1 ,1 3 5 5 ; 7 1  =
0 ,7 4 3 2 .

Distributions of the membrane force П\ and bending moment rri\ are pre
sented in Fig. 2 and 3, respectively. Here ß  — 0, 2 and к =  0 ,0 0 5 . According 
to Table 1 0  =  0, 16112 whereas 70 =  1, 1393 and 71 =  0 ,7 4 1 5 . Note that 

at сp =  a  the bending moment m,\ has the limit value, e.q m\ =  7 ^. Solid 
lines in Fig. 2,3 correspond to the optimized shell whereas the dashed lines are 
due to the reference shell of constant thickness. It can be seen from Fig. 2,3 that 
the bending moment and membrane force in the optimized structure exceed those 
corresponding to the reference shell of constant thickness.
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Figure 2.3: Bending moment

Table 2.2: Optimal values of the design parameters к =  0,001.

ß a 7o 7i e
0,1 0,0814 1,1396 0,7284 1,1533
0,2 0,1611 1,1393 0,7413 1,1541
0,4 0,3219 1,1386 0,7419 1,1565
0,6 0,4820 1,1373 0,7425 1,1606
0,8 0,6411 1,1355 0,7432 1,1660
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J. Lellep and E. Tungel
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Vanemuise 46, Tartu, ESTONIA

Abstract. An optimization method regarding to plastic spherical shells is pre
sented. The shells under consideration are clamped at the outer edge and pierced 
with a central hole. The material o f shells obeys generalized square yield condition 
and associated flow rule. The problem of maximization of the load carrying capac
ity under the condition that the weight (material volume) of the shell is fixed is 
transformed into a problem of non-linear programming. The latter is solved with 
the aid o f Lagrangeian multipliers. The obtained solution is compared with the 
optimal solution o f the minimum weight problem for given load carrying capacity.

3.1 INTRODUCTION
Analysis and optimization of non-elastic plates and shells has become a problem 
of practical interest. Comphensive reviews of problems solved can be found in 
the works by G.I.N. Rozvany (1976, 1989), M. -Žyczkowski and Kruželecki (1985), 
J. Lellep (1991) etc. The methods of direct analysis o f rigid-plastic structural 
elements are accommodated in the books by P. Hodge (1963), N. Jones (1989) 
and others.

Due to the simplicity of their manufacturing the special significance have 
the designs o f piece wise constant thickness. Circular cylindrical shells of piece 
wise constant thickness have been treated by C. Cinquini and M. Kouam (1983) 
in the case of a Tresca material. J. Lellep and S. Hannus (1995) considered the 
plastic tubes with piece wise constant thickness assuming the material obeyed von 
Mises yield condition. Optimal designs for stepped plastic shallow shells have been 
established by J Lellep and H. Hein (1993, 1994) in the cases of piece wise linear
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approximations o f the exact yield surface corresponding to the original Tresca yield 
condition on the plane o f principal stresses. Employing a lower bound method for 
determination of the load carrying capacity the authors (1998) defined an optimal 
design for a stepped spherical shell simply supported at the edge.

In the present paper the stepped shells clamped at the edge and pierced 
with a central hole are considered. The exact solutions are established under 
the assumption that the material of the shells obeys the generalized square yield 
condition and the associated flow law.

3.2 FORMULATION OF THE 
PROBLEM

Consider a spherical shell o f radius A  subjected to the uniform external pressure 
of intensity P  (Fig. 1). The external edge o f the shell (the circle at ip =  ß) is 
clamped and the inner edge (at <p =  a )  is absolutely free. Here the angles a and 
в  are considered as given angles.

We are looking for the design of the shell confining our attention to the case 
of the stepped shell with one step in the thickness. Thus thickness o f the shell is

h = { h°' 'p € ( :a ' all  (3.1) \ h u ip G {au ß)

where /žq, ^ i, C*i are to be considered as unknown constant parameters. These 
parameters have to be determined so that the load carrying capacity P  of the cap 
attains the maximal value over the set of shells of the same weight (or mass, or 
material volume).

The volume of the material can be easily defined when considering the spher
ical bodies with radii A  - f  h/2  and A — h / 2, respectively. Therefore, the weight 
of the shell can be described by

V' {  h^\ f  h3
—  =  (cos a —cos о?!) I ЗА2h0 +  j  +(cos — cos ß) ( ЗА2hi +  —

(3.2)

The optimization problem consists in the minimization of the cost function

Jo =  - P  (3.3)

so that there are satisfied the governing equations of plastic spherical shells and 
the relation (2), where V'  is considered as a given constant.
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3.3 BASIC EQUATIONS

The equilibrium equations for spherical shells subjected to axisymmetric loading 
can be presented as

(Ny sin ip)' — N<f> cos {p — S sin сp, 
(N^ +  А̂ ф +  PA)  sin ip =  —(S sin ip)\ (3.4) 
(M v sin Lp)' — Мф cos ip =  — AS  sin <p,

where Nф stand for membrane forces and M v , Мф are the principal 
moments. Here S is the shear force. When deriving (4) it is assumed that the 
geometry changes o f the structure can be neglected, thus the strain components 
£<p, £ф, Hy, Кф and the displacements £/, W  are small in comparison with 
unity.

For small strains and displacements the strain rates can be presented as

ev =  ~ ( Ü ’ - W ) ,  e* =  i ( f /c o t  < p - W ) ,
■ A  1 ■ -A  1 ■ • ( 3 5 )

K v =  - — {U +  W y ,  Кф =  ~ — cotip(U +  W ) .

In (4), (5) and henceforth primes denote differentiation with respect to the 
current angle сp whereas dots correspond to the derivatives with respect to time 
or time like parameter. Note that in the limit analysis of plastic shells the role of 
time can be fulfilled by the loading parameter P.

In order to introduce non-dimensional variables let us consider a reference 
shell o f constant thickness h*. The reference shell has the same middle surface 
as the shell under consideration. Let the yield moment and yield force for the
reference shell be M * =  <7o^*/4 and TV* =  <70Д*, respectively. Here <7o stands 
for the yield stress o f the material.

For the sake o f convenience let us introduce following non-dimensional quan
tities

Л̂.ф MVi ф s w и
h,0 hi h* P A  v^.o)70 =  л ?  71 =  V,' k = U' p=Jl-
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Making use o f (6) one can present the equilibrium equations (4) as

(rii sin <pY — n2 cos ip =  s sin сp, 
(ni -f n2 +  p) sin <p =  — (s sin <pY, 
к [(mi sin (pY — mi cos <p] =  s sin <p.

(3 .7 )

The strain rates (5) take the form

i — ii! — w. ёф =  ii cot ip — w), 
кy =  —k(ii +  w'Yi ^ cot <p(ii +  w1).

(3 .8 )

Here the following notation is used:

(3 .9 )

Material o f the shell is assumed to be an isotropic, homogeneous rigid- 
plastic one obeying the generalized square yield condition suggested by R. Sa- 
karanarayanan (1964). This yield condition has its own application area but it 
can be handled as an approximation to the Tresca yield condition as well.

The exact yield surface in the space of generalized stresses is of complicated 
structure even in the case of material obeying the original Tresca yield condition. 
Due to the complexity of the exact yield surface exact solutions o f complicated 
shell problems are quite rare. As we are rather more interested in the developing 
an optimization procedure than in solving a particular problem we are seeking in 
maximal simplicity of the yield surface. Moreover, it is evident that the solutions 
for simply supported full caps coinside in the cases o f materials obeying the gen
eralized square yield condition and the ’’ two moment limited interaction” yield 
surface, respectively. The latter surface was suggested by P. Hodge (1963).

It is resonable to assume that the stress state o f the shell corresponds to 
the sides A B  and C D '  o f the squares on the planes of moments and membrane 
forces, respectively (Fig. 2). Thus

where M q and No stand for the yield moment and yield force, respectively, e.g. 
M 0 ~  a0h2/ 4, No =  a0h.

According to (6), (10) one has in the case of the stepped shell

Мф — M q, Nф — —No, (3 .1 0 )

” *2 =  7o> "2  =  -To (3.11)
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for ip £  (a ,  a \) and

m2 =  7i2, n2 =  - 7 1  (3.12)

for £  ( « 1, /?)•

We are looking for the design of the shell with maximal load carrying capac
ity. It means that all the sections of the shell must be stressed maximally. The 
statical restrictions imposed on the yield regime ( 11), ( 12) are following

-  7o <  m i <  7o> ~ 7o <  Щ <  7o (3.13)

for сp £  ( a ,  a i )  and

-  7i <  m i <  7?» “ 7i <  <  7i (3.14)

for <p £  ( a ;L,/3 ) .

Evidently, at the section <p — Qfj moment m j attains its maximal admissible 
value, e.g. the hinge circle appears at <p =  ot\. Assuming that Kq <  h\ one has 
an intermediate condition

m i K )  =  —7o- (3.15)

The boundary conditions for the considered case of geometry o f the shell are 
following

m.\(a) — щ(а) =  s(a) =  0, rrii{ß) =  —7?. (3.16)

Making use of the non-dimensional quantities (6) one can present the weight 
of the shell as

v — (cos a — cos q i)(37o + 4A:27q)-|-(cos аг — cos ß)(3^1+4:k2^ ) ,  (3.17) 

where v =  V ' /2ттA 2h+.

3.4 THE REFERENCE SHELL OF 
CONSTANT THICKNESS

Let us consider a spherical shell with a central hole such that the thickness o f the 
shell is h =  h*6 where 8 is a constant.

Assume that the stress strain state of the shell corresponds to the sides A B  
and C D '  of corresponding squares (Fig. 2). Thus throughout the shell

n2 =  - 8, m2 =  82. (3.18)
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Substituting (18) in (7) one can integrate the system of equations (7). It is 
easy to recheck that the solution of (7) satisfying the boundary conditions (16) 
has the form

l , . f w 4 p sin a
5 - P W  -  a ) +  õ ” ----- sm (y > -a );Z z s i n c ?

1 \a
П\ — — - (26  — p)<pcotip - f  cotip —( 26 — p)+

771]

P •-f -  sm a cos a 
2
C2 1
<52 +  T

P 2------ COS O i \

2

- ( 2 6 - p ) ( l  - ^ c o t v ? )  +  

-f- cot ip (28 — p)a -f ~ sin a cos -f 

p . 2 sin OL 2
-f  -  sm a  - f  —------( — k6 — 6)

2 sm ip

(3.19)

Finally, substituting rrii(ß) — —S2 in (19) one easily obtains the limit load 
for the clamped shell

2 к
P

sin a  {£2 I 6_ 

sin/? (,52 + f ) - 2 Ä 2 - 2 6  (I +  ( a -  0)  cot/?)

cot ß (ß  — a +  sin a cos a) — cos2 a
(3.20)

According to the associated flow law =  0, К  ̂ =  0, £ф <  0, Аф >  0. 
Thus it follows from (8) that

г /  - f  w"  =  0 , U — W  =  0 . ( 3 . 2 1 )

Integrating (20) and satisfying the boundary conditions one easily obtains

w0
w

sin(/3 — a)
sin(y? -  ß)

and

u —
w0

s'm(ß — a)
[cos(y> — ß)  — cos ß ] ,

(3.22)

(3.23)
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provided w(ß) =  0, ü{ß) — 0 and w(a) =  W q .

Making use of (8) and (22), (23) one can check that £ф <  0, Аф >  
0. Therefore, the solution (19), (20), (22), (23) is statically and kinematically 
admissible. It means that (20) presents the exact load carrying capacity for the 
current problem.

3.5 SPHERICAL CAP OF PIECE WISE 
CONSTANT THICKNESS

Consider the spherical shell o f piece wise constant thickness which is clamped at 
the outer edge and free at the inner edge. Let the non-dimensional thicknesses be 
7o and 7 i ,  respectively.

Guiding by the considerations discussed above we assume that

П2 =  ~7o, rn2 -  7o (3.24)

for ip G ( a ,  c*i) and

n2 =  ~ 7 ь  m2 =  7i2 (3.25)

for ip £ (Ql ,  ß).

Substituting (24) in (7) and integrating leads to the result

1 psina  
=  ö'v27o - « )  +  - -  sm (v ? -a ) ; 2 2 sin ip 

ni =  7o cot ip(a — ip) +  ~ cot p(<p — a +  sin a cos a) — -  cos2 a; 
~ 2  2

2 1 

m i  =  7 °

1 p , (3.26)
-(270  -  p)(l -  ip cot ip -j- a cot ip) -f -  sin q +

P .+  — sm  o; cos  a cot <z>
2 \

sm a /  2 7o\
~  ( To H— 7Г / sm ip \ k /

for t/? £  ( a ,  ct\).
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Similarity one obtains

5 =  - ( 27! -  p)ip ~  +  (D 2 +  7 i)-cot <p;

Щ =  -(2 71  — p)(l — Lp cot ip) +  D\ cot (̂  +  D 2;

m i =  7 i +

+
D'-

-(271  -  p )(l — ip cot ip) +  Di cot ip +  D 2 +  7 i
(3.27)

+

for G (o !i,/? ). In (27) D l ,  Z)2, -Ö3 stand for arbitrary constants of integra
tion.

Satisfying the continuity requirements for m i ,  Щ and S at <p = ct\ by the 
use of (26), (27) one can get

PD] — 7o(of — a i)  +  ^(sin a  cos a ~ a ) a i7 b  (3.28)

and

also

P 2 D2 =  -  sin a  -  71 , (3.29)

O3 =  7  [(70 +  ^7o )(sin a 1 -  sin a )  -  (71 +  fc7 i ) s in a i ]  . (3.30)

Two conditions in the set (15), (16) have not used yet. The requirement (15) 
leads to the load carrying capacity

2 sin «(70 +  &7o) ~  (sin ai  -f (ct — c*i) cos a i)  — 4&7q sin ai
P = (a i — a ) cos ol\ -f sin2 a  sin а -i -f sin a  cos a  cos ct\ — sin

(3.31)

The last boundary condition in (16) leads to the additional constraint 

2&7 j +  (71 -  0  (1 -  в  cot ß)  +  cot ß  [70(a  -  a i ) +
P b*-f -(s in  a  cos a  — a)  +  +  a ^ ]  +  ^  sin2 a +  (3.32)

I
+  - —-  [(70 +  A:7o)(sina i -  sin a ) -  (71 -f &7 2)smc*i] =  0.

sm p 1

It is worthwhile to mention that the associated flow law leads to the equations 
(21) in the case of the stepped shell as well. Therefore, the solution is kinematically 
admissible if the displacement rates are defined in the form (22), (23).

P •
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3.6 NUMERICAL RESULTS
In order to maximize the load carrying capacity (31) under the constraints (17) 
and (32) one has to introduce an augmented functional

270 (sin « i  -f ( a  -  c*i) cos a x) -  2 sin 0(70 +  &7q ) +  4&7o sin a i  
( a i  — a )  cos +  sin2 a  sin +  sin a  cos a  cos a\  — sin a\  

-f Ai [(c o sa  -  c o s a i ) ( 37o +  4 A:27o) +  (c o s a i  — cos/?)-

• (З71 +  4k2j f )  -  v + X2 { z k r f  +  (71 -  0  (1 -  ß c o t ß )+

+

(3.33)
p

+ cot /3 7o(a — cti) + -(sin a c o s a  — a) + a i7 i  
I 

+ [(To + ^7o)(sin a i -  sin a) -  (7! + k r f )  s in a i]},

where p is defined by (31).

Necessary conditions for minimum of (33) can be expressed as

. P ■ 2 , +  -  sm o +

— 1 +  “ (sin  a  cos о  — a  + ß c o t ß  — 1 +  s in 2 a ) +
dp  

dcti
-fAi sin 01(870 + 4A:27 q -  З71 -  4&27^)-f-

1 [cos 01(70 +  &7o -  7 i -  & 7 i) +  cos /9(7 ! -  70)] =  0; 
s in ß  L J

dp
1 -f ~ ( s i n  о  cos о  — о  +  ß  co t ß  — 1 +  s in 2 о )  

+ A 1(cos о  — cos O i)(3  -f 12A:27q) +

+ A2

+
(3 .34 )

ч smO] - s i n a ,  
co t ß ( a  -  O i) 4--------- :т—^ -------(1 +  2 ^ 70)

sin  ß
A i(cos 01 — cos /?)(3 -f 12&27 2) +

— 0 ;

4 ^ 7 ! -f 1 — ß  c o t ß  +  co t ß  ■ O!
sm  Oi 

sin  ß
(1 + 2 k j i ) = 0 .

Here the following notation is used:

dp
dai

= { [-270 ( -  sin 01(0 -  Ql)) -  4kjQ cosc*i] •

(o i — a )  cos a i  -f sin2 a  sin a i  +  sin a  cos a  cos оц — sin a i]  —
-  2 sin 0(70 + &7o) -  270 (sin c*i +  (a  -  Q j) cos a x) -
-  4/?7q sin«! • [(a — a i)s in a j -f sin2 a c o s a i -  (3.35)
-  sin a  cos a  sin а г ■ {(a^ -  a )  c o s a i +  sin2 a  sin a x +
-f sin a  cos a  cos « i — sin 2, 

dp _  2 sin o ( l  + 2^70) -  2 sin Oi -  2(a  -  а г) cos о?г ~ 8k^0 sin a j  

<̂7o (a i  — a )  cos a i  -f sin2 a  sin +  sin a  cos a  cos a i  — sin a\
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The set of algebraic equations (34) is to be solved together with (17) and 
(32) making use of (35). A standard numerical procedure based on a modification 
of the Newton method has been employed.

The results of calculations are presented in Fig. 3 and Tables 1-3 for the 
shells with the geometrical parameter к — 0, 05; к — 0 ,0 2  and к =  0 ,0 1 , 
respectively. Here a simplified version corresponding to 71 =  1 is considered. In 
this case /?,* =  h\ and the thickness of the reference shell of constant thickness is 
denoted by 7 * /2,1. The quantity 7 * is calculated so that the material volumes of 
the stepped and reference shells of constant thickness, respectively, coincide.

The coefficient of economy in Tables 1-3 is defined as

e =  ^ - 1  +  100 (3 .36 )

where po stands for the load carrying capacity of the reference shell and p is the 
maximal value of the limit load for the shell of piece wise constant thickness.

The economy of the design depends on geometrical parameters of the shell 
under consideration. It can be seen from Tables 1-3 that in the case k =  0, 05 
and a  =  0, 4; ß  =  0 ,6  the limit load can be increased more than 30% when 
using the design with one step in the thickness. However, in the case Л: =  0, 02 
where a  — 0 ,4  and ß  — 0 , 6 the load carrying capacity can be increased by 
17,5% and in the case к =  0, 01 (a = 0 ,4 ; /9 =  0, 6 ) by 8,5% in comparison 
to that corresponding to the reference shell of constant thickness.

The distributions of the membrane force n j  and bending moment ГП\ are 
presented in Figs. 3 and 4, respectively. Solid lines in Figs. 2 and 3 correspond 
to the optimized stepped shell, whereas the dashed lines are due to the reference 
shells of constant thickness.

In similar way one can solve the problem of minimum weight for given load 
carrying capacity. In this case one has to minimize (17) under the condition that 
the load intensity p in (31) has a given value.

The results of calculations are presented in Tables 4-6. As p  is now fixed 
instead of (36) the coefficient of economy is defined as

e =  П  — 100. (3 .37 )

In (37) Uo stands for the material volume for the reference shell of constant thick
ness. The constant thickness can be determined from (20) under the assumption
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that the stepped shell and the reference shell, respectively, have the common load 
carrying capacity. In the case of the shell with 7 * =  1 one has

v0 = (cos a  — cos /?)(3  -f 4k2). (3 .38 )

It can be seen from Tables 4-6 th a t for the optimized shell with one step in 
the thickness the outer thickness exceeds unity whereas the inner thickness is less 
than one. The same feature can be observed when maximizing the load carrying 
capacity for given m aterial volume. However, the values of design parameters 
ö l ,  7 0 , 71 are slightly different in these cases.

It is worthwhile to note that for a fixed value of inner angle the eventual 
material saving is the greater the less is the difference between outer and inner 
angles, respectively (Tables 4-6).

Similarity, it can be seen from Tables 1-3 that the less is ß  — a  the greater 
is the relative increase of the load carrying capacity for fixed value of the inner 
angle a.  One can observe the same feature when the outer angle ß  is fixed and 
the inner angle a  is variable.

It is somewhat surprising that the material saving is relatively high even in 
the case of one step in the thickness. For instance, in the case к =  0 ,0 5 ; a  =
0, 8 ; ß  =  1 ,0  one can save 17,08% of the m aterial when utilizing the design with 
one step. At the same time the uniform shell and the stepped shell, respectively, 
have the same value of the load carrying capacity po =  4 , 239.

3.7 CONCLUDING REMARKS
A method of optimization of spherical shells with free internal edge and clamped 
external edge has been developed. The shells of piece wise constant thickness with 
one step in the thickness have been considered. Exact solutions have been estab
lished assuming the m aterial of shells obeys the generalized square yield condition 
and associated flow rule.

The results obtained numerically showed that the load carrying capacity of 
the shell can be increased significantly (even more than 35% in the case к =  0, 05; 
ot — 0 , 8 ; ß  — 1, 0) when using the design of the shell with step wise varying 
thickness. Similary, the weight of the shell can be reduced as well for fixed load 
carrying capacity.

It is interesting to remark that the two following problems:

(i) minimization of the weight for given load carrying capacity.
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(ii) maximization of the load carrying capacity for fixed weight or material

volume of the shell (3 .38)

lead to different values of design parameters. Numerical results show that 
the coefficient of efficiency for the problem (i) is less than that of the problem (ii).
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Table 3.1: Design of maximal load carrying capacity (k =  0,01)

a ß C*i 7o 7* e P Po
0,4 0,6 0,5441 0,7514 0,83 8,56 1,639 1,510

0,4 0,8 0,7630 0,9321 0,94 0,84 1,400 1,388

0,6 1,0 0,9586 0,9204 0,93 0,9 1,268 1,256

0,8 1,0 0,9378 0,7174 0,81 9,60 1,397 1,274

Table 3.2: Design of maximal load carrying capacity (к =  0,02)
a ß a  l 7o 7* e P Po
0,4 0,6 0,5221 0,6471 0,80 17,54 2,308 1,964
0,4 0,8 0,7384 0,8640 0,89 3,00 1,555 1,510

0,4 1,0 0,9542 0,9445 0,95 0,65 1,488 1,479

0,6 1,0 0,9326 0,8510 0,88 3,18 1,387 1,344

0,8 1,0 0,9277 0,6614 0,79 20,20 1,959 1,630

Table 3.3: Design of maximal load carrying capacity (к =  0,05)
a ß a  1 7o 7* e P Po
0,4 0,6 0,5129 0,5956 0,79 30,49 4,531 3,472

0,4 0,8 0,6908 0,7461 0,83 9,99 2,114 1,922

0,4 1,0 0,9060 0,8497 0,88 3,53 1,719 1,660
0,6 1,0 0,8846 0,7322 0,82 10,99 1,842 1,660
0,8 1,0 0,9234 0,6319 0,78 35,83 3,750 2,760
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Table 3.4: The design of minimum weight (к =  0,01)

CL P a  1 7 i 72 P e
0,4 0,6 0,5363 0,8188 1,1421 1,959 6,54
0,4 0,8 0,7575 0,581 1,0645 1,493 0,79
0,4 1,0 0,9695 0,9986 1,0110 1,438 0,06
0,6 1,0 0,9549 0,9789 1,0727 1,366 0,88
0,8 1,0 0,9313 0,7934 1,1542 1,694 7,62

e 3. 5: The design of minimum weight [k = 0, 02)
a ß a  1 7 i 72 P e
0,4 0,6 0,5209 0,7174 1,1208 2,785 10,55
0,4 0,8 0,7258 0,9319 1,1143 1,754 2,65
0,4 1,0 0,9458 0,9852 1,0571 1,570 0,63
0,6 1,0 0,9194 0,9245 1,1251 1,578 2,91
0,8 1,0 0,9161 0,6838 1,1221 2,330 12,41

e 3. 6: The design of minimum weight [k =  0,05)
a ß «1 7 i 72 P e
0,4 0,6 0,5118 0,6397 1,0853 5,262 14,40
0,4 0,8 0,6789 0,8157 1,1332 2,538 6,91
0,4 1,0 0,8911 0,9248 1,1196 1,966 3,02
0,6 1,0 0,8675 0,7922 1,1402 2,215 7,80
0,8 1,0 0,9077 0,6016 1,0752 4,239 17,08
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Figure 3.1: Spherical cap

Figure 3.2: Generalized square yield condition
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Figure 3.3: Bending moment for a cap (k =  0, 05)
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OF VON MISES MATERIAL

J. Lellep and E. Tungel
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46 Vanemuise str., Tartu 51014, ESTONIA

Abstract. An optimization procedure is developed for spherical shells pierced with 
a central hole. Outer edge of the shell is simply supported whereas the inner edge is 
absolutely free. The m aterial of the shell is assumed to be and ideal plastic material 
obeying von Mises yield condition. Resorting to the lower bound theorem of limit 
analysis the shells with constant and piece-wise constant thickness are considered. 
The designs of spherical shells corresponding to maximal load carrying capacity 
are established for given weight. Necessary optimality conditions are derived with 
the aid of variational methods of the theory of optimal control. The obtained set 
of equations is solved numerically.

4.1 INTRODUCTION
Optimization of elastic and non-elastic beams, frames, plates and shells has had 
the attention of many investigators during the last decades. Comprehensive re
views of problems solved can be found in the books and papers by J. Kruželecki 
and M. Žyczkowski (1985), J. Lellep and Ü. Lepik (1984), G. Rozvany (1976), 
M. Bendsoe (1995), J. Lellep (1991).

Different approaches to optimization of non-elastic structural elements have 
been developed by Z. Mroz (1975), G. Rozvany (1976), M. Save (1972), J. Lellep 
(1985, 1991). Optimal plastic design of shells was discussed by Prager and Rozvany 
(1980), Nakamura et al. (1981), Dow et. al. (1981). Axisymmetric plates and shal
low spherical shells of minimum weight are studied by D. Lamblin, G. Guerlement, 
M. Save (1985) and J. Lellep, II. Hein (1993, 1994) assuming that the thickness 
is piece-wise constant and that the material obeys Tresca yield condition. Deep
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spherical shells of Tresca material have been studied by J. Lellep and E. Tun
gel (1999). Straight plate problems are solved by A. Sawczuk and J. Sokol-Supel 
(1993) for both, Tresca and Mises materials.

It is somewhat surprising that relatively less attention has been paid to 
the optimization of plates and shells material of which obeys von Mises yield 
condition. Optimal design for shallow spherical shells of von Mises material have 
been established by J. Lellep and J. Majak (1995). Circular cylindrical shells of 
piece-wise constant thickness were studied by J. Lellep and S. Hannus (1995).

In the present paper an optimization procedure will be developed for plastic 
spherical shells of piece-wise constant thickness in the case of von Mises material.

4.2 FORMULATION OF THE PROB
LEM AND BASIC EQUATIONS

Let us consider a spherical shell of radius A  subjected to the uniformly distributed 
transverse pressure of intensity P. Assume that the external edge of the shell (the 
circle corresponding to ip — ß)  is simply supported and the inner edge at ip — Ol 
is absolutely free.

Let the shell wall be of piece-wise constant thickness (Fig. 1), e.g.

h =  hj, i p e ( a j , a j +i )  (4.1)

where c*o — Qf, crn+i =  ß  and j  =  0 , n.  The number n  and angles a ,  ß  are 
considered as given constants whereas hj  (j  — 0, . . . ,n )  and OLj (j  —  1 , . . . , n )  
are to be defined so that the load carrying capacity Pq attains the maximal value 
for given weight or material volume of the shell.

Material of the cap is assumed to be an ideal rigid-plastic m aterial obeying 
von Mises yield condition. The weight or material volume of the shell can be 
defined when calculating the volume of a body located between spherical surfaces 
with radii A  — h /2  and A-\- h / 2 for each region (ctj, a ^ + i) ,  respectively. How
ever, it is assumed that the shell wall is of ideal sandwich type whereas h stands 
for the thickness of carrying layers and H  is the total thickness.

In the case of a sandwich spherical shell the material volume of a carrying 
layer can be presented as

П
V  =  hj(cos ctj — c o s a j + i ) .  (4-2)

j=o

60



We are looking for the minimum of the cost function

J\  — —Po (4-3)

under the condition that V  =  Vo and that there exists a statically admissible 
stress field corresponding to the external loading P  =  Po- In other words, we 
are using the lower bound approach to the load carrying capacity. According to 
the lower bound theorem of limit analysis actual limit load corresponds to the 
maximum of the load factor associated with a statically admissible stress field (see 
Hodge, 1963).

In the case of spherical shells subjected to an axisymmetric loading the stress 
resultants contributing to the internal energy are the membrane forces JVv , N q  
and bending moments M^,, Mq.  The shear force S which influences on the 
equilibrium of a shell element does not contribute the internal power of the shell.

The equilibrium equations of a spherical shell element can be presented as 
(here the configuration changes of the shell are neglected)

(N v sin ip)' — N q  cos ip =  5  sin </?,
(Nv +  Nq  +  PA ) sin <p =  —(S'sin ip)' (4.4) 
(My siny?)' — Mq cos ip =  — AS sm ip.

In (4) and henceforth primes denote differentiation with respect to current angle 
V-

used
For the sake of convenience the following non-dimensional quantities will be

hj t P A  h
7 i =  h i ’ 2 Ä ’ P =  Ж ’ 7  =  V . '  u  cs

_  JV„,e _  Mv,e S V (4'5)
n i , a -  N  , m i ,2 , a -  , v -

Here stands for the thickness of layers of the reference shell of constant 
thickness. The quantities M* and N+ stand for the yield moment and yield force 
for the reference shell, respectively. Thus N я =  2<7o/i*, Mm = (Toh*t, &o being 
the yield stress of the material of carrying layers.

Material of the shell (of carrying layers) is assumed to be an ideal rigid- 
plastic material obeying von Mises yield condition. In its original form the yield 
condition suggested by von Mises can be presented as

o \  — (Ti(T2 4" &2 — ao (4-6)
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<7i, (72 being principal stresses.

The exact yield surface in the space of membrane forces and moments for 
an axisymmetric shell material of which obeys the plasticity condition (6) was 
derived by A. Ilyushin [1957]. It was shown later by several authors that there are 
several non-linear surfaces which present good approximations to the exact yield 
surface (see H.M. Haydl and A.N. Sherbourne, 1979; also M. Robinson, 1971; 

M. Zyczkowski, 1981).

In the present paper the yield surface

-  N v N e  +  N q ) +  - щ ( М 1  -  M v M e  +  M | )  =  1 (4 .7 )

will be used. Here M o, Nq stand for the yield moment and yield force, respec
tively, for the current section of the shell, e.g. M o  =  d o t h , N o  — 2 ( J o h .

Making use of (5) equilibrium equations (4) can be presented as

(u j sin i p ) ' — Ну cos ip —  .s sin 92,

(yTi\ -f- 722 “f- p) sin  ip =  — ( s s i n ^ ) '  (4-8) 
k[{m\  s in  ip)' — m 2 cos <p] =  ss imp.

In the similar way the constraint imposed on the weight of the cap takes 
according to (2) and (5) the form

n

Vo =  E 7j(co s a j  — cos a! j + i ) .  (4-9)
3=0

The equation of the yield surface (7) can be put into the form

n \  — П1 П2 +  n 22 -f m \  — ГП1 ГП2 +  m l  — 7j2 — О (4-Ю )

for the segment D 3 =  ( a j ,  ö j+ i )  where j  =  0,

Boundary conditions for the shell with simply supported outer edge and 
inner edge are 5 ( a )  =  0 and

m i ( a )  = щ ( а )  =  0; m ^ ß )  =  0. (4-11)
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4.3 NECESSARY CONDITIONS OF 
OPTIMALITY

The problem set up above will be considered as a particular problem of optimal 
control with the objective function (3), state equations (8) and additional con
t ra c ts  (9), (10). Variables n\,  m j ,  5 will be treated as state variables and 
П2 , m 2 as controls (Lellep, 1991). However, it appears that the variable s can be 
eliminated from the set (8).

Multiplying the first equation with sin ip and the second one with COS ip 
adding one to another leads to the equation

n[ sin2 i p +  2rii sin ip cos ip +  p  sin ip cos <p =  s sin2 ip +  (5 sin ip)' cos ip =  0 

which can be presented as

Due to the non-linearity of the constraint (10) the problem will be solved 
numerically up to the end. For the sake of convenience of calculations it is rea
sonable to interprete the intensity of the pressure p  as a state variable whereas 
p1 =  0. Since the loading intensity is equal to be load carrying capacity of the

(p £  ( a ,  ß).  When p is treated as a phase coordinate the objective function (3) 
is to be replaced with

(ri\ sin2 <рУ +  psiiiip cos ip + (5 sin ip cos ip)1 = 0. (4-12)

Integrating ( 12) with respect to ip and taking into account that Hi ( a )  =  

s(a)  =  0 one easily can determine the shear force

tany? +  --------------- .
z sm ip cos ip
p  sin2 a

(4.13)s —

shell one can demand that p{ot) = Po, or p(ß)  =  Po- In this case p =  p0 for

J  -  - p ( a ) . (4.14)

Substituting (13) in (8) leads to the set

p  sin2 a

2к sin ip cos ip1
p' = 0

(4.15)
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which must be integrated with boundary conditions (11) and additional constraints
(9) and (10).

In order to get necessary conditions of optimality let us introduce adjoint 
variables Ф х, Ф 2, Фз and create the extended functional (see A. Bryson and 
Y.C. Ho, 1975; J. Lellep, 1991)

n »

J* =  “ P(a ) +  — (n2 ~  ^ i)  cot (p +  (wi +  —) tan ip—
j —0

• 2 1 p sm  ct I p
-   -------------- ) -f Ф2(т '  -  (m2 -  mt) cot ip +  T(n 1 -f - )  tan <p- 

2 sm ip cos ip---------------------------------------------------- к z  
p  sin2 a ---------------- , - о 2 2 

-  —  - ------------ ) 4- Ф3р +  иЛп{ -  п гп 2 +  n 2 +  m 1 -  m i m 2-\- 
Zk sm ip cos ip

Г n 1

+  ™2 ~  ^ \  S  7j ( c o s a j -  cos a j + i )  -  v0 f  •
[ j =0 J

(4Л6)
In (16) Vj [j =  0, . . . ,n )  stand for Lagrange’ian multipliers corresponding to 

constraints (10) and A is associated with the equality (9).

Calculating the total variation of the functional (16) one obtains

AJ* =  - A p ( a )  -I- У 2  /  (c° t <р{0пг — Sn 2)-\- 
j=0 J d > 

-f (8n i  +  Ц-) tan ip — —  Ф2^ 1+ 
1 2 sm ip cos ip 

+ Ф2 ((<5mi -  Sm2) c o t^  +  i  (Sn, +  f  ) tarnp -  -
Tl

— Ф3Spdip +  { (Ф ^ П х  -f ty26 m i  -f Ф з^р) -0
3=0

— ( Ф ^ П ]  +  Ф 26 ш 1 - f  Ф 3В Д |а , 0 +  /  i l/j { 2n l -  n 2)(^ni +
J J d,

4- (2n2 — ni)<$n2 4- (2m i — m 2)6mi  4- (2m2 — m \ ) 8 m 2—
— 2' j j A' y3)dip 4- 4- AA7 j(cos a j  — cos c t j +i )  —
— A7 j(sin  (XjAaj  — sin aj+ i A a J+1) =  0.

(4.17)

When deriving (17) two types of variations are distinguished. The quantity 
8z  stands for a weak variation of the variable £ whereas A z (a * )  is the total
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variation of г at the point a*. It is easy to recheck that

Д г ( а * ± )  =  8z(a*±) 4- z'(a+±)Aot#. (4-18)

Here Д а *  stan ds for the increm ent o f the param eter a * .

In the case of continuous variables in (18) А г ( а * - )  =  Az(a*-\~).  How

ever, if z  is discontinuous then the quantities Д .г (а*  —) and Д г(а* -(-)  can be 
independent variations. Note that r ii, ТП\ and p  are considered to be continuous 
for each <p 6  ( a ,  ß)  whereas n 2 and m 2 may have finite discontinuities.

From (17) one easily obtains the adjoint equations

ф2
Ф̂  =  $ i( ta n  <p +  cot (p) -f —  tan  ip +  Vj{2n\  — n 2),

к
Ф '2 =  Ф 2 cot ip +  i/j(2mi -  m2), (4-19)

1 (  sin2 a  \  /  Ф'
Фз =  — I tan <p :------------ ) ( ф 1 +  г. 

2----------------------------------------------- \ -----sm <p cos ip J  \ -к

for ip €  Dj (j = 0 , n).

The boundary conditions for adjoint system (transversality conditions) have 
the form

#!(/?) =  0, Ф3(а) =  - 1 ,  Ф3(/?) =  0 (4.20)

as at <p = a  and (p = ß] Srii =  Д 721, 6mi  =  A m i  and 6p =  Ap.

Due to arbitraryness of quantities б щ  and <$m2 in (17) following equations 
hold good

- ' S 1coiifi +  uj {2n2 - n 1) =  0,
— Ф2 cot ip -f Uj(2 m2 — m i )  =  0 v ■ J

for <p e  Dj (j =  0 , . . . ,  n).

Variations Д 7 j must be considered as constant quantities, therefore

A(cos cxj — cos Qj.j.i) — 2 7 j  I Vjdip =  0 (4.22)
JDj

for j  =  0 , n.

When accounting for (18)-(21) the equation (17) can be cast into the form

£  - 1  { [Ф ^ а ^ п ^ а ,)]  +  [Ф ^ а ^ б т ^ а ,)] +
J=1 n (4.23) 

+  [ф з ( а у) < 5 р ( а ^ ) ] }  +  £  Ч ъ - i  -  1 j ) s i n  o t j A a t j  =  0
j= i

17 65



where the q uadratic brackets stand for finite discontinuities o f variables, e.g.

[г/(а*)1 =  y(a* +  0) -  у (a* -  0). (4.24)

According to their physical meaning variables П\, ТП\ and p are continuous 
at each point ip = a.j (j  — 1, . . . ,n ) .  Therefore, according to (18) and (23)

$ 1 ( 0 , - 0 )  =  Ф ^  +  0 ) ,

Ф2( а , - 0 )  =  Ф2(<*, +  0), (4.25) 
Ф3(а,- -  0) =  Ф3(а 3 +  0)

for each j  =  1 , Tl and

A sin 0 , ( 7 -  Jj)  +  [H(aj)] =  0; j  = 1 (4.26)

where H  is the Hamiltonian function defined as

T ( ,  ч /  P \  P sin2 a  \  
H  =  Ф 1 [ (n 2 -  7 i i ) c o t y >  -  ( rz i  +  -  I tM iip  +     +

\  v 2 / 2 sm ip cos ip J  
T ( / 4 1 f  p \  P sin2 a  \

4- W2 ( m 2 -  Ш] cot ip -  -  n i +  -  1 tan  ip 4- r r - ------------  ■
\  к \  2 / I k  sin ip cos ip J  

(4.27)

According to (25) the adjoint variables are continuous at each ip £  ( a ,  ß).  
Therefore, making use of (27) one can present (26) as

A s i n a j ( 7 j _ i — 7 3 ) + Ф 1 ( а ^ ) [ п 2 ( а , ) ]  +  Ф 2 ( а у ) [ т 2 ( а г ; ) ]  =  0;  j  =  1

(4.28)

Dividing the first equation in (21) with the second one gives

Ф 12 n 2 — ri\ — —  (2m2 — т г). (4.29)
w 2

On the other hand, from (10) one easily can find

n 2 =  y ±  y j ■ j — -  m\  -  m\  4- m xm 2 4- 7 ? (4.30)

for ip £  Dj (j  — 0, . . . ,n ) .  Combining (29) and (30) leads to the relations



for tp £  Dj  (j  =  0 , . . . ,n )  and

n 2
n i  Ф 1 /  Ш А

=  Т  +  Ф 7 Г 2 - Т )  =

3n2 -  3m J +  -I7J

Ф? +  'Ц
(4.32)

for each ip 6  (ö ,  ß).

4.4 SHELL OF CONSTANT 
THICKNESS

Consider the reference shell of constant thickness h ,  associated with non-dimensional 
thickness 7  =  1. In order to investigate the stress state of the shell at yield point 
load we shall use the lower bound theorem of limit analysis as above.

In the present case we have to minimize the cost function (3) or (14) so that 
the equilibrium equations (8) and yield condition (10) are satisfyed. Note that in
(10) as well as in (30)-(32) 7 j =  1. Since we have now only one region for the 

variable i p  we can omit subscripts when speaking about D j ,  7 J ,  V j  in (10), (19), 
(21) and (30)-(32).

For the current optimization problem the necessary conditions derived above 
hold good as well. The only exceptions are (22) and (26) (or (28)) which are 
associated with variations of parameters 7  ̂ and Ctj, respectively.

From (21) making use of (31) and (32) one can find

ф 2 I ф 2
«' =  ± c o t ^ / 4 -  (4.33)

whereas (31) and (32) take the form

and

n \ , Ф1 — 3n? — 3m? +  4
n2 ~ T  T V  ф | Т ф |  ’ (4 ,35 )
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respectively.

Substituting (33)-(35) in (15) and (19) leads to the equations

/п л

+  -

rn[

+

4 — 3n \  -  3m \

2 sin ip cos (p 1
4 — 3n? — 3m ? \  1 /  p \
- Щ Т Щ  ) coUp -  к ( ni +  2 /  t a n ^ +

2к sin ip cos ip ’ 
V' =  0 ;

T / #1 (  т Ф2\  , 3nj / Ф2 +  ф2
Фг =  —  cotĉ > +  f Ф1 +  - j -  J ta,n<p± —  cot(^

ф 2 .  , 3 w * . I Ф 1 +  ф 22ф2 =  T cot V ± — c o t ^ 4 _ 3n?_ 3m?;

T/ 1 /  т Ф г \ Л  sin2 a  \
ф з =  « ( ф 1 ■+• "ГГ ) ( t a n ^ - - --------------) .^ V * /  \  s in 9?cosy?/

4 — 3nJ — 3 m 2 ’

(4 .36 )

The system of equations (36) is to be integrated under the boundary con
ditions (11) and (20). The solution of the boundary value problem results in the 
limit load p and the stress distribution corresponding to the limit state.

4.5 SHELL OF PIECE WISE 
CONSTANT THICKNESS

Let us consider now a shell of piece wise constant thickness. In addition to the 
stress resultants П1, n 2, m i ,  m 2 and adjoint variables Ф 1, Ф 2, Ф3 we have 
to determine the design parameters Cc3 (j  =  l , . . . , n ) ;  7 j (J =  0 , n)  as 

well as the Lagrange’ian multipliers A and v3 (j =  0, . . . ,n ) .  It appears that 
the Lagrange’ian multipliers A and Vj can be eliminated from the equations to be 
solved numerically.
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It easily follows from (21) and (31), (32) that

Combining (37) with (22) and (9) leads to the relations

M " W s r № l *  ( U 8 )

and

> g  7? I  * ] []47? ! з » 2  -  3m 2^ (C° S « i -  COS ) -

/  I Ф? +  Ф* ,
-  O07 , . y ^ c o t ^ 47, _ 3 n ? _ 3fn^  =  01

(4.39)
where j  — 0, Substituting (38) in (28) one easily obtains

2 . . ч ■e- 2 /■ /  Ф? +  Ф?
±  — s m u j l i j . , - 7 j )  > 7i /  W — j-----— j -----5— ^ +

«0 “  У с ,  co ttf V  4 7 > ~  3 n i “  3 m i
+  * i ( “ j)[*»a(“ i) ]  +  ф 2 ( а 3) [ т 2(а^)] =  0

(4.40)
for each j  =  1 , n.

Equations (39) and (40) serve for determination of design parameters 7 j ( j  =

0, . . . ,n )  and a j  ( j  =  l , . . . , n ) ,  respectively. For given set of a J5 7  j one can 
integrate the equilibrium equations (15) and adjoint equations (19) substituting 
preliminarily quantities V3, m ^, n 2 according to relations (37), (31), (32), re
spectively. When integrating the set (15), (19) boundary conditions (11) and (20) 
must be taken into account.

Due to their mechanical background the state variables m j ,  p are
to be continuous at each point (p = aj  (j  =  l , . . . , n ) .  According to (25) the 
adjoint variables Ф1, Ф2, Ф3 are continuous as well. Therefore the six boundary 
conditions in (11), (20) adm it to solve the current boundary value problem.
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The efficiency of the design established can be assessed by the coefficient

e =  — 1J 100%. (4.41)

In (41) p  is the load carrying capacity of the optimized shell whereas Pq stands 
for the limit load of the reference shell of constant thickness. Note that both, 
the optimized shell of piece-wise constant thickness and the reference shell, have 
common weight (m aterial volume) Vq.

4.6 DISCUSSION
The results of calculations are presented in Fig.2-4 and Tables 1-4. Tables 1-4 
correspond to the shell with one step in the thickness. Calculations carried out 
showed that the results depend on the upper bound 7o imposed on the thickness.

*

In Table 1 the values of quantities C*i, 71, p, po and e are presented for different 
values of «о = ce and = ß  in the case if 70 =  1.5 It can be seen from Table 
1 that for fixed outer radius of the shell the load carrying capacity increases when 
inner radius decreases. However, eventual effectivity of the stepped design of the 
shell is greater for a narrow annulus of moderately large inner radius. For instance, 
in the case a  =  0.8 and ß  =  1.0 the limit load increases 35% with respect to 
that of the shell of constant thickness (Table 1).

In Tables 2 and 3 the design parameters are presented for shells with fixed 
inner radii. Here one can see the dependence of quantities Q j, 71 , p , e on the 
upper bound 7 q. As it might be expected greater values of the upper bound gave 
more effective optimal designs. It can be seen fron Table 3 that the limit load can 
be increased 64 %, if 70 =  4 and Ot =  0.8, ß  =  1.0.

Generalized stresses m i ,  Ti\, m 2, П2 are depicted in Fig. 2-4. It can be 
seen from Fig. 2-4 that m i ,  П\ are continous over the domain ф 6  ( a ,  ß)  
whereas m 2 and П2 have finite jum ps at the cross-sections where thickness has 
the step. It is some what surprising that П\ and n 2 are approximately constants 
in the neighbourhood to the outer edge.

4.7 CONCLUDING REMARKS
An optimization technique has been developed for plastic spherical shells subjected 
to the uniformly distributed transverse pressure. Material of the shells obeys 
Mises yield condition. Resorting to the lower bound theorem of limit analysis
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Table 4.1: Optimal design for к =  0.02 and 70 =  1.5

ÖO «2 a  1 7 i P P* e

0,8 1,0 0,929 0,159 1,399 1,033 35%
0,6 1,0 0,834 0,417 1,557 1,205 29%

0,4 1,0 0,671 0,716 1,722 1,413 22%
0,4 0,8 0,624 0,523 1,663 1,351 23%
0,4 0,6 0,525 0,303 1,429 1,290 11%

Table 4.2: Optim al design for к = 0.02, ao =  0.4 and a 2 =  0.6

7o OL1 71 P e

1,5 0,525 0,3031 1,429 11%
2,0 0,4905 0,3136 1,591 23,3%
2,5 0,47 0,3321 1,6656 29,1%
3,0 0,457 0,3426 1,7111 32,6%
3,5 0,4475 0.3592 1,7411 35%
4,0 0,4415 0,3545 1,7615 36,5%

and variational methods of the theory of optimal control necessary conditions for 
optimality are derived.

Numerical results are presented for a spherical cap with unique step in the 
thickness. Calculations carried out showed th a t the optimization procedure ap
peared to be more effective in the case of shells resembling to a narrow annulus, 
e.g. shells with small difference in values of a  and ß.  Similar m atter has been 
revealed earlier in the case of annular plates and shallow shells (see Lellep, Majak 
(1995)).

Evidently, the optimization technique can be extended to shells of different 
shape operating in the limit state.
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Figure 4.1: Spherical cap
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Figure 4.2: Radial stress resultants
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Figure 4.3: Circumferential moment
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Table 4.3: Optimal design for к = 0.02, ao =  0.8 and c*2 =  1-0

7o «1 7 i P e

1,5 0,929 0,1594 1,4 35%
2,0 0,893 0,1976 1,5476 49,8%
2,5 0,871 0,2389 1,6169 56,5%
3,0 0,858 0,2476 1,6557 60,3%
3,5 0,848 0.2734 1,6787 62,5%
4,0 0,841 0,2883 1,6937 64%

Table 4.4: Optim al design for к = 0.02, а?0 =  0.2 and a 2 =  0.6

7o a  1 7 i P e

1,5 0,395 0,7078 1,826 24,6%
2,0 0,319 0,7543 1,876 28,1%
2,5 0,284 0,7757 1,892 29,2%

3,0 0,265 0,7857 1,9 29,7%

3,5 0,253 0.7917 1,904 30%
4,0 0,244 0,7996 1,907 30,2%
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SUMMARY 
Optimization of plastic spherical shells

In the present work the methods of optimization are developed for spherical shells 
of piece-wise constant thickness. Shells with various support conditions are con
sidered. The cases of materials obeying Tresca or von Mises yield condition, re
spectively, are studied in greater detail.

In the introduction a review of existing literature in this area is presented.

In the first chapter an optimal design procedure is developed for stepped 
rigid-plastic spherical shells. The shells are subjected to the uniformly distributed 
external pressure. Material of shells obeys the Tresca yield condition and associ
ated flow law. The problems solved herein consist in the maximization of the load 
carrying capacity under the condition that the m aterial volume of the shell is fixed 
and in the weight minimization under given load carrying capacity, respectively.

In the second chapter an optimization method regarding to plastic spherical 
shells pierced with a central hole is presented. The shells under consideration are 
clamped at the outer edge and absolutely free at the inner edge. The m aterial 
of shells obeys generalized square yield condition and associated flow rule. The 
problem of maximization of the load carrying capacity under the condition th a t the 
weight (material volume) of the shell is fixed is transformed into a problem of non
linear programming. The latter is solved with the aid of Lagrangeian multipliers. 
The obtained solution is compared with the optimal solution of the minimum 
weight problem for given load carrying capacity.

In the third chapter an optimization procedure is developed for shells of von 
Mises material. It is assumed that the outer edge of the shell is simply supported 
whereas the inner edge is absolutely free. Resorting to the lower bound theorem 
of limit analysis the shells with constant and piece-wise constant thickness are 
considered. The designs of spherical shells corresponding to maximal load carrying 
capacity are established for given weight. Necessary optimality conditions are 
derived with the aid of variational methods of the theory of optimal control. The 
obtained set of equations is solved numerically.
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KOKKUVÕTE (Summary in Estonian) 

Plastsete sfääriliste koorikute 
optimeerimine

Reaalse materjali käitumise kirjeldamiseks on loodud palju erisuguseid mude
leid: elastne, elastne-plastne, kalestuv jt. Käesolevas töös on käsitletud ideaalselt 
jäikplastse materjali mudelit. Ideaalselt jäikplastse m aterjali korral kuni voolavus- 
piirini deformatsioonid puuduvad ja  see lihtsustab ülesande seadet. Optimeerimis
ülesannetee on otsitud m aterjali jaotust, mille korral uurimisobjekti kandevõime 
saavutab maksimumi etteantud ruumala korral või ruum ala saavutab miinimumi 
fikseeritud kandevõime korral. Lahendamisel on eeldatud, et paksuse jaotus on 
tükiti konstantne, niisugust konstruktsiooni on lihtsam toota, samuti lihtsustab 
see optimeerimisülesannet.

Uurimisobjekt on sfääriline koorik, eri osades on vaadeldud nii avausega, 
kui ka täiskoorikut, mõlemas seades on koorik telgsümmeetriline, st avaus keskel. 
Kõigis püstitustes on sfäär koormatud ühtlaselt jao tatud  väliskoormusega. Eri
nevad ülesanded on lahendatud mitme kinnitusviisi (nii jäigalt kinnitatud kui ka 
vabalt toetatud) kooriku jaoks. Kasutatakse nii Tresca kui ka Misese voolavustingi- 
musi.

Teises peatükis uuritakse sfäärilist täiskoorikut ühtlaselt jaotatud ristkoor- 
muse mõju all, koorik on välisservast vabalt toetatud. Eeldatakse, et m aterjal allub 
Tresca voolavustingimusele, kasutatakse aproksimatsiooni N 2 =  0, M 2 = Mq. 
Püstitatakse ülesanne leida niisugune tükiti konstantne paksuse jaotus, et kan
devõime saavutaks maksimumi. Võrdluskoorikuna kasutatakse konstantse pak
susega koorikut ja  maksimeeritakse kandevõimete suhet. Võrdluskooriku ja  muu
tuva paksusega kooriku kaalud loetakse võrdseks. Paksuse jaotusel on kasutatud 
ühte astet ja  kahesugust paksust, saadud tulemused on esitatud tabelina sõltuvalt 
sfääri välisnurgast.

Kolmandas peatükis uuritakse avausega sfäärilist koorikut, mis on välisser
vast jäigalt kinnitatud, siseserv vaba. Koormuseks on ühtlaselt jao tatud  välis- 
koormus. Kasutatakse voolavustingimuse aproksimatsiooni N 2 — — Ao, M 2 — 
Mq. Lahendatakse kaks duaalset ülesannet: kandevõime maksimeerimine fikseeri
tud ruumala korral ja  ruum ala minimeerimine etteantud kandevõime korral. Pak
suse jaotusel on kasutatud kahesugust paksust (üks aste). Numbrilised tulemused 
on esitatud kuues tabelis sõltuvalt optimeerimisülesande püstitusest ja  kooriku 
geomeetrilisest param eetrist (к = h / \ A ) .

Neljandas peatükis uuritakse avausega sfäärilist koorikut, mis on välisservast
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vabalt toetatud, siseserv vaba. Kasutatakse Misese voolavuspinna aproksimat- 
siooni. Koorik on koormatud ühtlaselt jao tatud  väliskoormusega.

Et töö eri osades on vaadeldud erisuguseid koorikuid erinevate rajatingimus- 
tega (kinnitusviisid) ning erisuguseid voolamistingimuse aproksimatsioone, siis 
pole kahjuks võimalik peatükkide otsene võrdlus. Rajatingimuste erinevused on 
tingitud paljuski lihtsustustest, nii on Misese voolavustingimuse korral vaadeldud 
vabalt toetatud, Tresca aproksimatsiooni korral aga jäigalt kinnitatud koorikut. 
Mõningane võrdlus on siiski võimalik -  suurim efekt astme sissetoomisel saavu
tatakse kolmandas peatükis vabalt toetatud avausega sfäärilise kooriku korral.
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