
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Physics

Computer Engineering

Indrek Sünter

SOFTWARE FOR THE ESTCUBE-1 COMMAND

AND DATA HANDLING SYSTEM

Supervisors: M.Sc. Kārlis Zālı̄te

Ph.D. Mart Noorma

Tartu 2014

Contents

1 Acronyms and abbreviations 6

2 Introduction 8

3 Requirements 10

3.1 Error handling . 10

3.2 ICP . 11

3.3 Operating system . 11

3.4 Command scheduler . 11

3.5 Flash file system . 12

3.6 FRAM file system . 13

3.7 I2C, SPI and UART drivers . 14

3.8 Time management . 14

3.9 ADCS algorithms . 15

3.10 Telemetry storage . 15

3.11 Telemetry buffering . 16

3.12 Beacon . 16

3.13 Hardware control . 16

3.14 Firmware upgrade . 17

3.15 Low-level access . 18

3.16 Configurability . 18

3

4 Related work 19

4.1 UWE-2 . 19

4.2 SwissCube-1 . 19

4.3 NUTS . 19

4.4 STRaND-1 . 20

5 Software design 21

5.1 Operating system . 23

5.2 Error handling . 24

5.3 ICP . 25

5.4 Command structure . 26

5.5 Command scheduler . 26

5.6 File systems . 28

5.6.1 Flash file system . 28

5.6.2 FRAM file system . 31

5.7 I2C, SPI and UART drivers . 32

5.8 Time management . 34

5.9 ADCS algorithms . 35

5.10 Telemetry logging . 36

5.11 Telemetry buffering . 37

5.12 Beacon . 39

5.13 Hardware control . 39

5.14 Firmware upgrade . 40

4

5.15 Low-level access . 41

5.16 Configuration tables . 43

5.17 On-board scripting . 44

5.18 Optimizations . 45

6 In-orbit performance 46

7 Further improvements 47

8 Conclusion 49

9 Kokkuvõte 50

10 Acknowledgements 51

11 Appendix 55

11.1 Development and testing . 55

11.1.1 Simulation . 55

11.1.2 Firmware integration . 55

11.1.3 Subsystem integration 57

11.1.4 Qualification testing . 57

11.2 ICPTerminal . 58

11.3 Content of the USB memory stick 61

11.4 External memory contents . 61

11.5 Code listings . 64

12 Non-exclusive license to reproduce thesis and make thesis public 66

5

1 Acronyms and abbreviations

Acronym / abbreviation Meaning

ADC Analogue to Digital Converter

ADCS Attitude Determination and Control System

API Application Programming Interface

ARM Advanced RISC machine

CDHS Command and Data Handling System

CDMS Command and Data Management System

COM Communication system

CRC Cyclic Redundancy Check

CW Continuous Wave

DMA Direct Memory Access

EM Satellite Engineering Model

EPS Electrical Power System

FM Satellite Flight Model

FPU Floating Point Unit

FRAM Ferroelectric Random Access Memory

GPIO General Purpose Input / Output

I2C Inter-integrated Circuit

ICP ESTCube-1 Internal Communications Protocol

LEO Low-Earth Orbit

MCS Mission Control System

MSb Most Significant bit

OS Operating System

OSI Open Systems Interconnection

PL Payload

PWM Pulse Width Modulation

RAID Redundant Array of Independent Disks

RAM Random Access Memory

6

Acronym / abbreviation Meaning

RISC Reduced Instruction Set Computing

ROM Read-Only Memory

RTC Real-Time Clock

SAR Synthetic Aperture Radar

SBRF Satellite Body Reference Frame

SEU Single Event Upset

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SWIFT Software Implemented Fault Tolerance

TLE Two-line orbital element set

TM Satellite Table Model

UART Universal Asynchronous Receiver / Transmitter

UDP User Datagram Protocol

XML Extensible Markup Language

7

2 Introduction

The main mission of the first Estonian student satellite, ESTCube-1, is to test the

reeling out of one 10 m long tether with the help of centrifugal force and to mea-

sure the effect of upper atmospheric plasma acting on the tether. The experiment

is performed in polar Low Earth Orbit (LEO) [1]. The main experiment requires

at least the following: Attitude Determination and Control System (ADCS) to

spin up the satellite to 1 rps [2], on-board logic for controlling satellite payload

(PL) and on-board storage for experiment data. The secondary mission is to take

a photo of Estonia from space. This requires the on-board Attitude Determination

and Control System (ADCS) to point the on-board camera towards Estonia for

taking photos.

On board of ESTCube-1, Command and Data Handling System (CDHS) coordi-

nates the experiment and stores mission data. CDHS runs attitude determination

and control algorithms, CDHS controls satellite payload (PL) and ADCS hard-

ware, distributes received telecommands, executes scheduled commands or scripts

and stores measurements in on-board memory for radio downlink.

It is possible to order or outsource a pre-designed satellite on-board computer.

However, by developing satellite hardware and software ourselves, the educational

value of the student satellite project is improved considerably. Moreover, a cus-

tom design that has been tailored to mission-specific requirements can be made

more power-efficient than a generic design intended for supporting a variety of

missions.

The goal of this work is to design and implement the on-board software for

ESTCube-1 Command and Data Handling System.

At first, hard and soft requirements are collected from satellite subsystem teams

and a preliminary design is drafted. During the design and implementation, re-

quirements usually change, new requirements are added while some of the old

requirements become irrelevant. This is especially the case for the first student

project that builds the foundation and know-how for future projects. In this thesis,

8

the author presents only the final requirements and design that have withstood the

test of time for more than a year.

Despite the increasing popularity of cubesat student satellite projects, there are

only a few theses or articles that describe the architecture or design of cubesat

on-board computer software. Hopefully this thesis helps to alleviate the issue.

This thesis is organized as follows: In Section 3, a subset of ESTCube-1 Com-

mand and Data Handling (CDHS) on-board software requirements as well as hard-

ware limitations are described. The next section lists the work of other nanosatel-

lite teams on the software design of their on-board computers with similar re-

quirements. In Section 5, an overview of the ESTCube-1 CDHS software design

is presented. The following sections describe how CDHS hardware and software

have performed during the year of operation in-orbit and based on the experience,

what could be improved in the next versions of CDHS firmware. In the appendix,

the procedure of CDHS software development, testing is briefly described, fol-

lowed by a short overview of the software used for both testing as well as for

operating the satellite in-orbit. The appendix also cointains a list of files and di-

rectories on the USB memory stick that is accompanied with the thesis. The file

system contents of several CDHS memory devices are also listed in the appendix.

The appendix ends with a few code listings that are referenced in the thesis.

9

3 Requirements

Since the initial phases of the ESTCube-1 project, CDHS software was planned

to do the following:

1. Schedule and execute commands.

2. Gather and store housekeeping and mission data.

3. Run attitude determination and control algorithms, which are developed by

ADCS.

4. Control ADCS and PL hardware.

5. Support firmware upgrades.

Data on the health and performance of satellite systems is considered housekeep-

ing data. Sensor measurements, camera images and calculation results based on

sensor input are considered mission data.

During the design and development of ESTCube-1 hardware and software, more

detailed requirements emerged. Some of the more detailed requirements have

been grouped into the following subsections.

3.1 Error handling

On start-up, CDHS must store resets and their types (power-on, watchdog reset,

hard fault, stack overflow or malloc failure) in the error log, which could later be

checked by satellite operators. Any other errors and warnings such as communi-

cation errors with sensors and other subsystems must be logged and satellite must

recover. Regardless of the error, CDHS firmware must not freeze.

In order to avoid a long list of inter-subsystem communication errors or commu-

nication errors with peripheral devices, it must be possible to disable the logging

of these errors when they are not needed.

10

In case of a hard-fault, stack overflow or malloc failure, the system must log the

error and reboot.

3.2 ICP

CDHS must comply with the ESTCube-1 satellite internal communications pro-

tocol (ICP) standard. Refer to [3, page 228] for a detailed description of ICP.

ICP calls must be thread-safe, that is, it must be possible to send ICP packets from

different tasks running simultaneously on CDHS.

In case of intermittent stability issues with EPS, it must be possible to disable

communication with EPS temporarily.

3.3 Operating system

Attitude determination and control algorithms need latencies to be deterministic

so that measurements could be extrapolated for the time that torque would be

applied. The accuracy of determining the latency should be in the order of 10 ms.

The operating system (OS) must support multi-tasking and must provide mutexes,

semaphores and queues for synchronizing operations running in parallel. OS re-

source usage must be minimal, for CDHS only has 96 KB of RAM and 256 KB

of flash memory per firmware image.

3.4 Command scheduler

A command scheduler is needed for handling commands from a queue and al-

lowing for commands to be scheduled at specific times. It must be possible to

schedule a set of commands so that it will be repeated with a configurable period

of execution.

11

In command structure, command header must pose a minimal overhead to com-

mand parameters. Command header must have a command identifier field and a

field for the length of command parameters. In order for CDHS to send a response

to an enqueued or scheduled command, command header must contain a field that

contains the identifier of the subsystem that issued the command.

CDHS must be able to schedule the execution of specific commands at specific

date and time.

3.5 Flash file system

On-board CDHS, there are three SPI flash memory devices, 16 MB each. Flash

memory expects data to be written in pages (one page is up to 256 B). Although

the memory devices are NOR flash, it is not guaranteed that byte or word writes

are safe. To ensure the safety as well as performance, data should be buffered into

a buffer of 16 B. Over-programming of already written data is also not guaranteed

to be safe. In order to modify a byte, the whole 64 KB block should be erased.

Each block can be erased only up to 100 000 times and the erasing sequence of

one block can take up to 3 s, thus, the number of block erasures should be kept

low. On erase, a block is filled with 0xFF values.

In order to cope with the aforementioned peculiarities, a file system is needed that

would hide the details from higher level program code.

Flash is known to be sensitive to radiation. Conventional flash memories start fail-

ing at doses of 10−20 kRad(Si) due to the charge pump degradation, whereas Fer-

roelectric Random Access Memory (FRAM) devices can tolerate 280 kRad(Si)

without errors. [4, p. 155] In order to avoid the corruption of the file system,

metadata must be stored in FRAM and only file contents can be stored in flash.

A minimum of two types of files would be needed: image and journal. An image

file only has value as a whole. The old image can be erased and replaced with a

new image. When an image file becomes full, an error must be logged. A journal

12

file is written one entry at a time and once the file becomes full, it wraps around

the end and oldest entries are replaced with new ones. All files should support

random access to minimize read and write times as well as to make the file system

easier to test and debug. For journal files, it must be guaranteed that when a flash

block is erased, the integrity of journal entries in other blocks is not sacrificed.

For simplicity, it can be assumed that rarely are files deleted and files are of con-

stant length. File lengths are can be aligned to full blocks (each file is a multiple

of 64 KB) and there are always less than 256 files. Numerical file names are pre-

ferred for minimizing the overhead of on-board string manipulation. Directories,

links are not needed.

It should be possible to detect and record bad bytes and bad blocks. A bad byte is

a byte that contains bits, which cannot be set to their correct values. A bad block

is a block that contains more bad bytes than the configuration allows for. The file

system should be able to fix bad bytes and skip bad blocks on writing and reading.

3.6 FRAM file system

CDHS has five SPI FRAM devices, 256 KB each. Serial memory devices cannot

be addressed directly and the manual handling of addresses and lengths becomes

cumbersome as the number of separate regions increases. In order to hide the

details from the high level program code, an FRAM file system is needed.

FRAM file system must support the storage of files of arbitrary length. Require-

ments for file types are the same as for flash file system (image and journal files).

There are always less than 256 files. Directories, links are not needed and file

names should be numerical.

In case of a corrupt FRAM file system, the error must be reported and system files

must be restored.

13

3.7 I2C, SPI and UART drivers

CDHS has two I2C ports for ADCS gyroscopic sensors and magnetometers as

well as two SPI ports for Analogue to Digital Converters (ADCs) on ADCS and

PL boards. A third SPI port is only used for memory devices and real-time clock

on-board CDHS. [3]

I2C gyroscopic sensors occasionally block the I2C bus, which disables commu-

nication with I2C magnetometers and a backup I2C FRAM on-board CDHS. In

order to circumvent this issue, I2C driver must automatically recover from bus

and peripheral issues caused by I2C devices.

ADCs, CDHS RTC, flash memories and FRAM memories all have different SPI

clock requirements. Flash memories support up to 104 MHz, FRAM 40 MHz,

whereas for ADCs, the maximum is 10 MHz and RTC only supports clock rates

up to 4 MHz. SPI driver should be able to adjust SPI clock frequency on the fly, in

order to minimize memory access times. Direct Memory Access (DMA) should

be used for reading from or writing to memory devices via SPI.

I2C, SPI and UART drivers must support asynchronous operation. I2C, SPI drivers

should also support blocking mode of operation. Direct calls to I2C, SPI and

UART peripherals and hardware must only be performed in driver daemons.

3.8 Time management

CDHS does not have an uninterruptible power supply for RTC. CDHS must up-

date its time via EPS.

In order to synchronize ADCS attitude and raw measurements with CAM photos,

time difference between CDHS and CAM must be less than 100 ms. Latencies

in the communications protocol between subsystems are not deterministic to the

desired accuracy. A separate line is needed to synchronize CDHS and EPS times.

14

3.9 ADCS algorithms

According to ADCS simulations, the minimum iteration frequency that allows for

spin-up to 1 rps is 2.5 Hz [5]. This means that one iteration of sensor measure-

ments, pre-processing, sensor models, Kalman filter and attitude controller must

take less than 400 ms to execute. While running ADCS algorithms, CDHS must

be able to store sensor measurements, attitude, controller output, run a script in

the background and respond to commands issued by satellite operators.

Simplified perturbation model SGP4, used by ADCS to calculate satellite orbital

state vectors, relies on double-precision floating point arithmetic calculations.

Since CDHS microcontroller does not have a hardware floating-point unit (FPU),

it has to perform floating-point arithmetic calculations in software.

It must be possible for satellite operators to enable or disable attitude determina-

tion and to select an attitude controller. It must also be possible to configure the

iteration frequency for each controller.

Magnetometers must not be measured while the magnetic torquers are active.

3.10 Telemetry storage

CDHS must be able to gather and store housekeeping telemetry from CAM, COM,

EPS, ADCS and CDHS itself at a configurable time period.

It must be possible to direct the output of any on-board commands to any files in

CDHS memory devices. CDHS must also support configurable logging of specific

commands and responses from other subsystems.

Although there is a requirement that CDHS must be able to store CAM images,

it is not of high priority because CAM is able to store four photos in RAM. The

detailed requirements and design of image transfer between CAM, CDHS and

storage in CDHS memory are still to be determined. A simple ICP forwarding of

CAM image packets has been enough so far.

15

3.11 Telemetry buffering

In the initial phases of the project, there was a safety requirement that the satellite

must not send any packets, unless it receives a request. This helped to avoid

the risk of a Single Event Upset (SEU) causing the satellite to continuously send

packets until either the on-board radio transceiver burns down or until the batteries

are drained.

However, because each down-link packet had to be requested separately, the ef-

ficiency of data down-link was limited. Also, COM is only able to buffer four

packets at maximum. A feature was requested, which would allow for CDHS to

send the next packet right after COM has finished transmitting the previous one.

Mission Control System (MCS) suggested adding unique identifiers for down-link

packets as well as the possibility to request for specific packets to be re-sent from

the satellite.

3.12 Beacon

Based on the periodically gathered telemetry of different subsystems, CDHS must

be able to send packet beacon at a configurable time period. In addition, it must

be possible to configure CDHS to compile telemetry data and send it to EPS for

transmission as EPS normal mode beacon. [6]

3.13 Hardware control

ADCS magnetometers and gyroscopic sensors are connected to CDHS via I2C.

Sun sensor ADC’s are connected to CDHS via SPI. CDHS must be able to con-

figure these devices and perform measurements. CDHS must be able to control

magnetic torquers, which are directly driven by EPS.

Before the mission, tether reel and tether end-mass must be unlocked. Tether reel

and end-mass locks are directly connected to EPS. Tether reel motor controller

16

provides two control pins: motor enable, motor direction. Before the launch of

ESTCube-1, the motor direction pin was disabled on the reel motor controller for

safety reasons. Initially there was a feedback pin from the motor controller to

CDHS, which allowed for CDHS to estimate the length of the reeled out tether.

Due to software issues on the reel motor controller, the feedback line was also

disabled before the launch. However, satellite operators must be able to specify

the amount of tether to be reeled out.

For voltage and current measurements on the payload high-voltage supply, CDHS

must be able to configure the ADC that is connected to CDHS via SPI and perform

measurements. The high-voltage supply provides five control lines. Two lines

for switching the polarity of the output. Two control lines for toggling electron

emitters. One control line is reserved for switching ground. CDHS must be able to

control these lines on command. CDHS must guarantee that both polarity control

lines are never pulled high at the same time.

3.14 Firmware upgrade

Due to a tight schedule in hardware assembly and testing, most of the on-board

software development and testing had to be postponed for a time after the launch.

Consequently, in-orbit firmware upgrades became the highest priority in software

development. In order for ESTCube-1 to be able to perform the experiment, it

must be possible to upgrade CDHS firmware in-orbit. To improve fault tolerance,

CDHS must have at least one fallback firmware image that is selected when boot-

up to the other firmware fails.

During the firmware upload procedure, it must be possible to request for a pagemap

that indicates the status of firmware pages. Pagemap would be used to re-send

firmware pages that the satellite has not received.

Before writing an uploaded firmware image to microcontroller flash, the image

must be verified against its checksum.

17

3.15 Low-level access

In case of a system upset in orbit, it should be possible to collect information

on issue. It must be possible to read raw memory regions from external devices

connected to CDHS as well as from microcontroller internal memory and micro-

controller registers.

It should also be possible for satellite operators to fix the issues either by manually

configuring microcontroller pins, overwriting memory or changing the contents of

microcontroller registers.

3.16 Configurability

For ESTCube-1, there are 11 communication passes each day with a period of

about 1.5 hours. The duration of each communication pass varies from about 3

to 13 minutes. Taking communication passes and packet loss into account, each

in-orbit firmware upgrade takes about 1.5 days to complete. Thus, it is desired to

have the possibility to make smaller changes in the behaviour of CDHS without

resorting to a firmware upgrade each time.

Configurability must not come at the cost of fault tolerance. All critical config-

uration variables must be checked at run-time. There must be a safe fallback

configuration that is applied in case of problems.

CDHS must offer in-orbit configurability for ADCS parameters such as orbital

parameters, inertial matrix, controller gains, etc.

18

4 Related work

Based on the requirements for ESTCube-1 CDHS software, software design solu-

tions being used on other satellites are listed here.

Only a few published articles and theses were found on the software architecture

and design of cubesat on-board computers.

4.1 UWE-2

The UWE pico satellite platform is based on an H8 microprocessor from Hitachi.

The on-board computer of UWE-2 has 8MB of RAM and a flash memory of 4MB

for permanent storage. In UWE-2 software, system initialization, error handling,

inter-module communication and OS calls are performed by a central module in

uCLinux user mode. [7]

4.2 SwissCube-1

SwissCube-1 Command and Data Management System (CDMS) runs eCos on an

ARM7TDMI processor. The Command and Data Management system software

is stored in a non-volatile memory and allows for firmware upgrades during the

mission. Firmware upgrade is performed by first erasing the microcontroller flash

memory and then uploading the new firmware image part by part. [8]

4.3 NUTS

The NUTS cubesat on-board computer (OBC) runs FreeRTOS on an AVR32UC3

and uses Cubesat Space Protocol (CSP) for satellite internal communication. NUTS

is scheduled to be launched by the end of 2014. The NUTS OBC has 2 MB of

RAM, 512 KB of microcontroller flash and 2 GB of storage space on NAND flash

memory. [9]

19

The usage of YAFFS2 on NUTS OBC as the flash file system has been proposed

[10].

4.4 STRaND-1

The STRaND-1 cubesat uses an off-the-shelf GomSpace A712 "Nanomind" on-

board computer (OBC) with 2 MB of RAM, 8 MB of flash memory and runs

FreeRTOS. GomSpace-supplied library provides drivers for the I2C bus, magne-

tometers and magnetic torquers. STRaND-1 Attitude Determination and Control

System (ADCS) software is run on the OBC. [11]

STRaND-1 OBC supports modular firmware upgrades in-orbit, which are per-

formed over a custom protocol Strandatoga that has been derived from Saratoga.

Saratoga is a light-weight transport protocol based on the User Datagram Protocol

(UDP) [12]. On-board software modules can be replaced, augmented or removed

without the need for ceasing any on-board operations. However, only one of the

microcontroller flash memory banks is used for storing a full bootable firmware

image. The OBC runs a central task, which manages software modules, their

timing and provides an Application Programming Interface (API) for accessing

hardware and memory management. [11]

In order to perform mission tasks, the OBC uses the scheduling of telecommands.

On STRaND-1 OBC, all internal variables can be accessed and modified live,

which allows for resolving unforeseen issues in-orbit. [13]

20

5 Software design

CDHS software can be classified into layers, based on dependencies between soft-

ware components. Refer to Figure 1 on page 22 for details. On the figure, rectan-

gles with solid lines represent software modules running on dedicated operating

system tasks, while rectangles with dashed lines depict code that is called directly.

Device drivers are highlighted in green and sensor pre-processing filters are high-

lighted in violet.

The standard peripheral library for STM32F1 offers C macros and functions for

accessing microcontroller peripheral hardware. However, the peripheral library

does not allow for the indexing of General Purpose Input Output (GPIO) pins,

I2C, SPI or UART ports, DMA channels. A minimalistic Hardware Abstraction

Layer (HAL) has been written to improve the Application Programming Interface

(API), as well as account for the differences in the hardware of STM32F1 and

STM32F2.

As a Real-Time Operating System (RTOS), FreeRTOS 7.6.0 [14] is used. Based

on configuration, CDHS task initializes all the other enabled devices and soft-

ware modules. I2C, SPI and UART driver daemons are started. Device drivers

are initialized for ADCS gyroscopic sensors, magnetometers, FRAM and flash

memories, Analogue to Digital Converters (ADCs) and Real-Time Clock (RTC).

After the initialization procedures, CDHS task is used for the following:

• Low-priority periodical operations:

– gathering housekeeping data from all subsystems,

– compiling telemetry for beacon transmission,

– gathering system statistics,

– synchronizing RTC with EPS,

– checking system time against RTC,

– performing user-defined operations.

21

• Scheduled time-consuming operations:

– formatting a file system,

– clearing file contents,

– generating trigonometry look-up tables.

ICP task handles communication with other satellite subsystems and provides a

foundation for the CDHS command scheduler, which in turn is the basis for script-

ing.

File systems access FRAM and flash device drivers, CDHS time management rou-

tines rely on the RTC device driver. ADCS sun sensors and gyroscopic sensors are

periodically polled in separate tasks that perform temperature correction, averag-

ing and conversion into Satellite Body Reference Frame (SBRF). Pre-processed

measurements are then read by the ADCS task.

Magnetometer measurements must not be performed while the magnetic torquers

are active. In order to simplify the synchronization, magnetometer measurements

and pre-processing are called directly from the ADCS task.

Figure 1: CDHS software layers.

22

Table 1: Comparison of real-time operating systems.

Minimum Minimum
Name

Flash footprint RAM footprint
License Ported to

FreeRTOS 4 KB 0.5 KB free, GPL Cortex-M31

Salvo 1 KB 0.05 KB commercial

ThreadX 2 KB 0.5 KB commercial Cortex-M31

Keil RTX 4 KB 0.5 KB commercial

eCos 10..100 KB Not known free, GPL Cortex-M31

1 Officially ported to Cortex-M3 and/or Cortex-M4.

5.1 Operating system

See Table 1 for a few of the real-time operating systems considered in the design

phase. As the operating system of CDHS, the free open-source real-time operating

system FreeRTOS 7.6.0 was chosen, mainly because of its low flash and RAM

footprints and low performance overhead. A minimal configuration of FreeRTOS

only needs about 4 KB of flash and 0.5 KB of RAM. On the CDHS, FreeRTOS

takes about 11 KB of flash and 64 KB of RAM. Most of the RAM is reserved for

the heap of dynamic memory management. [3]

With a proper configuration of priorities, latencies in FreeRTOS can be made

deterministic in the order of 10 ms or less.

With barely any modifications, FreeRTOS allows for putting the microcontroller

to sleep every tick (in our configuration, one tick equals 1 ms) after a task ex-

ecution round has been finished. This reduced average current consumption by

10...20 mA. See Listing 4 on page 64 for source code.

23

5.2 Error handling

A minimalistic exception handling system was developed in C, with support for

multitasking. For each task with an exception handling scope, a fixed-length ex-

ception stack is allocated. In the exception handling scope, Duff’s device [15] and

setjmp, longjmp functions are used in C macros. See Listing 5 on page 65 for an

example.

Error logging has two levels of storage to reliably deliver the list of errors to

satellite operators. Errors during boot-up as well as errors reported from inter-

rupt handlers are stored in a RAM section that retains its contents till the next

CDHS power cycle. When CDHS is in fall-back mode, error logging to FRAM

is disabled or FRAM devices are disabled, then all errors are stored in the RAM

section. After the initialization of external FRAM memories and file systems, the

RAM section is periodically checked for new errors that could be appended to a

circular error log file in the system FRAM. [3]

Errors are stored in FRAM as entries with a 4 B timestamp, 2 B exception index

and a 2 B module index. Timestamp indicates the moment that the error was

logged. Module index specifies the software module where the exception was

caught, exception index identifies the error. An 800 B file allows for the storage of

100 errors. The error log is circular so that the oldest entries are replaced with the

most recent errors. In order to save RAM, only 50 B has been reserved for errors

in the RAM section. By storing errors in a circular buffer without a timestamp

nor module index, there is room for 25 most recent errors at maximum. Once

the logging storage in system FRAM has been initialized, timestamps and default

module indexes are assigned to all the errors.

Errors are divided into groups, such as ICP, I2C, SPI, command scheduler, etc. The

logging of individual groups can be enabled or disabled separately. For on-board

statistics, errors from different groups are counted separately. To avoid cases when

the error log would become full of the same error, consecutive repetitive errors are

logged only once.

24

5.3 ICP

A cross-platform implementation of the satellite internal communications proto-

col (ICP) is used in CDHS software. ICP provides Open Systems Interconnection

(OSI) model data link and network layers for a mesh topology of UART connec-

tions between ESTCube-1 subsystems [3]. See Figure 2 for the ICP topology.

ICP routing table has been configured to send packets directly to the destination,

unless there is a problem with one of the links. In case packets are not success-

fully delivered to COM, the packets are routed through EPS. However, in order

to maintain ground communications with CDHS in case of an issue with packet

delivery to EPS, CDHS does not forward the packets through COM.

Figure 2: ICP topology on ESTCube-1.

Direct calls to the ICP library have been grouped together into a single FreeRTOS

task, to avoid racing conditions. ICP task has a FreeRTOS queue for its operations.

This allows for triggering ICP update or packet-send calls from interrupts or any

other tasks.

In order to communicate with CDHS hardware via ICP, a USB serial adapter

would be plugged to a personal computer (PC) that is running ICPTerminal soft-

ware. Refer to Section 11.2 for more information on ICPTerminal.

CDHS counts ICP errors with EPS. If the number of consecutive errors reaches

a configurable threshold, CDHS temporarily disables ICP communication with

EPS for a configurable amount of time (the default is 1 s). With a startup flag,

CDHS can be configured to avoid any ICP communication with EPS, until the

configuration is changed.

25

Table 2: ICP endpoint indexes.

Index Endpoint Meaning
0 EPS Electrical Power System

1 COM Communication System

2 CDHS Command and Data Handling System

3 ADCS1 Attitude Determination and Control System

4 PL1 Payload

5 CAM Camera

6 GS Ground Station

7 PC2 Personal Computer, attached to CDHS

8 PC22 Personal Computer, attached to EPS

1 Endpoint reserved but not used on ESTCube-1.
2 Used for debugging purposes only.

5.4 Command structure

In order to minimize the overhead of command metadata, commands are handled

in binary form. The same structure is used for both commands that are sent to a

subsystem and replies that the subsystem sends back. Command structure consists

of a 4 B header and command arguments. The first two bytes of the header are

used for identifying the command and the structure of its arguments. The third

byte specifies the subsystem that expects the response from the command. The

last byte of the command header provides the length of command arguments. See

Table 3 on page 27 for the command structure, Most Significant bit (MSb) first.

On the ground, binary commands are compiled and responses are interpreted with

the help of ICPTerminal.

5.5 Command scheduler

Command scheduler handles commands and allows for the execution of com-

mands at a specific date and time. CDHS command scheduler runs on a separate

26

Table 3: Satellite command structure.

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
Byte 0 Command identifier (most significant byte)

Byte 1 Command identifier (least significant byte)

Byte 2 Source1 Block index2

Byte 3 Length of arguments, in bytes

... Command arguments3

1 ICP endpoint index of the source subsystem. See Table 2 on page 26 for a list

of ICP endpoints.
2 Reserved for command block index, which allowed to group several com-

mands into a single executable block. Not used in the latest design.
3 Command arguments of variable length. Structure is determined by Command

identifier.

FreeRTOS task.

Command scheduler supports arrays of commands, which it splits into individ-

ual commands that are then pushed into the queue. Command arguments may

contain commands, which easily allows for self-repeating commands as well as

commands that are executed if specific conditions are met.

For commands scheduled to be executed at a specific time, command scheduler

has a pool of FreeRTOS timers that are assigned to commands. On timer overflow,

the commands are pushed into the command scheduler queue for execution. The

command scheduler task is suspended while the command queue is empty and

wakes up when at least one command has been added to the queue. When the

command scheduler queue becomes full, an error is logged and further commands

are dropped until the previous commands have been handled.

27

5.6 File systems

Application Programming Interface (API) was designed to be similar for all file

systems. File system calls interface a generalized structure with pointers to flash

or FRAM file system functions. FRAM file system provides functionality that

flash file system does not and vice versa. Unsupported functionality is indicated

with function pointers with a value of NULL. Function pointers are assigned on

mounting.

In the design of both flash and FRAM file systems, support for random access to

files and file metadata as well as simplicity of implementation and testing were

prioritized. In both file systems, file descriptor index coincides with the numerical

file name (file index).

The metadata of a file system starts with a magic word that is used to identify the

file system type and version during mounting.

5.6.1 Flash file system

Metadata of the flash file system is fixed to its maximum size, to allow for it to be

stored as a file in an FRAM file system. In both the FRAM and flash file systems,

files are of fixed length and their maximum size must be known at the time they

are created. All files in the flash file system are aligned to flash block boundaries.

See Figure 3 on page 29 for details on the metadata structure of the flash file

system. The device type field in the device descriptor in flash file system header

specifies whether the flash memory device has a parallel or serial interface. In

case of a parallel interface, the device address field contains the base address of

the memory, whereas in case of an SPI interface, the field contains SPI device

index.

The device descriptor also specifies the page, block and write buffer lengths in

bytes. A block is the minimum erasable unit, a page is the maximum programmable

unit and all writes are aligned to page boundaries. Write buffer is configured for

28

Figure 3: Metadata structure of the flash file system version 3 with the default configura-

tion.

the minimum programmable unit, in case it is 1 B, a write buffer is not needed.

On CDHS, SPI flash memory devices are configured with 64 KB blocks, 256 B

pages and a write buffer of 16 B.

The first block and last block fields in the file system header specify the

region of the flash memory that is managed by the file system.

The Num bad blocks field indicates the number of detected blocks with a mis-

match between the data written and read back. The Num bad bytes field indicates

the number of individual bytes for which, there is a mismatch in the written value

and the value read back.

29

Bad blocks are marked by storing their indexes in the file system metadata, follow-

ing the file system header. The next region in the file system metadata is reserved

for bad bytes. Each bad byte contains the expected byte value and its position in

file.

The bad block ratio is configurable at build time, the default value of 4 allows up

to 1/4 of flash blocks to be marked as bad. The maximum number of bad bytes is

fixed to 256.

The Num free regions field in the file system header indicates the number of

continuous free regions in the flash memory. Unused flash blocks are merged

into continuous free regions. By maintaining the table of continuous free regions

in an external non-volatile memory, microcontroller RAM footprint is reduced

without the cost of recalculating the regions each time a file is created or deleted.

In the case of maximum fragmentation of file descriptors, half of the flash blocks

would be occupied by files and half of the blocks would be marked as free. Thus,

for a flash with 256 blocks, the number of continuous free regions can be up to

256/2 = 128.

The flags field in flash file system header is used for configuring the detection

and recovery of bad blocks and bad bytes.

At the end of file system metadata, space has been reserved for 256 file descrip-

tors. File descriptor has two optional timestamp fields, the time when the file was

created and the time of the last modification (write or seek operations). The Start

block and Num blocks fields define the total capacity of the file. The file start

block and file end fields allow for the file to grow up to the capacity as well

as provide support for circular files. File type field indicates whether the file is

circular or not. At the end of each file descriptor, a write buffer is allocated. Write

buffer groups short write calls and aligns them to minimum programmable units

before writing to flash.

Once a block becomes full so that the next journal entry would not fit at the end of

the block, then the entry is aligned to the beginning of the next block. This way,

30

journal integrity is not lost when a block is erased and the start block index of

the circular file is iterated. On the other hand, without storing additional metadata

for each block, each written journal entry must be read back as a whole so that

read calls would be aligned the same way. This simplification was not a problem

with the initial file system requirements. Later when the requirement of storing

the output of any configurable set of commands was introduced, the simplification

became an issue.

Padding bytes have been automatically added by the toolchain, to ensure data

alignment.

5.6.2 FRAM file system

The FRAM file system metadata consists of a header, followed by a region of file

contents, free space and ends with an array of file descriptors. As new files are

created, the regions of file contents and file descriptors grow towards each other,

until there is no free space left.

Following the magic word, FRAM file system header stores an address that points

at the end of the contents of the last allocated file (Last file address). With

files being deleted and added, the file contents region may become fragmented.

Since the amount of free space is checked each time a new file is created, the

Last file address field saves the read-out of all file descriptors. In order to

minimize file access times, file descriptors are random accessible by file index.

File contents, however, are allocated in the order of file creation. See Figure 4 on

page 32 for details on the structure of the FRAM file system metadata.

FRAM device descriptor contains device type, device index and volume length in

bytes. FRAM file system header ends with the number of files and file system

flags.

File descriptor starts with optional timestamps. The Address of contents points

at the base address of file contents. Total capacity specifies the maximum

length of the file contents and Current length is the number of bytes that has

31

Figure 4: Metadata structure of FRAM file system version 3 with the default configura-

tion.

been written into the file contents. Start address marks the beginning and End

address marks the end of the file for circular journal files. File type indicates

whether the file is of image or circular journal type.

The separate File index field is a remnant from previous versions of the FRAM

file system metadata.

Padding bytes have been added automatically by the toolchain.

5.7 I2C, SPI and UART drivers

Both I2C and SPI drivers have a transaction queue and a daemon task that pro-

cesses transactions and operates the corresponding peripherals.

Transaction structure contains identifiers for target port, device, transaction status

32

fields and lists of pointers to write and read buffers with their lengths.

For each I2C transaction, first the contents of write buffers are sent to the target

device and then responses are stored in the read buffers. With this design, only

one transaction is needed to read one register or a continuous array of registers

from an I2C device.

I2C driver has been designed on hardware interrupts. I2C interrupt handlers have

been optimized for performance.

For each SPI transaction, first the target device is selected, then the contents of

write buffer are sent to the device while reading to the read buffers at the same

time. In case the write buffers are empty, zero bytes are sent until the read buffers

are full. Once the transaction has been finished, the target device is de-selected.

Due to the hardware design of CDHS, external memory devices are connected via

SPI. In order to minimize memory access times, SPI driver uses DMA.

SPI and I2C transactions have configurable timeouts. Each SPI and I2C port has

a dedicated FreeRTOS timer for aborting the active transaction on timeout. In

addition to FreeRTOS timers, there are secondary timeout checks in the driver

daemons.

UART drivers are not transactional, because the number of received bytes is not

known. There is a daemon, which processes messages that are to be sent. An inter-

rupt is used to transmit a message byte-by-byte and to receive individual bytes. To

relay the received bytes, UART driver simply offers a callback function to higher

software layers. On CDHS, the callback function is used to fill ICP input buffer.

Incoming bytes are checked for ICP frame delimiters. Once a potential ICP frame

has been received or the ICP input buffer is full, then CDHS wakes the ICP task

for an update.

33

5.8 Time management

On ESTCube-1, the central time management is performed by EPS, due to hard-

ware design. EPS is the only subsystem with access to a non-interruptible power

supply. EPS RTC is synchronized with the ground during satellite operations.

CDHS initiates a time synchronization procedure with EPS about 20 seconds af-

ter boot-up. The delay of 20 seconds is to provide enough time for the satellite

operator to react, in case the communication between CDHS and EPS causes a

reset to one of the involved subsystems. At the initialization of time synchroniza-

tion, CDHS sends a command to EPS over ICP. EPS responds with a future times-

tamp and triggers a pin when the previously provided timestamp has been reached.

CDHS sets its time when the pin is triggered and schedules a re-configuration of

its SPI RTC. See Figure 5 for a timeline of this procedure.

Figure 5: Synchronization of CDHS time from EPS.

On CDHS, SPI RTC is configured to toggle an interrupt pin at the start of each

second. CDHS synchronizes its timestamp on this interrupt. This helps to com-

pensate for possible drifts in the microcontroller clock rate.

34

5.9 ADCS algorithms

ADCS algorithms are called from a dedicated task with a configurable priority

and iteration frequency.

In order to save time in the ADCS task, separate tasks have been created for the

periodical measurement and pre-processing of gyroscopic sensors and sun sensor

ADC’s. The results are collected by the ADCS task in a thread-safe way. Only

the measurement and pre-processing of magnetometers is called directly from the

ADCS task because this makes it easy to guarantee that magnetometers are never

measured while the magnetic torquers are active.

The timing of operations in the ADCS task has been organized in such a way that

magnetic torquers would be active while the attitude determination and control

algorithms are calculating magnetorquer parameters for the next iteration. See

Figure 6 on page 36 for an illustration of the timing of the ADCS task at an iter-

ation frequency of 2.5 Hz. Based on attitude controller output from the previous

iteration, a command with magnetic torquer Pulse Width Modulation (PWM) val-

ues, direction of currents and a timeout is sent to EPS at the start of each ADCS

iteration. The timeout parameter is used for automatically deactivating the mag-

netic torquers on EPS. Due to a possible non-deterministic communication latency

between CDHS and EPS, CDHS has a configurable delay (20 ms by default) be-

fore it notifies EPS to activate the torquers by toggling a pin. During the delay,

CDHS performs magnetometer measurements and pre-processing. See Figure 7

on page 36 for a timeline.

At the time of writing, EPS still limits magnetic torquer timeouts to 255 ms so

that at an iteration frequency of 2.5 Hz, magnetic torquers are active for only 63%

of the iteration. With higher iteration frequencies, the percentage is improved.

However, the more often magnetic torquer control commands are sent to EPS, the

greater the risk of EPS encountering a sporadic reset. An EPS reset also causes a

CDHS power cycle, which stops attitude control. With an upcoming revision of

EPS firmware, the maximum magnetic torquer timeout value shall be increased.

35

Figure 6: Timing of the ADCS task at 2.5 Hz iteration frequency.

Figure 7: Timeline of magnetic torquer control.

In-orbit measurements of attitude determination and spin-up controller with the

CDHS microcontroller running at 32 MHz indicate a calculation time of roughly

110 ms per iteration. This would allow for an iteration frequency of at least 8 Hz.

5.10 Telemetry logging

Command scheduler support for higher-order commands is used to enable the

logging of command responses. CDHS provides commands that store the output

of the commands supplied as an argument. The target memory device and file

36

can either be configured for all subsequent logging calls or for each logging call

separately. CDHS also has commands for configuring a set of filters, which allow

for specific commands or response packets from other subsystems to be logged.

Regular housekeeping data is logged into a file where the structure of each entry

is fixed, thus allowing for random-access by time. The support for storing the

responses of any commands is provided at the expense of losing random-access

to individual entries because the lengths of journal entries differ. For the lack

of a better name, the journal files for logging the output of commands are called

“Special” journals.

In order to be able to reliably read the contents of a journal in flash file system, the

length of the next journal entry must be known. For special journals, this is not the

case. To avoid issues with misaligned file reads, special journals are down-linked

as raw memory regions instead of files because alignment does not apply to raw

memory reads.

Each special journal entry starts with a timestamp of when the entry was logged.

Following the 4 B timestamp, each entry has a response header that follows

the CDHS command structure format (See Section 5.4) and response arguments.

The structure of response arguments is determined by both the identifier and

length of arguments fields in the response header. See Figure 8 on page 38 for

an example.

5.11 Telemetry buffering

In order to provide support for down-link packets with unique identifiers as well as

for re-sending specific packets on request, a telemetry buffer module was designed

and implemented. Each packet targeted to Ground Station (GS) is stored as an

entry in the telemetry buffer, which is a circular journal file. Each entry contains a

3 B sequence counter as a unique identifier, packet source subsystem index, packet

type, packet length and a unix timestamp. The first packet is sent to COM after

being stored in the buffer. The next packet is sent when a ready-to-send packet is

37

Figure 8: An example structure of a special journal with two entries: a response to a

CDHS ping command (12 B) and a housekeeping response from COM (29 B).

received from COM. In case COM does not indicate that it is waiting for the next

packet to send to the ground, the next packet is sent after a configurable timeout

has been reached. With each sent packet, the read address of the telemetry buffer

is iterated.

At first, a 1MB flash journal file was used for telemetry buffer contents. Telemetry

buffer header was stored in a file in the system FRAM. Due to frequent write and

erase calls, the buffer file was moved to FRAM and shrunk to 100 KB.

Commands were implemented to request for the status of the telemetry buffer and

to request for a list of packets to be re-sent. Telemetry buffering can be enabled

on request.

Contrary to our expectations, telemetry buffering does not improve the efficiency

of our data down-link. Although it allows for several down-link requests to be

grouped into a single packet, the timing of transmitted packets is flawed. Not

always does COM send a ready-to-send packet after it has finished transmitting

the previous one, which often causes timeout delays between packets. Moreover,

reducing the timeout only caused COM packet buffer to become full more often.

The feature of requesting for the re-transmission of packets has not been used,

since ICPTerminal extensions have been designed to automatically re-send the

38

requests, for which the responses are missing. In order to monitor time variant

parameters, the use of on-board logging is preferred.

Due to intermittent timing issues, the telemetry buffer read address occasionally

leaps to the start of the buffer, so that CDHS starts re-sending old packets and has

to be stopped manually. It can be stopped either by disabling telemetry buffering,

resetting the buffer or performing a CDHS reboot.

5.12 Beacon

CDHS can be configured to periodically collect telemetry from CAM, COM, EPS,

ADCS and itself. It can then be configured to use the telemetry for sending it as

packet beacon or EPS normal mode beacon, which is Continuous Wave (CW)

beacon.

When beacon is enabled, CDHS asks EPS for their beacon status. EPS beacon

status indicates if EPS is running in debug or normal mode, as well as provides

the time since the last beacon transmission. In debug mode, EPS periodically

transmits their own beacon. With the beacon status, CDHS avoids interrupting

EPS while another beacon is being transmitted. CDHS also checks EPS guardian

state and determines the period at which it should request for an EPS normal mode

beacon. All of the aforementioned steps can be disabled with CDHS configura-

tion.

Since intermittent stability issues with EPS were detected in-orbit when beacon

was enabled for more than three days, telemetry gathering and beacon transmis-

sion are now disabled by default.

5.13 Hardware control

ADCS magnetometers, gyroscopic sensors and sun sensor ADC’s are controlled

over I2C or SPI with dedicated device drivers, which have been written by ADCS.

39

Magnetic torquers are controlled by sending EPS an ICP packet and triggering a

pin. Similar to the time synchronization procedure in Section 5.8, a pin trigger is

used to alleviate the issue of non-deterministic delays in ICP communication.

The ADC of payload high-voltage supply is controlled over SPI with the ADC122S

device driver. Payload locks are controlled by sending specific ICP packets to

EPS. Reel motor controller and high-voltage supply control lines are controlled

via CDHS pins. Software checks are used to make sure that both high-voltage

supply polarity control lines are not pulled high at the same time. To mitigate the

problem of missing feedback from the tether reel motor controller, CDHS assumes

a constant reeling speed and provides a command to reel for a specified number of

milliseconds. With a reeling time of more than 100 ms, the ratio between reeling

time and the amount of tether reeled out was seen to be almost linear.

Payload hardware control has not been tested in orbit yet. This will be performed

once the satellite has been reliably spun up to 1 rps.

5.14 Firmware upgrade

CDHS firmware is uploaded to a 256 KB SPI FRAM, a 128 B page at a time.

CDHS maintains a pagemap, where each bit marks a page. High bit values indi-

cate pages that have been successfully received and low bit values indicate missed

pages.

Firmware pages would be transmitted from the ground while periodically request-

ing firmware pagemap for confirmation. Missing pages are automatically re-sent

to the satellite. Once the whole firmware image has been uploaded, a CRC-32

checksum is calculated and compared against the checksum in the firmware im-

age header. CRC-32 was chosen because the STM32F1 microcontroller has a

built-in peripheral for calculating CRC-32 checksum.

After a successful verification of the integrity of the firmware image in the FRAM,

commands are scheduled for the CDHS bootloader to copy the image into flash. A

40

soft-reboot is performed, during which, the bootloader performs the scheduled op-

erations and logs its progress into the microcontroller internal flash. Both CDHS

microcontrollers have two firmware image slots. In case the boot-up sequence to

one of the firmware images would fail, the bootloader would try to boot to the

other firmware image. In case both firmware images have been corrupted, CDHS

microcontrollers would be switched via EPS. [16, 3]

Both CDHS microcontrollers have 768 KB of flash memory. Two 300 KB slots

have been reserved for firmware images. In case of 256 KB firmware images, this

allows for 44 KB of firmware-specific configuration as well as 168 KB for global

configuration and look-up tables. Although 256 KB was thought to be more than

enough, our release builds have already reached 230 KB. See Figure 9 on page

42 for the distribution of memory addresses for firmware images. For STM32F1

microcontrollers, the interrupt vector table must be aligned to a 512 B boundary.

Because of this, a padding section was added after each firmware image header.

Firmware image header consists of three 32 bit words:

1. Firmware image size in Bytes, without header and padding.

2. Firmware version in hexadecimal format.

3. CRC-32 checksum of the firmware image.

Due to linker issues with generating position independent code for bare-metal

Cortex-M3, firmware for each slot has to be separately linked and uploaded to the

satellite.

5.15 Low-level access

CDHS provides a command for reading microcontroller memory, registers or the

contents of any external device that is connected via I2C or SPI. Requirements for

the on-board file systems were set so that files could be read either by using file

access commands or by reading the raw memory contents at a specific address.

41

Figure 9: Distribution of microcontroller flash memory on CDHS.

A command for calculating the CRC-32 checksum of on-board memory, registers

or external memory contents can be used to check for changes in large memory

regions without the need for downloading them.

In addition, CDHS has a command for reading microcontroller pin values. There

are commands for requesting microcontroller peripheral frequencies, amount of

free heap left, for measuring the execution time of any other commands or for

recording the status of FreeRTOS tasks.

CDHS also allows for sending raw ICP packets to other subsystems, or to emulate

forwarded packets. For example, CDHS can be used to send a request to EPS so

that EPS would think the packet came from the Ground Station (GS) and would

send the response to the ground.

42

Once the execution of CDHS debug commands has been enabled, low-level ma-

nipulation commands can be used. These allow for setting microcontroller pin

values, writing to internal memory regions, registers or any external device con-

nected via I2C or SPI.

A python script is used to parse linker map files of built firmware images for the

indexes of dynamic configuration table entries as well as for the memory addresses

of global variables. The script produces a python module for ICPTerminal, which

allows for accessing on-board variables by name.

5.16 Configuration tables

In the flash memory of both CDHS microcontrollers, one 2 KB block has been

reserved for a table of CDHS configuration variables. An example of CDHS

configuration variables: microcontroller clock frequency, start-up flags, loading

sequence of external memory devices, task priorities, task stack margins, queue

lengths, etc. Two 2 KB blocks have been reserved for ADCS configuration vari-

ables such as Two-Line Element set (TLE), gain for satellite de-tumbling con-

troller or Kalman filter covariances for magnetometers and gyroscopic sensors,

etc. See Figure 9 on page 42 for the distribution of memory addresses for config-

uration tables.

On boot-up, CDHS configuration table is loaded into RAM from flash. In RAM,

configuration variables are checked against limits before use. Configuration vari-

ables in RAM can be updated from the ground and written back to flash to make

changes non-volatile.

In case at least 6 CDHS resets have occurred so that CDHS has not sent any

responses back to the ground, fall-back configuration is used. In fall-back con-

figuration, all I2C and SPI devices are disabled, only the most basic on-board

functionality is left enabled, allowing for operators to manually initialize devices

and resolve possible issues.

43

Configuration variables can be accessed either by their indexes or by their mem-

ory addresses. CDHS configuration variables have been grouped into a single

structure, thanks to which, variable indexes can be kept constant across firmware

versions. Since ADCS configuration variables are scattered throughout several li-

braries, variable indexes change as the linker changes the ordering of the variables

within the region.

5.17 On-board scripting

Scripting allows for flexibility at a minimal cost of microcontroller code memory.

Pawn [17], formerly known as Small, scripting language was chosen for its min-

imal flash, RAM requirements and support for embedded systems. See Table 4

on page 45 for a comparison of a few scripting languages that have been used on

embedded systems with low resources. Customized versions of Pawn are used

for scripting in game industry 1, which offers active communities for discussions

related to the Pawn language.

With all the necessary wrappers for floating point arithmetic calculations, string

operations, timers, binary structures, command interface and logging, the cus-

tomized Pawn uses about 18 KB of flash on CDHS. The stack size is configurable

for each Pawn script and Pawn features overlays, which allow for the execution of

scripts larger than the amount of RAM that is available on the system. On CDHS,

scripts are typically run with 256 words of stack and 2 KB overlays, which totals

to a RAM footprint of about 4 KB. The length of a Pawn word (also called a Pawn

cell) is configured as 32 bits.

1According to Wikipedia, Pawn is used in the San Andreas Multiplayer mod, Half-Life mod,

AMX Mod X and Source Engine based SourceMod as well as in other projects.

44

Table 4: Comparison of scripting languages.

Minimum Minimum
Name

Flash footprint1 RAM footprint1 License Ported to

Pawn 10 KB 2 KB free, Apache 2 ARM72

Squirrel 100 KB 100 KB free, MIT

eLua 128 KB 32 KB free, MIT Cortex-M33

PyMite 64 KB 8 KB GPL 2

1 The presented footprints are rough estimates. Only the footprints of Pawn were

measured on CDHS.
2 The ARM7 port is not usable for Cortex-M3. However, Pawn also has a less opti-

mized version that is cross-platform.
3 Officially ported to Cortex-M3, which is used on CDHS.

5.18 Optimizations

In order to reduce the flash footprint of the firmware image, rarely used function-

ality was removed and software modules were simplified. Standard functions for

memory and string operations were rewritten for minimizing flash footprint. See

Listing 1 for a list of compiler flags and Listing 2 for a list of linker flags used for

the release build of CDHS firmware images.

Listing 1: Compiler flags

-Os -fshort-enums -ffunction-sections -fdata-sections

-fno-reorder-blocks -fno-reorder-functions -fno-strict-aliasing

-fno-peephole2 -fno-delete-null-pointer-checks

Listing 2: Linker flags

-nostartfiles -nodefaultlibs -nostdlib -Xlinker --gc-sections

In order to improve the performance of sine and cosine functions, CDHS generates

a 148 KB look-up table. See Figure 9 on page 42 for an overview of CDHS

microcontroller flash memory layout.

45

6 In-orbit performance

ESTCube-1 has been operational in-orbit for slightly more than a year. In order to

save battery life, CDHS microcontroller is down-clocked to 32 MHz and config-

ured to sleep on idle. By the time of writing, there have been about 12 successful

in-orbit firmware upgrades to CDHS.

A list of issues encountered so far:

• Most likely an effect of ionizing radiaton:

1. One of the firmware image slots is damaged on one of the two micro-

controllers (microcontroller A).

2. On its own, CDHS has entered fallback mode twice.

• Deviation in memory access times:

1. False positive bad bytes and bad blocks in the flash file system.

• The cause is unknown:

1. A few anomalous bytes in on-board logs. Bytes 2C 20 04 instead of

6C 20 7C.

2. Occasional loss of on-board statistics and script files.

The transmission of packet beacon as well as EPS normal mode beacon have been

rarely used due to intermittent stability issues with EPS.

The feature for logging housekeeping telemetry has been rarely used, as it does not

provide enough information for attitude determination and control tests. House-

keeping log is inefficient for sampling a few parameters at a higher frequency. The

"special" on-board logging functionality was introduced to resolve the issue.

The "special" on-board logging as well as file-transfer have been used for storing

raw sensor measurements over several orbits, for recording the current consump-

tion of satellite subsystems, monitoring satellite attitude, etc.

46

Commands have been scheduled for being executed at specific times to take cam-

era images of the North and South poles, United States, Africa and several other

regions.

Attitude determination and several attitude control algorithms have been success-

fully run in-orbit:

1. Attitude determination with camera images for verification.

2. Detumbling to minimize changes in the magnetic field measurements.

3. Pointing to direct the on-board camera towards a target in-orbit or on the

ground.

4. Spin-up to increase angular velocity around satellite Z axis.

5. Spin-up to increase angular velocity around a pre-configured axis.

The on-board scripting functionality has been used for the following:

1. Transmitting telemetry packets of gratitude to radio amateurs for their help

in receiving satellite Continuous Wave (CW) beacon and packet telemetry.

2. Testing magnetic torquers and measuring their effect with magnetometers,

gyroscopic sensors and sun sensors.

3. Satellite demagnetisation with magnetic torquers.

4. Running pointing controller and taking camera images when the pointing

error drops below a configured threshold.

7 Further improvements

While avoiding the logging of consecutive repetitive errors helps to use the error

log more efficiently, it becomes a problem when the timestamps of repetitive er-

rors are of interest. During ADCS tests, there is a tendency for errors to repeat in

47

cycles. Error logging could be improved to detect and filter out repetitive cycles.

Instead of storing absolute timestamps for all error log entries, relative timestamps

against a single absolute timestamp could be used.

Although the requirements for flash file system had been set in such a way that

both read and write access times would be minimal, fast read access has not proven

necessary. By sacrificing random access on flash file reads, the file system could

be designed upon a tree structure. This would make the detection and recovery of

corrupt bytes easier and more reliable.

Flash file system write and erase times are a limiting factor in CDHS data logging.

On a group of flash memory devices and FRAMs, something similar to Redundant

Array of Independent Disks 0 (RAID 0) could be implemented to speed up file

system write calls. However, this would increase the risk of losing data due to a

malfunctioning memory device. The size of the bad block table in flash file system

metadata can be reduced from 64 B to 8 B by storing a bitmap instead of a list of

indexes.

The speed of Pawn script abstract machine can be improved by implementing an

assembler optimized version for Cortex-M3 microcontrollers.

With a more recent version of FreeRTOS, microcontroller sleep on tickless idle

can be implemented. This might reduce CDHS current consumption further. By

implementing dynamic runtime clocking of CDHS microcontroller and memory

devices, the average current consumption could be decreased even more.

Currently CDHS only allows satellite operators to log telemetry as command re-

sponses. However, often a single command contains too much overhead or only

a few parameters are needed from many different commands. Could design and

implement a system that would allow requests for configurable sets of parameters.

This would increase the efficiency of both data logging and telemetry downloads.

48

8 Conclusion

Requirements for the on-board software of ESTCube-1 Command and Data Han-

dling System (CDHS) were gathered. Accounting for the requirements, the on-

board software for CDHS was designed and implemented. The on-board software

contains FreeRTOS drivers for data buses and on-board devices, error handling,

command scheduler, telemetry logging, file systems for serial FRAM and flash

memory devices. Several of the developed modules are also being used on the

camera system of ESTCube-1.

Tests have been performed on the software on two hardware models on the ground

as well as on the satellite in orbit. With the exception of a few, the issues encoun-

tered during in-orbit testing have been successfully reproduced on the lab clone of

the satellite, resolved, after which, the updated CDHS firmware images have been

successfully uploaded to the satellite in orbit.

On-board CDHS, several in-orbit tests have been carried out on attitude deter-

mination and control software. The pre-processing algorithms for sensor mea-

surements have been verified, the output of on-board attitude determination has

been compared to photos from the on-board camera. Detumbling, pointing and

two spin-up controllers have been run successfully on CDHS in orbit. With the

pointing controller and with the help of CDHS on-board scripting, the secondary

mission of taking a photo of Estonia from space has been fulfilled.

ESTCube-1 has been in orbit for slightly more than a year now and all the systems

are still operational.

49

ESTCube-1 Käsu- ja Andmehaldussüsteemi tarkvara
Indrek Sünter

9 Kokkuvõte

Antud töö raames sai loetletud ESTCube-1 Käsu- ja Andmehaldussüsteemile ehk

pardaarvutile esitatud nõuded. Vastavalt nõuetele sai arendatud pardaarvuti tark-

vara, mis sisaldab FreeRTOS ajureid andmesiinide ja pardaseadmete jaoks, vea-

haldust, käsuhaldurit, moodulit telemeetria salvestamiseks ning failisüsteeme jadali-

idesega ferroelektriliste muutmälude ja välkmälude jaoks. Mitmed arendatud

tarkvaramoodulitest on leidnud kasutust ka ESTCube-1 kaamerasüsteemi pardal.

Arendatud tarkvaral on sooritatud teste kahel satelliidi maapealsel mudelil ning

orbiidil lendaval satelliidil. Mõningate eranditega on orbiidil täheldatud prob-

leemid edukalt reprodutseeritud maapealsetel mudelitel, ning uus parandustega

versioon tarkvarast on edukalt orbiidil olevale satelliidile laetud.

Orbiidil on pardaarvutil edukalt katsetatud satelliidi orientatsiooni määramise ja

juhtimise tarkvara. Andurite mõõdiste eeltöötluse algoritmid on orbiidil testi-

tud ning satelliidi orientatsiooni määramise algoritmi väljundit on võrreldud par-

dakaamera piltidega. Kasutades satelliidi osutamise algoritmi koos pardaarvuti

skriptidega, on täidetud ka osa ESTCube-1 missioonist - pildistada Eestit kos-

mosest.

Seni on ESTCube-1 olnud orbiidil veidi üle aasta ning kõik satelliidi süsteemid

on endiselt töökorras.

50

10 Acknowledgements

I would like to thank

• Kaspars Laizāns for the design and assembly of the final version of CDHS

hardware so that I could focus on the software,

• Henri Kuuste for reviewing my code and providing advice on software ar-

chitecture,

• Martin Valgur for developing ICP and implementing the core of ICPTermi-

nal,

• Erik Kulu for operating the satellite 24/7 and performing in-orbit testing

• and everyone else who have been working on the ESTCube-1 project.

I would like to thank both Kārlis Zālı̄te from the Tartu Observatory Synthetic

Aperture Radar (SAR) team as well as Mart Noorma for supervising this thesis.

51

References

[1] A. Slavinskis, U. Kvell, M. Pajusalu, H. Kuuste, I. Sünter, E. Ilbis, T. Een-

mäe, K. Laizāns, A. Vahter, E. Eilonen, J. Kalde, P. Liias, A. Sisask, L. Kim-

mel, V. Allik, S. Lätt, and M. Noorma, “Estcube-1 nanosatellite for electric

solar wind sail demonstration in low earth orbit,” in “64th International As-

tronautical Congress,” (2013).

[2] A. Slavinskis, U. Kvell, E. Kulu, I. Sünter, H. Kuuste, S. Lätt, K. Voorman-

sik, and M. Noorma, “High spin rate magnetic controller for nanosatellites,”

Acta Astronautica (2014).

[3] K. Laizāns, I. Sünter, K. Zālı̄te, H. Kuuste, M. Valgur, K. Tarbe, V. Allik,

G. Olentšenko, P. Laes, S. Lätt, and M. Noorma, “The design of fault tolerant

command and data handling subsystem for estcube-1,” Proceedings of the

Estonian Academy of Sciences pp. 222–231 (2014).

[4] N. Wrachien, “Advanced memories to overcome the flash memory weak-

nesses: a radiation viewpoint reliability study,” Ph.D. thesis, University of

Padova (2010).

[5] A. Slavinskis, E. Kulu, J. Viru, R. Valner, H. Ehrpais, T. Uiboupin, M. Järve,

E. Soolo, J. Envall, T. Scheffller, I. Sünter, H. Kuuste, U. Kvell, J. Kalde,

K. Laizāns, E. Ilbis, T. Eenmäe, R. Vendt, K. Voormansik, I. Ansko, V. Al-

lik, S. Lätt, and M. Noorma, “Attitude determination and control for cen-

trifugal tether deployment on the estcube-1 nanosatellite,” Proceedings of

the Estonian Academy of Sciences pp. 242–249 (2014).

[6] T. Ilves, “Estcube-1 electrical power system operation software,” Master’s

thesis, university of tartu (2013).

[7] M. Schmidt and K. Schilling, “An extensible on-board data handling soft-

ware platform for pico satellites,” Acta Astronautica (2008).

52

[8] L. L. Moulin, “Swisscube integration, launch and operational activities,”

Master’s thesis, HES-SO Valais-Wallis (2009).

[9] D. E. Holmstrøm, “Software and software architecture for a student satel-

lite,” Tech. rep., Norwegian University of Science and Technology (NTNU)

(2012).

[10] K. A. Ødegaard, “Error detection and correction for low-cost nano satellites,”

Master’s thesis, Norwegian University of Science and Technology (NTNU)

(2013).

[11] C. P. Bridges, S. Kenyon, P. Shaw, E. Simons, L. Visagie, T. Theodorou,

B. Yeomans, J. Parsons, V. Lappas, C. Underwood, S. Jason, D. Mellor,

N. Navarathinam, P. Wellstead, A. Schofield, R. Linehan, J. Barrera-Ars,

B. Dyer, D. Liddle, and M. N. Sweeting, “A baptism of fire: The strand-1

nanosatellite,” in “27th Annual AIAA/USU Conference on Small Satellites,”

(2013).

[12] L. Wood, W. M. Eddy, W. Ivancic, J. McKim, and C. Jackson, “Saratoga: a

delay-tolerant networking convergence layer with efficient link utilization,”

in “Delay Tolerant Networking session, Third International Workshop on

Satellite and Space Communications,” (2007).

[13] S. Kenyon, C. P. Bridges, D. Liddle, B. Dyer, J. Parsons, M. Pollard,

D. Feltham, R. Taylor, D. Mellor, A. Schofield, R. Linehan, R. Long, J. Fer-

nandez, H. Kadhem, P. Davies, J. Gebbie, N. Holt, P. Shaw, L. Visagie,

T. Theodorou, V. Lappas, and C. Underwood, “Strand-1: Use of a $500

smartphone as the central avionics of a nanosatellite,” in “62nd International

Astronautical Congress,” (2011).

[14] R. Barry, “Freertos,” (2014). http://www.freertos.org/RTOS.

html.

[15] T. Duff, “Description of duff’s device,” (1988). http://www.lysator.

liu.se/c/duffs-device.html.

53

http://www.freertos.org/RTOS.html
http://www.freertos.org/RTOS.html
http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html

[16] K. Tarbe, “Bootloader for estcube-1 command and data handling system and

camera module,” Bachelor thesis, University of Tartu (2013).

[17] T. Riemersma, “Pawn - an embedded scripting language,” (2014). http:

//www.compuphase.com/pawn/pawn.htm.

54

http://www.compuphase.com/pawn/pawn.htm
http://www.compuphase.com/pawn/pawn.htm

11 Appendix

11.1 Development and testing

The software development and testing of CDHS software is performed in three or

four stages, depending on the complexity of the performed software modifications.

11.1.1 Simulation

Larger software modules, such as ICP, Flash and FRAM file systems, attitude

determination and control algorithms are simulated before they are integrated into

the CDHS firmware. The software modules are written to be platform independent

so that they can be first developed and tested on a personal computer and then used

on the real hardware with a minimum of testing.

In order to develop and simulate attitude determination and control algorithms,

the ADCS team uses Matlab with Simulink. In order to develop and simulate ICP,

custom applications have been written for running unit tests and simulating the

communication between several subsystems. A custom application has also been

developed for simulating Flash and FRAM memory devices and running tests on

the file systems.

At this stage, unit tests, functionality tests are run and specific failure scenarios

are tested.

11.1.2 Firmware integration

Software developed and tested on a personal computer is integrated with the rest of

CDHS firmware. Eclipse CDT is used to write the code, Mentor Graphics CodeS-

ourcery Lite toolchain is used to compile and link the firmware image. Firmware

image header and padding are added with a custom python script. See Section

5.14 for a description of the firmware image header structure.

55

Two methods are used for updating the firmware image on CDHS engineering

model. Occasionally, the firmware is uploaded through an USB serial connection

with ICPTerminal. See Section 5.14 for a detailed procedure. Most often, the

CDHS engineering model (EM) is manually reset into the built-in bootloader of

STM32F1 and the firmware is uploaded through an USB serial connection with

an application that follows the STM32 bootloader protocol. Although with both

methods, a firmware upgrade takes a few minutes, the latter method is quicker.

Tests on the CDHS engineering model are performed manually by sending re-

quests and analysing replies with ICPTerminal. See Figure 11 on page 57 for a

screenshot of ICPTerminal in action. See Figure 10 on page 56 for an image of

the CDHS engineering model with an additional USB serial converter attached.

Hardware in the loop tests were performed for testing the integration of attitude

determination and control algorithms. Input data was taken from the simulation

environment and fed to the engineering model. Calculations were performed on-

board and results were compared with those from simulations.

Figure 10: Testing on CDHS engineering model.

56

Figure 11: ICPTerminal connected to the CDHS and ADCS engineering model.

11.1.3 Subsystem integration

Firmware tested on-board an engineering model is uploaded to the lab clone of

the satellite (also called table model or TM), where inter-subsystem functionality

and performance are tested. See Figure 12 on page 58 for an image of the table

model, connected to a solar panel simulator and a programmable power supply.

Magnetic torquers are taped onto a plastic structure. A CDHS firmware upgrade

to the table model takes about 1 h.

11.1.4 Qualification testing

Final functionality tests as well as software qualification tests are performed by

satellite operators on ESTCube-1 that is in orbit (also called flight model or FM).

See Figure 13 on page 59 for an image of the flight model at a cleanroom in

Kourou in French Guiana. A CDHS firmware upgrade takes at least a day, de-

pending on the up-link packet loss.

57

Figure 12: Testing on the table model.

11.2 ICPTerminal

ICPTerminal is a modular Python application that Martin Valgur has developed

specifically for ICP communication with hardware, following the CDHS com-

mand structure. ICPTerminal uses the same C library for ICP that also runs on-

board satellite subsystems. By design, ICPTerminal easily allows for creating

extension modules for parsing error logs, upgrading firmware, performing file

transfer with the satellite, downloading and processing camera images, etc. On

startup, ICPTerminal loads Extensible Markup Language (XML) files with ICP

endpoints on the satellite, the descriptions of satellite command and reply packets

and extension modules. For each subsystem, a separate terminal-dock frame is

created with a communication log and a text box for entering commands in text

form. See Figure 11 on page 57 for a screenshot of ICPTerminal.

Although ICPTerminal had been intended for testing purposes only, it is currently

58

Figure 13: Firmware upgrade on ESTCube-1 flight model at a cleanroom in Kourou in

French Guiana.

still being used for operating ESTCube-1.

For file transfer with ESTCube-1 CDHS, an extension module was written. The

file transfer extension allows the operator to add so called bookmarks, which de-

scribe either on-board files, raw memory regions or registers. File bookmarks

contain at least the following parameters: target file name (name of the file that is

used to store the data), file system type, file system index, file index. Raw memory

bookmarks specify target file name, device type, device index, memory address

and length. When a bookmark is selected for downloading, an empty file is cre-

ated for storing content and a pagemap file is created for marking successfully

received pages. For missing pages, the extension re-sends the read commands. In

the case of uploading files to the satellite, CDHS maintains a pagemap on-board.

The pagemap would be downloaded and checked for missing pages, which would

59

then be re-sent to the satellite.

An ICPTerminal extension was written, which would parse down-linked binary

files and convert them to Comma Separated Values (CSV) that could be imported

to Matlab, GNumeric or any custom utilities.

An extension was written for executing state-machine scripts that allow for au-

tomating routine satellite operation procedures, synchronize satellite time, update

TLE.

The core of ICPTerminal was modified to add support for higher order commands

as well as for sending multiple commands per packet. See Listing 3 for an example

ICPTerminal command that starts periodic logging of specific command responses

and writes the output into an explicitly defined file. The command requests for at-

titude (getattitude), output of sensor measurements with pre-processed results

(getgf) and last magnetic torquer parameters sent to EPS (getlastcoils). The

output of the commands is written to a special journal with a file index of 4 in

the first SPI flash memory (file system of type 1, file system index 0). The pro-

cedure is repeated once every second (1000 ms), until the operator stops it. This

example relies heavily on the CDHS command scheduler support for higher order

commands.

Listing 3: An ICPTerminal command to periodically log the responses of a few com-

mands.
iloop 1000 {ilog2 1 0 4 {getattitude;getgf;getlastcoils}}

60

11.3 Content of the USB memory stick

Table 5: Contents of the accompanying USB memory stick.

M2014_Synter.pdf A copy of the thesis

exp2014_Synter.pdf

Report on practical experiences in computer engineer-
ing. Describes the design and implementation of new
features for ICPTerminal. The report is in Estonian
only.

source_code Source code of CDHS firmware

11.4 External memory contents

61

Table 6: Table of reserved files on the system FRAM (file system of type 0, index 1).

File
File name

index
File type File size Description

test 0 4 (journal) 50 B Reserved for file system read / write tests.

fwp-fram 1 2 (image) 300 B Pagemap for temporary firmware storage.

fwp-slot0 2 2 (image) 300 B Pagemap for firmware image slot 0.

fwp-slot1 3 2 (image) 300 B Pagemap for firmware image slot 1.

fwp-bootldr 4 2 (image) 300 B Pagemap for bootloader image.

error-log 5 2 (image) 800 B Log of CDHS errors.

schedules 6 2 (image) 8 KB
Reserved for command scheduler. A list
of commands executed on startup.

ffs0 7 2 (image) 15 KB Metadata for flash file system 0.

ffs1 8 2 (image) 15 KB Metadata for flash file system 1.

ffs2 9 2 (image) 15 KB Metadata for flash file system 2.

special-hdr 10 2 (image) 256 B
Metadata for the special journal. A list of
configurable filters for logging telemetry
from other subsystems.

tmbuf-meta 11 2 (image) 64 B

Metadata for the telemetry buffer.
Telemetry buffer state, packet identifier
and address of the next packet to be read.

statistics 12 2 (image) 2 KB

Statistics file with file system read / write
access times and errors grouped by soft-
ware modules. Updated periodically on
demand.

rt-stats 13 2 (image) 2 KB

Statistics on FreeRTOS tasks. Status,
priority, microcontroller time, microcon-
troller percentage and amount of free
stack for each task. Updated once on de-
mand.

file-pmap 14 2 (image) 300 B Pagemap for file uploads. Only one file at
a time.

62

Table 7: Table of reserved files on the second SPI FRAM (file system of type 0, index 2).

File
File name

index
File type File size Description

test 0 4 (journal) 50 B Reserved for file system read / write tests.

tm-buffer 1 4 (journal) 100 KB Buffer for telemetry packets to be down-
linked via COM.

Table 8: Table of reserved files on the first SPI Flash (file system of type 1, index 0).

File
File name

index
File type File size Description

test 0 4 (journal) 64 KB Reserved for file system read / write tests.

housekeeping 1 4 (journal) 2 MB
Periodically gathered housekeeping data
from several subsystems.

special 2 4 (journal) 2 MB
Special journal for logging any com-
mands or responses. See Section 5.10 for
a description of journal files of this type.

tm-buffer 3 4 (journal) 1 MB

Reserved for telemetry buffer. Depre-
cated due to latency issues with flash
memory. FRAM should be preferred for
buffering telemetry.

63

11.5 Code listings

Listing 4: FreeRTOS hook functions for having ESTCube-1 CDHS microcontroller sleep

on each tick.
uint8_t g_request_lowpower = 0;

/**

* An interrupt handler running at configTICK_RATE_HZ.

*/

void vApplicationTickHook(void) {

if (g_request_lowpower) {

g_request_lowpower = 0;

SCB->SCR = SCB_SCR_SLEEPONEXIT;

// Avoid changing SCB->SCR too often .. it’s slow.

} else if ((SCB->SCR & (uint32_t) SCB_SCR_SLEEPONEXIT_Msk) != 0) {

SCB->SCR = 0;

}

g_ticks_since_sec++;

// Synchronize hi-freq timer with ticks

TIM2->CNT = 0;

}

void vApplicationIdleHook(void) {

uint8_t flags = get_startup_flags();

// Go to sleep, in case sleeping is allowed

if ((flags & STARTUP_SLEEP_ON_IDLE) != 0) {

/**

* @note vApplicationIdleHook must not be blocking, so

* one should not sleep, stop nor standby from here.

*/

// Do it anyway, in case sleeping rough is allowed

if ((flags & STARTUP_ROUGH_SLEEP_ON_IDLE) != 0) {

SCB->SCR = 0;

__WFI();

} else {

g_request_lowpower = 1;

}

}

}

64

Listing 5: Example usage of exception handling.
uint32_t try_mount_ecffs(uint32_t i, uint32_t dev_type, uint32_t lmod) {

static uint32_t depth = 0;

ecfs_file_info_t info;

uint32_t retval = 0, try_again = 0;

depth++;

TRY {

// Get the info of filesystem metadata file

ecfs_fileinfo(g_rfs_int[g_system_rfs_id], FN_FFS1 + i, &info);

// Mount it

g_ffs_int[i] = (ecffs_fs_interface_t *)

ecfs_mount_from_device(&g_environment, FSDT_SPI_FRAM,

g_rfs_int[g_system_rfs_id]->device, info.address_in_volume);

// Getting here indicates success

retval = 1;

} CATCH(ECFS_EX_NO_FILESYSTEM) {

// Remember that we reformatted

log_error(ec_time_isr(), DBG_EX_REFORMAT, lmod);

if (depth < 2) {

// Create a FLASH filesystem on FRAM

ecffs_format(&g_environment, FSDT_SPI_FRAM,

g_rfs_int[g_system_rfs_id]->device,

info.address_in_volume, 0, 255, &g_flash_dev_desc[i], 0);

// Try to mount again later

try_again = 1;

}

} FINALLY {

if (THROWN) { // An uncaught exception?

log_error(ec_time_isr(), EXCEPTION, lmod);

CONCEAL; // Do not propagate exceptions any further.

retval = 0;

}

} ETRY;

// Shall we try again?

if (try_again)

retval = try_mount_ecffs(i, dev_type, lmod);

depth = 0;

return retval;

}

65

12 Non-exclusive license to reproduce thesis and make

thesis public

I, Indrek Sünter (date of birth: 16.11.1988),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the

public, including for addition to the DSpace digital archives until expiry

of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term

of validity of the copyright,

Software for the ESTCube-1 command and data handling system,

supervised by Kārlis Zālı̄te and Mart Noorma.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellec-

tual property rights or rights arising from the Personal Data Protection Act.

Tartu,

May 26, 2014

66

	Acronyms and abbreviations
	Introduction
	Requirements
	Error handling
	ICP
	Operating system
	Command scheduler
	Flash file system
	FRAM file system
	I2C, SPI and UART drivers
	Time management
	ADCS algorithms
	Telemetry storage
	Telemetry buffering
	Beacon
	Hardware control
	Firmware upgrade
	Low-level access
	Configurability

	Related work
	UWE-2
	SwissCube-1
	NUTS
	STRaND-1

	Software design
	Operating system
	Error handling
	ICP
	Command structure
	Command scheduler
	File systems
	Flash file system
	FRAM file system

	I2C, SPI and UART drivers
	Time management
	ADCS algorithms
	Telemetry logging
	Telemetry buffering
	Beacon
	Hardware control
	Firmware upgrade
	Low-level access
	Configuration tables
	On-board scripting
	Optimizations

	In-orbit performance
	Further improvements
	Conclusion
	Kokkuvõte
	Acknowledgements
	Appendix
	Development and testing
	Simulation
	Firmware integration
	Subsystem integration
	Qualification testing

	ICPTerminal
	Content of the USB memory stick
	External memory contents
	Code listings

	Non-exclusive license to reproduce thesis and make thesis public

