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ABBREVIATIONS 

AA amino acid residue 

Adc adenosine-4'-dehydroxymethyl-4'-carboxylic acid moiety 

Ahx 6-aminohexanoic acid residue 

AMP adenosine-3’,5’-monophosphate 

AMTH 
5-(2-aminopyrimidin-4-yl)- 
thiophene-2-carboxylic acid moiety 

ARC adenosine analogue-oligoarginine conjugate 

ATP adenosine-5’-triphosphate 

Boc tert-butoxycarbonyl 

DCE 1,2-dichloroethane 

DIPEA N,N-diisopropylethylamine 

DMF N,N-dimethylformamide 

DMSO dimethylsulfoxide 

DSF differential scanning fluorimetry 

DTT dithiothreitol 

FA fluorescence anisotropy 

Fmoc 9-fluorenylmethoxycarbonyl 

H3 histone H3 

H9 N-aminoethyl-5-isoquinolinesulfonamide 

Haspin haploid germ cell–specific nuclear protein kinase 

HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 

HOBt 1-hydroxybenzotriazole 

HPLC high-performance liquid chromatography 

Ida 2,2´iminodiacetic acid moiety 

IpAdc 2´,3´-O-isopropylidene-adenosine-4’-dehydroxymethyl-4’-carboxylic acid 

ivDde 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)isovaleryl 

LB Luria-Bertani medium 

LC-MS liquid chromatography with detection by mass spectrometry 

Ni-NTA nickel-nitrilotriacetic acid 

NMM N-methylmorpholine 

PK protein kinase 

PKA cAMP-dependent protein kinase 

PKAc cAMP-dependent protein kinase catalytic subunit, type α 

PKI natural heat stable protein kinase inhibitor 

SAC spindle assembly checkpoint 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SPPS solid phase peptide synthesis 

TCEP tris(2-carboxyethyl)phosphine 

TFA trifluoroacetic acid 

TIPS triisopropylsilane 

v volume percent 
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1. INTRODUCTION 

Protein kinases are the enzymes belonging to the class of phosphotransferases that catalyse 

the phosphoryl transfer from donor molecule (usually ATP [1]) to hydroxyl group in the side-

chain of Ser/Thr or Tyr of substrate protein [2]. Phosphorylation functions as a molecular 

“switch” changing 3D-structure of the substrate protein and in this way activating or turning 

off the signalling pathways [3,4]. For instance, the crosstalk of different protein kinases is 

crucial for the correct regulation of the cell cycle, including cell division (mitosis) [5,6]. One 

of the protein kinases involved in mitosis is the recently discovered Haspin, which is 

structurally different from most other eukaryotic protein kinases, rendering it interesting as a 

potential target for development of selective inhibitors [6,7].  

The protein X-ray crystallography has become an important tool for investigation of 

functioning and mechanism of action of the macromolecules, as it can provide high resolution 

to an atomic level. In biochemistry and pharmacology, the three-dimensional crystal 

structures of protein/inhibitor complexes can give information about the interactions between 

the protein and inhibitor, and thereby contribute to the design of more affine and selective 

compounds. For example, one of the strategies applied for increasing the selectivity and 

affinity of inhibitors takes advantage of sequences of natural substrates, which can be 

synthetically conjugated with small molecules targeting the ATP-site of kinase. Such efforts 

have already yielded several bisubstrate inhibitors, including adenosine analogue-

oligoarginine conjugates (ARCs) that have been used as generic or selective bisubstrate 

scaffolds for targeting a variety of protein kinases [8-11]. Still, in ARCs the variation of 

peptidic part for achievement of higher selectivity towards the biological targets has been left 

relatively unexplored. 

The aim of this work are as follows: 1) the production and purification of Haspin, 2) screening 

of the initial set of ARCs representing variable structures towards Haspin, 3) crystallization of 

Haspin/ARC complexes and analysis of the obtained co-crystal structures, and 4) synthesis 

and biochemical characterization of novel Haspin-selective ARCs based on crystallographic 

data. 
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2. LITERATURE SURVEY 

2.1. Mitosis 

2.1.1. General Overview: the Cell Cycle and Mitosis 

The cell cycle is a period of an existence of a cell starting with the cell formation from mother 

cell and ending with the cell division or death [12]. The cell cycle of eukaryotic cells is 

divided into 4 phases: G1 (gap 1), S (synthesis), G2 (gap 2), and M (mitosis) (Figure 1). G1, S, 

and G2 together are known as interphase (Figure 1) that prepares the cell for the next division: 

in G1, cell growth and preparation for DNA synthesis occurs; in S phase, DNA replication and 

centrosome duplication takes place; in G2, the cell continues to grow and protein synthesis is 

enhanced. In G0, the cells are in the resting state, but they can still re-enter G1 [12].  

 
Figure 1. Phases of the cell cycle. “I” stands for interphase and “M” for mitosis. 

Mitosis also consists of 4 phases: prophase, metaphase, anaphase, and telophase plus 

cytokinesis (Figure 2). In prophase, chromosomes condense in nuclear membrane and become 

visible through a transmitted light microscope; the two centrosomes move to opposite poles of 

the cell, and a mitotic spindle forms. The beginning of the metaphase is set by the loss of 

nuclear membrane, which allows some of the microtubules of mitotic spindle to attach to the 

binding site of sister chromatids. Subsequently, the spindle aligns the chromosomes at the 

middle plane of the cell. In anaphase, the sister chromatids are separated and moved towards 

the opposite poles. The last events of mitosis comprise the formation of the cleavage furrow 

in the cell membrane, the re-formation of nuclear envelopes around the separated sister 

chromatids, and the cell division into two (telophase and cytokinesis) [13,14]. 

A successful cell division cycle requires precise control by checkpoints, which act through the 

signalling pathways of proteins. The control mechanism is responsible for ensuring that the 

errors that may arise during the cycle are corrected, or the cells go to programmed cell death 

(apoptosis) [12,15]. The cell cycle has three major checkpoints. Before the cell enters to S 

phase, it must undergo G1/S checkpoint where it is ensured that the cellular ‘machinery’ is 

prepared for DNA synthesis (duplication) and DNA is not damaged. G2/M checkpoint locates 

before M phase and controls if the replication of DNA was successful and everything is ready 

for mitosis. During mitosis, in metaphase, a spindle assembly checkpoint (SAC) controls 
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further progression of cell division by ensuring that chromosome segregation is correct [12]. 

The malfunctioned regulation of the cell division leads to genetic damage and uncontrollable 

cell division, and thus to different diseases (e.g., cancer, Alzheimer´s disease) [12,15].  

2.1.2. Mitotic Protein Kinases 

Protein kinases (PKs) are enzymes that catalyse phosphorylation of proteins, a reaction during 

which the phosphoryl group is transferred from ATP to Ser/Thr/Tyr residues of the substrate. 

As a result, negative charges are added to the substrate protein causing changes in its 

conformation; thus, phosphorylation can act as a switch turning the cellular signalling 

pathway “ON” or “OFF”. The mitotic events are regulated by crosstalk of different PKs, 

including cyclin-dependent PKs (Cdks), Polo-like PKs (Plks), Aurora PKs, and Never-in-

mitosis-A-related PKs (NIMAs). The new mitotic players that have been recently discovered 

include Haspin and Greatwall (MAST-L) (Figure 2) [5,6]. Importantly, the elevated levels of 

mitotic PKs can serve as cancer biomarkers, since the cancer cells have a faster life cycle and 

divide uncontrollably. Thus, the biochemical tools enabling quantification of mitotic PKs and 

down-regulation of their activity are of great value for the cancer diagnosis and treatment [6]. 

 
Figure 2. Regulation of mitosis by PKs [16, modified].  

2.2. Haspin 

Haploid germ-cell-specific nuclear protein kinase (Haspin) is a Ser/Thr PK that participates in 

regulation of chromosome behavior during the cell division. Haspin is encoded by the germ-

cell specific gene-2 [17] and found in all proliferating somatic cells, though its expression is 

highest in testis [7,18]. As Haspin lacks some of the conserved structural fragments generally 

necessary for catalysis (discussed below) and has low sequence homology with other 

eukaryotic PKs, it was initially thought that Haspin is an inactive pseudokinase. However, it 

has been recently demonstrated that Haspin is catalytically active, although the only known 

substrate of Haspin known to date is histone H3 [7,19,20]. Histones are important for the 

“packing” of DNA, and serve as substrates for a number of mitotic PKs. The depletion of 

Haspin leads to misalignment of chromosomes in metaphase and, consequently, the activation 
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of SAC and delay in exiting the mitosis. In case of Haspin overexpression, abnormal 

dissociation of sister chromosomes occurs [7].  

2.2.1. Crystal Structures of Catalytical Domains of PKA and Haspin 

Similarly to other PKs of eukaryotes, Haspin has a bilobal structure consisting of a small N-

lobe and a large C-lobe. However, Haspin has a number of structural features and specific 

inserts that altogether form an atypical catalytic domain (Figure 3). For example, the highly 

conserved DFG motif of activation segment (Asp-Phe-Gly; required for ATP/Mg
2+

 binding) 

of PKs is replaced in Haspin by DYT (Asp-Tyr-Thr), and the APE motif is absent [19]. To 

illustrate the differences between Haspin and a typical PK, the crystal structures of Haspin are 

compared with the crystal structures of a well-known basophilic PK represented by the 

catalytic subunit of cAMP-dependent protein kinase (PKAc). 

    
Figure 3. A. Overlay of co-crystal structures of Haspin kinase domain with AMP (PDB 3DLZ1) and histone H3(1-7) (PDB 

4OUC). Kinase is shown as cartoon and small molecules as sticks; ATP-site and substrate-site are surrounded by light blue 

and magenta circle, respectively. The glycine-rich loop is marked with black and activation segment with dark blue colour. B. 

Electrostatic surface potential of Haspin kinase domain [7]. Electronegative and electropositive areas are shown with red and 

blue colour, respectively. 

As for all kinases, the ATP-site in Haspin is a relatively narrow pocket between the two lobes. 

No co-crystal of Haspin with ATP is available so far; still, in co-crystal structure of AMP with 

Haspin, amino groups of 1N and 6N are forming hydrogen bonds with Glu606 and Gly608 

(Glu121 and Val123 in PKAc), similarly to ATP binding to PKAc (Figure 4). Both hydroxyl 

groups of ribose moiety give polar contacts with Asp611 (Glu127 in PKAc), and 3´-hydroxyl 

additionally with Gly653 (Glu170 in PKAc). The α-phosphate of nucleotide is coordinated by 

Lys511 (Lys72 in PKAc) [19]. In Ser/Thr PKs, γ-phosphate usually forms a charge-reinforced 

hydrogen bond with Lys (Lys168 in PKAc), which is required for phosphoryl transfer; 

however, His651 performs the same role in Haspin [21]. The phosphate ion in AMP/Haspin 

                                                 

1 All PDB files are available on Protein Databank Homepage, http://www.rcsb.org/ (last viewed May 21, 2014). 

A

. 

B

. 

http://www.rcsb.org/
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co-crystal which imitates γ-phosphate of ATP develops hydrogen bonds with Asp687 (DYT 

motif) and Asp649 (HRD motif) (Ser53 and Ala21 in PKAc) [19]. Unlike other PKs, the 

glycine-rich loop (conserved glycines in Haspin 491, 493, 496 and PKAc 50, 52, 55) which 

covers the ATP-site is relatively firmly fixed in Haspin by the surrounding segments (Figure 

3) [19,22]. In addition to polar contacts, the adenine ring system of ATP forms hydrophobic 

and  interactions with aromatic amino acid residues (AAs) of Haspin (e.g., Phe607, 

Tyr688, Trp652) [19]. The KM value of ATP for Haspin is 200 µM [23]. 

 
Figure 4. Co-crystal structures of Haspin with AMP (A; PDB 3IQ7, 3DLZ; [11]) and PKAc with ATP (B; PDB 1ATP; [16]). 

PKs are shown as cartoons; AMP, ATP and phosphate as sticks; residues of PKs forming interactions with co-crystallized 

small molecules are shown as lines and are labelled; hydrogen bonds are shows as black dotted lines; Mn2+-ions are shown as 

magenta circles (no electron density can be observed for Mg2+-ion(s) near ATP-site in AMP/Haspin co-crystal). 

The substrate-binding site of Haspin is located on the surface of the C-lobe and formed by 

electronegative residues constituting a pocket suitable for binding of basic N-terminal peptide 

moiety of histone H3 (Figure 3) [7,19,20]. The KM values of H3 (residues 1-21, sequence: 

ARTKQTARKSTGGKAPRKQLA) towards full-length and kinase domain of Haspin are 

0.058 µM and 0.35 µM, respectively [19]. The co-crystal structure of N-terminal peptide of 

H3(1-7) showed that Ala1 (hydrogen bond with Glu613) and Thr3 (hydrogen bond with 

Asp649 and Gln718) are directed into the substrate binding pocket (Figure 5). Further, Arg2 

is positioned to the relatively hydrophobic pocket of the N-terminal lobe formed between the 

two loops of the kinase (Val494 from the Gly-rich loop and Ala587 from the loop preceding 

-uIH helix); still, guanidine group and the carboxyl oxygen of Arg2 make hydrogen bonds 

with Asp588 and Gln718, respectively. Unlike the substrates of other PKs (e.g., PKI(5-24) as 

an analogue of substrate of PKAc, Figure 5), the peptide makes a sharp turn at Lys4 (ca 180°). 

This results in positioning of Lys4 into pocket lined by kinase residues that develop 

hydrophobic interactions (Leu690, Val704, Leu710) as well as charge-reinforced hydrogen 

bonds (Asp707, Asp709) to the alkyl chain and amine group of Lys4, respectively. Next, Gln5 

forms hydrogen bond with Asp714 and Thr6 flips back over Arg2 [24].  

The majority of basophilic PKs require (auto)phosphorylation of their activation loop for full 

activation, as the non-phosphorylated activation loop binds to the substrate-binding site and 

A

. 

B 
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prevents protein substrates from binding. However, Haspin kinase is constitutively active, and 

no phosphorylation of activation segment is needed for its activity. Still, as the expression 

level of Haspin remains nearly constant all over the cycle, but its activity peaks at mitosis, it is 

considered that Haspin may be regulated by binding of regulatory proteins or by 

modifications of its N-lobe [7,19,25]. Indeed, it has been found that in mitosis, the N-terminus 

of Haspin is abundantly phosphorylated by Plk [7,25]. 

 
Figure 5. A. Co-crystal structure of Haspin/histone H3(1-7) (PDB 4OUC). B. Co-crystal structure of PKAc/AMP-

PNP/PKI(5-24) (PDB 1ATP). PKs are shown as cartoons; H3(1-7) and PKI(5-24) as sticks; residues of PKs forming 

interactions with the co-crystallized peptide are labelled and shown as lines; hydrogen bonds are shown as black dotted lines. 

2.3. Inhibitors of Enzymes 

2.3.1. General Characteristics 

An enzyme inhibitor is a compound that binds to an enzyme and thereby prevents binding of 

(co-)substrates, disabling enzymatic catalysis of a chemical reaction. Inhibitors of enzymes 

are used in vitro as well as in vivo systems for reduction the activity of enzymes; additionally, 

inhibitors might serve as templates for the design of enzyme-targeting probes that can be 

applied for characterization of different enzymes and/or quantification of their amounts in 

biochemical assays and in the natural milieu.       

2.3.2. Inhibitors of PKs 

For the transfer of phosphoryl group conducted by a PK, binding of both ATP and substrate 

protein to the PK is required. The PK-catalysed phosphorylation reaction can thus be directly 

blocked by compounds targeting the ATP- or/and the substrate-binding pocket of PK. 

Additionally, allosteric inhibitors exist that act via binding to PK pockets outside the catalytic 

core and interfere with PK activity by indirect disruption of 3D-structure of PK. 

2.3.2.1. ATP-Site Binding Inhibitors 

Most of the inhibitors of PKs bind to an ATP-binding pocket located in the active site of PK. 

For intracellular inhibitory potency, ATP-site binding compounds must have a sufficient 

affinity to compete with the high intracellular concentration of ATP (2-10 mM) [26]. Another 

A

. 

B

. 
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possible disadvantage is the lack of selectivity, as in addition to PKs there are more than 

1,500 ATP-binding proteins in cell [27]. To date, it has been established that the amino acid 

sequence of ATP-binding pocket may vary for different PKs; thus, the selectivity of inhibitors 

for a specific kinase or kinase family can be substantially increased [28].  

The first potential inhibitor identified for Haspin was 5-iodotubericidin (IC50 value of 9 nM at 

250 µM concentration of ATP [29], Figure 6), which was first identified as an inhibitor of 

adenosine kinase (IC50=26 nM) [30]. Recently, beta-carboline derivatives and acridine 

analogues have also been developed as inhibitors targeting the ATP-site of Haspin and 

possessing moderate activity and selectivity [31,32].  

O

OH

OHOH

N

NN

NH2

I

O

R

OHOH

N

N

NN

NH2

O
A. B.

R

O

S
N

N

NH2C.

 
Figure 6. The structures of ATP-site targeting compounds and fragments: A) 5-iodotubercidin, B) adenosine-4'-dehydroxy-

methyl-4'-carboxylic acid moiety (Adc), and C) 5-(2-aminopyrimidin-4-yl)-thiophene-2-carboxylic acid moiety (AMTH). 

2.3.2.2. Substrate-Site Binding Inhibitors 

A specific PK phosphorylates the substrates possessing a certain sequence (known as key-

sequence) close to the phosphorylation site. Basophilic Ser/Thr kinases such as Haspin (and 

PKAc) preferably catalyse the phosphorylation of protein substrates that have a number of 

positively charged AAs next to the phosphorylatable Ser (or Thr). This fact is used to take 

advantage of a design of substrate-competitive inhibitors: peptides that mimic the AA 

sequence of substrate can serve as the substrate-competitive inhibitors [33]. 

Since the intracellular concentration of the protein substrate is much lower in proportion to 

ATP, it provides an advantage from the aspect of competition comparing to the inhibitors of 

ATP-site [34]. Also, a substrate with a certain key-sequence is bound only by few PKs, thus 

substrate-site inhibitors should generally have a better selectivity than ATP-site compounds 

[35]. The main downside of substrate-site inhibitors is their size. When the inhibitor binds to 

the enzyme, the generated interactions need to compensate for the energy loss resulting from 

removal of structured water layer, i.e., the inhibitor must be sufficiently large. Importantly, 

the large molecules of the peptidic origin cannot pass through the cell plasma membrane and 

may have low intracellular stability [33,36]. To increase the stability, analogues of peptides 

are synthesized where a variety of modifications is introduced in respect to the initial peptide 

structure, e.g., non-proteinogenic AA (including D-amino acids) [37].                         

2.3.2.3. Bisubstrate Inhibitors 

Bisubstrate inhibitors are composed of two fragments and an interconnecting linker. The first 

bisubstrate inhibitors were developed in the 1970s [38,39] based on an approach in which the 
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fragments binding to the adjacent but still separate enzymatic sites were combined. In case of 

successful design, the interactions of both parts with the enzyme are preserved [40]. 

Bisubstrate inhibitors have the advantage of synergistic effect of both fragments as compared 

to the separate components [41]. However, if the length of linker is not optimal, the 

simultaneous binding of inhibitor fragments to their enzymatic sites cannot occur, and thus 

the inhibitor is no longer of bisubstrate-type. What is more, in order to maintain the mobility 

of the enzyme, the linker must be sufficiently long and flexible [42].      

One of the most studied subset of bisubstrate inhibitors are adenosine analogue-oligoarginine 

conjugates (ARCs). ARCs consist of an adenosine analogue (a derivative of adenosine or 

inhibitor targeting ATP-site of PK), an oligo-arginine peptidic part, and hydrophobic linker(s) 

(Figure 7) [42]. The oligo-arginine fragment in ARC is important for the selectivity towards 

basophilic PKs; in addition, it provides ARCs with properties of arginine-rich delivery 

peptides, and hence those are able to pass through the cell plasma membrane [44-48]. The 

affinity of most efficient ARC-inhibitors are in low nanomolar or picomolar region [40,49].  

 
Figure 7. Representative structure of an ARC. An adenosine analogue binding to the ATP-site, a peptidic part binding to the 

substrate-binding site, and a hydrophobic linker are surrounded by the red, blue and green boxes, respectively. 

An important goal in the development of ARCs is the variation of selectivity towards different 

PKs. The affinity and selectivity can be adapted by using different adenosine analogues, 

linker(s) and/or peptidic parts [44,49,52]. The design of novel compounds has been greatly 

aided by the available co-crystal structures of ARCs with their target PKs [52,53]. Some of 

the most potent ARCs have been linked with fluorescent dyes, and thus it has been possible to 

use these compounds as probes in biochemical assays [11,50,51]. 

To date, there are no reports of bisubstrate inhibitors or optical probes available for Haspin. 

The aim of the current work was to identify the bisubstrate scaffolds that are suitable for this 

PK. For that, the initial screening of a subset of different ARCs was performed, followed by 

co-crystallization of the most potent compounds and rational design and synthesis of novel 

Haspin-selective ARCs. The bisubstrate-analogue conjugates developed in this work 

incorporated variable ATP-site targeting moieties and the N-terminal peptide of histone H3 as 

the fragment binding to the substrate site of PK. 
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3. REAGENTS, EQUIPMENT AND METHODS 

3.1. Reagents and Equipment 

3.1.1. Reagents 

All chemicals were obtained commercially unless noted otherwise. Solvents were purchased 

from Rathburn and Fluka. SPPS chemicals and resins were provided by Iris Biotech, 

Neosystem, Novabiochem, Advanced ChemTech, or AnaSpec. Other chemicals were 

obtained from Sigma-Aldrich. 5-Iodotubercidin was from Cayman Chemicals. PKAc type α 

(recombinant human protein, full sequence) was a kind gift from Prof. Richard A. Engh´s 

group (Norwegian Structural Bioology, Univeristy of Tromsø). The production and 

crystallization of Haspin was perfomed in Prof Stefan Knapp or Dr Alex N. Bullock research 

groups (University of Oxford). All the materials and equipment needed for the protein 

production and crystallization were provided by Structural Genomics Consortium. 

ARC inhibitors used were synthesized by the following persons
2
: Ramesh Ekambaram (ARC-

3125, ARC-3119*), Erki Enkvist (ARC-0668*, ARC-0684, ARC-0685, ARC-1102*), Katrin 

Kalind (ARC-3009*, ARC-3010*), Darja Lavõgina (ARC-1012*, ARC-1038, ARC-0902*), 

Kersti Nisuma (ARC-1141), Mart Roben (ARC-1034*), Asko Uri (ARC-0341*), and Birgit 

Viira (ARC-1408, ARC-1411).  

3.1.2. Equipment 

The final products were purified with Schimadzu LC Solution HPLC system (Prominence) by 

Gerda Raidaru using Gemini C18 reverse-phase column (5 μm, 25 cm×0.46 cm), manual 

injection and diode array UV-vis detector (SPD M20A). Mass spectra of products were 

measured in postive-ion mode by using Schimadzu LCMS-2020 (ESI-MS) detector. Elution 

was performed with water-acetonitrile gradient (0.1% TFA, velocity of gradient 1.8%/min) 

and flow rate of 1 mL/min. The separated products had the purity >95% and were freeze-dried 

after elution. The high resolution mass spectra (HRMS) of novel ARCs were measured with 

Thermo Electron LTQ Orbitrap mass spectrometer. NanoDrop 2000c (Thermo Scientific) 

spectrophotometer was used for measuring UV-vis spectra and quantification of the 

compounds.  

The concentration of all compounds were determined by UV-vis spectroscopy based on molar 

extinction coefficient (ε) of Adc (15000 M
-1

 cm
-1 

at 259 nm), AMTH (15000 M
-1

 cm
-1 

at 340 

nm), H9 (4400 M
-1

 cm
-1 

at 323 nm), Arom6 (16000 M
-1

 cm
-1 

at 286 nm), Arom8 (16900 M
-1

 

cm
-1 

at 250 nm), Iodo1 (10300 M
-1

 cm
-1 

at 300 nm), Cy3B (130000 M
-1

 cm
-1 

at 558 nm), or 

TAMRA (80000 M
-1

 cm
-1 

at 558 nm). 

                                                 

2 Compounds marked with an asterisk were previously characterized as disclosed in earlier publications 

[8,9,48,49,54]. 
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The fluorescence anisotropy measurements were performed by using a PHERAstar microplate 

reader (BMG Labtech) with optic module TAMRA [ex. 540(20) nm, em. 590(20) ja 590(20) 

nm]. All the solutions of samples were prepared in 384-well low-binding surface microtiter 

plates (Corning, code 3676). GraphPad Prism version 5.0 (GraphPad Software, Inc) was used 

for data processing and analysis. 

3.2. Methods 

3.2.1. Solid Phase Peptide Synthesis 

In 1963, Robert B. Merrifield introduced the new synthesis technique – solid phase peptide 

synthesis (SPPS) [55]. In this method, the carboxyl group (C-terminus) of the last AA of 

synthesized peptide is attached to the solid carrier or resin, and SPPS takes place in the 

direction of C → N. To bind the first AA, there is a certain amount of reactive centers 

available on resin (represented by so-called loading). With the aim of achieving the maximum 

yield of the reaction, the loading must be as high as possible, but the steric hindrance caused 

by growing chains should be avoided.  

The addition of each of the following AA consists of three steps (Figure 8): 

1. Removal of the N-terminus protecting group of the previous AA 

A variety of protecting groups is used for the protection of N-terminus of AA and side-chain 

of AA containing functional groups. The orthogonality rule applies: the protecting groups of 

N-terminus and side-chains must be removable under different conditions. Fmoc-SPPS was 

used in this work. 

2. Activation of the C-terminus of added AA 

The formation of a peptide bond is a reaction with high activation energy. Thus, the reactants 

that render the carboxyl group of added AA more electrophilic by pulling electrons from it 

must be used to facilitate the nucleophilic attack by the amine group of the resin-bound AA. 

3. Coupling of AA (acylation reaction) 

Finally, the last step of synthesis is the cleavage of the peptidic chain from the resin, 

accompanied by the simultaneous removal of protecting groups of the side-chains.  

SPPS has the advantage of speed, automation, high yield (up to 99.8% per acylation), and 

easy purification at intermediate stages by washing with solvent and filtering. The 

disadvantages include the need for a large amount of reagents (3…10 eq. per loading) and 

complicated analysis of a product at intermediate steps. Some studies have shown different 

possibilities to analyse the growing peptide on resin [57-59]. In SPPS, so-called colour tests 

are frequently used, which show the presence or absence of certain functional groups (e.g., 

Kaiser test: qualitative, shows the existence of free amino groups).  
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Figure 8. Scheme of SPPS. Markings: P – N-terminus protecting group of AA; K – side-chain protecting group of AA; Y – 

functional group attached to the resin; X – functional group reacting with activated AA; Q – functional group generated by 

the reaction between X and Y; N – number of AAs in peptide. 

3.2.2. Fluorescence Anisotropy-Based Binding/Displacement Assay (FA) 

FA method is based on the measurement of the change of fluorescence anisotropy in solution 

containing a fluorescence probe. The sample is excited with the linearly polarized light and 

the polarization of the emitted light is measured. The change in polarization can be caused by 

binding or displacement of the probe from its complex with a high molecular weight-molecule 

(e.g., kinase) (Figure 9).  

 

Figure 9. The scheme of FA method. The fluorescence probe is depicted in green colour; number 1 indicates a nucleosidic 

part, number 2 a peptidic part and a pink star a fluorescence dye.    

FA method can be performed in two formats: binding and displacement assay. In the first 

case, a low molecular weight (1.5...2 kDa) fluorescent probe binds to the active site of the PK 

(Mw > 30 kDa). If complex is formed, the rotation of probe in solution is slowed down and the 

light emitted by the fluorophore stays polarized. As a result, the polarization/anisotropy of the 

complex-containing solution is higher than in the solution of free probe, and it is possible to 

calculate the dissociation constant of probe (KD), or the active concentration of PK. In the 

second case, the fluorescence probe is displaced from its complex with PK by an ATP-

competitive, substrate-competitive or bisubstrate non-fluorescent inhibitor, which causes the 

reduction in the polarization. In this case, data processing yields displacement constant of the 
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non-fluorescent inhibitor [50]. FA method differs from kinetic methods, where the inhibitory 

potential of compounds is measured by reduction of the rate of catalytic phosphorylation.  

FA method has the advantage of simplicity, speed, homogeneity, and automation. The main 

disadvantage is the low affinity of fluorescence probes (KD > 10 nM) necessitating the use of 

the high concentration of enzyme, which makes the analysis more expensive. In cases of high 

affinity probes (KD < 10 nM), nanomolar concentrations of the enzymes can be used. 

3.2.3. Thermal Shift Assay 

Thermal shift assay (or differential scanning fluorimetry, DSF) is a fast and relatively 

inexpensive method for the characterization of stability of protein in its free form or in 

complex with low molecular weight-ligands. Thermal shift assay measures thermal unfolding 

(denaturation) of a protein in the presence of a fluorescence dye. In this work, SYPRO orange 

as a fluorescence dye (ex. 492 nm, em. 610 nm) was used due to its high excitation 

wavelength, which decreases the probability of excitation of other molecules in solution [59]. 

The measurement can be carried out using an apparatus that is simultaneously capable of 

controlling the temperature and measuring the fluorescence intensity, for instance, the real-

time polymerase chain reaction (PCR) instrument [60].  

The stability of a protein is related to its Gibbs free energy of unfolding (ΔGu). As the 

temperature increases, the stability of a typical protein as well as its ΔGu decreases [60]; at 

equilibrium, the concentrations of unfolded and native protein are the same and ΔGu is equal 

to zero. The unfolding reveals the hydrophobic domains of the protein, where fluorescence 

dye can bind to, causing the increase of fluorescence quantum yield and hence the intensity of 

the fluorescence signal, which reaches the maximum value at the conditions when protein 

unfolding is complete. The temperature at which the amounts of unfolded and native proteins 

are equal (ΔGu=0) or the fluorescence intensity is half the maximum, is called the melting 

temperature (Tm). After the signal has achieved the maximum value the fluorescence intensity 

begins to decrease since the denatured protein aggregates or precipitates (Figure 10) [60,61]. 
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Figure 10. Dependence of the observed fluorescence intensity on the temperature of sample. The blue curve shows a native 

protein and the green curve a ligand-bound protein. The native and unfolded proteins are marked with a circle and an 

irregular shape, respectively; the protein-bound ligand is shown as a red rhombus and the molecules of SYPRO orange as 

orange ovals. Thermal shift value ΔTm is depicted in red. 

In most cases, the binding of a ligand to a protein causes an increase of the ΔGu because of the 

contribution of the ligand binding Gibbs free energy (ΔGl). Consequently, the stabilization of 

the protein takes place and the melting temperature increases. The difference between the 

melting temperature of ligand-bound versus native protein is called the thermal shift (ΔTm) 

value [62,63]. Importantly, studies have shown that ΔTm values have a relatively good 

correlation with the inhibition and binding constants of inhibitors (Figure 10) [62-64]. 

3.2.4. Protein Crystallography 

3.2.4.1. General Features of Crystallography 

Crystallography is a technique in which a 2D-diffraction pattern is obtained by irradiation of 

crystal with X-rays, which upon re-calculation provides the 3D-electron density of the crystal 

lattice components. X-ray radiation has a wavelength of 10
-7

 to 10
-11

 nm (or 1000 to 0.1 Å), 

but in term of crystallography, 0.4 to 25 Å X-ray radiation is used as it is in the range of the 

length of chemical bond [65]. 

Protein crystals differ from the inorganic crystals in several aspects. Firstly, the main 

difference is a high water content of the former crystals, 40 to 60% of crystal volume. The 

high water content helps to maintain the native physiological conformations of proteins. As 

liquid evaporation causes destabilization of the crystal, the crystal needs to be kept inside 

“mother liquid” or at sufficiently low temperatures to avoid evaporation [66]. Another 

difference from inorganic crystals is that atoms do not locate at nodes of the unit cell; also, 

protein crystals are relatively unstable and very sensitive to the environmental conditions [67]. 

Crystallography of macromolecules has become the interest of pharmaceutical industry, 

biotechnology and chemistry. The 3D-structures of biomolecules (e.g., enzymes) provide 

information about their functioning and mechanisms [67]. However, as the proteins differ 

from one other in several aspects (e.g., AA sequence, chain length, higher order structures), 

the parameters necessary for the crystallization vary and are often unpredictable [67]. 

3.2.4.2. Principles of Protein Crystallography 

The acquisition process of a protein crystal structure can be divided into four steps: 

1. Crystallization 

Crystallization takes place when a protein precipitates slowly out from solution and forms a 

regular crystal lattice. The higher the purity and freshness of protein, the greater is the 

probability of crystal formation. An appropriate solvent must be selected, where the protein is 

soluble and the environment is as similar to the physiological as possible, and where salts 

(e.g., ammonium sulphate) or organic compounds (e.g., 2-methyl-2,4-pentanediol) can induce 
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precipitation. Crystallization can also be promoted by modification of pH and temperature, 

and addition of protein-stabilizing cofactors, metal ions, etc. An important factor is time, as 

the equilibrium between the soluble and crystallized protein is established slowly [66]. 

The crystal formation process can be divided into two parts – nucleation and crystal growth. 

First, it is necessary to generate a supersaturated solution where small aggregates (nucleation 

centres or nuclei) can be formed. After the formation of nucleation centres, the crystal growth 

can start. Also, supersaturation of solution must be kept at a lower level than in case of the 

formation of nuclei, in order to prevent the formation of further nucleation centres and thereby 

growth of many small crystals. The slower growth of crystals also increases the probability to 

achieve the maximum crystal regularity [66]. 

A frequently used crystallization technique is a vapour diffusion sitting drop technique, where 

the drop of the protein solution is located in the microwell adjacent to the reservoir. Water 

evaporation from the drop and condensation to reservoir solution causes increase of the 

concentration of precipitating agent in the droplet, which contributes to the nucleation. As 

water evaporation from the drop is caused by the different concentration of precipitating agent 

in drop and reservoir, it occurs until the concentrations are equal. The main advantage of this 

method is the possibility to time the arrival of equilibrium and hence to slow down the 

formation of supersaturated solution. This can be done by varying the distance between the 

droplet and reservoir. What is more, it is possible to change the concentration of the 

components in the droplet by diluting or concentrating the solution in the reservoir [66,67].       

2. Preparation for the Diffraction Data Measurement 

The high-energy X-ray photons generate free radicals (e.g., oxygen or hydroxyl radicals), 

which may cause further chemical reactions, and consequently the loss of crystalline 

regularity. Cooling of a crystal to the cryogenic temperatures (100 – 120 K) significantly 

reduces the radical formation and diffusion in the crystal, hence improving the resolution of 

the crystal diffraction pattern. In addition, the low temperatures allow the use of a longer 

exposure times and the reduction of the thermal motion of protein chains, both aspects also 

contributing to the improvement of resolution [66]. 

The crystal cryogenic cooling must be done very quickly (so-called flash freezing or shock 

cooling), because the water in a crystal must freeze in a vitreous state to avoid crystalline ice 

formation, which may cause cracks in the crystal, and thus decrease the quality of the 

diffraction pattern. Such cooling can be performed by placing of the crystal under the cold 

nitrogen gas stream or into liquid nitrogen. In order to avoid the formation of crystalline ice, a 

cryoprotective agent is also applied by addition to the crystal growth environment, by transfer 
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of the crystal from the mother liquid to the cryoprotectant solution (e.g., ethylene glycol), or 

the crystal can be grown in a solution containing cryoprotectant (e.g., methanol) [66].  

Before measurement of the diffraction, crystals must be removed from the mother liquid. 

Usually, a nylon loop is used for mounting the crystals: a thin liquid layer spanning the loop 

and surface tension of the liquid holds the crystal in the nylon loop [66].  

3. Data Collection 

The diffraction of a macromolecular crystal is weaker as compared to crystals of small 

molecules [66]. The diffraction occurs due to the cooperative effect of molecules in crystal; as 

the protein molecules are larger than inorganic compounds, there are fewer particles in a 

crystal, and thus diffraction is weaker. Moreover, protein consists predominantly of atoms 

with a small number of electrons (C, N, O), and hence reflect X-rays weaker than heavier 

atoms, which overall causes lower diffraction intensity. Therefore, in order to obtain a reliable 

quality of the diffraction pattern, it is necessary to use a relatively high intensity of the X-ray 

source (e.g., synchrotron) [66,67]. Crystal exposure to a beam of X-rays generates a pattern of 

minima and maxima of interference, where the intensities of the spots provide information 

about the locations of atoms in the crystal. The pattern of reflections can be recorded with a 

single-photon counter, a photographic film or an area detector [66]. 

4. Data Processing and Analysis 

As previously mentioned, the pattern of 2D diffraction picture arises from the locations of 

atoms in the crystal. In order to get the 3D electron-density map from 2D diffraction pattern, 

the Fourier transform is used. Furthermore, to obtain the electron-density map the amplitude 

and phase of wave must be known, but detectors used can record only the intensity of 

amplitude (a limitation known as phase problem). A variety of methods is used to solve the 

phase problem (e.g., molecular replacement). When the initial phase is found, it is possible to 

draw up an initial model, which is gradually converged to a simulated model until the 

resolution of electron-density model does not improve significantly [66,69]. The agreement is 

evaluated with the R-factor, which indicates the compatibility of the experimental structure 

and the calculated crystallographic model (normal value R < 20%) [69]. The final step of data 

processing is refinement, during which the atoms are placed to the electron-density map 

[65,68]. The resolution
3
 of diffraction pattern is crucial for an adequate interpretation of the 

electron-density map, while the higher the resolution (i.e., lower the value), the more 

realistically the crystal structure can be solved (suitable resolution below 2.7 Å) [64]. 

  

                                                 

3 Resolution represents the minimal distance between the structural elements, which can be distinguished in 

electron-density map [66]. 
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4. EXPERIMENTAL PART 

4.1. Production of Proteins 

4.1.1. Expression 

Haspin-kinase was expressed in kanamycin-resistant BL21(DE3)-R3-lambda-PPase E.Coli 

cells. An appropriate antibiotic was added to 50 mL of autoclaved LB medium (composition 

in Appendix 8; final conc. of kanamycin was 50 µg/mL). Thereafter, a small amount of the 

bacterial cells containing the plasmid was added from previously frozen glycerol stock stored 

at -80 °C, and incubated in shaker overnight at 180 rpm, 37 °C. Then, 7 mL of overnight 

bacterial suspension was added to 1 L of autoclaved LB medium with antibiotic. The flasks 

were incubated at 180 rpm, 37 °C until the absorbance value at 600 nm of 0.5-0.7 was 

achieved. Subsequently, the protein expression was induced by addition of 1 mM isopropyl-β-

D-galactopyranoside (IPTG) and the flasks were incubated overnight at 180 rpm, 18 °C. 

4.1.2. Preparation of Lysate 

Cells were harvested by centrifugation at 6230 g (centrifuge Beckman Avanti J-20XP, rotor 

JA-25.50), 4 °C for 15 min. The pellet was re-suspended in binding buffer (Appendix 8) and 

lysed by sonification for 5 min (5 sec “ON” and 10 sec “OFF”, 35% amplitude). 

Polyethyleneimine (5%, pH 7) was added to precipitate DNA (1 mL per 40 mL of lysate). 

4.1.3. Purification 

Since the produced protein contained an oligo-histidine tag at the N-terminus, it was possible 

to purify it using the affinity chromatography, taking advantage of the binding of the oligo-

histidine to nickel-nitrilotriacetic acid (Ni-NTA). The affinity column was prepared by adding 

5 mL of Ni-NTA suspended in ethanol to a column. The beads were washed and equilibrated 

with distilled water and binding buffer, respectively. In order to pellet the insoluble debris, the 

lysate was centrifuged at 53,200 g (centrifuge Beckman Avanti J-20XP, rotor JLA-8.1000), 4 

ºC for 1 h. The further action took place at 4 ºC. The supernatant was filtered through the 0.45 

µm filter onto pre-equlibrated Ni-NTA column. After the supernatant had passed through the 

column, the column was washed 2 times with 50 mL of binding buffer followed by 30 mL of 

wash buffer (Appendix 8) with 1 mM TCEP. An elution was performed by passing buffers 

with the increasing imidazole concentration (50 mM, 100 mM, 150 mM and 250 mM, see 

Appendix 8) through the Ni-NTA column. Subsequently, the SDS-PAGE analysis of the 

eluted fractions was performed. Also, 1 mM DTT was added to all fractions.  

The sample was concentrated to 4 mL for gel-filtration chromatography by centrifuging at 

3220 g, 4 ºC (centrifuge Eppendorf 5810R, rotor A-4-62) and using a 30 kDa molecular 

weight cut-off column (Amicon® Ultra-15 Centrifugal Filter Units, Millipore). The 

supernatant was purified by chromatograph (ÄKTAxpress, GE Healthcare Life Science) on a 
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Superdex 200 column with a flow rate of 0.5-1.0 mL/min of gel-filtration buffer (Appendix 

8). The peak fractions (as detected by UV absorbance at 280 nm) were collected to a 96-well 

plate. The relative amount and purity of the protein was checked by SDS-PAGE analysis.  

The fractions containing bigger amounts of pure protein were pooled and concentrated by 

using 30 kDa molecular weight cut-off column (Amicon® Ultra-15 Centrifugal Filter Units, 

Millipore) and centrifuging at 3220 g, 4 ºC. The protein concentration was measured by 

absorbance at 280 nm as calculated on the basis of its molecular weight and extinction 

coefficient from its primary structure (Appendix 1). Then, an experimental m/z was 

confirmed by LC-MS (Agilent LC/MSD TOF system with reversed-phase HPLC coupled to 

electrospray ionisation and an orthogonal time-of-flight mass analyser). The protein was 

desalted prior to mass spectrometry by its elution from a C3 column with a gradient of 5-95% 

acetonitrile in water containing 0.1% formic acid.  

4.1.4. SDS-PAGE 

5 µL of NuPAGE® loading buffer (5x) with a reducing agent DTT (Appendix 8) was added 

to 15 µL of a sample. The samples were heated at 70 °C for 5 min. Then, 10 µL of each 

sample and a molecular weight standard [Precision Plus Protein
TM

 Unstained Standard 

(BioRad)] were added to the gel [Novex® NuPAGE® 4-12% Bis-Tris Midi Gel (1.0 mm x 26 

well)]. The electrophoresis was performed by using NuPAGE® MES (1x) buffer at 170 V for 

45 min. The gel was stained with InstantBlue
TM

 (Expedeon) for 1 h and de-stained overnight. 

4.2. Synthesis of ARCs  

Synthesis of peptidic fragments was peformed using traditional SPPS [71] on Fmoc Rink 

Amide MBHA resin in DMF (1 mL per 100 mg of resin with loading of 0.45 mmol/g). All 

reactions were carried out at room temperature. Firstly, resin was swelled in DMF for 45 min. 

Fmoc protective group was removed from N-terminus by treatment with 20% piperidine 

solution in DMF (5+15 min). When necessary, ivDde protective group was removed from 

side-chain amine of Lys by treatment with 2% hydrazine solution in DMF (5+15 min). A D- 

or L-amino acid or a linker-forming AA (3 eq. per loading) was activated with mixture of 

HOBt (2.9 eq), HBTU (2.9 eq) and NMM (9 eq); the acylation reaction was carried out for 

45-180 min. When necessary, introduction of N-terminal Boc group was performed by using 

Boc2O (20 eq) and DIEA (4 eq) in DCE; reaction was carried out for 60 min. Each acylation 

and removal of the protective group was followed by washing resin five times with DMF. The 

completeness of coupling was checked by the Kaiser test. IpAdc or AMTH were added to 

resin-bound peptidic fragment using the activation mixture of HOBt (1.9 eq), HBTU (1.9 eq) 

and DIPEA (5 eq); reaction time 3 h or 12 h, respectively.  
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Prior to the standard cleaving procedure, the washing step (five times with DMF, propan-2-ol 

and DCE) was performed and the resin was dried under vacuum (1 h or more). The cleavage 

was carried out using the mixture of TFA/H2O/TIPS (90/5/5, v/v/v) for 3 h. Then, the 

collected product was washed three times with water and two times with methyl-tert-butyl 

ether by rotating under vacuum. The purification with HPLC followed. The monoisotopic 

masses of the obtained products were determined by Orbitrap mass spectrometer, and the 

concentrations were measured with a UV-vis spectrophotometer. 

4.3. Biochemical Measurements 

4.3.1. FA-method 

The binding and displacement curves were measured according to the previously published 

protocol [49]. The composition of FA buffer used is given in Appendix 8. The concentration 

of active PK and the KD values of probes were determined by the binding format of FA-

method performing the titration of the PK solution at low (1 or 2 nM) or high concentration 

(20 nM) of a fluorescence probe, respectively. For this purpose, 2-fold dilution series of 

enzyme in 384-well microplate using FA buffer were prepared. Subsequently, the 

fluorescence probe solution was added to both series (final volume 20 µL). The microplate 

was incubated at 30 ºC for 15 min and then fluorescence anisotropy values were measured 

with a PHERAstat microplate reader. Binding curves obtained were fitted to equations of 

enzyme titration [50] using software GraphPad Prism version 5.0 (GraphPad Software, Inc). 

For displacement curves, 3-fold dilution series of inhibitors were prepared. The enzyme 

solution together with fluorescence probe ARC-1081 in FA buffer [Haspin and ARC-1081 

concentrations were 6 nM and 2 nM (KD=1.0 nM); PKAc and ARC-1081 concentrations were 

6 nM and 2 nM (KD=0.4 nM)] was transferred to each well. Thereafter, microplate was 

incubated at 30 ºC for 15 min and fluorescence anisotropy measurements with a PHERAstar 

microplate reader followed. The obtained displacement curves were fitted to equations of 

logarithmic dose-response model using software GraphPad Prism version 5.0 (GraphPad 

Software, Inc) in order to determine the IC50 values of inhibitors [50].  

4.3.2. Thermal Shift Assay 

Thermal shift assay was performed in Prof Stefan Knapp´s research group (Structural 

Genomics Consortium, Oxford). The measurements were performed using a real-time PCR 

instrument (Mx3005p RT-PCR, Stratagene). 500 µM solutions of ARCs (in DMSO) were 

prepared in a 96-well microplate. The reference and control wells containing 100% (v/v) 

DMSO and distilled water, respectively, were added to the same microplate. Then, 0.6 mL of 

2.2 µM kinase solution in thermal shift assay buffer (Appendix 8) was prepared and 0.6 µL of 

SYPRO orange in DMSO was added to kinase solution (Invitrogen, 1:1000 dilution of the 
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stock solution). Next, 19.5 µL of protein and 0.5 µL of ARC inhibitor solutions (final 

concentrations 12.5 µM and 2 µM, respectively) were transferred to the required number of 

PCR low-profile microplate wells (ABgene). The PCR plate was sealed with the optical seal 

(BioRad) and rotated at 210 g for 1 min (room temperature, centrifuge Eppendorf 5810R, 

rotor S-4-104). The temperature scan was run from 25 ºC to 95 ºC, at 1 ºC/min. GraphPad 

Prism version 6.0 (GraphPad Software, Inc) and Microsoft Excel version 2007 softwares were 

used for data processing and analysis.               

4.4. Protein Crystallography 

4.4.1. Crystallization 

The protein was concentrated in gel-filtration buffer to the required concentration (~370 μM 

or ~15 mg/mL) and approximately two-fold excess of ARC was added. The protein-ARC 

solution was centrifuged at 20,800 g (centrifuge Eppendorf 5417R, rotor FA-45-30-11), 4 °C 

for 10 min. Then, 20 µL of the precipitating solution was added to each well of 96-well 

microtiter crystallization plate (Corning). Firstly, a coarse screen (Appendix 4) was used for 

crystallization. If crystals were formed but quality was unsatisfactory (e.g., too small size), the 

precipitating solution properties were accordingly modified for the so-called fine screen 

(Appendix 5). All the crystallizations were carried out using vapour-diffusion sitting drop 

method at 4 
o
C by mixing 100 nL of sample (protein-ARC solution) with 50 nL of 

precipitating solution. The latter procedure was performed with Mosquito nanolitre pipetting 

robot (TTP Labtech). The formation of crystals took several days. 

4.4.2. Preparations for the Diffraction Data Measurement and Data Processing 

Prior to the data collection, the crystals were cryoprotected using the precipitating solution 

containing ethylene glycol (final conc. 25%). For that, 1 µL of cryoprotectant solution was 

added to the crystal mother liquid. Thereafter, the crystal was mounted with a nylon loop from 

mother liquid and flash-frozen in liquid nitrogen. 

The diffraction datasets were collected by Dr Eleanor Williams, Dr Apirat Chaikuad or Dr 

Jola Kopec in Diamond Light Source Ltd synchrotron science facility (Harwell Science and 

Innovation Campus, Didcot, UK); the detector and wavelength used were a single photon 

counting detector Pilatus M6 (Dectris) and 0.97949 Å, respectively.  

The diffraction data processing was performed by Dr Apirat Chaicuad. The co-crystal 

structures of Haspin/ARC were obtained by the molecular replacement technique. The 

analysis of crystal structures obtained was performed with a molecular visualization program 

PyMOL (DeLano Scientific LLC). 
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5. RESULTS AND DISCUSSION 

5.1. General Description of the Results 

The aim of this study was the generation bisubstrate inhibitors possessing high affinity and 

selectivity towards Haspin. The work is divided into four parts:  

1. Screening towards Haspin of the initial set of ARCs representing variable structural 

scaffolds (31 compounds), and selection of the candidate compounds for co-

crystallization with Haspin;  

2. Crystallization of Haspin/ARC complexes (3 different crystals obtained);  

3. Analysis of the obtained crystal structures (using 2 co-crystals obtained from the 

preliminary studies and a published co-crystal); 

4. Rational design, synthesis and biochemical characterization of novel ARCs containing 

N-terminal peptide sequence of histone H3 (14 new compounds). 

5.2. Screening of the Initial Set of ARCs 

The first step of the studies involved selection of fluorescence probe for Haspin in the FA 

binding assay. The fluorescence probes representing different structures, but incorporating 

fluorescent dyes with similar optical properties (TAMRA or Cy3B; codes and schematic 

structures are shown in Table 1) were selected; all of these compounds have been previously 

synthesized for studies of other PKs. In this step, the high affinity of the probe was primarily 

pursued, which would enable screening of a variety of non-labeled ARCs and application of 

low concentration of kinase for the experiments. Note that all probes contained an oligo-

arginine fragment, as it was presumed that basophilic kinase Haspin should possess high 

affinity towards probes comprising positively charged arginine residues. 

Table 1. Schematic structures of fluorescent ARC-probes used for the initial screening, together with values of dissociation 

constants (KD) and brightness change (Q) 

Code Structure 
KD (nM)

a 

(- BSA) 
Q 

KD (nM)
a
 

(+ BSA) 
Q 

ARC-0669 AMTH-Ahx-dArg-Ahx-dArg6-dLys[TAMRA]-NH2 8,0 [1,5] 3,3 13 [1,6] 1,4 

ARC-0583 Adc-Ahx-dArg6-dLys[TAMRA]-NH2 1,4 [0,1] 1,4 2,5 [0,2] 1,3 

ARC-1081 Adc-Ahx-dArg-Ahx-dArg6-dLys[Cy3B]-NH2 1,0 [0,1] 3,2 n.d. n.d. 

ARC-1042 Adc-Ahx-dArg-Ahx-dArg6-dLys[TAMRA]-NH2 1,0 [0,2] 3,6 n.d. n.d. 

ARC-1059 H9-(CH2)5-C(=O)-dArg6-dLys[TAMRA]-NH2 1,2 [0,7] 3,2 1,8 [0,1] 1,4 

ARC-1144 Sele1-Ahx-dArg-Ahx-dArg6-dLys[TAMRA]-NH2 26 [3,8] 4,1 11 [1,5] 1,4 

a KD values measured by FA binding assay at 1 or 2 concentration of fluorescent probe. Standard errors are in parentheses. 

n.d. - not determined.  

In addition to the dissociation constant KD value, the brightness change (Q) was determined 

for each fluorescent probe (Table 1). The Q value represents the ratio of emission intensity of 

the probe bound to the kinase to the emission intensity of the free probe in solution. The 
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results showed that Q values in FA buffer (Appendix 8) without BSA were higher than in 

buffer that contained BSA, which may be caused by the non-specific binding of the 

fluorescence probe to other components of assay or surfaces (e.g., walls of the plastic tubes, 

wells of the measurement plates, pipette tips). However, the presence of BSA reduces the size 

of so-called dynamic range or measurement window (i.e., the difference of maximum and 

minimum values), and may also serve as a component binding ARCs non-specifically; hence, 

it was decided to perform the further experiments in the absence of BSA.  

The most potent probes were ARC-1081 and ARC-1042, which comprised Adc as the 

adenosine analogue moiety, Ahx as the first and second linker, a chiral spacer D-Arg between 

them, the (D-Arg)6 peptide as the peptidic part with amidated C-terminus, and Cy3B or 

TAMRA as the fluorescent dye, respectively. The dissociation constants of both compounds 

toward Haspin remained the same (KD values of 1 nM), which indicates that there was no 

influence of the fluorescence dye to the affinity of the compound. 

The subsequent screening of non-labelled ARCs was performed by FA displacement assay 

using ARC-1081 as the fluorescent probe. The screening set consisted of ARCs incorporating 

different ATP-site-targeting fragments; other structural variations included different number 

of Arg residues (0, 2, 6 or 8) and linkers (1 or 2), incorporation of a chiral spacer between the 

two linker moieties, and attachment of a fatty acid moiety. The results are shown in Table 2.  

The data revealed that the affinity of compounds towards Haspin strongly depends on the 

number of arginine residues; in general, the addition of 2 Arg approximately adds the affinity 

of two orders of magnitude (e.g., series: ARC-1034 → ARC-0582 → ARC-0902). Still, 8 

Arg in peptidic part (ARC-1090) did not improve the affinity compared two compound with 6 

Arg (ARC-0902). In addition, D-Arg seems to be preferred over the L-isomer in the peptidic 

fragment of the compounds (ARC-0902 vs ARC-0341). The effect of addition of myristoyl 

moiety (Myr) was not uniform: the affinity decreased upon incorporation of Myr in 

compounds containing Arom8 moiety (ARC-0684 → ARC-0685), but no effect of Myr was 

observed in compounds containing AMTH moiety as the ATP-site targeting fragment (ARC-

1141 → ARC-1143). Surprisingly, the ATP-site targeting fragment itself (Arom6, Arom8, 

AMTH, Adc, or H9) did not seem to have any significant impact on affinity (the low affinity 

of H9-containing compounds could rather be attributed to the different linker structure, as the 

H9-containing ARC-0903 and fluorescent probe ARC-1059 previously showed relatively 

high affinity to the kinase). Additionally, Adc fragment with a linker (ARC-1010), or peptide 

alone (dArg9-NH2) were tested. Expectedly, these fragments separately were unable to 

displace the ligand from its complex with the kinase; therefore, it was demonstrated that in 
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order to obtain the considerable affinity towards Haspin, the linking of these fragments was 

required. These results confirmed indirectly the bisubstrate nature of the inhibitors.  

Table 2. Schematic structures of non-labelled ARCs used for the initial screening, their affinities obtained by FA 

displacement assay with the kinase domain of Haspin (N = 2), and the values of thermal shift assay (N=3). The compounds 

are grouped according to the incorporated ATP-site targeting fragment. 

Code Structure log IC50 
a 

Kd (µM) ∆Tm [˚C] 
b 

ARC-1408 Arom6-C(=O)-(CH2)7-C(=O)-dArg-Ahx-dArg-NH2 -4,62 [0,07] 3,7 3,9 [0.0] 

ARC-1411 Arom6-C(=O)-(CH2)7-C(=O)-dArg6-dLys-NH2 -7,12 [0,07] 0,011 7,8 [0.1] 

ARC-0684 Arom8-Ahx-dArg-Ahx-dArg6-dLys-NH2 -6,95 [0,07] 0,016 5,7 [0.1] 

ARC-0685 Arom8-Ahx-dArg-Ahx-dArg6-dLys[Myr]-NH2 -5,60 [0,06] 0,38 2,8 [0.1] 

ARC-1176 AMTH-Ahc-dArg-NH2 -3,85 [0,12] 21,1 n.d. 

ARC-1102 AMTH-Ahx-dLys-Ahx-dArg2-NH2 -3,99 [0,23] 15,7 2,8 [0.0] 

ARC-0668 AMTH-Ahx-dArg-Ahx-dArg6-dLys-NH2 -7,00 [0,09] 0,015 8,0 [0.1] 

ARC-1141 AMTH-Ahx-dAla-dArg6-dLys-Gly -6,97 [0,07] 0,016 6,0 [0.1] 

ARC-1143 AMTH-Ahx-dAla-dArg6-dLys[Myr]-Gly -6,36 [0,03] 0,066 n.d. 

ARC-1197 
AMTH-Ahx-dArg-Ahx-dArg6-dLys[-C(=O)-(CH2)7-

C(=O)-dArg6-NH2]-NH2 
-7,45 [0,04] 0,005 n.d. 

ARC-1034 Adc-Ahx-dArg2-NH2 -4,78 [0,15] 2,4 4,5 [0.1] 

ARC-0582 Adc-Ahx-dArg4-NH2 -6,14 [0,03] 0,11 n.d. 

ARC-0902 Adc-Ahx-dArg6-NH2 -7,67 [0,04] 0,003 8,6 [0.2] 

ARC-1090 Adc-Ahx-dArg8-NH2 -7,20 [0,05] 0,009 n.d. 

ARC-0341 Adc-Ahx-lArg6-NH2 -6,58 [0,04] 0,039 5,7 [0.1] 

ARC-0342 Adc-Ahx-lArg6-lLys-NH2 -6,66 [0,03] 0,033 n.d. 

ARC-1012 Adc-Ahx-dLys-Ahx-dArg2-NH2 -4,48 [0,11] 5,0 4,6 [0.1] 

ARC-1038 Adc-Ahx-lLys-Ahx-dArg2-NH2 -4,52 [0,11] 4,6 4,2 [0.1] 

ARC-1041 Adc-Ahx-dArg-Ahx-dArg6-dLys-NH2 -8,22 [0,05] 0,0002 n.d. 

ARC-3009 H9-C(=O)-CH2-NH-CH2-C(=O)-dArg2-NH2 -3,08 [0,59] 81 1,1 [0.1] 

ARC-3010 H9-C(=O)-CH2-NH-CH2-C(=O)-dArg6-NH2 -5,29 [0,39] 0,78 2,0 [0.0] 

ARC-0903 H9-(CH2)5-C(=O)-dArg6-NH2 -6,61 [0,04] 0,037 n.d. 

ARC-3125 Iodo1-CH2-C(=O)-Ahx-dArg6-dLys-NH2 -8,09 [0,03] 0,008 10,1 [0.1] 

ARC-1010 Adc-Ahx-OH no binding at 33 µM 

 
dArg9-NH2 no binding at 66 µM 

a Logarithms of IC50 values measured with FA-assay by displacement of 2 nM fluorescent probe ARC-1081 from its complex 

with 6 nM Haspin or PKAc. b Thermal shift value. Standard errors are in parentheses. n.d. - not determined. 

For all of the aforementioned FA-assays, Haspin was provided by SGC; next, after the initial 

screening and choice of most effective compounds, the studies were continued in University 

of Oxford and the kinase was produced in order to obtain very pure and fresh protein for the 

subsequent crystallographic studies (see below). The production of the His-tagged kinase 

domain of Haspin was performed in BL(DE3) E.Coli bacterial cells co-expressing λ-

phosphatase, and the purification involved Ni-affinity and gel-filtration chromatography.  
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In order to confirm that compounds survived the transportation and that the new portion of PK 

was active, thermal shift assay was performed. The results (Table 2) were compared to those 

obtained from FA displacement assay (Figure 11). While thermal shift assay indicated that the 

produced kinase was active and confirmed the major trends in affinities of compounds toward 

Haspin, the correlation between the characteristic values obtained from thermal shift assay 

versus FA assay (∆Tm versus log IC50) remained in the moderate range (R
2
 value of 0.56, 

Figure 11). Interestingly, it was noted that compounds containing H9 (ARC-3009, ARC-

3010) had the major deviation from the results. This probably indicates a different binding 

mode of these compounds to Haspin as compared to other compounds. When the data points 

corresponding to these compounds were excluded from the linear correlation analysis, the 

correlation improved significantly (R
2
 value of 0.77, Figure 11). Thereafter, three most potent 

compounds (except ARC-0902) were chosen for crystallization trials with Haspin kinase (see 

below). ARC-0902 was excluded from this set, as this compound had by this time been 

already co-crystallized with Haspin by our collaboration partners in Oxford; another ARC that 

had been co-crystallized by SGC was ARC-1141. 

 

Figure 11. The linear correlation between values of thermal shift (on the y-axis) and -log IC50 (on the x-axis). A. Correlation 

between all compounds analysed. B. Correlation excluding the data points corresponding to H9-containing compounds. The 

data points are shown as blue or red diamonds; the black line indicates linear fit; the data points excluded from the second 

graph are surrounded by green circle. 

5.3. Co-crystallization of Haspin and ARCs 

The ARC-inhibitors used for co-crystallization with kinase domain of Haspin were chosen 

based on results of FA displacement assay and thermal shift assay (the compounds presented 

in Table 3). The crystals were obtained with all three compounds (the pictures of the crystals 

are presented in Appendix 6), and the X-ray diffraction data were collected with high 

resolution (1.5 Å). Unfortunately, as the data processing is extremely time-consuming 

process, it has not been finished by the deadline of this study. Still, for the further steps of the 

given study we could take advantage of the three co-crystal structures that had been obtained 

A

. 

B

. 
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previously by our collaborators: two of these crystals represented Haspin/ARC complexes, 

and one crystal represented Haspin/H3(1-7) complex.  

Table 3. The ARC-inhibitors used for co-crystallization with kinase domain of Haspin and the general crystallization results 

Code Structure 
Resolution of X-ray 

diffraction data 

ARC-1411 a Arom6-C(=O)-(CH2)7-C(=O)-dArg6-dLys-NH2 1.5 Å 

ARC-0668 a AMTH-Ahx-dArg-Ahx-dArg6-dLys-NH2 1.5 Å 

ARC-1141 b AMTH-Ahx-dAla-dArg6-dLys-Gly 1.87 Å 

ARC-0902 b Adc-Ahx-dArg6-NH2 1.7 Å 

ARC-3125 a Iodo1-CH2-C(=O)-Ahx-dArg6-dLys-NH2 1.5 Å 

a New diffraction data. b Diffraction data obtained previously by SGC. 

5.4. Analysis of Crystal Structures 

As mentioned above, due to the issues with the data processing, the rational design of novel 

ARCs was based on analysis of the previously obtained co-crystal structures of Haspin with 

ARC-0902 or ARC-1141. In both cases, the resolution of crystal structure was high (1.7 and 

1.87 Å, respectively) and both structures showed typical space group P212121 for Haspin 

kinase domain (more structural factors are given in Appendix 7).  

The electron densities corresponding to the linker and the inhibitor fragments targeted to the 

ATP-site of Haspin were well-defined. However, the electron densities corresponding to the 

peptidic parts are only defined for three (ARC-0902; Figure 12) or two (ARC-1141; Figure 

13) arginine residues, indicating that arginine residues of the peptide are relatively mobile and 

can adopt multiple conformations. The compound ARC-0902 binds to Haspin in two 

conformations, the differences involving particularly the peptidic part of the inhibitor. The 

adenosine analogue (Adc) of ARC-0902 binding to the ATP-site of Haspin gives mainly the 

same interactions as ATP (Figure 12); however, the interaction with Gly608 is missing.  

The linker moiety is positioned under the Gly-rich loop of the kinase, which is similar to the 

previously reported co-crystals of ARCs with PKAc [52]. The 1
st
 Arg of the peptidic part (i.e., 

counting from the linker) forms hydrogen bonds with Asp649 and Thr689, which is also 

similar to the typical binding pattern of ARCs observed in co-crystal structures with PKAc 

[51]. Interestingly, the next arginine residue flips over the Gly-rich loop of the kinase and 

forms hydrogen bonds with Haspin residues Ala587 and Asn588 positioned in the N-terminal 

lobe of the kinase. Similarly, Arg2 of H3(1-7) form hydrogen bond with Asn588 (Figure 5). 

Finally, 3
rd

 Arg has two different positions in the co-crystal also forming different hydrogen 

bond patterns – Glu613 and Gln718 or Gly653 and Asn654. In case of the former 

conformation, a  stacking occurs between the guanidine group of arginine moiety and the 

imidazole ring of His651.   
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Figure 12. Co-crystal structure of ARC-0902 (blue sticks) with Haspin kinase domain (green cartoon) and co-crystal 

structure of ARC-1034 (magenta sticks) with PKAc domain (blue cartoon) (PDB code 4BWJ, Protein Databank Homepage). 

Residues of PK forming interactions with the co-crystallized ARC are shown as lines and  

Unlike the binding of ARC-0902 to kinase domain of Haspin, ARC-1141 gives remarkably 

smaller number of hydrogen bonds. The exocyclic nitrogen of AMTH moiety behaves as a 

donor of hydrogen bond for Glu606 (the same for binding of ATP is shown in Figure 4). 

Interestingly, the hydrophobic linker following the AMTH moiety makes a sharp turn (> 90
o
), 

which is a conformation that has not been seen before in any co-crystal structures of ARCs 

with PKs. Also, the backbone NH of 1
st
 Arg counted from the linker forms a hydrogen bond 

with Gln718, but there is no interaction visible for the side-chain of 1
st
 Arg. However, 

guanidine group of this Arg might be involved in  stacking with the amide bond between 

Gly715 and Asp716 of Haspin. The 2
nd

 Arg residue of ARC-1141 protrudes up to the Gly-rich 

loop and forms two charge-reinforced hydrogen bonds with the backbone carbonyl of Glu492.   

 

Figure 13. Co-crystal structures of ARC-1141 (green sticks) with Haspin kinase domain (green cartoon). Residues of PK 

forming interactions with co-crystallized ARC are shown as lines and are labelled; hydrogen bonds are shown as black dotted 

lines. 

5.5. Synthesis and Biochemical Characterization of Novel ARCs 

The design of novel ARCs was based on co-crystal structures of ARC-1141 and ARC-0902 

(unpublished data), which were overlaid with the co-crystal of Haspin kinase domain with 

histone H3(1-7) (PDB 4OUC). The peptidic part of novel compounds was identical with or 
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similar to the sequence of H3(1-7) (Figure 5). The structures of novel ARCs are presented in 

Table 4 and Appendix 9.   

The overlay of co-crystals of ARC-0902 versus H3(1-7) with Haspin (Figure 14) showed that 

the 1
st
 D-Arg (counted from the linker) of ARC was positioned close to the Thr3 of H3(1-7). 

Therefore, the compound ARC-3323 was designed incorporating Adc as the ATP-site-

targeting fragment, followed by linker (Ahx) and one lysine residue; this part of the novel 

conjugate was expected to imitate the binding mode of ARC-0902. Another part of the novel 

conjugate was expected to mimic H3(1-7); however, on synthetic rationale (e.g., to avoid non-

desired side-reactions with side-chains of AAs) Thr6 of H3 was replaced by L-Ala, and the 

N- and C-termini of the substrate peptide were acetylated and amidated, respectively. In order 

to link the two aforementioned parts, the Thr3 of H3 was replaced by L-Glu. Synthesis of the 

compound was accomplished as follows: the peptidic part was synthesized on solid phase and, 

thereafter, cleaved and purified by HPLC. Next, the fragment IpAdc-Ahx-dLys(ivDde) was 

synthesized on solid phase, and the purified peptide was conjugated to the side chain of D-Lys 

on resin after removal of the orthogonal protecting group ivDde which is not cleavable by 

20% piperidine/DMF used for Fmoc-deprotection. Finally, the product was cleaved from the 

resin by TFA, accompanied by the simultaneous removal of the isopropylidene protection 

from the hydroxyl groups of ribose moiety of Adc.   

 

Figure 14. Co-crystal structures of ARC and histone H3/Haspin kinase domain. A, Overlay of co-crystals of ARC-0902 

(blue) versus histone H3 (magenta; residues 1-7, PDB 4OUC) with Haspin. B, Overlay of co-crystals of ARC-1141 (green) 

versus histone H3 (magenta; residues 1-7, PDB 4OUC) with Haspin. Kinase domain is indicated as cartoon; ARCs and H3 as 

sticks; the black circle shows the place, where the linkage between the adenosine analogue and peptide was introduced in 

novel ARCs. 

The overlay of co-crystals of ARC-1141 versus H3(1-7) with Haspin (Figure 14) indicated 

that the Ala1 was located almost at the same place as D-Ala of ARC-1141 functioning as a 1
st
 

AA of peptidic part (counted from the linker). Thus, a novel compound (ARC-3324) was 

designed incorporating AMTH as the ATP-site targeting fragment linked via a Gly residue 

with the H3(1-7) peptide. The linkage point in the peptide was the side-chain of D-Lys 

replacing the Ala1; D-Lys was chosen instead of L-Lys, as the side-chain of Ala1 in H3(1-7) 

A

. 

B

. 
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co-crystal was not pointing towards ARC, and the change of chirality was expected to 

compensate for this difference. In order to increase the length and flexibility of linker, Gly 

was added between the AMTH and side-chain of D-Lys. Again, for the synthetic rationale, the 

N- and C-termini of the substrate peptide were acetylated and amidated, respectively. The 

synthesis of the compound was accomplished as follows: the peptidic part was synthesized on 

solid phase using the side chain of D-Lys with orthogonal protection group ivDde. Then, the 

linker(s) and AMTH fragment were added through the side chain of D-Lys using the 

traditional SPPS; finally, the finished product was cleaved from the solid phase accompanied 

by removal of acid-labile protecting groups. 

The affinities of the obtained conjugates and reference compounds were characterized by FA 

displacement assay (Table 4). As the Kd values of the novel ARCs were dramatically higher 

than those of the starting compounds (ARC-0902, ARC-1141) or 5-iodotubercidin, thus the 

further design of counterparts of ARC-3323 and ARC-3324 was performed.  

Taking into account the possible use of compounds in living cells in the future, the 

compounds lacking the oligo-argining sequence may also lack the ability to penetrate the 

plasma membrane of a cell, and thus oligo-arginine segment was introduced to the structure of 

novel ARCs. Unfortunately, the further synthesis of Adc-containing compounds (i.e., ARC-

3323 counterparts) was not successful due to the synthetic complications: the addition of 

peptidic part to the solid phase fragment similarly as in the synthesis of the ARC-3323 did not 

occur. The possible solution that will be pursued in the future studies would be the exchange 

of positioning of Lys(ivDde) and Asp, i.e, the D-Asp will be located in the first fragment 

(Adc-Ahx-dAsp) and the orthogonally protected L-Lys in the peptidic part in place of 

phosphorylatable Thr. 

The first step in optimization of ARC-3324 counterparts was introduction of the oligo-

arginine (D- or L-) sequence to the N-terminus of the H3 part of ARC, resulting in compounds 

ARC-3327 and ARC-3328, respectively. As expected, the addition of oligo-arginine 

sequence increased the affinity of conjugates towards basophilic PK Haspin, whereas the 

affinity was the similar for both isomers (Table 4). In parallel, the biochemical 

characterization of novel compounds was also performed with PKAc as the target kinase: it is 

known that the starting compounds ARC-0902 and ARC-1141 have high affinity towards 

basophilic kinase PKAc, and it was thereby important to determine the relative selectivity 

profile (i.e., Haspin versus PKAc) of the novel ARCs. The results indicated that ARC-3327 

and ARC-3328 had the affinity in the same range towards both Haspin and PKAc; still, the 

selectivity profile of novel compounds was significantly improved in respect to the starting 

compound ARC-1141 which possessed prominently better affinity towards PKAc than 
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Haspin. Remarkably, of all novel ARCs the compound ARC-3328 had the highest affinity 

towards Haspin (Table 4). 

Next, the changes in the structure of ARC-3324 were introduced. First, the N-terminus of 

H3(1-7) fragment was kept non-acetylated, which was synthetically accomplished as follows: 

the Fmoc-group was removed from N-terminus of the peptide represented by the backbone 

amino group of D-Lys (side-chain protected with an orthogonal protecting group ivDde). 

Subsequently, the N-terminus was protected with a Boc-group [72]. Thereafter, similarly to 

the synthesis of ARC-3324 the linker(s) and AMTH were added through the side chain of 

Lys, however, the Boc-group was removed together with the cleavage of finished product, 

thus retaining the N-terminus of peptide free. The rationale for such structural change was that 

the N-terminal Ala1 in the co-crystal of Haspin with Histone H3 peptide (1-7) forms a 

hydrogen bond with Glu613 of Haspin (Figure 5), and it was presumed that this interaction 

might contribute significantly to the binding energy of the novel conjugates. The non-

acetylated N-terminus increased the affinity for Haspin approximately 18-folds, but for PKAc 

the affinity remained the same range (compounds ARC-3324 and ARC-3342) (Table 4).  

Additionally, variation of the length of the linker between the AMTH and side-chain of D-Lys 

was performed (compounds ARC-3343 to ARC-3345). The replacement of Gly by γ-

aminobutyric acid (GABA; compounds ARC-3342 and ARC-3343) increased the flexibility 

of the linker as well the affinity towards both kinases: affinity for Haspin and PKAc increased 

about 1.4- and 1.1-folds, respectively. Furthermore, the addition of oligo-arginine sequence 

(D- or L-) to the C-terminus of the H3 peptide in combination with the elongation of linker 

and lack of acetylation at the N-terminus of H3(1-7) fragment (compounds ARC-3344 and 

ARC-3345) significantly increased the affinity for Haspin compared to analogous compound 

without oligo-arginine (ARC-3343). On the other hand, if compared to the counterparts 

incorporating the oligo-arginine segment at the N-terminus of peptide (ARC-3327 and ARC-

3328), the affinities of ARC-3344 and ARC-3345 was nearly the same. Importantly, 

however, the latter compounds showed the most potent selectivity profile towards Haspin 

compared to PKAc (4 to 5 times). Overall, the compounds ARC-3344 and ARC-3345 had the 

highest selectivity of all novel ARCs towards Haspin (Table 4). 
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Table 4. Schematic structures of the starting compounds and novel ARCs, and the displacement constant Kd values calculated from the FA displacement assay with the kinase domain of Haspin or 

PKAc (N = 2) 

Code Structure 
log IC50 

a 
Kd (µM) 

b 
Selectivity 

Index
 c
 Haspin PKAc Haspin PKAc 

ARC-3323 Adc-Ahx-dLys*-[Ac-lAla-lArg-lAsp*-lLys-lGln-lAla-lAla-NH2] -4,47 [0,06] -4,58 [0,02] 5,2 1,8 0,4 

ARC-3324 AMTH-Gly*-[Ac-dLys*-lArg-lThr-lLys-lGln-lThr-lAla-NH2] over -4 over -4 n.c. n.c. n.c. 

ARC-3327 AMTH-Gly*-[Ac-dArg6-dLys*-lArg-lThr-lLys-lGln-lThr-lAla-NH2] -6,08 [0,06] -5,87 [0,02] 0,13 0,099 0,8 

ARC-3328 AMTH-Gly*-[Ac-lArg6-dLys*-lArg-lThr-lLys-lGln-lThr-lAla-NH2] -6,27 [0,06] -6,22 [0,02] 0,082 0,042 0,5 

ARC-3342 AMTH-Gly*-[ dLys*-lArg-lThr-lLys-lGln-lThr-lAla-NH2] -4,24 [0,05] -4,06 [0,03] 8,7 6,2 0,7 

ARC-3343 AMTH-GABA*-[ dLys*-lArg-lThr-lLys-lGln-lThr-lAla-NH2] -4,37 [0,36] -4,12 [0,03] 6,4 5,4 0,9 

ARC-3344 AMTH-GABA*-[dLys*-lArg-lThr-lLys-lGln-lThr-lAla-dR6-NH2] -6,09 [0,03] -5,06 [0,02] 0,12 0,62 5 

ARC-3345 AMTH-GABA*-[dLys*-lArg-lThr-lLys-lGln-lThr-lAla-lR6-NH2] -6,01 [0,03] -5,08 [0,02] 0,15 0,59 4 

ARC-3346 AMTH-Ahx-dDAP- lArg-lThr-lLys-lGln-lThr-lAla-NH2 -4,47 [0,06] -5,30 [0,02] 5,2 0,35 0,1 

ARC-3347 AMTH-Aoc-dDAP- lArg-lThr-lLys-lGln-lThr-lAla-NH2 over -4 -6,11 [0,02] n.c. 0,054 n.c. 

ARC-3348 AMTH-dPro-Gly-dDAP-lArg-lThr-lLys-lGln-lThr-lAla-NH2 over -4 over -4 n.c. n.c. n.c. 

ARC-3349 AMTH-lPro-Gly-dDAP-lArg-lThr-lLys-lGln-lThr-lAla-NH2 over -4 over -4 n.c. n.c. n.c. 

ARC-3350 AMTH-isonipeconic acid-Gly-dDAP-lArg-lThr-lLys-lGln-lThr-lAla-NH2 -4,21 [0,06] -4,26 [0,10] 9,3 4,0 0,4 

ARC-3351 AMTH-tranexamic acid-Gly-dDAP-lArg-lThr-lLys-lGln-lThr-lAla-NH2 -4,05 [0,22] over -4 13 n.c. n.c. 

ARC-0902
 Adc-Ahx-dArg6-NH2 -7,67 [0,04] -7,30 [0,13] 0,0031 0,0032 d 1,0 

ARC-1141 AMTH-Ahx-dAla-dArg6-dLys-Gly -6,97 [0,07] -8,25 [0,02] 0,016 0,0001 0,006 

 5-iodotubericidin -8,00 [0,05] over -4 0,0008 n.c. n.c. 

Red text denotes residues corresponding to peptide of H3, and blue text denotes the residues and fragments that were changed compared to the original structure of H3 peptide. The 

asterisks indicate attachment of the substituent to the side-chain of AA. ARC-0902, ARC-1141 and 5-Iodotubercidin were used as reference compounds. a Logarithms of IC50 values 

measured with FA-assay by displacement of 2 nM fluorescent probe ARC-1081 from its complex with 6 nM Haspin or PKAc. b Kd values calculated by online calculator [71]. c The 

index is defined as the ratio of the Kd values of inhibitors in experiments with PKAc versus Haspin. d The previously published inhibition constant Ki value is in excellent agreement 

with the obtained data (Ki value of 3.2 nM [48]). n.c. – not calculated.   
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Finally, in order to simplify the overall synthetic scheme, it was decided to link AMTH 

directly to the N-terminus of H3(1-7) peptide via a hydrophobic linker, i.e., 6-aminohexanoic 

(Ahx; compound ARC-3346) or 8-aminooctanoic acid (Aoc; compound ARC-3347). 

However, to preserve the hydrogen bonding pattern characteristic to binding of N-terminus of 

histone H3(1-7) to Haspin, 2,3-diaminopropionic acid (dDAP) moiety was substituted in 

conjugates for Ala1 of H3(1-7) peptide (it was presumed that the side-chain amine of dDAP 

could develop the analogical charge-reinforced hydrogen bond with Glu613 of Haspin). The 

resulting compound with Ahx linker (ARC-3346) was so far the most potent AMTH-

containing compound of novel ARCs without oligo-arginine (Kd 5.2 µM; Table 4). Also, 

since there was an unusual sharp turn of hydrophobic linker moiety following the AMTH in 

the co-crystal structure of Haspin/ARC-1141 (not seen in co-crystals of ARCs with PKAc; 

Figure 13), the variation of the linker structure was performed by introduction of a cyclic 

element to the structure of the linker. It was expected that the cyclic element could facilitate 

the turn of the linker and should increase the selectivity of compounds towards Haspin over 

PKAc, as it has been shown that the latter binds preferably compounds with long flexible 

linkers. D-Pro, L-Pro, isonipecotic acid moiety, tranexamic acid moiety were used as such 

cyclic elements (compounds ARC-3348 to ARC-3351), whereas the net length of the linker 

remained unchanged, as the aromatic or cyclic fragment plus Gly gave approximately the 

same length as aminohexanoic acid moiety. Importantly, the results showed that the latter 

change resulted in dramatic drop of the affinity of conjugates towards both Haspin and PKAc, 

suggesting that despite the different binding modes of the linker moieties of the conjugates 

observed in Haspin versus PKAc co-crystals, the flexibility of the linker is important for 

binding of conjugate to either PK. 

In summary, the following tasks were accomplished within the given thesis: 

 Screening of a variety of scaffolds of previously reported ARCs with Haspin was 

performed;  

 Three new diffractive co-crystals of Haspin/ARC were obtained and the data sets were 

collected with high resolution (1.5 Å); 

 Based on analysis of previous co-crystal structures of Haspin with ARCs or histone 

H3(1-7), 14 novel ARCs were synthesized and characterized in biochemical 

displacement assays with Haspin and PKAc; 

 The highest affinity toward Haspin was obtained for the compound ARC-3328 (Kd = 

82 nM), and the highest selectivity over PKAc for the compounds ARC-3344 and 

ARC-3345 (Kd values for Haspin of 120 and 150 nM, and for PKAc of 620 and 590 

nM, respectively; selectivity index value of 4-5). 
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5.6. Prospectives 

The present work focused on the development of bisubstrate inhibitor scaffolds towards 

mitotic Haspin kinase. 31 previously synthesized adenosine analogue-oligoarginine 

conjugates were characterized in biochemical assays with Haspin, and 3 candidates were 

chosen for crystallographic studies. From the available co-crystal structures, rational design of 

14 novel compounds was performed which were also characterized in biochemical assays 

with Haspin and a reference basophilic kinase PKAc. Altogether, this work serves as the 

strong starting point for further studies of Haspin in the future, though some possible 

improvement of the developed compounds might be considered.  

To start with, synthesis of series of Adc-containing conjugates should be performed to take 

whole advantage of the available ARC-0902/Haspin co-crystal. Next, it is important to 

identify other natural (or natural-like) peptides and their analogues targeting the substrate-site 

of kinase domain of Haspin. For instance, a recent study that investigated the preferred 

consensus sequences in substrates of Haspin suggested that L-Val could be used instead of L-

Ala as the first AA of N-terminus of histone H3 [24]. Other major changes in the peptidic 

fragments of novel conjugates leading to the improved affinity and selectivity of the latter can 

be identified by screening of peptide libraries. In parallel, further characterization of the 

obtained compounds should be continued, including selectivity profiling in biochemical 

assays, determination and improvement of the ability of conjugates to penetrate the cell 

membrane, etc.  

As the long-term goal, it is envisioned that the existing ARCs as well as the compounds that 

are to be developed based on the generated co-crystals and structure-affinity relationship will 

be applied for detection and quantification of Haspin kinase activity in a variety of 

biochemical and biological systems, including diagnostic panels.        

  



35 

 

6. SUMMARY 

Protein kinases (PKs) catalyse phosphorylation, a process during which the γ-phosphoryl 

group is transferred from ATP to a protein or a peptide substrate. The phosphorylation of 

proteins serves as a molecular switch, increasing or decreasing the ability of the substrate 

protein to participate in different cellular processes. A flow of these processes is represented 

by the cell cycle (including mitosis), the timing of which is precisely regulated by crosstalk of 

different PKs. Hence, the aberrant activity of kinases is associated with several diseases 

related to abnormal cell proliferation, and protein kinases have accordingly become important 

research targets. A wide variety of compounds reporting and regulating the abnormally 

increased activity of PKs (i.e., protein kinase-targeting probes and inhibitors) has been 

developed during the last two decades.  

The present work describes the rational design, synthesis and biochemical characterization of 

inhibitors targeting the recently discovered mitotic kinase Haspin. After the initial screening 

of a large panel of ARC-type PK inhibitors towards Haspin, the most potent candidate 

compounds were co-crystallized with the freshly produced Haspin kinase. The previously 

obtained co-crystal structures were used for the rational design of the unique compounds, 

incorporating a fragment targeting the ATP-site of the kinase, and the peptidic part originating 

from the only known substrate protein of Haspin, histone H3. 14 novel conjugates were 

synthesized according to the conventional Fmoc solid phase peptide synthesis procedures, and 

characterized in binding/displacement assay with Haspin and a reference kinase PKAc. The 

most potent novel compound (ARC-3328) possessed two-digit nanomolar affinity towards 

Haspin. Furthermore, the most selective compounds ARC-3344 and ARC-3345 had 4 to 5 

times higher affinity for Haspin compared to the basophilic protein kinase PKAc.  

To sum up, this work has revealed several important structure-affinity trends for the design of 

inhibitors targeting mitotic protein kinase Haspin. The affinity and selectivity of the 

compounds developed within this thesis will enable their application as the Haspin-targeting 

probes in the subsequent studies in a variety of biological systems, including live cells and 

tissues. Furthermore, as no bisubstrate inhibitors of Haspin have been reported so far, our 

compounds represent the unique scaffolds that can provide valuable information for studies of 

binding modes of natural substrates of Haspin. 
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7. KOKKUVÕTE 

Mitootilise Haspin-kinaasi mõlema substraadi taskusse seonduva inhibiitori 

konstrueerimine  

Proteiinkinaasid katalüüsivad fosforüülimisreaktsiooni, mille käigus toimub γ-fosforüülrühma 

ülekandmine lähtemolekulilt (ATP) valksubstraadile. Valkude fosforüülimine toimib 

molekulaarse lülitina, kaasates või lülitades substraatvalku välja olulistest rakulistest 

protsessidest. Selliste protsesside kogumina võib vaadelda rakutsüklit (sh mitoosi), mille 

ajastus on täpselt reguleeritud erinevate proteiinkinaaside koostöö poolt. Kinaaside häirunud 

aktiivsust seostatakse erinevate haiguste, sealhulgas rakkude kontrollimatust jagunemisest 

tingitud vähkkasvajate tekke ja/või arenguga. Seetõttu on proteiinkinaasidest saanud olulised 

uurimisobjektid, mille anomaalselt kõrgenenud aktiivsuse tuvastamiseks ja reguleerimiseks on 

viimaste aastakümnete jooksul arendatud suur hulk madalmolekulaarseid ühendeid (nt 

proteiinkinaaside sondid ja inhibiitorid).     

Käesolev töö kirjeldab hiljuti avastatud mitootilisele Haspin-kinaasile suunatud inhibiitorite 

ratsionaalset disaini, sünteesi ja biokeemilist iseloomustamist. Töö käigus teostati esialgne 

Haspin-kinaasi sõeluuring 31 tundud ARC-tüüpi inhibiitoriga, mille abil valiti välja kõige 

afiinsemad kandidaatühendid koos-kristallimiseks värskelt toodetud Haspiniga. Seejärel 

kasutati eelnevalt saadud kristallstruktuure uute unikaalsete ühendite ratsionaalseks disainiks. 

Need ühendid sisaldasid kinaasi ATP-saiti seostuvat osa ühendatuna substraadi-sidumissaiti 

seostuva peptiidse fragmendiga, mis jäljendas Haspini ainsat teadaolevat substraatvalku 

histoon H3. Kasutades traditsioonilist tahkefaassünteesi meetodit, valmistati kokku 14 uudset 

ühendit, mille võimet seostuda Haspini ja võrdluskinaasi PKAc-ga iseloomustati 

fluorestsentsi anisotroopia mõõtmisel põhineva sidumis-/väljatõrjumismeetodiga. Kõige 

efektiivsem uudne ühend (ARC-3328) omas nanomolaarset afiinsust Haspini suhtes (Kd = 82 

nM). Lisaks, parima selektiivsusega ühendite ARC-3344 ja ARC-3345 afiinsus oli 4 – 5 

korda kõrgem Haspini suhtes võrreldes PKAc-ga. Saavutatud afiinsust ja selektiivsust võib 

pidada silmapaistvaks, kuna antud kinaasile on antud hetkeks suudetud arendada vähe 

inhibiitoreid, kusjuures puudub info bisubstraatsete inhibiitorite kohta.    

Kokkuvõttes näitas antud töö mitmeid olulisi struktuur-afiinsus sõltuvuse suundumusi 

bisubstraatsete inhibiitorite arendamisel mitootilisi kinaasi Haspini jaoks. Uudseid ühendeid 

on võimalik kasutada Haspini sondidena järgnevates uuringutes erinevates bioloogilistes 

süsteemides (nt elusrakud ja koed), selgitamaks selle väheuuritud kinaasi rolle ja partnereid 

rakusisestes signaaliradades. 
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Appendix 1. Amino Acid Sequence of Full-Length Haspin and Recombinant His-tagged 

Haspin Kinase Domain; Calculated and Experimental Molecular Weight and Extinction 

Coefficient 

 10                                            20 30 40 50 60 

Full length PK MAASLPGPGS  RLFRTYGAAD GRRQRRPGRE AAQWFPPQDR RRFFNSSGSS DASIGDPSQS 

Kinase domain 

with His-tag 
- - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 70                                            80 90 100 110 120 

 DDPDDPDDPD  FPGSPVRRRR RCPGGRVPKD RPSLTVTPKR WKLRARPSLT VTPRRLGLRA 

 - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 130                                            240 150 160 170 180 

 RPPQKCSTPC  GPLRLPPFPS RDSGRLSPDL SVCGQPRDGD ELGISASLFS SLASPCPGSP 

 - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 190                                            200 210 220 230 240 

 TPRDSVISIG  TSACLVAASA VPSDLHLPEV SLDRASLPCS QEEATGGAKD TRMVHQTRAS 

 - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 250                                            260 270 280 290 300 

 LRSVLFGLMN  SGTPEDSEFR ADGKNMRESC CKRKLVVGNG PEGPGLSSTG KRRATGQDSC 

 - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 310                                            320 330 340 350 360 

 QERGLQEAVR  REHQEASVPK  GRIVPRGTDR  LERTRSSRES  KHQEATETSL LHSHRFKKGQ 

 - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 370                                            380 390 400 410 420 

 KLGKDSFPTQ  DLTPLQNACF  WTKTRASFSF  HKKKIVTDVS  EVCSIYTTAT  SLSGSLLSEC 

 - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 430                                            440 450 460 470 480 

 SNRPVMNRTS  GAPSSWHSSS  MYLLSPLNTL  SISNKKASDA  EKVYGECSQK  GPVPFSHCLP 

 - - - - - - - - - -  - - - - - - - - - - - MHHHHHHSS GVDLGTENLY FQSMGECSQK GPVPFSHCLP 

 490                                            500 510 520 530 540 

 TEKLQRCEKI  GEGVFGEVFQ  TIADHTPVAI  KIIAIEGPDL  VNGSHQKTFE  EILPEIIISK 

 TEKLQRCEKI  GEGVFGEVFQ  TIADHTPVAI  KIIAIEGPDL  VNGSHQKTFE  EILPEIIISK 

 550                                            560 570 580 590 600 

 ELSLLSGEVC  NRTEGFIGLN  SVHCVQGSYP  PLLLKAWDHY  NSTKGSANDR  PDFFKDDQLF 

 ELSLLSGEVC  NRTEGFIGLN  SVHCVQGSYP  PLLLKAWDHY  NSTKGSANDR  PDFFKDDQLF 

 610                                            620 630 640 650 660 

 IVLEFEFGGI  DLEQMRTKLS  SLATAKSILH  QLTASLAVAE  ASLRFEHRDL  HWGNVLLKKT 

 IVLEFEFGGI  DLEQMRTKLS  SLATAKSILH  QLTASLAVAE  ASLRFEHRDL  HWGNVLLKKT 

 670                                            680 690 700 710 720 

 SLKKLHYTLN  GKSSTIPSCG  LQVSIIDYTL  SRLERDGIVV  FCDVSMDEDL  FTGDGDYQFD 

 SLKKLHYTLN  GKSSTIPSCG  LQVSIIDYTL  SRLERDGIVV  FCDVSMDEDL  FTGDGDYQFD 

 730                                            740 750 760 770 780 

 IYRLMKKENN  NRWGEYHPYS  NVLWLHYLTD  KMLKQMTFKT  KCNTPAMKQI  KRKIQEFHRT 

 IYRLMKKENN  NRWGEYHPYS  NVLWLHYLTD  KMLKQMTFKT  KCNTPAMKQI  KRKIQEFHRT 

 790                                                 

 MLNFSSATDL  LCQHSLFK     

 MLNFSSATDL  LCQHSLFK     

 

 

Calculated molecular weight of kinase domain (tagged) = 40654.6 Da 

Experimental molecular weight of kinase domain (tagged) = 40657.8 Da  

Calculated extinction coefficient of kinase domain (tagged) = 36900  

 

Kinase domain is marked with yellow or green; His-tag is marked with red.  
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Appendix 2. Gel-Filtration Chromatogram of Haspin Purification 

 

 

 

UV – UV-signal detection at 280 nm (mAU) 

Cond – conductivity (mS/cm) 

Cond% - relative conductivity signal (mS/cm) 

Pressure – pressure 

A1 – E7 – collected fractions  
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Appendix 3. Images of SDS-PAGE Gels Stained with Coomassie 

 

1. After Ni-NTA column (lysate: lysate after sonification; FT: flow through; WB: wash 

buffer aliquote; E1: elution buffer I aliquote; E2: elution buffer II aliquote; E3: elution 

buffer III aliquote; E4: elution buffer IV aliquote). The bands containing Haspin are 

surrounded by red box. 

 

2. After gel-filtration chromatography (fractions C2-C11 are shown which contained the 

protein). The bands containing Haspin are surrounded by red box. 
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3. Protein used for crystallization trials (conc. – concentrated protein sample; dil. 30x - 30-

fold diluted protein sample). The bands containing Haspin are surrounded by red box. 
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Appendix 4. Precipitating Solutions of Coarse Screen 

LFS4 

 A B C D E F G H 

1 30% PEG1k 

0.1M SPG 

pH 6 

30% PEG1k 

0.1M MIB 

pH 6 

30% PEG1k 

0.1M PCB pH 

6 

 

30% PEG1k 

0.1M MMT 

pH 6 

 

20% 

PEG3.3K 

10% EtGly 

0.2M NaF 
 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 
0.2M NaF 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 
0.2M NaF 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 
0.2M NaF 

2 30% PEG1k 

0.1M SPG 

pH 7 

 

30% PEG1k 

0.1M MIB 

pH 7 

 

30% PEG1k 

0.1M PCB pH 

7 

 

30% PEG1k 

0.1M MMT 

pH 7 

 

20% 

PEG3.3K 

10% EtGly 

0.2M NaBr 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 

0.2M NaBr 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 

0.2M NaBr 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 

0.2M NaBr 

3 30% PEG1k 

0.1M SPG 

pH 8 

30% PEG1k 

0.1M MIB 

pH 8 

 

30% PEG1k 

0.1M PCB pH 

8 

 

30% PEG1k 

0.1M MMT 

pH 8 

 

20% 

PEG3.3K 

10% EtGly 

0.2M NaI 
 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 
0.2M NaI 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 
0.2M NaI 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 
0.2M NaI 

4 60% MPD 

0.1M SPG 

pH 6 

 

60% MPD 

0.1M MIB 

pH 6 

 

60% MPD 

0.1M PCB pH 

6 

 

60% MPD 

0.1M MMT 

pH 6 

 

20% 

PEG3.3K 

10% EtGly 

0.2M KSCN 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 

0.2M KSCN 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 

0.2M KSCN 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 

0.2M KSCN 

5 60% MPD 

0.1M SPG 

pH 7 

60% MPD 

0.1M MIB 

pH 7 

 

60% MPD 

0.1M PCB pH 

7 

 

60% MPD 

0.1M MMT 

pH 7 

 

20% 

PEG3.3K 

10% EtGly 

0.2M 
NaNO3 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 
0.2M NaNO3 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 
0.2M NaNO3 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 
0.2M NaNO3 

6 60% MPD 

0.1M SPG 

pH 8 

 

60% MPD 

0.1M MIB 

pH 8 

 

60% MPD 

0.1M PCB pH 

8 

 

60% MPD 

0.1M MMT 

pH 8 

 

20% 

PEG3.3K 

10% EtGly 

0.2M 

NaForm 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 

0.2M NaForm 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 

0.2M NaForm 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 

0.2M NaForm 

7 20% PEG6k 

10% EtGly 
0.2M NaCl 

20% PEG6k 

10% EtGly 
0.1M MES 

pH 6 

0.2M NaCl 

20% PEG6k 

10% EtGly 
0.1M HEPES 

pH 7 

0.2M NaCl 

20% PEG6k 

10% EtGly 
0.1M tris pH 

8 

0.2M NaCl 

20% 

PEG3.3K 
10% EtGly 

0.2M NaAc 

 

20% PEG3.3K 

10% EtGly 
0.1M bis-tris-

propane pH 6.5 

0.2M NaAc 

20% PEG3.3K 

10% EtGly 
0.1M bis-tris-

propane pH 7.5 

0.2M NaAc 

20% PEG3.3K 

10% EtGly 
0.1M bis-tris-

propane pH 8.5 

0.2M NaAc 

8 20% PEG6k 

10% EtGly 

0.2M AmCl  

 

20% PEG6k 

10% EtGly 

0.1M MES 

pH 6 

0.2M AmCl 

 

20% PEG6k 

10% EtGly 

0.1M HEPES 

pH 7 

0.2M AmCl 

 

20% PEG6k 

10% EtGly 

0.1M tris pH 

8 

0.2M AmCl 

 

20% 

PEG3.3K 

10% EtGly 

0.2M 

Na2SO4 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 

0.2M Na2SO4 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 

0.2M Na2SO4 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 

0.2M Na2SO4 

9 20% PEG6k 

10% EtGly 
0.2M LiCl 

 

20% PEG6k 

10% EtGly 
0.1M MES 

pH 6 

0.2M LiCl 

 

20% PEG6k 

10% EtGly 
0.1M HEPES 

pH 7 

0.2M LiCl 

 

20% PEG6k 

10% EtGly 
0.1M tris pH 

8 

0.2M LiCl 

 

20% 

PEG3.3K 
10% EtGly 

0.2M 

NaKTART 

 

20% PEG3.3K 

10% EtGly 
0.1M bis-tris-

propane pH 6.5 

0.2M NaKTART 

20% PEG3.3K 

10% EtGly 
0.1M bis-tris-

propane pH 7.5 

0.2M NaKTART 

20% PEG3.3K 

10% EtGly 
0.1M bis-tris-

propane pH 8.5 

0.2M NaKTART 

10 20% PEG6k 

10% EtGly 

0.1M MgCl2 

 

20% PEG6k 

10% EtGly 

0.1M MES 

pH 6 

0.1M MgCl2 

20% PEG6k 

10% EtGly 

0.1M HEPES 

pH 7 

0.1M MgCl2 
 

20% PEG6k 

10% EtGly 

0.1M tris pH 

8 

0.1M MgCl2 
 

20% 

PEG3.3K 

10% EtGly 

0.2M 

Na/KPO4 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 

0.2M Na/KPO4 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 

0.2M Na/KPO4 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 

0.2M Na/KPO4 

11 20% PEG6k 

10% EtGly 

0.1M CaCl2 

 

20% PEG6k 

10% EtGly 

0.1M MES 

pH 6 

0.1M CaCl2 

20% PEG6k 

10% EtGly 

0.1M HEPES 

pH 7 

0.1M CaCl2 

20% PEG6k 

10% EtGly 

0.1M tris pH 

8 

0.1M CaCl2 

 

20% 

PEG3.3K 

10% EtGly 

0.2M KCit 

 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 6.5 

0.2M KCit 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 7.5 

0.2M KCit 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-

propane pH 8.5 

0.2M KCit 

12 20% PEG6k 

10% EtGly 

0.01M 
ZnCl2 

 

20% PEG6k 

10% EtGly 

0.1M MES 
pH 6 

0.01M 

ZnCl2 

 

20% PEG6k 

10% EtGly 

0.1M HEPES 
pH 7 

0.01M ZnCl2 

20% PEG6k 

10% EtGly 

0.1M tris pH 
8 

0.01M 

ZnCl2 

20% 

PEG3.3K 

10% EtGly 
0.2M 

NaMLN 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-
propane pH 6.5 

0.2M NaMLN 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-
propane pH 7.5 

0.2M NaMLN 

20% PEG3.3K 

10% EtGly 

0.1M bis-tris-
propane pH 8.5 

0.2M NaMLN 
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Abbreviations: 

AmCl – ammonium chloride 

EtGly – ethylene glycole 

KCit – potassium citrate  

MIB – malonate:imidazole:borate 

MMT – malate:MES:TRIS 

MPD - 2-methyl-2,4-pentanediol 

NaAc – sodium acetate 

NaForm - sodium formate 

NaKTRAT – sodium potassium tartrate 

NaMLN – sodium malonate  

PCB – propionate:cacodylate:bis-tris-propane 

PEG – polyethylene glycole 

SPG – succinate:phosphate:glycine 
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Appendix 5. Precipitating Solutions of Fine Screen 

LFS4-MPD-sp 

 A B C D E F G H 

1 51% MPD 

0.1M SPG 

pH 6 

51% MPD 

0.1M SPG 

pH 6.5 

51% MPD 

0.1M SPG 

pH 7 

51% MPD 

0.1M SPG 

pH 7.5 

51% MPD 

0.1M PCB 

pH 6 

51% MPD 

0.1M PCB 

pH 6.5 

51% MPD 

0.1M PCB 

pH 7 

51% MPD 

0.1M PCB 

pH 7.5 

2 54% MPD 

0.1M SPG 

pH 6 

54% MPD 

0.1M SPG 

pH 6.5 

54% MPD 

0.1M SPG 

pH 7 

54% MPD 

0.1M SPG 

pH 7.5 

54% MPD 

0.1M PCB 

pH 6 

54% MPD 

0.1M PCB 

pH 6.5 

54% MPD 

0.1M PCB 

pH 7 

54% MPD 

0.1M PCB 

pH 7.5 

3 57% MPD 

0.1M SPG 

pH 6 

57% MPD 

0.1M SPG 

pH 6.5 

57% MPD 

0.1M SPG 

pH 7 

57% MPD 

0.1M SPG 

pH 7.5 

57% MPD 

0.1M PCB 

pH 6 

57% MPD 

0.1M PCB 

pH 6.5 

57% MPD 

0.1M PCB 

pH 7 

57% MPD 

0.1M PCB 

pH 7.5 

4 60% MPD 

0.1M SPG 

pH 6 

60% MPD 

0.1M SPG 

pH 6.5 

60% MPD 

0.1M SPG 

pH 7 

60% MPD 

0.1M SPG 

pH 7.5 

60% MPD 

0.1M PCB 

pH 6 

60% MPD 

0.1M PCB 

pH 6.5 

60% MPD 

0.1M PCB 

pH 7 

60% MPD 

0.1M PCB 

pH 7.5 

5 63% MPD 

0.1M SPG 

pH 6 

 

63% MPD 

0.1M SPG 

pH 6.5 

 

63% MPD 

0.1M SPG 

pH 7 

 

63% MPD 

0.1M SPG 

pH 7.5 

63% MPD 

0.1M PCB 

pH 6 

63% MPD 

0.1M PCB 

pH 6.5 

63% MPD 

0.1M PCB 

pH 7 

63% MPD 

0.1M PCB 

pH 7.5 

6 54% MPD 

0.1M SPG 

pH 8 

57% MPD 

0.1M SPG 

pH 8 

60% MPD 

0.1M SPG 

pH 8 

63% MPD 

0.1M SPG 

pH 8 

54% MPD 

0.1M PCB 

pH 8 

57% MPD 

0.1M PCB 

pH 8 

60% MPD 

0.1M PCB 

pH 8 

63% MPD 

0.1M PCB 

pH 8 

7 51% MPD 

0.1M MIB 

pH 6 

51% MPD 

0.1M MIB 

pH 6.5 

51% MPD 

0.1M MIB 

pH 7 

51% MPD 

0.1M MIB 

pH 7.5 

51% MPD 

0.1M MMT 

pH 6 

51% MPD 

0.1M 

MMT pH 

6.5 

51% MPD 

0.1M MMT 

pH 7 

51% MPD 

0.1M 

MMT pH 

7.5 

8 54% MPD 

0.1M MIB 

pH 6 

54% MPD 

0.1M MIB 

pH 6.5 

54% MPD 

0.1M MIB 

pH 7 

54% MPD 

0.1M MIB 

pH 7.5 

54% MPD 

0.1M MMT 

pH 6 

54% MPD 

0.1M 

MMT pH 

6.5 

54% MPD 

0.1M MMT 

pH 7 

54% MPD 

0.1M 

MMT pH 

7.5 

9 57% MPD 

0.1M MIB 

pH 6 

57% MPD 

0.1M MIB 

pH 6.5 

57% MPD 

0.1M MIB 

pH 7 

57% MPD 

0.1M MIB 

pH 7.5 

57% MPD 

0.1M MMT 

pH 6 

57% MPD 

0.1M 

MMT pH 

6.5 

57% MPD 

0.1M MMT 

pH 7 

57% MPD 

0.1M 

MMT pH 

7.5 

10 60% MPD 

0.1M MIB 

pH 6 

60% MPD 

0.1M MIB 

pH 6.5 

60% MPD 

0.1M MIB 

pH 7 

60% MPD 

0.1M MIB 

pH 7.5 

60% MPD 

0.1M MMT 

pH 6 

60% MPD 

0.1M 

MMT pH 

6.5 

60% MPD 

0.1M MMT 

pH 7 

60% MPD 

0.1M 

MMT pH 

7.5 

11 63% MPD 

0.1M MIB 

pH 6 

63% MPD 

0.1M MIB 

pH 6.5 

63% MPD 

0.1M MIB 

pH 7 

63% MPD 

0.1M MIB 

pH 7.5 

63% MPD 

0.1M MMT 

pH 6 

63% MPD 

0.1M 

MMT pH 

6.5 

63% MPD 

0.1M MMT 

pH 7 

63% MPD 

0.1M 

MMT pH 

7.5 

12 54% MPD 

0.1M MIB 

pH 8 

57% MPD 

0.1M MIB 

pH 8 

60% MPD 

0.1M MIB 

pH 8 

63% MPD 

0.1M MIB 

pH 8 

54% MPD 

0.1M MMT 

pH 8 

57% MPD 

0.1M 

MMT pH 

8 

60% MPD 

0.1M MMT 

pH 8 

63% MPD 

0.1M 

MMT pH 

8 

 

Abbreviations: 

MIB – malonate:imidazole:borate 

MMT – malate:MES:TRIS 

MPD - 2-methyl-2,4-pentanediol 

PCB – propionate:cacodylate:bis-tris-propane 

SPG – succinate:phosphate:glycine 
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Appendix 6. Pictures of Haspin/ARC Co-Crystals Under 3.3x Magnification 

Haspin/ARC-1411 co-crystal 

11 hours Day 2 

  
Day 4 Day 9 
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Haspin/ARC-0668 co-crystal 

11 hours Day 2 

  

Day 4 Day 9 
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Haspin/ARC-3125 co-crystal 

11 hours Day 2 

  
Day 4 Day 9 
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Appendix 7. Structural Factors of Co-Crystal Structures Obtained in This Work or Available 

in Protein Data Bank (PDB) 

 

Characteristics ARC-

0902/ 

Haspin 

ARC-

1141/ 

Haspin 

5-iodo-

tubercidin/ 

Haspin 

H3(1-7)/ 

Haspin 

AMP/ 

Haspin 

ARC-1034/ 

PKAc 

ATP+PKI/ 

PKAc 

PDB code not 

published 

not 

published 
3IQ7 4OUC 3DLZ 3BWJ 1ATP 

Resolution (Å) 1.70 1.87 2.00 1.90 1.85 2.30 2.20 

R-value 0.153 0.160 0.174 0.166 0.167 0.201 0.177 

Space group P 21 21 21 P 21 21 21 P 21 21 21 P 21 21 21 P 21 21 21 P 21 21 21 P 21 21 21 
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Appendix 8. Composition of Buffers and Reagents 

 

Binding buffer: 500 mM NaCl, 50 mM HEPES pH 7.5, 5% glycerol, 5mM imidazole 

Wash buffer: 500 mM NaCl, 50 mM HEPES pH 7.5, 5% glycerol, 30 mM imidazole 

Elution buffer I: 500 mM NaCl, 50 mM HEPES pH 7.5, 5% glycerol, 50 mM imidazole 

Elution buffer II: 500 mM NaCl, 50 mM HEPES pH 7.5, 5% glycerol, 100 mM imidazole 

Elution buffer III: 500 mM NaCl, 50 mM HEPES pH 7.5, 5% glycerol, 150 mM imidazole 

Elution buffer IV: 500 mM NaCl, 50 mM HEPES pH 7.5, 5% glycerol, 250 mM imidazole 

Gel-filtration buffer: 300 mM NaCl, 50 mM HEPES pH 7.5, 1 mM TCEP 

FA buffer: 50 mM Hepes (pH 7.5), 150 mM NaCl, 5 mM DTT (7.5 µM BSA) 

Thermal shift assay buffer: 10 mM Hepes pH 7.5, 500 mM NaCl 

Loading buffer with reducing agent: 0.25 M Tris-HCl pH 6.8, 10% sodium dodecyl sulfate, 

50% glycerol, 0.5 M DTT. 0.25% bromophenol blue 

LB Broth, Miller (Fisher Scientific): 10 g tryptone, 5 g yeast extract and 10 g sodium chloride 

per 1 L of water  
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Appendix 9. Structures and Codes of ARCs 

Kood Struktuur 

ARC-

0341 

NH
NH

NH2

+

NH

NH2

NH2

+

NH

NH2

NH

O

O

NH

O

NH2

+

NH

NH2

NH2

+

NH

NH2

NH

O

O

NH

NH2

+

NH

NH2

NH2

+

NH

NH2

NH

O

O

NH2

O N

OH OH

O

NN

N

NH2

 

ARC-

0668 
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NH

O

O
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+

NH

NH2

NH

O

NH

O

NH2

+

NH

NH2

NH2

+

NH
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O

O

NH

NH2
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NH
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NH2
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NH

NH2

NH
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O
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NH2
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NH

NH2

NH2
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O

NH

NH3

+

NH2

O
S

N
N

NH2

 

ARC-

0684 
NH

NH

O

O

NH2

+

NH

NH2

NH
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NH
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NH

NH2

NH2
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NH
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O
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ARC-

0685 

NH
NH

O

O
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+

NH

NH2

NH

O

NH
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+

NH
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NH2

+

NH
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Appendix 10. Chromatograms of Purification, Photodiode Array Spectrum, and ESI-MS Data 

of Novel ARCs 

ARC-3323:   

 

 

ARC-3324: 
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ARC-3327: 

 

 

ARC-3328: 
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ARC-3342: 

 

 

 

 

ARC-3343: 
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ARC-3344: 

 

 

 

ARC-3345: 
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ARC-3346: 

 

 

 

 

ARC-3347: 
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ARC-3348: 

 

 

ARC-3349: 
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ARC-3350: 

 

 

ARC-3351: 
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Appendix 11. Experimental Molecular Weights, Absorption Maxima, Extinction Coefficients 

(ɛ) of Novel ARCs 

Code 
Molecular 

Formula 

Calculated 

Monoisotopic 

Mass (Da) 

Experimental 

Deconvoluted 

HRMS (Da) 
ESI-MS 

λmax 

(nm) 
ɛ  

(M
-1

cm
-1

) 

ARC-3323 C54H90N22O16 1302.6905 1302.6928 652 (z=2) 259 15000 

ARC-3324 C47H76N18O13S 1132.5560 1132.5571 
1134 (z=1) 
567 (z=2) 

340 15000 

ARC-3327 C83H148N42O19S 2069.1627 2069.1671 
690 (z=3) 
518 (z=4) 

340 15000 

ARC-3328 C83H148N42O19S 2069.1627 2069.1689 
690 (z=3) 
518 (z=4) 

340 15000 

ARC-3342 C45H74N18O12S 1090.5454 n.d. 
1092 (z=1) 
547 (z=2) 

340 15000 

ARC-3343 C47H78N18O12S 1118.5767 n.d. 
1120 (z=1) 
561 (z=2) 

340 15000 

ARC-3344 C83H150N42O18S 2055.1834 n.d. 
685 (z=3) 
515 (z=4) 

340 15000 

ARC-3345 C83H150N42O18S 2055.1834 n.d. 
685 (z=3) 
515 (z=4) 

340 15000 

ARC-3346 C46H76N18O12S 1104.5611 n.d. 
1106 (z=1) 
553 (z=2) 

340 15000 

ARC-3347 C48H80N18O12S 1132.5924 n.d. 
1134 (z=1) 
568 (z=2) 

340 15000 

ARC-3348 C47H75N19O13S 1145.5512 n.d. 
1147 (z=1) 
574 (z=2) 

340 15000 

ARC-3349 C47H75N19O13S 1145.5512 n.d. 
1147 (z=1) 
574 (z=2) 

340 15000 

ARC-3350 C48H77N19O13S 1159.5669 n.d. 
1161 (z=1) 
581 (z=2) 

340 15000 

ARC-3351 C50H81N19O13S 1187.5982 n.d. 
1190 (z=1) 
595 (z=2) 

340 15000 

 

n.d. – not determined  
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Appendix 12. Parameters Characterizing the Affinity of the Inhibitor 

 The absolute inhibition constant (Ki) for competitive inhibition reflects the dissociation of the 

enzyme-inhibitor complex:    
      

    
 ([E], [I], and [EI] correspond to equilibrium 

concentrations of the enzyme, inhibitor and enzyme-inhibitor complex). Ki value can only be 

established for inhibition assays (i.e., not binding assays) and is frequently calculated by 

converting the IC50 value to Ki using the Cheng-Prusoff equation (see below).  

 Dissociation constant (KD) is the equilibrium constant that characterizes dissociation process 

of a ligand from its complex with an enzyme:    
      

    
 ([E], [L], and [EL] correspond to 

equilibrium concentrations of the enzyme, ligand and enzyme-ligand complex). In case of 

competitive inhibitors, KD thus represents an analogue of Ki with the difference that KD can 

be established from direct binding assays. In the current work, KD is used for characterization 

of affinities of fluorescent probes towards the target PKs determined in binding assays. 

 IC50 value corresponds to (A) the concentration of inhibitor at which the amount of the 

product phosphorylation reaction is half maximum (in inhibition assays), or (B) the 

concentration of competitor at which the amount of complex of fluorescence probe and kinase 

is half maximum (in binding assays). In inhibition assay, the IC50 value is dependent on the 

concentration and the KM value of the competiting substrate (via Cheng-Prusoff equation: 

   
    

   
   

  

 (Ki is the inhibitory constant of the inhibitor, [S] is the concentration of the 

competing substrate, and KM is the concentration of substrate at which the activity of the 

enzyme is half the maximum). In binding assay, the IC50 value is dependent on the 

concentration and the KD value of the competing ligand (in case when the concentrations of 

enzyme and ligand are in the same range, the IC50 of competitor is also dependent on the 

concentration of enzyme [71]).       

 Displacement constant Kd is the equilibrium constant that is analogical to KD; in the current 

work, Kd is used for characterization of affinities of fluorescently non-labelled compounds 

towards the target PKs determined in the displacement assays. Note that Kd values were not 

measured directly, but calculated using the IC50 values of displacing compounds, the KD 

values of fluorescent probes, and the total concentration of protein kinase and fluorescent 

probe in the assay.  

Although the thermodynamic constants as Ki, KD, and Kd should be dimensionless, the molar 

dimension is nearly always used in biochemical literature to emphasize the fact that these 

values are characterizing the dissociation processes.   
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Appendix 13. The Examples of Binding and Displacement Curves Obtained by FA Method  
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Determination of the active concentration of Haspin and KD value of ARC-1081 by FA binding assay. The titration 

was performed with two different concentrations of fluorescence probe ARC-1081 (final total concentration 2 nM or 

20 nM). The X-axis of the left graph is in linear scale and of the right graph in logarithmic scale.  
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Representative displacement curves obtained in FA displacement assay. Fluorescence probe ARC-1081 (2 nM) 

was displaced from its complex with Haspin (6 nM) by concentration series of non-fluorescent inhibitors (N=2).  
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