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Abstract 

Photosynthesis is a key biological process on our planet. Light harvesting and excitation 

energy transfer are the primary processes in photosynthesis. These functions are fulfilled in 

green plants by photosynthetic antenna systems embedded into the thylakoid membranes on 

the chloroplasts. 

In my thesis I am studying energy level structure and electron – phonon coupling in the light – 

harvesting complex II, which is one of the most abundant pigment – protein complex in green 

plants. My experimental work is split in two major parts: first part (Chapter 3.1) describes 

simulations and results done with calculation routines written in Wolfram Mathematica® 8.0 

(written by Prof. Dr. Jörg Pieper) and the second part (Chapters 3.2 and 3.3) concerns practical 

experiments and results where I used absorption, CD and ΔFLN spectroscopy on different 

LHC II preparations. 

The ΔFLN has been compared with SHB technique from the point of view of the accuracy of 

the information in extracting the S – factor values (the measure of electron – phonon strength) 

for our pigment - protein complex. 

I have showed that the electron – phonon coupling strengths values calculated were closer to 

the real value in the low – fluence range for ΔFLN comparing with SHB results which were 

significant far from the true value of 1. These results underline that ΔFLN is advantageous 

over SHB in determining S-factors in the low-fluence limit, while extreme care has to be taken 

when analysing ΔFLN and SHB spectra in dependence on fluence and excitation wavelength 

within the IDF. 

Circular Dichroism spectra are due to the short – range excitonic coupling between 

chromophores. The temperature dependence spectrum of mutant samples shows a shift from 

the expected linear dependence of the peaks. For Chl a612 mutant (thought to be the lowest 

energy state of the LHC II) we could see a strong shift of the ~680 nm peak towards red region 

of the spectra. A structural transition might be possible to occur over ~240 K. 

The temperature dependence of the system can be described by an asymmetric double well 

potential, where these describes two energetically inequivalent protein conformations. The 

system is trapped at one conformation at low temperatures and another conformation is found 

at elevated temperatures. 

As conclusion, the protein environment might “fine – tune” the site energies of pigment 

molecules.  
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1. Introduction 

1.1. Overview of photosynthesis 

Photosynthesis is a key biological process on our planet. For the past 2.5 billion years nature 

has developed and optimized photosynthesis. It converts solar energy into storable chemical 

energy and provides a food source for all higher life on earth. By the photosynthetic process all 

fossil fuels are poduced, ozone layer is formed which protects life on earth from dangerous UV 

radiations and oxygen is realeased into athmosphere (Fromme, 2008). 

There are two types of photosynthesis: anoxygenic and oxygenic. In this work we are going to 

focus on oxygenic photosynthesis. All oxygenic photosynthetic organisms use water as a 

universal electron donor and realease, as seconday product, oxygen into atmosphere (Fromme, 

2008). 

The scientific interest in Photosynthesis is very high, since understanding the structure of 

photosynthetic pigment – protein complexes and their function can solve the energy crisis, 

leading to a new era towards biological energy sources or to development of efficient artificial 

photosynthesis. 

Light harvesting and excitation energy transfer are the primary processes in photosynthesis. In 

green plants, the light-harvesting complexes embeded into the thylakoid membranes of 

chloroplasts fulfill the function of harvesting solar energy efficiently. Generally, green plants  

contain two photosystems: Photosystem I (PS I) and Photosystem II (PS II). 

1.1.1. Photosynthetic antenna systems 

Solar photons are absorbed by a complex system of membrane associated pigment – protein 

complexes (light – harvesting antennae) and the resulting excited electronic state is efficiently 

transferred to reaction centers (RC) located in the core of the photosystems,  where charge 

separation takes place (Amerongen, et al., 2000).  

The nature has developed different types of antenna complexes, which is why the structure of 

the antenna systems differs greatly between different photosynthetic species (Fromme, 2008). 

Generally there are two major types of photosynthetic antenna systems: extrinsic (found in 

cyanobacteria) and intrinsic (for all the other higher photosynthetic organisms). The intrinsic 

antennae systems are of two types as well: peripheral and core systems. The LHC II complex, 

studied in the present thesis, is part of the peripheral antenna system and is the most numerous 

(Ruban, 2012). 
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1.1.2. Structure and function of light-harvesting complex II (LHC II) 

The light – harvesting complexes of the PS II consists of core complexes (CP43, CP47) and so 

– called peripheral antenna complexes: LHC II, CP 29, CP 26 and CP 24. From these four, the 

LHC II is the most abundant in chloroplasts and it is known as the major light – harvesting 

complex II; the other three have been named as minor light –harvesting complexes or 

chlorophyll binding proteins (CPs) (Liu, et al., 2004). LHC II is not serving just as an antenna 

complex but also plays and important role in dissipation of excess energy (photoprotection 

role). 

LHC II binds defined amounts of chlorophyll a and b. On the other side, reaction centers have 

just Chl a as green pigment. LHC II accounts for roughly one – third of the total membrane 

protein in plant thylakoids (Standfuss & Kühlbrandt, 2004).  

The structure of LHC II has been resolved at atomic resolution. It has been shown that native 

LHC II from isolated plant tissues is a trimer. The trimeric LHC II consists of three nuclear 

gene – products Lhcb1, Lhcb2 and Lhcb3 found in unequal stoichiometries (Standfuss & 

Kühlbrandt, 2004). 

The monomers of LHC II are small proteins. According to recent studies, LHC II monomeric 

form binds eight chlorophyll a (Chl a), six chlorophyll b (Chl b), two lutein (Lut), one 

neoxanthin (Neo) and one vioxanthin (Vio) which are arranged for efficient light - harvesting. 

The Chls in LHC II are vertically distributed into two layers within the membrane. Each 

monomeric unit of LHC II binds five Chl a and three Chl b close to stromal surface. The other 

three remaining Chl a and three Chl b are placed towards the luminal surface (Liu, et al., 

2004). 

In LHC II, center – to – center distances of the chlorophyll molecules are rather small with an 

average of 11.26 Å. This density is very high and may thus cause excitonic interactions 

between chlorophylls, see below. 

1.1.3. Electron-phonon coupling and energy transfer in photosynthesis 

There are three types of interactions that affect the shape of the absorption spectrum of 

pigment-protein complexes and promote excitation energy transfer between chlorophylls:  

a) pigment – protein interaction determining the electronic transition energy of the pigment 

molecules; b) pigment – pigment interaction (or excitonic) which is further tuning the 

transition energy of the pigment molecules, but may also lead to a redistribution of their 

absorption intensities and c) electron – vibrational interaction. 
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In LHC II the distance between chlorophylls are so small that excitonic interactions between 

them are inevitable. There are many attempts for calculating the excitonic coupling between 

two chlorophylls, which are largely based on results of various spectroscopic techniques and 

fitting procedures (Fromme, 2008). 

To start with, an exciton is a bound state of an electron and a hole which can transfer energy 

without transporting net electric charge (Pieper & Freiberg, In press). The whole antenna 

complex is characterized by an intricate structure of the excited states (excitons) with a high 

degree of delocalization in sequence with more localized excitations caused by the presence of 

weakly coupled pigments (Grondelle & Novoderezhkin, 2005).  

Photosynthetic antenna complexes display electron – vibrational coupling as well. The electron 

– vibrational coupling is defined as an interaction between the electronic transition of pigment 

molecules and the inter- as well as intramolecular nuclear vibrations.  

The electron – vibrational coupling defines the vibronic structure of an individuals’ pigment 

optical spectrum (Vrandecic, 2013). In native antenna complexes excitations are coupled to a 

continuum of delocalized low frequency protein vibrations (also referred to as phonons) 

peaking at about 20 – 30 cm−1  and to several more localized vibrational modes of the pigment 

molecules with frequencies up to 1700 cm−1 allowing energy transfer from the higher to lower 

– energy states (Grondelle & Novoderezhkin, 2005). 

If an electronic transition occurs without change in the phonon levels population it is called 

zero – phonon transition. Zero – phonon transitions form zero – phonon lines (ZPL) in optical 

spectra. Further transition can generate certain numbers of phonons, and are respectively 

referred to as one - , two - or n – phonon transitions. Within the Frank – Condon approach, the 

heavy nuclei do not react during a fast transition upon light absorption. 

Spectral features connected to the change in population of phonon levels are referred to as the 

phonon sideband (PSB). The average number of phonons associated with a particular 

electronic transition is measured by Huang – Rhys factor S (Pieper & Freiberg, In press). . The 

theory of electron – phonon coupling discussed within this work is strictly valid for highly 

localized electronic transitions only, see below. 

The homogeneously broadened spectra of photosynthetic antenna complexes is composed of 

the life-time broadened ZPL and features due to electron – phonon and electron – vibrational 

interactions. The coupling of electronic excitations to slow conformational changes of the 

antenna produces further changes in a pigment’s absorption frequency viewed as 
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inhomogeneous broadening. The dynamics of this conformational changes can be studied 

using Spectral Hole – Burning, Single – Molecule Spectroscopy or other line – narrowing 

spectroscopic techniques (Grondelle & Novoderezhkin, 2005). In conventional spectroscopies, 

the presence of inhomogeneous broadening leads to rather structureless optical spectra. 

1.1.4. Current studies in literature 

Different spectroscopic techniques have been applied to study light harvesting and EET in 

LHC II, for example: single molecule spectroscopy (SMS), fluorescence line – narrowing 

spectroscopy (FLN), difference fluorescence line – narrowing spectroscopy, absorption 

spectroscopy, spectral hole – burning (SHB), linear dichroism (LD), circular dichroism (CD) 

or time – resolved absorption spectroscopy (TA). The availability of the high – resolution X - 

ray structure of LHC II made the interpretation of this data easier. But there are still many 

uncertainties regarding allocating the site energies, excitonic coupling strengths and excitation 

energy transfer (EET) pathways. 

Time – resolved studies indicate that Chl b→Chl a EET within LHC II occurs on fs – and ps – 

timescales. Excitation dynamics have been modelled at a quantitative level and such 

simulations helped to find structural assignments of certain rates to specific energy transfer 

pathways from certain chlorophylls to others. Van Grondelle and Novoderezhkin (2005) have 

modelled an energy level diagram together with relaxation time constants for LHC II monomer 

(Grondelle & Novoderezhkin, 2005). 

It is a challenging task to determine the energy level structure and to reach a structural 

assignment of excitation dynamics. A quantitative description of energy transfer is possible 

only by using a realistic exciton – phonon spectral density and by including multi – phonon 

processes. 

It is known that Chl b is responsible for the absorption at wavelengths in the vicinity of 

~650 nm and the absorption in the range of ~670 – 680 nm is due to Chl a (Lichtenthaler, 

1987). The interaction between chlorophylls plus the pigment – pigment, pigment – protein 

and pigment – vibrational interactions modify the shape of the absorption spectrum. The 

absorption bands peaks of all the 42 Chl of LHC II are hidden by significant inhomogeneous 

broadening and only 4 Qy – absorption bands can be distinguish at 4.2 K (Vrandecic, 2013). 

Van Grondelle et. al. (2005) have conducted experiments and simulations on EET for LHC II 

at 77 K. They modelled EET in monomeric LHC II at a quantitative level based on results of 

time –resolved spectroscopy. The timescale and pathways of EET were discussed (Figure 1). 
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In this study, the importance of random shifts induced by slow conformations is pointed out as 

a major factor in determining the excitation dynamics. The energy level diagram for the LHC 

II monomer is composed by three major kinetic groups (clusters): fast excitonic relaxation 

occurs within clusters (fs) and slower EET transfer between clusters (ps). According to this 

study the lowest energy state is located on a domain of three excitonically coupled Chl a 

molecules including Chl a610, 611 and 612 (Grondelle & Novoderezhkin, 2005). 

 

Figure 1. Energy-level diagram for a single monomeric LHCII complex. The positions (wavelengths) of the 14 

exciton levels, participation of the pigments in these exciton states, and relaxation time constants are shown for 

one typical realization of the disorder.  Three groups of kinetics show populations of the b-sites with fast decay 

(blue), a-sites which contribute to the main absorption peak near 675 nm (red), and long-lived ‘bottleneck’ sites 

(green), i.e. blue-shifted Chl a (a604) and red-shifted Chl b (b605). [Accessed on 12.05.2014/5pm; Permission 

granted].  

Later, researchers have combined quantum chemical and electrostatic approaches to calculate 

excitonic couplings and site energies applied to Qy transition of Chl in trimeric LHC II from 

plants based on the high – resolution crystal structure. One of these results is also saying that 

the lowest energy state is located on Chl a610 (Müh, et al., 2010).  

Pieper et. al. (2009) have analysed and compared trimeric and monomeric LHC II samples 

with SHB and FLN at 4.2 K reaching to challenging conclusions. Pigment – pigment coupling 
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strengths and assignment of low energy excitonic states were addressed. The lowest Qy state 

resulted to be widely localized on one Chl a molecule, which is possibly in close contact to a 

Chl b, but rather isolated from other Chl a molecules. Because of the high degree of 

localization, the lowest energy state at about 679.6 nm was assumed to Chl a604, which is the 

only Chl a molecule without close contact to other Chls a (Pieper, et al., 2009). 

Rogl et. al. (2002) had showed that spectral bands in the absorption spectrum of LHC II can be 

assigned to individual Chl molecules located at well - defined binding sites using mutant 

LHC II samples. These were recombinant forms of LHC II where a specific Chl was removed 

from its binding site by site – directed mutagenesis. However, only four mutations of Chl – 

binding sites led to stable complexes that could be spectroscopically studied (Figure 2). They 

also found that the sub – band position of Chl a612 may be the energetically lowest at room 

temperature, but reveals a temperature dependent spectral shift (Rogl, et al., 2002). 

 

Figure 2. Assignment of spectral chlorophyll forms to the corresponding binding sites in the 3D structure of 

LHC-II: Chl b6, blue; Chl b3, green; Chl a5, yellow; Chl a2, red. The LHC-II trimer is viewed from the stromal 

side. [Accessed 12.05.2014/5pm; Permission granted] 

QENS studies revealed an onset of protein conformations around 77 K for native LHC II. This 

protein dynamics might affect excited state positions in LHC II (Vrandecic, et al., 2014). 

Photoprotection, nonphotochemical quenching (NPQ) and spectral assignment of chlorophylls 

were discussed by Jörg Standfuss et. al. (2005) based on the crystal structure on LHC II. Their 

results suggested that the NPQ has two components: conversion of Vio to Zea in the 

xanthophyll cycle and a drop in pH (Standfuss, et al., 2005). 
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In summary, there is still a large uncertainty in the structural assignment of the LHC II site 

energies and in the proper understanding of EET in general. 

Therefore, the purpose of this thesis is to address the following aspects: the energy level 

structure and electron – phonon coupling in the light – harvesting complex II by using 

simulations, selective optical spectroscopies and Circular Dichroism techniques. In a more 

detailed view I will discuss: 

 Advantages of ΔFLN technique over the other selective spectroscopic techniques; 

 The dependence of the Huang Rhys factor on excitation wavelength and fluence using 

ΔFLN technique for wild type (Lhcb1) and mutant LHC II samples (Chl a612 and Chl 

a610) ; 

 Temperature – dependent absorption spectra of mutant LHC II samples lacking certain 

pigment molecules compared with the intact LHC II sample; 

 Temperature – dependent CD spectra of wild type (Lhcb1) and mutant LHC II samples 

(Chl a612 and Chl a610); 

 The potential energy diagram in the vicinity of Chl a612 (lowest energetic state of LHC 

II complex). 

The present thesis is based on analysing wild type and mutant LHC II samples, as well as 

computational modelling, using a well-studied complex with known parameters. 
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2. Methods and samples 

In this chapter I will present the background of the techniques used in my experiments: SHB, 

FLN, delta FLN and CD. Also, information about sample preparation and instrumental setups 

for the experiments will be detailed in the coming sub-chapters. 

2.1. Selective spectroscopic techniques applied on LHC II 

A single molecule spectrum is by definition a homogeneously broadened spectrum of a 

pigment molecule embedded into a protein matrix. In case of the LHC II complex (mix of 

pigments embedded into protein matrix) we encounter inhomogeneously broadened spectra 

(information is hidden by the inhomogeneous broadening) because of the different protein 

environment of each chemically equivalent pigment molecule in a bulk sample which affects 

the transition frequency of the molecule in a different way. Therefore, there is a need for 

techniques that can remove the inhomogeneous broadening which will be discussed more 

detailed into coming section. 

The homogeneously broadened spectrum of a pigment molecule in a pigment-protein complex 

consists of ZPL and PSB, if its electronic transition couples to protein vibrations. The 

transition probabilities is given by Frank – Condon principle and follows the equation: 

𝑊𝑓𝑚,𝑖𝑛 = |𝐷𝑓,𝑖 ∏〈𝑚𝑘|𝑛𝑘〉

𝑘

|

2

 

where:   𝐷𝑓,𝑖 = elctronic transition probabilities f, respecctively i 

  𝑚𝑘, 𝑛𝑘 = vibrational levels n and m 

The homogeneously broadened spectra can be described using the following equation: 

𝐿𝜔 = 𝑒−𝑆𝑙0(𝜔 − 𝛺) + ∑ 𝑆𝑅
𝑒−𝑆

𝑅!
𝑙𝑅(𝜔 − 𝛺 ± 𝑅𝜔𝑚)

∞

𝑅=1

 

where:  −𝑅𝜔𝑚 = Absorption 

  +𝑅𝜔𝑚 = Fluorescence 

  𝑙𝑅(𝜔 − 𝛺0 ± 𝑅𝜔𝑚) = one phonon profile 

  𝑆 = Huang − Rhys factor 

  𝑅! = total number of phonon transitions 

The first term describes ZPL having a Lorentzian shape 𝑙0 at frequency Ω. The PSB consists of 

all 𝑙𝑅terms with R=1, 2, 3… corresponding to one-phonon (R=1) and multiphonon (R≥2) 
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transitions. The Huang-Rhys factor S characterizes the number of phonons accompanying a 

particular electronic transition. 

However, for an ensemble of similar pigments (chromophores), we observe broad and 

structureless spectra. The reason for this is inhomogeneous broadening due to the irregular 

protein environment of each chlorophyll (Figure 3). The structure of the protein surrounding 

the pigments differs from pigment to pigment which affects the transition frequency of that 

particular molecule so that it differs from complex to complex in a bulk sample. 

 

 Figure 3: Homogeneously broadened spectrum in the IDF (ΔFLN spectrum). 

The inhomogeneously broadened spectrum calculated in the low fluence limit can be described 

in a mathematical way using the following equation: 

𝐿(𝜔) = ∑ (𝑆𝑅
𝑒−𝑆

𝑅!
)

∞

𝑅=0

∫ 𝑑𝛺0𝑁(𝛺0 − 𝜔𝐶)𝑙𝑅 (𝜔 − 𝛺0 ± 𝑅𝜔𝑚) 

where:  −𝑅𝜔𝑚 = Absorption 

  +𝑅𝜔𝑚 = Fluorescence 

  𝑁(𝛺0 − 𝜔𝐶) = Gaussian IDF 

  𝑙𝑅(𝜔 − 𝛺0 ± 𝑅𝜔𝑚) = one phonon profile 

  𝑆 = Huang − Rhys factor 

  𝑅 = total number of phonon transitions 
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This static inhomogeneous broadening can be described using a Gaussian function with full 

widths of 80 – 200cm−1 which is called inhomogeneous distribution function (IDF) see blue 

line in Figure 3.  The IDF determines the spectral resolution in conventional spectroscopy 

(Pieper & Freiberg, In press). For comparison a homogeneously broadened spectrum with 

narrow ZPL and broad PSB is also shown in Figure 3. 

Conventional absorption and fluorescence techniques are largely structureless as the 

inhomogeneous broadening makes it difficult to see the optical transmissions of the individual 

pigments.  

To overcome these difficulties in analysing pigment – protein complexes and for a better 

understanding of the photosynthesis mechanism, line – narrowing techniques can be used 

together with CD or time – resolved spectroscopy. 

All line – narrowing techniques are based on selective laser excitation, which selects 

information from only a subset of pigment molecules absorbing at a certain burn/excitation 

frequency. 

 

2.1.1. Spectral hole burning (SHB) 

Hole – burning spectroscopy was first discovered in 1980’s thanks to the work of two research 

groups: Bykovskaya (Kharlamov, et al., 1974) and Gorokhovskii, Kaarli and Rebane 

(Gorokhovskii, et al., 1974). Nowadays, the field expanded enormously and this technique is 

also used in studying biological systems as: reaction centers or antenna protein complexes. 

Hole – burning spectra are defined as the difference in absorbance before and after burning 

with the selective laser wavelength. In other words, the difference between absorption 

spectrum at burn frequency 𝜔𝐵 at the burn time t and the pre-burn absorption spectrum at the 

start of the experiment in the low fluence limit can be described using the following equation: 

∆𝐴(𝜔) = ∑ (𝑆𝑅

∞

𝑅,𝑃=0

𝑒−𝑆

𝑅!
) (𝑆𝑃

𝑒−𝑆

𝑃!
) ∫ 𝑑𝛺0 𝑁(𝛺0 − 𝜔𝐶) × 𝑙𝑃(𝜔𝐵 − 𝛺0 − 𝑃𝛺𝑚) × 𝑙𝑅(𝜔 − 𝛺0

− 𝑅𝜔𝑚) 

where:   𝑙𝑝 = electronic transitions bleached during the burn process 

  −𝑅𝜔𝑚 = absorption 

  𝑆 = Huang − Rhys factor 

  𝜔𝐶 = position of the IDF 
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  𝜔𝑚 = peak phonon frequency 

  𝜔𝐵 = laser light frequency 

  𝑁(𝛺0 − 𝜔𝐶) = Gaussian IDF 

SHB can provide valuable data on the underlying structure of the absorption profile of a 

pigment embedded into a heterogeneous protein matrix even in case of strong linear electron – 

phonon coupling. A calculated SHB spectrum is shown in Figure 4 and it shows a strong zero 

– phonon line (ZPL) due to resonantly burned electronic transitions overlapping the burn 

frequency 𝜔𝐵. The other two features are pseudo phonon sideband (pseudo –PSB) which is 

due to non - resonant overlap to the burn frequency and real phonon sideband (real – PSB) 

which arises from the PSBs of the resonantly bleached electronic transitions at the selective 

burn frequency (Pieper & Freiberg, In press). 

 

 Figure 4: SHB spectrum (modelled). 

 

Accurate extraction on Huang – Rhys factors is hard to obtain in such a systems where the 

width of the PSB is identical or even larger that of the IDF. The real – PSB of the SHB spectra 

is often interfered with by the anti – hole. Therefore, the one – phonon profile is obtained from 

the more intense pseudo – PSB (Pieper & Freiberg, In press). 
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2.1.2. Fluorescence line-narrowing (FLN) 

The fluorescence line – narrowing technique is complementary to SHB in the analysis of 

pigment – protein complexes and it is a non – destructive technique. Similar with SHB, FLN it 

allows for the elimination of inhomogeneous broadening and it can be expressed in a similar 

form in the low temperature region: 

𝐹(𝜔) = ∑ (𝑆𝑅

∞

𝑅,𝑃=0

𝑒−𝑆

𝑅!
) (𝑆𝑃

𝑒−𝑆

𝑃!
) ∫ 𝑑𝛺0 𝑁(𝛺0 − 𝜔𝐶) × 𝑙𝑃(𝜔𝐵 − 𝛺0 − 𝑃𝛺𝑚) × 𝑙𝑅(𝜔 − 𝛺0

+ 𝑅𝜔𝑚) 

where:    𝑙𝑝 = electronic transitions bleached during the burn process 

  +𝑅𝜔𝑚 = fluorescence 

  𝑆 = Huang − Rhys factor 

  𝜔𝐶 = position of the IDF 

  𝜔𝑚 = peak phonon frequency 

  𝜔𝐵 = laser light frequency 

At low temperature the individual line shape of a single site spectrum consists of a zero-

phonon line (ZPL) and only a single PSB feature because the real – PSB is superimposed on 

the pseudo – PSB on the low energy side. 

2.1.3. Delta fluorescence line-narrowing (ΔFLN) 

Thanks to early pioneer works of Jaanisoo (1985) and Fünfschilling et al. (1986) and further 

improvements added by Rätsep and Freiberg (2007) a relatively new method appeared called 

delta fluorescence line – narrowing (ΔFLN). In analogy to SHB it is defined as the difference 

of FLN spectra measured before and after an intermediate hole-burning step. This method is 

capable to solve the difficulties of the other two methods discussed above and electron – 

phonon and electron – vibrational coupling strengths can be determined directly (Pieper & 

Freiberg, In press). The ΔFLN spectra is obtained by subtracting pre – and post – burn FLN 

spectra and it can be expressed mathematically with the following equation: 

∆𝐹𝐿𝑁(𝜔) = 𝑘𝑒−3𝑆 ∑
𝑆𝑄

𝑄!

∞

𝑅,𝑃=0

𝑆𝑅

𝑅!

𝑆𝑃

𝑃!
∫ 𝑑𝛺0𝑁(𝛺0 − 𝜔𝐶) × 𝑙𝑄(𝜔𝐸 − 𝛺0 − 𝑄𝜔𝑚) × 𝑙𝑅(𝜔𝐵 − 𝛺0  

− 𝑅𝜔𝑚) × 𝑙𝑃(𝜔 − 𝛺0 + 𝑃𝜔𝑚) 
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where: …   𝑙𝑝 = electronic transitions bleached during the burn process 

  +𝑃𝜔𝑚 = fluorescence 

  𝑆 = Huang − Rhys factor 

  𝜔𝐶 = position of the IDF 

  𝜔𝑚 = peak phonon frequency 

  𝜔𝐵 = laser light frequency 

ΔFLN enhances two important advantages comparing to SHB and FLN spectroscopy: the 

scattered light which affects the FLN spectra can be eliminated through the difference spectra 

and in the low – fluence limit the multiplication of 𝑙𝑅 with 𝑙𝑄 leads to an enlargement of the 

ZPL and a suppression of the non – resonant excitation of the pseudo – PSB (Jaanisoo, 1985 

and Fünfschilling et al., 1986) 

In Figure 5 we can observe a ΔFLN spectrum composed by an intense ZPL and a single PSB, 

which is virtually identical to the homogeneously broadened fluorescence spectrum in the low 

fluence limit. 

 

Figure 5: ΔFLN spectrum (modelled). 
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2.2.  Circular Dichroism (CD)  

As mentioned in Section 2.1 there are numerous techniques that have been used to investigate 

LHC II. CD can give insights of molecular organization of pigment systems at different levels 

of complexity (Garab & Amerongen, 2009). 

CD is defined as the difference in absorption of the left – and right – handed circularly 

polarized light which arises from the intra – and intermolecular asymmetry of the molecular 

structure. CD spectra are generally composed of three different features: a) excitonic 

contributions, b) intrinsic contributions due to chirality of the molecule under investigation, 

and c) contributions from chirality in a long – range order of larger molecular assemblies. 

In molecular complexes CD is often caused by short – range excitonic coupling between 

chromophores which originates from the fact that the polarization of the light modifies while 

passing through the excitonically interacting molecules (Garab & Amerongen, 2009). 

For photosynthetic complexes the CD spectra are, in practice, non – conservative which means 

that the sum of the positive and negative bands of the split spectrum, plotted on the energy 

scale, are present but not with equal area. The interpretation of the CD spectra is difficult 

because of the significant intrinsic CD signal leading to non – conservative spectra in the Chl b 

region (Müh, et al., 2010). 

In our experiments we will see that the CD spectrum will change its band shape when 

removing one of the Chl comparing to the wild type LHC II, mainly caused by a change in the 

excitonic coupling between chromophores. These changes linked to the molecular structure 

and its energy levels will be shown and discussed in Chapter 4. 

2.3. Sample preparation and measurements 

The term “LHC II mutant” refers at an LHC II complex where one of its Chl is missing. By 

site – directed mutagenesis the axial ligand for a specific Chl is removed, then refolding in 

presence of Chls leads to formation of a complex lacking one Chl (Rogl & Kühlbrandt, 1999).  

There are three different nomenclatures used in literature for Chl labelling in LHC II as seen in 

Table 1.  
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Chl type (Kühlbrandt, et al., 1994) (Liu, et al., 2004) (Standfuss, et al., 2005) 

a a1 610 Chl 1 

a a2 612 Chl 2 

a a3 613 Chl 3 

a a4 602 Chl 4 

a a5 603 Chl 5 

a a6 604 Chl 6 

a b2 611 Chl 7 

a b3 614 Chl 8 

b  601 Chl 9 

b a7 607 Chl 10 

b b1 608 Chl 11 

b b5 609 Chl 12 

b b6 606 Chl 13 

b  605 Chl 14 

Table 1: Nomenclature of Chl Molecules in LHC II  

The nomenclature used in the present work is according to Liu et.al., 2004. 

In the present thesis two LHC II mutants used: Chl a612 which lacks Chl a612 from its 

composition and Chl a610 which lacks Chl a610 from its composition. In vitro refolding of 

wild type and mutant LHC II samples has been carried out following the procedure described 

by Rogl and Kühlbrandt (1999) (Rogl & Kühlbrandt, 1999). The reconstituted mutants were 

obtained by washing the prepared Escherichia Coli with buffers containing lipid, detergent and 

pigments with a mix of chlorophylls a/b ratio of 1.35. Wild type LHC II samples contained all 

Chl binding sites present in LHC IIand were thus reconstituted with all 14 chlorophylls per 

monomer. 

For experiments the following samples were used: one wild type LHC II sample, one LHC II 

mutant Chl a610 and one LHC II mutant Chl a612. Samples were prepared by Laura Wilk in 

the laboratory of Professor Werner Kühlbrandt at Max Planck Institute Frankfurt, Germany. 

During my experiments a laboratory journal was kept and some of the parameters were noted 

down: date, instrument, temperatures, sample, cuvette type, spectral range, bandwidth, 

objective, changes that occurred (e.g. lamp replacement) etc. 
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2.4. Setup for CD and measurements 

The optical measurements of the intact LHC II and mutants were performed by me in the 

laboratory of Biophysics at the University of Tartu, under the supervision of Prof. Jörg Pieper 

and Dr. Margus Rätsep. The instrument used for absorbance and CD measurements was a 

ChirascanPlus spectrometer (Applied Photophysics) equipped with a CCD detector and with 

liquid Nitrogen Cryostat (Oxford Instruments). Absorbance measurements were taken 

simultaneously with the CD measurements in the range of 400 – 750 nm, bandwidth of 1 nm 

and step size of 0.5 nm. The temperature range was from 78 K (Kelvin degrees) to 290 K with 

different intermediary steps in between. 

Plastic cuvettes of polymethyl methacrylate (PMMA) of 10 mm diameter were used as sample 

containers for absorption and CD experiments. 

 

2.5. Setup for ΔFLN measurements 

ΔFLN measurements were done with a spectrograph (Shamrock SR-303i) in the laboratory of 

Dr. Margus Rätsep, laboratory of Biophysics at the University of Tartu at 4.5 ± 0.1K. The 

detector used was a CCD camera (DV420A-OE, Andor Technology, U.K.) with an electrical 

cooling system. Spectral gratings with 600 and 1799 grooves/mm which gave a spectral 

resolution of 0.4 and 0.1 nm respectively. All measurements were performed into a He-bath 

cryostat (Utreks, Ukraine), where the sample cuvettes were kept above the level of liquid 

helium. 

Laser fluence is a measure used to describe the energy delivered per unit area (1 cm²) and the 

unit used was J/cm².   
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3. Experimental results 

My experimental work is split in two major parts: first part (Chapter 3.1) describes simulations 

and results done with calculation routines written in Wolfram Mathematica® 8.0 (written by 

Prof. Dr. Jörg Pieper) and the second part (Chapters 3.2 and 3.3) concerns practical 

experiments and results where I used absorption, CD and ΔFLN spectroscopy on different 

LHC II preparations. 

3.1. Comparison of evaluation of SHB and ΔFLN spectra 

Both SHB and ΔFLN techniques are useful for analysing electron – phonon coupling at low 

temperatures (Pieper, et al., 2009).  In the scientific literature there are different opinions 

regarding these two techniques.  

In the present thesis I would like to discuss the problems that we encounter when analysing the 

spectra and the advantages of ΔFLN over SHB. Three situations are discussed in the next 

chapters: the influence of inhomogeneous broadening on SHB line shapes, contribution of non 

– resonant excitation to the ΔFLN spectra and comparison of extracted S – factors from ΔFLN 

and SHB experimental data. 

Using the model equations provided in Section 2.1.1. and 2.1.2, calculation programs to 

simulate SHB and ΔFLN spectra were written in Wolfram Mahematica 8.0. The 

inhomogeneous broadening is taken to be a Gaussian having a width of 100cm−1 and the one 

phonon profile was modelled with a Gaussian shape at its low – energy side and a Lorentzian 

shape at its high – energy side. Parameters fitted were realistic and are close to existing 

experimental results for the LHC II complex. The parameters used have the following values 

as seen in Table 2: 

Theoretical model 

  

Parameters 

Abbreviations in 

Mathematica routine Values 

Huang - Rhys factor hr 1 

Gaussian PSB width gssphwdt 20 

Lorentzian PSB width ltzwdt 60 

IDF width inhwdt 100 

Zero-Phonon Line width zplwdt 1 

Excitation peak excpeak 0 

Table 2: Parameters fitted for our simulations into Mathematica routine calculation 
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3.1.1. Influence of inhomogeneous broadening on SHB line shapes 

The first simulation conducted was to find out the influence of the inhomogeneous broadening 

on the SHB spectrum. All the parameters were left untouched and just the inhomogeneous 

width was modified from 40 cm−1 to 150 cm−1 with different intermediary steps. 

In theory, the pseudo –PSB and real – PSB of SHB spectra in low – fluence region there are 

assumed to be mirror symmetric when the inhomogeneous width is much larger than one – 

phonon profile. We can see from Figure 6 how different inhomogeneous widths affect the SHB 

absorption spectra. As our one phonon – profile is 80 cm−1, even when the inhomogeneous 

width is 150 cm−1 the both phonon side - bands are not symmetric. The flipped real – PSB 

should give us the impression how the pseudo – PSB had to look like in reality. 

For systems where IDF is narrower comparing to PSB, the Huang – Rhys factors would be 

artificially lowered when the S – factor is calculated from the areas of ZPL and pseudo – PSB. 

 

 

Figure 6: Simulated SHB spectra for different inhomogeneous widths 
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3.1.2. Contribution of non-resonant excitation to ΔFLN spectra 

As seen in Section 2.1.3., in theory the ΔFLN technique with the “double selection” suppresses 

the pseudo – PSB in the low – fluence region and so the ΔFLN spectrum becomes identical to 

the homogeneously broadened spectrum. Now, trying to test this characteristic we run 

calculations to see how the ΔFLN spectra modify with the increase of fluence, how the pseudo 

- PSB contribution to ΔFLN modifies and what are the Huang –Rhys factors that we can 

extract. 

 

Figure 7: Simulations of ΔFLN spectra and fitting of the corresponding S – factors with fluence and excitation 

wavelength dependence. 

Figure 7, panel (A) shows ΔFLN spectra for different fluences and different position within the 

IDF. It can be seen that the non – resonant contribution to the ΔFLN spectra is increasing 

towards higher excitation energy within the inhomogeneous distribution function (IDF) as 

shown in panel (B). This contribution would lead to an artificial increase in Huang – Rhys 

factor calculated from fits of measured data. For low – fluence limit the contribution of non – 
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resonant excitation to the ΔFLN spectra is almost not distinguishable in the low energy part of 

the IDF, while at the high energy part the expected S – factor can lead to an increase to 1.4 

bigger than the real S – factor of 1 (C), according to our set of parameters (Chapter 3.1). This 

contribution has to be taken into account when determining S – factors from measured data 

and a correction is necessary for different fluences and excitation peaks. The graph provides us 

a real help for setting the contribution levels of the non – resonant excitation in ΔFLN spectra. 

3.1.3. Comparison of apparent S-factors extracted from SHB and ΔFLN spectra 

In order to compare the capabilities of SHB and ΔFLN, apparent S-factors were extracted from 

spectra simulated for the fixed parameters compiled in Table 1. The two selective techniques 

show different results when determining the S – factors, even in low – fluence limit where, 

theoretically, the contribution of non – resonant excitation to the spectrum (for ΔFLN spectra) 

should be close to 0 (Reppert, et al., 2010). . Based on this I fitted the S – factors with our 

calculation rutine in Mathemathica 8.0 from the intensity ratio of ZPL and the sum of ZPL and 

PSB. 

 

Figure 8: Expected S – factors extracted from SHB and ΔFLN experimental spectra (±0.2) 

Apparent S – factors obtained from the simulated data are presented in Figure 8. The main idea 

was that by fitting the simulated data we should get back the same parameter (S=1) introduced 

at the biggining of the simulations. 

Normally, with the SHB technique, the S – factor is calculated from the ZPL and pseudo- PSB 

intensity ratios. In this case we found that the S – factor found from fitting simulated data is 

underestimated and its value is rising towards higher fluence rates and it doesn’t intersect with 

the real S – factor of 1. This effect is caused by the dependence of the pseudo – PSB intensity 
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on the inhomogeneous broadening width, as seen in the section 3.1.1. which affects the 

determination of S – factor. Also, the increase in the calculated S – factor towards the higher 

fluence range is due to the non – resonant contribution increasing with fluence. 

In case we use the real – PSB and the ZPL to calculate the S – factor, the results will be 

overestimated and it shows values around 1.3 – 1.4 in the whole fluence range. The fitted 

result it is not close to the real one. The calculated S – factor is higher caused probably by the 

multi – phonon contribution to the real – PSB spectrum. 

In the third case I have fitted the S – factors on the ΔFLN experimental data. Here, we can 

observe the advantages of ΔFLN in fitting the Huang –Rhys factors. The non – resonant 

contribution is suppressed due to the “double selection effect”. The results were according to 

the real S – factors under the uncertainty of spectra fitting of ±0.2. 

These results underline that ΔFLN is advantageous over SHB in determining S-factors in the 

low-fluence limit, while extreme care has to be taken when analyzing ΔFLN and SHB spectra 

in dependence on fluence and excitation wavelength within the IDF. 

3.2.  ΔFLN spectra of LHC II  

In this chapter we will show the results about the influence of the different fluences and 

excitation wavelengths on the S-factors extracted from ΔFLN experimental spectra (Figure 9, 

10 and 11 ~ one fitting example for each sample) on mutants and wild type LHC II samples.  

 

Figure 9: ΔFLN spectra fit example for Lhcb1 wild type at 680 nm excitation wavelength, fluence dependence. 
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Figure 10: ΔFLN spectra fit example for Chl a612 mutant at 680 nm excitation wavelength, fluence dependence. 

 

 

Figure 11: ΔFLN spectra fit example for Chl a610 mutant at 678 nm excitation wavelength, fluence dependence. 
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The phonon – wings of the ΔFLN spectra of all LHC II samples show a pronounced peak 

around ~18 cm^-1, a shoulder near ~65 cm^-1, and a further peak at ~110 cm^-1. A similar 

broad and asymmetric profile have been seen for other ΔFLN experiments on native LHC II 

from spinach, WSCP (Pieper, et al., 2011), LH2 or LH1. The parameters obtained for these 

examples can be seen in Appendix 1. 

The S – factors obtained generally depend on fluence and increase with increasing fluence due 

to the saturation of the resonantly excited spectral features, see above. Therefore, the more 

reliable S-factor according to literature (see Chapter 2.1.2) is that one fitted for the lowest 

fluence for the selective excitation laser wavelength.  

The data reveals a slight decrease of S – factor with increasing excitation wavelength to the red 

side of the IDF for Lhcb1 wild type sample. This indicates that the non – resonant contribution 

to the delta FLN spectra at the blue side of the IDF is larger than at the red side and may also 

point to an additional influence of EET from higher energy states at the blue side of the IDF.

  

Figure 12: S-factors fitted for monomeric Lhcb1 at different excitation wavelengths (left) and S-factors fitted for 

Lhcb1 at the excited wavelength of 680 nm with different fluences (right). 

From Figure 12 (left) it is clearly seen that with the increasing the wavelength the S-factors 

fitted for wild type LHC II decreases slightly from ~0.9 to ~0.8. There is a bigger decrease if 

we compare the       S – factors obtained at different fluences for a specific excitation 

wavelength as shown in Figure 12 (right). In this case for Lhcb1 complex can decrease from 

1.1 at high fluence rate to ~0.88 in the low fluence range. 
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The behaviour seen for Chl a612 and Chl a610 mutant samples are similar regarding the 

fluence dependence within the one excitation wavelength. Differences appear from fitting the 

S-factors for different excitation wavelengths in low – fluence range (Figure 13). Removal of 

one Chl affects the excitonic coupling in a different way for our mutant samples. 

 

 

Figure 13: S-factors fitted for Chl a612 (left) and for Chl a610 excitation wavelength dependence in the low – 

fluence range (0.25 mJ/cm²). 
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caused by the light excitation (Müh, et al., 2010).

 

Figure 14: CD spectra of the intact Lhcb1 in the 78K – 290K temperature range. 

 

I have fitted the peaks with Gaussian shape band for a better evaluation of the spectra. From 

the Lhcb1 CD spectra it can be seen that with increasing the temperature the four peaks shift 

towards the red and also a change in the intensity of the peaks occurs.  Basically, all four peaks 

suffer from a decrease in its intensity with the increase of temperature. 

From Figure 15 we can distinguish the following aspects: a) the ~650 nm peak shifts from 651 

nm at 78 K to 653 nm at 180 K and after we can see a plateau until 290 K around 653 nm; b) 

the ~660 nm peak has a steep shift from 660 nm at 78K to 666 nm at 290 K; c) the ~670 nm 

peak seems to have the same behaviour as ~660 nm peak with a smaller shift from 669 nm at 

78 K to 669 nm around 180 K and after stabilizing around 669 nm until 290 K; d) the ~680 nm 

peak has a gradual peak shift from 678 nm at 78 K to 683 nm at 290 K. The fitted spectral 

uncertainty for Lhcb1 is ±0.35 nm. 
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Figure 15: CD peaks shift with temperature for intact Lhcb1  

The fitted Gaussian band with the peaks shows an increase of fwhm with the increase of 

temperature as seen from Figure 16: ~650 nm peak raises from ~200 to ~290 cm−1, 660 nm 

peak raises from ~115 to ~180 cm−1, ~670 nm peak increases from ~115 to ~160 cm−1 and 

the ~680 nm peak raises from ~140 to ~220 cm−1. 
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Figure 16: Fwnm shift with temperature for Lhcb1 
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Figure 17.

 

Figure 17: CD spectra of the a610 mutant in the 78 K – 290 K temperature range. 
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Figure 18: CD peaks shift with temperature for a610 mutant  

The fwhm for Chl a610 mutant of the four peaks broadens with the increase in temperature, as 

following: the ~650 nm peak increases from ~200 to ~260 cm−1, ~660 nm peak increases from 

~110 to ~194 cm−1, ~670 nm peak broadens from ~110 to ~166 cm−1 and ~680 nm peak 

increases from ~140 to ~215 cm−1 (Figure 19). 
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Figure 19: Fwhm shift with temperature for a610 mutant 

The CD spectra of Chl a612 mutant display a change in its shape and intensity caused by the 

removal of one Chl. When comparing with the intact Lhcb1 CD spectra, we could see that the 

~670 nm peak is missing (a broadening of the two peaks, no longer distinguishble one from 

another) and the ~660 nm peak lowered its intensity. The Chl a612 mutant spectra displays the 

same trend with the increase of temperature: spectral shifts of the peaks towards the red region 

and  intensity decrease of the peaks. The fitted spectra uncertainty for Chl a610 mutant is 

±0.32 nm. (Figure 20). 
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Figure 20: CD spectra of the a612 mutant in the 78K – 290K temperature range. 

From Figure 21 we can see how the spectral peaks shifts with the increase in temperature: 

~650 nm peak shifts from 650 to 653 nm, ~660 nm peak shifts from 660 to 670 nm and the 

~680 nm peak shifts from 674 to 681 nm. We can see that at 250 K and 295 K temperature 

point there is a sudden increase of the ~680 nm peak towards the red region of the spectrum 

which means that our complex it might suffer a structural change with the trasitions to higher 

temperature (above 180 K). 
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Figure 21: CD peaks shift with temperature for Chl a612 mutant 

The fwhm widens with the increase in temperature for the Chl a612 mutant as seen from 

Figure 22: ~650 nm peak rises from 190 to 320 cm−1, ~660 nm peak rises from ~115 to 

~200 cm−1 and the ~680 nm peak has slight variations from ~180 to ~190 cm−1 and back to 

~170 cm−1. The spectra of the 3 samples can be split into three temperature regions: from 

75 K to 120 K where there is a constant slowly shift to the red region, from 120 K to 210 K it 

seems there is a plateau (or a flat region where the peak shift is very small) and a third region 

between 210 K to 290 K where there is a rapid increase towards the red region of the spectra. 
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Figure 22: Fwhm shift with temperature of Chl a612 mutant peaks 

The peaks from all the CD spectra for all the 3 samples shows, beside a shift towards longer 

wavelenghts, also an intensity change with the increase of temperature. In the figure 23 and 24 

we can clearly destinguish a drop in intensity during transition to higher temperatures for the 

~650 and ~680 peaks. The intensity spectra were plotted afte normalization to the ~650 nm 

peak considered not to interfere to the excitonic pair (~660 nm/670 nm and 680 nm) in the CD 

spectra. 
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Figure 23: CD intensity of the ~650 peak within 3 different temperatures 78K, 150K and 290K.  

 

Figure 24: CD intensity of the ~680 peak within 3 different temperatures 78K, 150K and 290K. 

In the Figure 25 it is interesting to observe that the ~680 peak of the two mutant samples is 

blue shifted comparing to the intact Lhcb1 peak in the given temperature range. With 

temperature increase we can observe a broadening of the spectra and also a lowering in 

intensity (Figure 18). This suggest that both Chl a610 and Chl a612 contributes to the low-
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energy states of LHC II. Chl a612 blue shift is more pronounced with decreasing temperature 

and it is ambitious to say that this Chl is the energetically lowest electronic state at cryogenic 

temperatures. 

 

 Figure 25: CD, temperature dependence of the ~680 nm peak (±0.35 nm) 

 

For the positive peaks of the CD spectra the changes are more intense and significant (Figure 

26). When comparing to Lhcb1 CD spectrum the Chl a610 suffers a decrease in intensity for 

both ~660 and ~670 nm peaks. With increasing the temperature the ~670 nm peak lowers its 

intensity and at 290 K the peak can not be well distinguished anymore. The Chl a612 mutant 

has more intense changes in its CD spectra. At a first glance, at 78 K,  the ~670 nm peak is 

completely missing and the remaining ~660 nm peak is very low in intensity compared with 

the Lhcb1 ~660 nm peak. The big change comes with aproaching room temperature when we 

can see a sudden shift in its peak position towards red. Chl a612 is a central Chl of the intact 

LHC II in the terminal emitting cluster formed by a610 – a612 – a611, which means when 

removing it it affects more the total excitonic contribution in the spectra. 
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cluster formed by Chl a610 – a612 – a611 should be affected differently in the mutants studied 

within this work. This may explain the different spectral positions of the ~680 nm band shown 

in Figures 24 and 25. However, further excitonic calculations are required to verify this 

interpretation.  

 

Figure 26: CD intensity of the ~660 and ~670 peak within 3 different temperatures 78K, 150K and 290K.  
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4. Discussion 

4.1. Comparison of ΔFLN with other selective spectroscopic techniques 

The ΔFLN technique has been used in the present thesis to provide insights into electron – 

phonon coupling of Chls in monomeric Lhcb1 and two other mutant samples, Chl a610 and 

Chl a612. Also it has been compared with other techniques from the point of view of the 

accuracy of the information in extracting the S – factor values for our pigment - protein 

complex. It is relevant to say that also the electron – vibrational interactions can be determined 

with this technique (not shown in this thesis).  

The results clearly exhibit many advantages in using this technique in calculating electron – 

phonon and electron – vibrational coupling strengths. But, it can be used in connection with 

complementary techniques as SHB, CD or QENS to further determine the excited states 

positions and protein dynamics of the pigment – protein complex. 

Based on our simulations, in SHB experiments the shape of the pseudo-PSB strongly depends 

on the inhomogeneous width as seen in Chapter 3.1.1., therefore much attention is needed 

when calculating S – factors from SHB data. Even when the inhomogeneous width is larger 

than the width of the PSB the shape of the pseudo – PSB never reflects the true shape of the 

real – PSB. The reason for this effect lies in the nature of the pseudo-PSB, which is comprised 

of electronic lines which absorb the burn laser light via their PSBs coincident with the burn 

frequency. Outside of the IDF, these electronic lines are not present, so that the pseudo-PSB is 

artificially cut off by the IDF. 

We have also shown that the electron – phonon coupling strengths values based on ΔFLN data 

were closer to the real value compared with SHB results obtained when taking into account the 

real- and pseudo-PSB features which were significantly off from the true value of 1. Again, 

this is the result of technical limitations of the SHB technique, where the pseudo-PSB is 

suppressed by the shape of the IDF depending on the IDF width leading to an underestimation 

of S, while the real-PSB contains contributions from the multi-PSB leading to an 

overestimation of S.  

Furthermore, we have demonstrated that the apparent Huang – Rhys factor deduced from 

ΔFLN data depends not only on the excitation within the IDF but also on fluence and position 

of the excitation frequency within the IDF due to the fluence-dependent saturation of resonant 

contributions and the varying non-resonant contribution. In case we increase fluence to get 
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more intense spectra we also increase the non – resonant contribution to the spectra, therefore 

the S – factors fitted are overestimated.  

With our research we have brought new data for improving the extraction of the S – factors 

with these two selective techniques, and showed that ΔFLN technique could be more reliable 

in case of taking extra care about the fluence dependence and the position of the excitation 

wavelength within the IDF. 

4.2 Electron – phonon coupling of excitonic states of LHC II 

As reported in the literature (Rogl, et al., 2002) the terminal excitonic state of LHC II is 

reported to be situated at Chl a612 at room temperature. This seems to be in line with other 

studies which reported (Grondelle & Novoderezhkin, 2005) the lowest excitonic state of LHC 

II on a cluster with strongly coupled Chl molecules a610 – a611 – a612. At cryogenic 

temperatures (4.5K) SHB studies (Pieper, et al., 2009) concluded that the lowest excitonic 

energy level for monomeric LHC II is situated at ~680 nm on a single Chl molecule having an 

S-factor of 0.9 and a strong asymmetric one – phonon shape.  

Our results, using ΔFLN technique to calculate the S – factors, are in agreement with the 

previous studies for the native LHC II. For the Lhcb1 wild type, according to ΔFLN spectrum 

in the low – fluence range (at 680nm excitation wavelength), the electron – phonon coupling 

strength of the lowest excitonic energy pigment is 0.88. As seen in Chapter 2.3 the S – factor 

calculated for Lhcb1 shows a decrease with increasing excitation wavelength and also an 

increase with increasing the burn fluence within the same excitation wavelength. 

For the Chl a610 and Chl a612 mutants the S – factors calculated for different excitation 

wavelengths shows an irregular pattern and lower values. The S – factors fitted with fluence 

dependence follow the same trend: increasing the burn fluence the S – factors fitted increase as 

well. For example, in case of Chl a612 mutant the S – factor fitted at 680 nm excitation 

wavelength in the low – fluence range is 0.79 and for Chl a610 mutant the S – factor fitted at 

the same excitation wavelength is lower than previous one at 0.72.  

In summary, the S-factors obtained for LHC II and their wavelength dependence are only 

slightly affected by mutation at 4.2 K. A possible interpretation is that the wavelength 

dependence of S in wild type LHC II is due to a complex superposition of –factors from 

different low-energy states, while the spectral position of Chl a612 is blue-shifted so much at 

4.2 K that changes upon mutation are visible only at the blue side of the fluorescence band. 

Therefore, the S-factors observed at 680 nm and longer wavelengths are mainly characterized 
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by another Chl, e.g. a Chl carrying a widely localized low-energy state like Chl a604 as 

proposed by Pieper et al. (2009). 

4.3 Temperature dependence of excited state positions of LHC II 

The temperature dependence of the absorption spectrum of LHC II pigment – protein complex 

ishould be mainly determined by the coupling of the electronic transition to phonons and low 

frequency intramolecular vibrations. 

The mutations cause a clear change in the absorption spectra in certain spectral regions. That’s 

why through subtraction of the absorption spectrum of LHC II lacking one Chl from the 

absorption spectrum of intact LHC II we can determine the difference spectrum which can be 

assigned to the missing Chl. For example, when comparing Lhcb1 and Chl a612 spectra, the 

difference spectra exhibit a major peak in the vicinity of 677 - 680 nm, negative intensities at 

~653 and ~666 nm as well as further minor absorption changes throughout the entire-spectral 

range. The major effect upon mutation of Chl a612 is the loss of absorption intensity in the 

vicinity of 677 - 680 nm, which can be attributed mainly to the absorption of Chl a612. 

The absorption difference spectra of the mutant samples have a dependence on temperature. In 

the temperature range of 75 K and 290 K both mutants shift their absorption difference spectra 

peaks towards higher wavelengths by ~7 nm. (Figure 27). The temperature dependence of the 

Gaussian peak fits is not linear across the whole temperature range as expected. We can 

distinguish two temperature regions: one from 75 K until ~240 K where the shift behaves close 

to linear dependence and one region from 240 K to 290 K where we can observe a sudden shift 

of the peak towards red region of the spectrum. . Identifying the exact temperature where the 

shift is more pronounced needs to select closer temperature spacing when doing the future 

experiments in the 180 K - 290 K. 
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Figure 27: Temperature dependence of the difference absorption peak fitted with a Gaussian shape band of Chl 

a612 (left) and Chl a610 (right) mutants (±0.35 nm) 

Also, the same behaviour is observed for the widths (FWHM) of the Chl a610 and Chl a612 

fitted with a Gaussian shape as observed in Figure 28. After ~240 K there is a sudden increase 

in width for both mutants. These find only add to our understanding that in this temperature 

range there is an electronic transition and a change in conformation of the complex which 

influences the energy sites of individual pigments.
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Figure 28: Dependence of the fwhm fitted with a Gaussian shape band within the temperature range of 75 K and 

290 K for Chl a610 (left) and Chl a612 (right) mutants (±0.4cm^-1) 

These results resemble the temperature-dependent shifts of the CD bands presented above and 

may help us to build a potential model for our pigment – protein complex in different 

temperature ranges. The temperature dependence of the system can be described by an 

asymmetric double well potential, where these V1 and V2 wells describes two energetically 

inequivalent protein conformations.  

Having in mind this description illustrated in Figure 29, the system can have a V1 

conformation at low temperatures and a different V2 conformation at an elevated temperature. 

The probability to find the system in higher –energy conformation increases with increasing 

temperature (Vrandecic, et al., 2014). 

In the first conformation V1, the electronic ground state potential of V1 is lower in energy than 

the one of V2. With the increasing temperature, V2 ground state is thermally populated. Thus, 

the transition energy of an electronic excitation from ground state E0 to the excited state E1 is 

smaller in conformation V2 than in V1. At low temperature there is a single higher-energy 

transition ΔE1, while at elevated temperatures a second ΔE2 lower-energy transition will 

accompany the ΔE1 transition in absorption. 
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Figure 29: Schematic potential energy diagram of a pigment embedded into an amorphous protein matrix 

assuming two different protein conformations V1 and V2 represented by asymmetric two level systems in both, the 

ground (E0) and the excited electronic state (E1) of the pigment molecule, respectively. The displacements 

between the equilibrium positions of conformations V1 and V2 are labelled by a1 and a2, respectively. The two 

energetically inequivalent optical transitions resulting from the potential energy diagram are shown by red arrows 

and labelled by ΔE1 and ΔE2, respectively. Bold arrows indicate thermally-activated conformational motions 

between protein conformations V1 and V2, [Permission granted] 

 

An interesting aspect is the blue shift of the ~680 nm peak in Chl a612 CD spectra in the 75 K 

– 290 K range. This result is in agreement with the absorption difference spectra result, which 

also shows a blue shift of the Chl a612 absorption peak.  

We can also observe in Figure 25 that after 180 K the CD spectrum of Chl a612 mutant 

exhibits a sudden shift towards the red region. This implies that the LHC II may have a 

different conformation and it might be affected by the protein environment. A structural 

transition may possibly occur at ~77 K and at ~240 K as well. 

These results can provide insights into protein environment of Chl a612 and conclude that it 

might form bi- or even tri – stable conformations, which leads to a strong temperature 
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dependence of Chl site energies (one at low temperature and another conformation starting 

with a determined higher point on the temperature scale). 

 

Figure 30: Protein environment of Chl 2/Chla 612 according to the LHC II structure of Standfuss et al. (protein 

data bank code: 2BHW). The charged Lys 179 residue may form hydrogen bonds especially with ester groups of 

the phytyl chain or ring E of Chl 2/Chla 612, but also with another Chl sidechain as well as with a Glu residue 

and a closely spaced water molecule. Possible hydrogen bonds are indicated by thin black lines and labeled by 

approximate distances in Å [Permission granted]. 

 

The protein environment surrounding the Chl a612 has to be taken into account when trying to 

achieve a structural assignment of the potential energy model presented above (Figure 30). 

Generally, the Chls are bound via liganding and hydrogen bonding to the protein mainframe 

formed by three membrane spanning and two amphipathic α-helices.  The dynamic pigment – 

protein interaction may generate different conformational states of the LHC II and it also may 

slightly modify the absorption bands of the Chls molecules shifting them for a better light - 

harvesting process and an efficient EET. 
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Chl a612 is connected through Asn 183 as the major ligand. Hydrogen bonds are formed also 

between Glu and Lys residues and the closest water molecules labelled by their approximate 

bond length in Figure 27. An interesting fact is that the charged Lys 179 residue forms bonds 

with three different Chl groups of Chl a612 but also with a Glu residue. Therefore, we can 

assume that the presence of charged Lys residue affects the Chl site energy and may thus 

produce strong temperature dependence of the Chl a612 absorption band. We could say that 

the temperature dependence can be described by the bi- or tri-stable configuration in the 

neighbourhood of Chl a612 represented by the potential energy model explained in Chapter 

4.2. 

In summary, the lowest energy level in LHC II at low temperature (below 75 K) is believed to 

be located on the terminal emitter which behaves as an isolated molecule. At higher 

temperatures, however, the lowest excited state appears to be delocalized on three excitonically 

coupled Chls including Chl a612. The observation of a temperature-dependent shift of the 

absorption band of Chl a612 may explain these seemingly contradictory observations in the 

literature. 
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Summary  

Photosynthesis is a key biological process on our planet. Light harvesting and excitation 

energy transfer are the primary processes in photosynthesis. These functions are fulfilled in 

green plants by photosynthetic antenna systems embedded into the thylakoid membranes on 

the chloroplasts. 

In my thesis I am studying energy level structure and electron – phonon coupling in the light – 

harvesting complex II, which is one of the most abundant pigment – protein complex in green 

plants. I will address these problems using site selective spectroscopic techniques (Delta 

Fluorescence Line Narrowing and Spectral Hole Burning) and Circular Dichroism.  

The ΔFLN technique has been used in the present thesis to provide insights into electron – 

phonon coupling of coupled Chls in monomeric Lhcb1 sample and two other mutant samples 

Chl a610 and Chl a612. Also it has been compared with SHB technique from the point of view 

of the accuracy of the information in extracting the S – factor values (the measure of electron – 

phonon strength) for our pigment - protein complex. 

I have showed that the electron – phonon coupling strengths values calculated were closer to 

the real value in the low – fluence range for ΔFLN comparing with SHB results which were 

significant far from the true value of 1. Later we have demonstrated that the Huang – Rhys 

factor also depends not only on the excitation within the IDF and fluence, but also on the 

excitation wavelength. 

Circular Dichroism spectra are due to the short – range excitonic coupling between 

chromophores. The removal of one of the chlorophylls from the complex affects the excitonic 

coupling. The temperature dependence spectrum of mutant samples show a shift from the 

expected linear dependence of the peaks. For Chl a612 mutant (thought to be the lowest energy 

state of the LHC II) we could see a strong shift of the ~680 nm peak towards red region of the 

spectra. A structural transition might be possible to occur over ~240 K. 

The temperature dependence of the system can be described by an asymmetric double well 

potential, where these describes two energetically inequivalent protein conformations. The 

system is trapped at one conformation at low temperatures and another conformation is found 

at elevated temperatures. 

As conclusion, the protein environment might “fine – tune” the site energies of pigment 

molecules.  
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I strongly believe that continuing researching in this area could be very interesting in finally 

solving one of the nature’s best kept secrets, photosynthesis. We could learn from the 

efficiency of EET which is 99% and build artificial solar cells with increased performance. 
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Summary in Estonian/ Kokkuvõte 

Fotoüntees on üks peamisi bioloogilisi protsesse planeedil Maa. Valguse kogumine ja 

ergastusenergia ülekanne on esmased protsessid fotosünteesis. Neid funktsioone täidetakse 

roheliste taimede poolt antennikompleksides, mis asetsevad kloroplasti tülakoidmembraanis. 

Antud magistritöös olen uurinud energiatasemete struktuuri ja elektron–foonon vastasmõju 

valgust koguvas kompleksis II, mis on üks kõige enam esinev pigment – proteiini kompleks 

rohelistes taimedes. Uurin neid aspekte selektiivspektroskoopia (diferentsiaalne 

fluorestsentskitsenemine,ΔFLN, ja spektraalsälkamine, SHB) ja ringdikroismi (CD) 

meetoditega. 

ΔFLN meetodit on kasutatud antud magistritöös, et saada ülevaade elektron–foonon 

vastasmõju tugevusest (mida iseloomustab Huang-Rhys faktor, S) kolmes proovis : 

monomeerne Lhcb1 ja mutantsed Chl a610 ja Chl a612. ΔFLN meetodit on võrreldud SHB 

meetodiga, et näha, milline meetod annab täpsema tulemuse antud pigment–proteiin 

kompleksides.  

Olen välja toonud, et arvutatud elektron–foonon vastasmõju tugevuse väärtused madala 

kiiritusdoosi puhul olid ΔFLN andmete kohaselt lähedased väärtusele S=1. SHB spektrist 

arvutatud S-faktorid olid aga märgatavalt erinevad sellest väärtusest. Seejärel olen 

demonstreerinud, et Huang-Rhys faktorid sõltuvad kiiritusdoosist ja ka ergastava valguse 

lainepikkuse asukohast mittehomogeense jaotusfunktsiooni IDFsees. 

Ringdikroismi spektrid on põhjustatud eksitoonsest vastasmõjust kromofooride vahel. Olen 

näitanud, et ühe klorofülli eemaldamine mõjutab eksitoonset vastasmõju. Mutantse proovi CD 

spektri maksimumide sõltuvus temperatuurist erineb eeldatud lineaarsest käitumisest.  

Temperatuuril üle 240 K ning ~680 nm maksimumi juures toimub Chl a612 mutandi tugev 

nihe punaste lainepikkuste suunas. See võib olla põhjustatud struktuursetest muutustest 

pigment–proteiin kompleksis. 

Arutlesin asümmeetrilise kahe miinimumiga potensiaalse energia mudeli üle. Süsteemil on üks 

võimalik konformatsioon madalatel temperatuuridel ja teine kõrgetel temperatuuridel. Seega, 

proteiinil on võime peentimmida pigmentide energiatasemeid. 

Ma usun, et uurimustöö jätkamine selles valdkonnas on huvitav ja kasulik. Võiksime õppida 

rohkem EET efektiivsusest, mis on 99% ja ehitada tõhusamaid kunstlikke päikeseelemente. 
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Appendix 1 

Fitting parameters I used to model the shape of the absorption bands for all three samples used 

(a part of fitting data). Figures and the S – factors extracted are presented in Chapter 3.2  

Lhcb1  Excitation wavelength 680nm     

Fluence 32  

J/cm² 

16  

J/cm² 

8 

 J/cm² 

4  

J/cm² 

2  

J/cm² 

1 

 J/cm² 

0.5 

 J/cm² 

phfreq1 15 15 15 15 15 15 15 

hr1 0.58 0.46 0.46 0.44 0.42 0.41 0.41 

gssphwdt1 23 18 18 18 18 18 18 

ltzphwdt1 48 48 48 48 48 48 48 

phfreq2 62 60 60 60 60 60 60 

hr2 0.35 0.31 0.31 0.31 0.31 0.32 0.32 

gssphwdt2 70 70 70 69 70 70 70 

ltzphwdt2 54 54 54 54 54 54 54 

phfreq3 110 110 110 110 110 110 110 

hr3 0.16 0.1 0.1 0.1 0.1 0.1 0.1 

gssphwdt3 60 60 60 60 60 60 60 

ltzphwdt3 30 38 38 38 38 38 38 

zplpeak 0 0 0 0 0 0 0 

zplwdt 2.3 2.2 2.2 2.2 2.2 2.2 2.2 

 

hr1 hr2 hr3 Total S-factor 

 0.58 0.35 0.16 1.09 

 0.5 0.35 0.15 1 

 0.47 0.34 0.14 0.95 

 0.46 0.34 0.14 0.94 

 0.42 0.33 0.13 0.88 

 0.42 0.33 0.13 0.88 

 0.42 0.33 0.13 0.88 

 

     

Fluence [J/cm²] Total S-factor 

 

Excitation 

Wavelength S-factor 

32 1.09 

 

680 0.88 

16 1 

 

682 0.83 

8 0.95 

 

684 0.82 

4 0.94 

 

686 0.81 

2 0.88 

 

688 0.81 

1 0.88 

 

690 0.81 

0.5 0.88 
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Chl a612 Excitation wavelength 680nm 

  

 

  

Fluence  

32  

J/cm² 

16 

 J/cm² 

8 

 J/cm² 

4 

 J/cm² 

2 

J/cm² 

 1 

J/cm² 

0.5 

 J/cm² 

phfreq1 20 20 20 20 20  20 20 

hr1 0.53 0.51 0.5 0.49 0.48  0.46 0.45 

gssphwdt1 26 25 24 22 22  22 22 

ltzphwdt1 44 44 44 44 44  44 44 

phfreq2 62 62 62 62 62  62 62 

hr2 0.26 0.24 0.22 0.22 0.22  0.22 0.22 

gssphwdt2 50 48 46 46 46  46 46 

ltzphwdt2 54 54 54 54 54  54 54 

phfreq3 110 110 110 110 110  110 110 

hr3 0.14 0.14 0.12 0.12 0.12  0.12 0.12 

gssphwdt3 62 62 62 62 62  62 62 

ltzphwdt3 40 40 40 40 40  40 40 

zplpeak 0 0 0 0 0  0 0 

zplwdt 2 2.2 2.2 2.2 2.2  2.2 2.2 

 

hr1 hr2 hr3 Total S-factor 

 0.53 0.26 0.14 0.93 

 0.51 0.24 0.14 0.89 

 0.5 0.22 0.12 0.84 

 0.49 0.22 0.12 0.83 

 0.48 0.22 0.12 0.82 

 0.46 0.22 0.12 0.8 

 0.45 0.22 0.12 0.79 

 

     

     Fluence [J/cm²] Total S-factor 

 

Excitation wavelength S-factor 

32 0.93 

 

680 0.79 

16 0.89 

 

682 0.93 

8 0.84 

 

684 0.81 

4 0.83 

 

686 0.78 

2 0.82 

 

688 0.82 

1 0.8 

   0.5 0.79 
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Chl a610 Excitation wavelength 678nm 

    

Fluence  

32 

 J/cm² 

16  

J/cm² 

8 

 J/cm² 

4 

 J/cm² 

2  

J/cm² 

1 

J/cm² 

0.5 

 J/cm² 

phfreq1 18 18 18 18 18 18 18 

hr1 0.61 0.57 0.52 0.47 0.43 0.41 0.41 

gssphwdt1 26 26 26 27 28 28 28 

ltzphwdt1 42 42 42 42 42 42 42 

phfreq2 62 62 62 62 62 62 62 

hr2 0.38 0.38 0.33 0.32 0.29 0.28 0.27 

gssphwdt2 54 54 54 54 54 50 50 

ltzphwdt2 54 54 54 54 54 54 54 

phfreq3 110 110 110 110 110 110 110 

hr3 0.14 0.12 0.11 0.1 0.1 0.1 0.1 

gssphwdt3 62 62 62 62 62 62 62 

ltzphwdt3 40 40 40 40 40 40 40 

zplpeak 0 0 0 0 0 0 0 

zplwdt 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

 

hr1 hr2 hr3 Total S-factor 

 0.61 0.38 0.14 1.13 

 0.58 0.38 0.12 1.08 

 0.52 0.33 0.11 0.96 

 0.47 0.32 0.1 0.89 

 0.43 0.29 0.1 0.82 

 0.41 0.28 0.1 0.79 

 0.41 0.27 0.1 0.78 

 

     Fluence [J/cm²] Total S-factor 

 

Excitation wavelength S-factor 

32 1.13 

 

678 0.78 

16 1.08 

 

680 0.72 

8 0.96 

 

682 0.85 

4 0.89 

 

684 0.87 

2 0.82 

   1 0.79 

   0.5 0.78 
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