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 Acronyms and Abbreviations

CG Cold Gas

AOCS Attitude and Orbit Control System

OBC On-Board Computer

EPS Electric Power System

LEO Low Earth Orbit

ADCS Attitude Determination and Control System

CDHS Command and Data Handling System

PWM Pulse Width Modulation

ADC Analog-to-Digital Converter

COTS Commercial Off-The-Shelf

GPS Global Positioning System

MCU MicroController Unit

FPU Floating-Point Unit

dps degrees per second

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter

SPI Serial Peripheral Interface

I²C Inter-Integrated Circuit

FRAM Ferroelectric Random Access Memory

SRAM Static random-access memory

LSB Least Significant Bit

I/O Input Output

kSPS kilo Samples Per Second

PCB Printed Circuit Board

CAD Computer-Aided Design

RMS Root Mean Square

IC Integrated Circuit

LDO Low-Dropout Regulator

RTC Real Time Clock

LED Light-Emitting Diode

4



1  Introduction

The CubeSat  standard  [1] popularity has  drastically risen over  the last  few years.  It  is  a  great

opportunity for universities to get their students involved in space technologies as well as to allow

cost  effective  space  experiments  for  scientists  and  companies.  Some  examples  of  in-orbit

experiments include COMPASS-1 [2], STRaND-1 [3], Aalto-1 [4], SwissCube [5] and RAX [6], all

of  which  have  various  objectives.  Estonian  students  joined  the  movement with  ESTCube-1

satellite [7]. The main scientific mission of the satellite is to test the electric solar wind sail (E-sail)

invented by Pekka Janhunen [8].

E-sail is a propellantless propulsion method, which is achieved by extracting momentum from solar

wind protons  [9].  The protons are  repelled by a  long conducting  tether,  which  is  kept  at  high

positive potential with the help of an electron gun [10].

The first Estonian satellite was successfully developed and launched by the effort of over a 100

students and instructors from different countries  [11]. Although the main experiment is yet to be

performed and the work continues, the next missions are already being planned and analyzed. In

particular ESTCube-2 and ESTCube-3 missions intended to test  the E-sail  further as well  as to

demonstrate  the  NanoSpace  Cold  Gas  (CG)  thrusters  [12],  both  of  which  could  be  viable

transportation methods in space [13].

This work concentrates on the development of the first prototype of the Attitude and Orbit Control

System (AOCS)  for  ESTCube-2.  AOCS is  critical  for  scientific  mission  success,  because  it  is

responsible for E-sail  experiment and CG thruster demonstration.  The work on ESTCube-1 has

given enormous amount of experience to the ESTCube team, hence the best features of ESTCube-1

Attitude  Determination  and  Control  System (ADCS)  will  be  reused and  known  flaws  will  be

corrected. Nevertheless, new technologies will also be tested using the AOCS prototype.

The main goals of this work were stated as follows:

• specify the requirements for the Attitude and Orbit Control System of ESTCube-2 satellite;

• describe the structure of ESTCube-2 AOCS;

• specify the requirements for AOCS prototype board;

• select hardware for the AOCS prototype main board;

• design the AOCS prototype board.

Full description of assembly and testing of AOCS prototype as well as firmware development is out

of the scope of this thesis, but a short-term plan is discussed.
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2  Overview

This part of the work describes the missions of Estonian student satellite program as well as gives a

brief  overview  of  other  nanosatellites,  which  implemented  attitude  and  orbit  control  systems.

Section 2.1 reviews  the  ESTCube-1  mission  in  slightly  more  detail.  Section 2.2 introduces  the

future  ESTCube  missions.  Section  2.3 analyzes  the  attitude  and  orbit  control  systems  of

nanosatellite projects.  

2.1  ESTCube-1

ESTCube-1 is the first project of the Estonian student satellite program [11]. The main objective of

the program as a whole is to promote space technology and give students a hands-on experience in

building a space craft. The main scientific objective is to demonstrate the electric solar wind sail (E-

sail). During the experiment the satellite will be spun up to 360 deg/s, at which point a 10 m long

aluminium tether will be reeled out with the help of the centrifugal force [7]. Afterwards the tether

will be charged to 500 V potential. E-Sail force will be determined by the change of satellite attitude

and the measurements of tether current  [14].

ESTCube-1  –  Estonia`s first  satellite  was  developed over a period  of  five  years  and has  been

launched on May 7, 2013 on-board Vega VV02 rocket to Low Earth Orbit (LEO). After the launch

all satellite systems were verified to be fully operational with the exception of some minor issues.

During the following year  the on-board firmware development  continued. As of May 27, 2014

preparations for the scientific mission are still  in progress. Nevertheless Estonian student satellite

program has already fulfilled many of its objectives with the launch of ESTCube-1. [7]

2.2  ESTCube-2 and ESTCube-3 Missions

Based on the success of the first satellite, the ESTCube team has started planning more missions.

Although the main scientific experiment of ESTCube-1 mission has not been performed yet, future

plans include testing the longest yet tether (1 km) for the electric sail experiment and utilizing a

miniaturized microelectromechanical systems (MEMS) based cold gas (CG) thruster for attitude

and orbit control [12]. Main purpose of  ESTCube-2 and ESTCube-3 missions is to demonstrate the

technologies.

Both  propulsion  technologies  could  be  used  by  lightweight  spacecrafts  for  exploration.  These

technologies  could  possibly allow access  to  any asteroids  (i.e.  asteroid  mining),  multi-asteroid

touring without additional propellant cost and asteroid deflection for protection of Earth. [15]
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Satellite structure and objectives of both missions are very similar and the main difference is in the

target orbit. ESTCube-3 mission will take place on highly elliptical Earth or lunar orbit, both of

which  provide  solar  wind  environment  and  a  reduced  influence  of  Earth`s magnetic  field.

Unfortunately such orbit launches are not frequent, so it is possible that ESTCube-3 mission will

have to wait until such launch is available. The main objective of ESTCube-2 mission is to test the

hardware and firmware for the ESTCube-3 mission on the low Earth orbit, which is more easily

accessible and the risk of mission failure is decreased.

In this work mainly ESTCube-2 mission will be discussed, but in most cases both missions are

applicable.

Although ESTCube-1 created a baseline for ESTCube future missions, ESTCube-2 tasks require

significantly more hardware and processing power. Figure 1 shows the first model of ESTCube-2.

The satellite is a 3-U CubeSat (300  ×  100  ×  100 mm, 4 kg), which is three times larger than

ESTCube-1. The two main payloads are located at the opposite ends of the satellite. The rest of the

hardware will be placed in between the payloads.

One kilometer tether weights 11 g and was proved to be automatically producible  [16]. It will be

reeled out by a motor,  design of which will  be similar  to ESTCube-1 and Aalto-1 missions.  A

camera will verify the reeling. High Voltage (HV) system will provide the tether with the required

+10  kV  potential.  Deployable  fixed  booms  will  be  used  to  study  the  effect  of  electron

chaotisation [17]. An electron gun should also be on the satellite, although it is missing from the
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model.

NanoSpace Cold Gas propulsion base module is 100 × 100 × 30 mm in size and has an interface

board on top of it. Module includes four thrusters facing the same direction to maximize possible

propulsion force. The module contains 50 g of butane, which should provide a total of 40 Ns of

impulse for the mission  [19]. The CG tank in Figure  1 model indicates that the module could be

increased  in  size  to  allow a  larger  amount  of  butane  on  board.  The  exact  required  amount  of

propellant will be calculated in later stages of development.

Deployable solar panels with corresponding attitude control would allow the power production to

increase. Star tracker is the main and most accurate attitude sensor on satellite board. Sun sensors

are less accurate attitude sensors, but they allow more frequent measurements. Camera subsystem

will  be used to take images  of  the  nearby space objects  of  interest.  The satellite  also includes

electric power, on-board computer, attitude and orbit control and communication subsystems among

others, which are not highlighted on the drawing.

ESTCube-2 should also have back-up systems, which are known to work in LEO. That includes

magnetometers and magnetic coils, which have no use outside of the Earth`s magnetic field during

ESTCube-3 mission.

2.3  Overview of Attitude and Orbit Control Systems

This section will concentrate on hardware solutions of different CubeSat attitude and orbit control

systems.  In  most  cases  detailed  information  about  the  satellites  is  not  published,  but  general

information about the subsystems can still be acquired.

Since ESTCube-2 AOCS is based on ESTCube-1 ADCS [19], it is prudent to start the description

from the latter. ADCS uses 2-axis custom made Sun sensors, COTS 3-axis digital gyroscopes and

magnetometers to determine the attitude of the satellite. Sensor redundancy is provided by using

duplicated sensors connected by separate communication buses. Attitude is controlled solely using

magnetic coils in the Earths magnetic field [20]. Command and Data Handling System (CDHS) also

provides cold redundancy for STM32F103 processor [21], which controls the sensors and coils of

ADCS. The system proved to be stable, but some issues still exist. For example inability to turn off

ADCS sensors independently leads to a need to restart the whole subsystem, if I²C communication

to one of the sensors fails.

COMPASS-1 CubeSat was launched in 2008 with objectives of taking images of Earth and testing a

GPS receiver  form German  Aerospace  Center  (DLR).  On-board  ADCS  used  Sun  sensors  and
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magnetometers for attitude determination and magnetic coils for attitude control. ADCS used 8051

and HCS12 microcontrollers. After the launch misalignment of magnetic field reference vector and

inaccurate calibration of sun sensors made attitude determination unreliable. [2]

SwissCube was build for educational purposes.  Its  ADCS uses 3-axis HMC1043 magnetometer

from Honeywell, three 1-axis gyroscopes and six novel Sun sensors to determine the Sun vector.

Magnetic torquers were used for attitude control  [5]. First two years gyroscopic sensors were in

saturation and after three years 2 of 12 sun sensors failed. The calibration of the magnetometer was

also off in one axis and there occurred I²C communication problems similar to ESTCube-1. In other

respects the system worked fine. [22]

CanX-4/-5 satellites were launched to demonstrate formation flying. Satellites are 20 × 20 × 20 cm

in size, but still count towards nanosatellite with mass less that 7 kg. Attitude of the satellites was

determined by six coarse/fine Sun sensors, a 3-axis magnetometer and three gyroscopic sensors.

Satellites  were  controlled  by  3  orthogonally-mounted  reaction  wheels,  3  magnetorquers  and

Canadian Nanosatellite Advanced Propulsion System which provides up to 10 mN force per thruster

and  includes  four thrusters.  Performance  of  the  system resulted  in  attitude  determination  with

accuracy of 1º and pointing accuracy of 5º. [23]

UKube-1 has an Active Magnetic Attitude Control subsystem, which has been developed by Clyde

Space [24]. Actuation is provided by 6 magnetic torquers and a permanent magnet. Sensing is done

by  MEMS  Inertial  and  Magnetic  Measurement  Unit  consisting  of  gyroscopic  sensors,

accelerometers,  magnetometers  and  coarse  Sun  sensors.  The  subsystem  is  targeting  a  2-axis

pointing capability of  ±5º and sensing  accuracy of ±1º  [25]. The satellite is scheduled for Soyuz

launch on June 19, 2014 [26].

Design of UWE satellite series is continuously improved by the University of Würzburg. Three

satellites have already been launched and the UWE-4 with an AOCS is already under development

[27]. UWE-3 has been launched on November 21, 2013. Its main purpose is to demonstrate the low

power ADCS and its control algorithms. ADCS uses MSP430 processor and three types of sensors:

magnetometers, Sun sensors and gyroscopes. Attitude control is achieved by 6 magnetic torquers

and a single reaction wheel  for  fast  attitude changes.  The satellite  exhibits  good health  after  3

months  in  orbit,  but  to  improve  system  performance  sensor  calibrations  and  noise  factor

adjustments must be performed. [28]

One of the main scientific purposes of Aalto-1 satellite is to test a 100 m E-sail tether, although in

this case it will be used as a plasma brake [29]. Aalto-1 will use iADCS-100, which is developed by
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Berlin Space Technologies and based on TUBSAT platform [30]. It consists of magnetic torquers,

magnetometers, accelerometers, gyroscopic sensors, reaction wheels, Sun sensors and a star tracker

for accurate attitude control. The platform is still  under development.  Although Aalto-1 attitude

determination  and  control  system  is  the  closest  to  the  one  under  development  for  the  future

ESTCube missions, it lacks orbit control capability in form of propulsion.

From solution reviews one should conclude that the development of attitude and orbit control is not

a trivial task and there is no universal solution for every case. Furthermore there is no educational

value in buying a ready solution. For those reason it was decided to build a custom made AOCS for

ESTCube-2. Additionally it must be noted that the most often occurred problem on all satellites is

inaccurate  sensor  calibrations  and  insufficient  tests.  Therefore  a  prototype  with  easy  testing

capabilities should be developed for ESTCube-2 mission.

3  ESTCube-2 Attitude and Orbit Control System

AOCS is critical for fulfilling the scientific mission of the satellite. This part of the thesis describes

the  AOCS as  a  whole.  Section  3.1 states  the  AOCS requirements.  Section  3.2  describes  the

structure of AOCS, which fulfills the requirements.

3.1  Requirements

The system is required to perform the following tasks.

• Pointing is the most fundamental attitude control task. It must be used to fulfill all of the

following  tasks  in  the  list as  well  as  pointing  antennas  for  communication  with  Earth,

pointing the solar panels towards  the Sun to increase their efficiency and pointing camera

for imaging space objects.

• Spin-up is  required to measure the E-sail  effect.  It  must be achieved by using reaction

wheels and magnetic coils in the case of ESTCube-2.

• Delta-v maneuvers mean changing the orbit velocity of the satellite, which allows changing

the  satellite  trajectory.  Maneuvers  will  demonstrate  the  capabilities  of  CG  propulsion

module. At the moment it is planned to have all four thrusters of the propulsion module to

face in one direction, so pointing is essential for the maneuvers.

• E-sail  effect  measurement should  be  performed  is  several  different  ways  to  produce

reliable  results.  Measuring  and  analyzing  the  change  of  satellite  attitude  is  one  of  the

methods.  Second  method  implies  using  a  high  accuracy on-board  accelerometer.  Radio
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communication based precise orbit determination is the third method.

Following are the estimated accuracy requirements.

• Attitude determination accuracy: 0.5 deg.

• Attitude control accuracy: 3 deg.

• Attitude control accuracy of the spin plane: 3 deg.

• Acceleration measurement accuracy: 3 µg.

These requirement drive the AOCS design, which is described in the following section.

3.2  System Structure

This section lists all of the Attitude and Orbit Control Systems components. Structure of the system

is  based  on  analysis  of  previously  flown  nanosatellites  as  well  as  ESTCube-1  and  Aalto-1

experience.

A single PCB cannot contain all of the features needed for attitude and orbit determination and

control.  Therefore  full  functionality  description  must  include  other  subsystems  and  payload

hardware, which acts either as a source of information or a way of controlling the satellite. Figure 2

gives an overview of the components without explicit connections. Components are functionally

divided into three groups: sensing, actuating and management hardware.

The following subsection describe the hardware in more detail.
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3.2.1  Sensors

• Star  tracker  is  the  main  attitude  sensor  on  ESTCube-2.  It  is  a  separate  subsystem,

containing a  monochrome camera and a  microprocessor  to  process  the image data.  Star

tracker  determines  the  attitude  by  identifying and  tracking  star  formations.  Attitude

determination with a star tracker is very accurate, but it is limited by the imaging sensor

speed and sensitivity, processing power of the system and pointing direction of the imaging

sensor. Typically star tracker is too slow to solely rely on it. Moreover usually star tracker is

unable  to  determine  attitude,  when  the  satellite  rotation  is  faster  than  several  tenths  of

degrees per second. E-sail experiment requires a spin-up to 1 rotation per second. Therefore

the star tracker must be supported by other sensors that allow higher spin rates.  A dedicated

connector to AOCS main board is needed, but the communication standard is not yet known.

• Sun sensors  allow performing attitude determination with less accuracy than star tracker,

but measurement results can be acquired more frequently and with greater spinning rate.

These sensor allow determining the position of the Sun relative to the satellite. Similarly to

ESTCube-1 it is planned to have one sun sensor per satellite side. Each sun sensors should

have  a  separate  connector  to  the  AOCS main  board.  It  is  not  yet  determined,  whether

ESTCube-1 sensors will be reused, or a new digital Sun sensor will be developed.

• Magnetometers are used for attitude sensing in LEO. Magnetometers are essential attitude

determination sensors on ESTCube-1. On ESTCube-2 it will be used as back-up sensors and

for  verifying  the  satellite  attitude,  because  magnetometers  cannot  be  used  for  attitude

determination during ESTCube-3 mission. Magnetometers are placed on the AOCS main

board.

• Gyroscopic sensors allow determining the spin rate of the satellite. It allows more accurate

attitude determination in combination with above discussed sensors. Gyroscopic sensors are

placed on the AOCS main board.

• Accelerometers are  mainly  used  to  measure  satellite  propulsion  methods,  but  they can

possibly used  as  additional  source  of  information  in  AOCS algorithms.  Small  low cost

accelerometers will be placed on the AOCS main board to measure acceleration produced by

the Cold Gas thruster. Because the E-sail acceleration is too small to measure with such

accelerometers instantaneously, a separate high accuracy accelerometer will be placed in the

satellite  payload.  It  requires  a  dedicated  connector,  but  the  communication  interface  is

unknown at the moment.
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• Camera subsystem can be used for attitude verification, but it is not the main purpose of

the subsystem. Most likely verification will not be performed on board of the satellite. A

dedicated connector to AOCS main board is not needed.

• Communication system  is  used  to  receive orbit  position  information from Earth.  Most

likely  the  orbit  information  will  pass  through  the  on-board  computer,  so  a  dedicated

connector to the AOCS main board is not needed.

3.2.2  Thrusters and Torquers

• Reaction wheels are the main attitude control actuators. They will be placed in the payload

section and must be provided with a dedicated interface to AOCS main board. Currently

reaction wheels from Berlin Space Technologies are considered, which prefer  I²C at 3.3 V

logic level for communication, although several other communication standards could be

used.

• Cold Gas thruster is used to control the attitude and adjust the orbit of the satellite. The

thruster is a complete system located in the payload and requires a separate connector on the

AOCS main board. One of the objectives of the missions is to demonstrate the NanoSpace

Cold Gas thruster. The interface consists of two I²C connections at 3.3 V logic level and a 5

V power supply.

• Magnetic coils are used on ESTCube-1 to control the attitude of the satellite. These will be

used as a back-up to reaction wheels on board ESTCube-2 mission because it will still take

place in  the Earths magnetic  field.  ESTCube-3 mission will  not  include magnetic  coils.

Although magnetic coil driver will be located on the Electric Power System (EPS), it should

be controlled by the AOCS. Control signals include Enable, Direction and PWM signals. 

• E-sail can also be counted towards AOCS, although the main objective of the missions is to

test it. E-sail is the largest payload on board ESTCube-2. Prototype board developed in this

thesis does not include the E-sail interfaces.

3.2.3  Management Hardware

• MCU controls the whole AOCS. MCU requires sufficient processing power to collect and

process  all  of  the  attitude  and  orbit  information,  as  well  as  control  the  actuators  and

propulsion modules. It is a critical part of the system and requires redundancy.

• External memory  is also needed, because typically internal memory of the MCU is not
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sufficient for all of the AOCS information. Moreover internal memory typically consists of

flash  memories,  which  are  susceptible  to  radiation  induced  errors.  Therefore  external

memories with more tolerance towards radiation (like FRAM) must be used.

• Power management is required for AOCS, although Electric Power System (EPS) provides

the power. This is due to AOCS requirement to turn off all sensors independently, which

must be controlled by AOCS itself. Power management includes power and bus switches

placed on the AOCS main board.

• Communication  interface  hardware.  Although  the  MCU  should  have  most  of  the

communication  drivers  that  are  required  for  communication  with  external  hardware.

Satellite  common  bus  for  example  uses  RS-485  communication,  which  typically  is  not

supported by a MCU.

• On-Board Computer will manage the the AOCS firmware versions as well as buffer the

information  between  AOCS  and  Communication  subsystem.  These  tasks  require  high

bandwidth communication. Due to that, a dedicated interface is needed. OBC team proposed

using a SPI communication.

• Electric  Power  System  provides  power  for  the  whole  satellite,  including  AOCS.

Furthermore AOCS microprocessor is switched by EPS, providing cold redundancy.

4  Prototype Design

Prototype board is designed to allow further development of AOCS. That requires using integrated

circuits expected to be used during the mission as well as providing sufficient hardware firmware

debugging functionality. Figure 3 gives a simplified overview of above mentioned AOCS prototype

board hardware.
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Before starting the prototype design, the actual hardware must be selected which is one of the main

tasks  of  this  thesis.  Section  4.1 lists  all  explicit  requirements  for  the  prototype  board  and the

hardware, which will be placed on the prototype board. Section 4.2 introduces the main concept of

the prototype board. Section 4.3 covers the hardware selection. Section 4.4 focuses on the prototype

design itself.

4.1  Requirements

Requirements are divided into two groups. One describes general requirements for board design and

the  second covers  the  explicit  requirements  for  integrated  circuits,  that  are  used  in  the  AOCS

prototype design. 

• Allow independently  turning  off  sensors  and ADCs. As  mentioned  in  section  2.3,  if

ESTCube-1 microprocessor loses communication with a sensor, the only way to reestablish

it is to power recycle the subsystem. Although loss of communication with sensors does not

occur often, it disturbs control algorithm executions, so ESTCube-2 AOCS design should be

improved in respect to that flaw.

• Provide  redundancy  for  sensors  and  ADCs.  Several  redundancy  concepts  should  be

considered and the best  one selected and tested on the prototype board,  because sensor

redundancy is very important in space missions. MCU redundancy is also required on the

engineering model of the system, but the design used by ESTCube-1 CDHS has been proven

to be sufficient for a 1 year mission. Due to that, MCU redundancy is not implemented on

the first prototype board.

• Allow testing of a range of sensors and ADCs to determine the best suitable sensor among

a number of sensors with very similar properties according to the data sheet. According to

the previous requirement redundancy is needed, but different sensors and ADCs could be

used.

• Provide  interrupt  capability  for  sensor  and  ADCs.  Although  this  requires  more

communication  lines  from  the  MCU,  dedicated  interrupt  lines  simplify  firmware

development.  ESTCube-1  firmware  is  based  on delays  and timings,  which  occasionally

produce incorrect measurement results due to incomplete conversions.

• Provide  interfaces  to  different  AOCS hardware components  for evaluation. Several

components of the AOCS cannot be placed on the AOCS main board because of their size,

thus  hardware  will  be  placed  as  payload  and  requires  dedicated  interfaces.  A range  of

interfaces (UART, SPI, I²C, RS-485) should be provided by the board.

15



• Provide on-board debugging functionality for communication buses. This functionality

will allow simulating hardware by a computer and to verify communication with on-board

hardware.

• Provide temperature and voltage measurements for all sensors and ADCs.  Measuring

the temperature and power supply voltage of all sensors would decrease the uncertainties of

the sensor measurement results.

• Provide ability  to work from a battery.  Sensor tests,  which take place in an confined

spaces (i.e. vacuum chamber, temperature chamber) does not allow using a stationary power

supply. An on-board battery support would simplify test conduction.

There are explicit requirements for certain AOCS hardware, but other parameters of the hardware

are discussed in the corresponding hardware selection subsections.

• MCU  must  include  a  FPU.  Algorithms  like  Kalman  filter  require  floating  number

processing. Although they can be done without a dedicated FPU (like on ESTCube-1), its

availability would simplify firmware development as well as improve processing time.

• MCU must provide at least 2 UART, 2  I²C and 3 SPI interfaces  to satisfy sensor and

ADC redundancy and provide additional interfaces for external hardware.

• Gyroscopic sensor sensitivity: ≥ 100 LSB/dps (resolution ≤ 0.01 dps/LSB).

• Gyroscopic sensor full range: ≥ 1800 dps.

• Magnetometers resolution: ≤ 80 nT/LSB.

• Magnetometers full range: ≥ 0.2 mT.

4.2  Prototype Board Concept

The  main  new  concept  of  the  prototype  board  allows  turning  off  all  sensors  and  ADCs

independently. This section first describes the ADCS structure of ESTCube-1 and then explains,

how the structure has been improved in ESTCube-2 AOCS to implements the mentioned feature.

Figure 4 shows a simplified structure of ESTCube-1 ADCS. Generalized digital and analog ADCS

sensor  configuration  is  shown  on  the  diagram.  These  sensors  are  controlled  by  CDHS

microprocessor  and  powered  by  EPS.  CDHS  and  EPS  provide  cold  redundancy  for  the

microprocessor with the use of bus switches. If the active microprocessor stops responding, EPS

switches the power source. As mentioned before, to turn off one of the ADCS sensors the whole

subsystem must be powered off.
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To solve the issue, a double bus switch concept was introduced, which expands the microprocessor

redundancy idea and applies it to each sensor.

Figure 5 shows the ESTCube-2 AOCS double switch concept. Each sensor and ADC is supported

by a power switch and a bus switch, which isolate the dedicated integrated circuits from power lines

and communication bus. The switches are controlled by an I/O expander, so if the microprocessor is

switched, the sensors remain in  the same state.  In contrast  to  ESTCube-1 ADCS, new concept

places  the microprocessor on the AOCS main board,  but the the same CDHS cold redundancy

applies. The concept complicates power management of the board, but it allows to power down

sensors and ADCs independently besides sensor redundancy.

The microprocessor redundancy has been proven successful during ESTCube-1 mission, thus the

first AOCS prototype contains only one microprocessor. Nevertheless, the double switch concept

still applies, because only the bus switches dedicated to the second MCU are removed.
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Figure 4: ESTCube-1 ADCS structure. Sensors are located on ADCS board, but controlled by CDHS 

microprocessor. Bus switches are used to provide cold redundancy for the microprocessor. Both 

systems are powered by Electric Power System.



4.3  Hardware Selection

Hardware selection is one of the main tasks of a prototype design. Availability and price must be

taken into consideration in addition  to  requirement fulfillment.  All prices found in the following

subsections were referenced from Farnell and EU Mouser (usual ESTCube suppliers) before April

24, 2014. All selected hardware has low mass and small packages.

4.3.1  Processing Unit

ESTCube-1 ADCS does not have a dedicated processing unit, so calculations are run by CDHS

STM32F103  microprocessor.  Such  design  simplifies  structure  of  ADCS,  lowers  power

consumption of both systems and eliminates the need of communication between two subsystems.

Even  so  this  design  also  limits  the  capabilities  of  both  subsystems.  ADCS  and  CDHS  have

substantially different tasks which must be scheduled and executed by one processing unit. The

increase  in  software  complexity  caused  several  problems,  which  delayed  significantly  both

subsystems software development. In addition, by now ESTCube-1 software development team has
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Figure 5: Double switch concept used in ESTCube-2 AOCS development. An additional layer of 

bus switches and power switches provides the functionality of independently turning off the sensors 

and ADCs.



reached task scheduling feasibility limit of the real-time operating system. For those reasons it was

decided to use a separate processing unit for AOCS in future missions.

Processors like LPC3180 [31] from NXP Semiconductors were considered because of the double-

precision  FPU,  which  would  increase  accuracy  of  AOCS  algorithms.  But  NXP  processor

architecture and firmware design process is unfamiliar to ESTCube team, so it was decided to use

the familiar architecture of STM32F4 series, which includes a single-precision FPU and has lower

power consumption than other microprocessors with a FPU. Other subsystems also plan to use

STM32F4 microprocessors,  which means that software development time would decrease even

further.

STM32F4  series  is  based  on  ARM® Cortex™-M4,  which  operate  at  maximum of  180  MHz

frequency.  By using dynamic power scaling feature, power consumption  of the processor  can be

decreased by lowering the clock frequency. Each processor includes a digital signal processor and a

FPU. But there are some differences within the series. Table 1 compares AOCS relevant features of

three STM32F4 product lines [32].

Table 1: STM32F4 series AOCS relevant feature comparison [32].

STM32F4
product line

Maximum
frequency

Current
consumption

Memory size Package pin
number

Communication
interfaces

STM32F429/439 180 MHz 260 µA/MHz 512-KB to 2-MB
Flash

256-KB SRAM

100 to 216 4x USARTs

4x UARTs

6x SPIs

3x I²C

STM32F407/417 164 MHz 238 µA/MHz 512-KB to 1-MB
Flash

192-KB SRAM

64 to 144 4x USARTs

3x SPIs

3x I²C

STM32F401 84 MHz 128 µA/MHz 128-  to  512-KB
Flash

96-KB SRAM

49 to 100 3x USARTs

4x SPIs

3x I²C

Although  STM32F429/439  and  STM32F407/417  have  superior  performance  because  of  the

maximum  operating  frequency,  the  frequency  will  likely  be  reduced  to  lower  the  power

consumption.  That is  why STM32F401 has an advantage of approximately 2 times less power

consumption  compared  to  other  product  lines.  Flash  memory  size  is  not  of  great  importance

because it  is  susceptible  to  radiation induced errors  and has  to  be  supported  by more reliable

external memory like FRAM. SRAM on the other hand is important, but AOCS algorithms do not
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need large memory spaces to operate. I/O pin number of the package is of great importance, but in

the current design the MCU is supported by I/O expanders, which decrease the required number of

I/O  pins.  From communication  interface  variety  point  of  view  all  product  lines  are  feasible,

although  a  bigger  SPI  number  would  be  preferable  because  most  of  the  external  devices

communicate through SPI. STM32F401 line was selected for AOCS prototype mainly because of

its power consumption in spite of smaller SRAM and lower SPI number. To support the processor a

FM25V20 FRAM [33] and DS3234 RTC [34] have been selected.

4.3.2  Gyroscopic Sensors

ITG-3200  [35] 3-axis gyroscopic sensor from InvenSense was selected for ESTCube-1 mission.

Although ESTCube-1 team has successfully used this  sensor  during the mission,  there are  two

disadvantages of using ITG-3200 sensor in the future. First of all sensitivity of ITG-3200 is lower

than the required sensitivity for ESTCube-2/3 missions.  Secondly the only possible interface to

communicate with the sensor is  I²C, which the team had problems with. In particular the sensor

cannot be shut down independently because it draws current from I²C bus.

Table 2: Set of gyroscopic sensors selected for testing on AOCS prototype

Gyroscopic

sensor

Measurement

range (dps)

Sensitivity

(digit/dps)

Sampling

rate (Hz)

Noise

density

(dps/√Hz)

Supply

current

(mA)

Interface Price

(€)

ITG-3200 [35] ±2000 15 8000 0.03 6.5 I²C 21,7

MAX21000 [36] ±32 to ±2000 960 to 15 10000 0.009 5.2 SPI/ I²C 7.2

BMG160 [37] ±125 to ±2000 240 to 15 2000 0.014 5 SPI/ I²C 3.9

MPU-6000 [38] ±250 to ±2000 120 to 15 8000 0.005 3.6 SPI/ I²C 14.9

L3GD20H [39] ±250 to ±2000 120 to 15 800 0.011 5 SPI/ I²C 4.0

LPY403AL[40]/

LPR403AL[41]

±30 to ±120 33.3 to 8.3

mV/dps

140 0.01 6.8 Analog 6.0/

6.8

Table  2 compares  ITG-3200  and  the  new  set  of  sensors  that  has  been  selected  for  testing.

MAX2100, BMG160, MPU-6000 and L3GD20H are digital 3-axis gyroscopic sensors. LPY403AL

and  LPR403AL are  analog  2-axis  gyroscopic  sensors.  The  measurement  range  requirement  is

fulfilled by all sensors excluding LPY403AL/LPR403AL.  LPY403AL/LPR403AL are on the list

because it was suggested to have different sensors for low and high spin rates as well as to test
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feasible  analog  gyroscopic  sensors.  At  least  a  20-bit  low  noise  ADC is  required  for  accurate

measurements in the full range of LPY403AL/LPR403AL.

Both sensitivity and noise density of all sensors are satisfying and the sensors consume relatively

similar amount of current. All digital sensors have SPI interfaces, which is  used in the design. From

the price point of view only MPU-6000 is relatively more expensive than other sensors. Excluding

ITG-3200 all sensors are included in the AOCS prototype design.

4.3.3  Magnetometers

Magnetometers are less important for future missions because ESTCube-3 mission is planned to

take place outside Earths magnetic field. That is why ESTCube-2 must be fully operational without

the use of magnetometers. Nonetheless, magnetometers are meant to be back-up sensors.

Table 3: Set of magnetometers selected for testing on AOCS prototype

Magnetometer Measurement

range (mT)

Resolution

(nT/LSb)

Sampling

rate (Hz)

Noise

density

(nT/√Hz)

Supply

current

(mA)

Interface Price

(€)

HMC5883L [42] ±0.1 to ±0.8 73 to 435 160 200 0.1 I²C 3.3

LIS3MDL [43] ±0.4 to ±1.6 15 to 58 80 320 0.27 SPI/I²C 2.0

MAG3110 [44] ±1 100 80 400 0.9 I²C 1.0

LSM303D [45] ±0.2 to ±1.2 8 to 48 100 500 0.3 SPI/I²C 4.0

FXOS8700CQ[46] ±1.2 100 1500 100 0.44 SPI/I²C 2.4

HMC5883L magnetometer  was  chosen  for  ESTCube-1  mission,  which  similarly  to  gyroscopic

sensors  has only a I²C interface. Although HMC5883L satisfies the requirements I²C interface use

is undesirable, so a new set of sensor was selected for testing, which can be found in Table 3.

HMC5883L,  LIS3MDL,  MAG3110,  LSM303D  and  FXOS8700CQ  are  3-axis  low  price

magnetometers. All sensors fulfill the requirements. In addition, LSM303D and FXOS8700CQ are

considered as acceleration sensors in the next section, which makes them more desirable. The only

drawback for HMC5883L and MAG3110 is the use of I²C interface. Nevertheless, all listed sensors

are used in the design.

4.3.4  Accelerometers

Accelerometers  were  not  included  in  ESTCube-1  mission.  Main  purpose  of  accelerometers  on
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board ESTCube-2 is to measure the acceleration gained by using the NanoSpace Cold Gas thrusters

and E-sail experiment, although they can possibly be used for attitude estimation. CG thruster and

E-sail  experiment  have  different  measurement  accuracy  requirements,  so  they  are  discussed

separately.

Single CG thruster is capable of providing 1 mN of force. Satellite mass is estimated to be 4 kg.

There  will  be  4  thrusters  on  board,  but  even  a  single  thrust  must  be  detectable.  Calculations

(1 mN/4 kg=250 µg) show  that  the  selected  accelerometer  must  detect  at  the  least  250  µg  of

instantaneous acceleration.  Such accuracy is  rare  in  low cost  accelerometers,  because  typically

measurement noise is very high. Table 4 compares the set of best found accelerometers.

Table 4: Set of accelerometers selected for testing on AOCS prototype

Accelerometer Measurement

range (g)

Sensitivity Sampling

rate (Hz)

Noise density

(µg/√Hz)

Supply

current (mA)

Interface

LSM303D [45] ±2 to ±16 16384

digit/g

1600 150 0.3 SPI/I²C

FXOS8700CQ

[46]

±2 to ±8 4096

digit/g

1500 126 0.44 SPI/I²C

KXRB5 [47] ±2 660 mV/g 1000 45 0.5 Analog

KXRB5 3-axis analog accelerometer  perfectly satisfies the requirements,  but requires at  least  a

20-bit  low noise  ADC to  be  able  to  provide  accurate  measurements  in  the  sensors  full  range.

LSM303D is a 3-axis digital accelerometer and also satisfies the requirements, but noise density is

relatively high. FXOS8700CQ 3-axis accelerometer resolution is 244 µg/LSB, so it is unlikely that

it will be able to detect 250 µg acceleration. Nevertheless, FXOS8700CQ and LSM303D are also in

magnetometer test set. All three accelerometers are used in the design.

FXLC95000CL [14] was also considered for the test set, but discarded because of the included 32-

bit ColdFire MCU. Another processor would have meant more firmware development on a separate

unfamiliar platform. It has similar accuracy to FXOS8700CQ.

Expected E-sail acceleration with 1 km tether, 10 kV power supply and 4 kg satellite is 5 µg. Such

acceleration is impossible to measure instantaneously with low cost accelerometers. Several high

accuracy accelerometers are considered for E-sail experiment measurements, but none of them fit

on the AOCS main board and would be added as satellite payload. In that case a communication

interface  must  reserved  for  the  sensors.  Table  5 introduces  the  most  relevant  features  of  two
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possible sensors. Both sensors are 1-axis seismic accelerometers. Discussed high accuracy analog

accelerometers are still being analyzed and final decision is not made in this thesis. 

Table 5: Possible high accuracy accelerometers for E-sail effect measurement

Accelerometer Package size

(mm)

Voltage Supply current

(mA)

Range (g) Sensitivity

(V/g)

Noise density

(µg/√Hz)

393B05 [49] 25 × 24 × 32 18 to 30 10 ±5 1 0.3

SF1600S.A [50] 25 × 20 × 15 6 to 15 11.7 ±3 1.2 0.3

4.3.5  Analog-to-Digital Converters

Analog sensors require low noise ADCs with high precision voltage references, temperature and

input voltage measurements. All of these are chosen in this chapter.

12-bit  ADCs are required  for  Sun sensors,  temperature  and voltage measurements.  ESTCube-1

mission included a 16-channel 12-bit MAX1230 [51] ADCs. This ADC is sufficiently accurate and

with high sampling rate, but during the research mentioned ADC was practically out of stock from

all usual suppliers. For that reason two substitute ADCs were selected for testing: MAX11633 [52]

and AD7940 [53]. The main difference of these ICs from MAX1230 is that they operate at 3.3 V

and consume slightly less  current  (2.0  mA and 1.8  mA accordingly compared to  2.8  mA).  In

addition,  AD7940 has  sampling  frequency of  up  to  1000 kSPS compared to  300 kSPS of  the

MAXIM ADCs. Both MAX11633 and AD7940 are included in the design in a duplicating manner.

Measuring analog accelerometer and gyroscopic sensor outputs on the other hand require an ADC

with higher resolution. It was calculated that at least 20-bit resolution is needed to provide accurate

measurements. Similarly two ADCs were selected for testing: AD7718 [54] and AD7173 [55]. Both

are low power and low noise 24-bit ADCs. AD7718 has up to 10 channels and up to 1.365 kSPS.

AD7173 has up 16 channels and 31.25 kSPS, but it is new on the market and may contain faults.

Both ADCs are used in the design, but AD7173 has more measurement connections because of the

greater number of channels.

KTY82 series [56] resistive temperature sensor was used on ESTCube-1. It implies using a voltage

divider, so temperature to voltage transition is not linear and has to be recalculated according to the

complimentary resistor of the voltage divider. Due to that, a new temperature sensor was selected

that  would  simplify  temperature  measurements.  LMT86 [57] temperature  sensor  was  selected

because of its push-pull output, which is within the range of 3 V. LMT86 consumes up to 9 µA and
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has a smaller package (SC-70-5) than KTY82 series sensors.

ESTCube-1 used ADR3450  [58] reference voltage, but it was meant for ADCs operating at 5 V

level. ADR3430 [58] was selected from the same series, because it provides the best voltage level

accuracy with low voltage drop-out (250 mV maximum) and low power consumption (100  µA).

This 3 V voltage reference is used for both 24-bit and 12-bit ADCs.

4.3.6  Power Management Hardware

Main  purpose  of  power  management  electronics  is  allow  independently  turning  off  ICs  or

disconnecting them devices from communication buses. This functionality is provided by using

power and bus switches. Power switches disconnect the power supply of a device and bus switch

isolates communication interface of the same device. The most important devices that have to be

provided with this functionality are the sensors and ADCs.

TPS22941 [59] load switch with 40 mA current limit and thermal shutdown was selected. It also has

an auto-restart feature, consumes < 1 µA in shutdown mode and has a smaller package (SC-70-5)

than other  power switches with similar features.

Different devices have different number of I/O pins. For that reason a set of three bus switches was

selected:  24-bit  SN74CBTLV16211  [60],  10-bit  SN74CBTLV3384  [61] and  4-bit

SN74CBTLV3126  [62]. All three have the smallest package available to minimize the occupied

space on the PCB. All bus switches consume up to 10 µA current and have a 5 Ω switch connection

between the ports.

In  addition  to  actual  power  management  electronics,  I/O  expanders  were  selected  to  simplify

switching between MCUs and decreasing the number of needed I/O pins. MCP23S17  [63] is a

16-bit I/O expander with current consumption of 1 mA and a SPI interface.

4.3.7  Debugging Functionality

In  addition  to  main  functionality,  a  prototype  board  requires  additional  means  of  debugging

hardware as well as software. This includes voltage regulators, because it is not planned to have

those on final  version of AOCS main board as the power is provided by EPS. Software debugging

is provided by different communication bus to USB interfaces.

Several tests have to be executed in an environment, where connecting the board to a power source

is not possible. In that case a battery must be used. LM1117IMPX  [64] LDO is used to convert

battery voltage to 5 V, which is used for Sun sensors and thruster interface. If the board is power by
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an USB interface, 5 V LDO is bypassed. LP2992 [65] is then used to convert 5 V to 3.3 V for the

rest of electronic devices. Current sensing is provided by LMP8645  [66] current sense amplifier

connected to an ADC, which has adjustable gain and is able to measure current on resistors with

higher potential than its power supply.

To allow debugging of the most used communication buses of the prototype, USB interfaces were

selected. FT200XD [67], FT220XS [68] and FT230XS [69] provide USB interfaces to I²C, SPI and

UART buses accordingly.

4.4  Prototype Board Design

This section introduces the AOCS prototype board design concept and describes both schematic and

board layout of the prototype. Prototype contains approximately 450 electronic components, which

is difficult to maintain without establishing a design structure. Schematic and board design have

slightly different logical structure, which will be described in the following subsections.

A free DesignSpark PCB CAD tool was used for both schematic and board layout designs.

4.4.1  Schematic

This  section  describes  schematic  of  the  prototype  board  and  explains  placement  of  additional

electronic components. Schematics of the prototype board can be found under Appendix A. Figure 6

shows the general structure of the AOCS prototype board, which contains the selected hardware.
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The  schematic  of  the  prototypes  contains  almost  a  hundred  integrated  circuits  each  of  which

requires  external  electronic  components  to  function  stably  and  lower  the  noise  margin.  The

schematic  is  divided into block,  where each IC is  surrounded by the dedicated signal  integrity

electronic components.

Even if the main power supply of the board is exceptionally stable, impedance of the traces and

other signals throughout the board could influence the stability of an IC power supply. Therefore all

ICs in general require decoupling capacitors to reduce input ripple of the power supply. In several

cases separate capacitors are used close to analog and digital power supplies of one IC, although the

same power supply is used. Typically a 100 nF capacitor is used. In some cases smaller or larger

capacitor is needed depending on the integrated circuit.

Communication buses used on the board require pull-up resistors. In particular,  I²C needs pull-up

resistors on both signal lines and SPI requires a separate pull-up on every chip select signal. Pull-

ups are placed next to slave devices to drive the signal high when the processor is not driving the

signal. Pull-down resistors are also needed to drive some other signals to low level. These signals

include selftest pins for analog sensors for example.

In addition to above described cases, most ICs require external electronic components for other

reasons. Those reasons are described separately in each cases during this section.  To simplify the

structure of the schematic as well as its description, components were divided into 6 functional

groups: sensors, ADCs, power management, MCU, debugging and connector groups. Schematic of

the prototype can be found under Appendix A in figure 8-24.

1. Sensors group

The group includes four digital and two analog gyroscopic sensors (figure 8), three magnetometers,

two digital accelerometers, one analog accelerometer and six temperature sensors (figure 9).

MPU-6000  includes  a  LDO  and  a  charge  pump,  which  generates  high  voltage  for  MEMS

oscillators. They require 0.1 µF and 2.2 nF capacitors accordingly.  L3GD20H requires a 10nF filter

capacitor.  LPR403AL and LPY403AL require  a low pass filters  for the phase lock loop (PLL)

circuit to synchronize driving and sensing circuits.  

HMC5883L requires 4.7 µF reservoir and 0.22  µF set/reset strap drive capacitors, which are used

to handle 1 A peak current pulses. LIS3MDL has a 100 nF capacitor connected to a dedicated C1

pin. MAG3110 needs two 100 nF capacitors for bypassing the internal regulator and magnetic reset

pulse circuit.

26



Bandwidth of KXRB5 analog accelerometer is determined by a filter capacitor. A 4.7 nF capacitor

allow frequencies of up to 1 kHz. FXOS8700CQ requires two additional 100 nF capacitors for

bypassing the internal  regulator and for the magnetic reset pulse. It is recommended to connect a

4.7 µF reservoir and a 0.22 µF set/reset capacitors to LSM303D sensor.

To reduce the output noise coupling of the LMT86 temperature sensor, a 1 nF capacitor is used. 

2. ADCs group

This group includes six ADCs and two voltage references dedicated to the ADCs (figures  10 and

11).

A 1 µF capacitor is connected to voltage references output to improve stability and reduce the high

frequency noise. All ADCs have additional 0.1 µF capacitors on the reference inputs for the same

reason.

Both 24-bit ADCs have separate crystal oscillators, which are higher precision and lower jitter clock

sources compared to internal clock sources. AD7173-8 on the other hand has two on-board LDO

regulators, both of which require 1 µF and 0.1 µF capacitors to the corresponding pins.

Although 12-bit ADCs and AD7718 do not require more external electronic components, in addition

to mentioned to the ones described at the beginning of the section. All high precision ADCs require

certain layout considerations though, but that is described in the board layout section.

Because 3 V references are used, voltage dividers must be used to bring the the peak voltage of

several  signals  under  3  V.  Voltage  dividers  are  used  for  all  sensor  power  supply  voltage

measurements and Sun sensor signals, which maximum voltage could be as high as 5 V.

3. Power management group

This group consists of I/O expanders, power switches and bus switches, not dedicated to the MCU

(figures 12, 13, 14, 15 and 16). There are 20 power switches in this group. Each one has stabilizing

capacitors on input and output and a pull-down resistor on the enable signal to ensure that on start-

up the power switch is turned off. In addition to that, all power switches have a single common

signal: power fault – an open-drain output, which requires a pull-up resistor. SN74CBTLV3384 bus

switches also require inverters to the enable output signals because they are activated at low level.

Without inverters bus switch would be activated after start-up.

4. MCU group

This group includes the STM32F4 processor (figure 17), four bus switches (figures 18 and 19), a

RTC, two FRAM memories and two RS-485 converters (figure 20).
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STM32F4 processor requires two 2.2 µF capacitors for the main on-board regulator and two quartz

oscillators: 32 kHz for the internal RTC and 16 MHz as the main clock source. Also one LED is

placed next to the MCU for debugging purposes, because the rest of the LEDs is placed behind the

bus switches.

SN65HVD75  RS-485  drivers  require  transient-voltage-suppression  diodes,  which  protect  the

communication bus from voltage spikes. The value of the resistor between A and B differential

signals depends on the impedance of the connection, so at the moment it is left undefined.

5. Debugging functionality group

This group consists of LDOs (figure 21), USB communication drivers for different bus interfaces,

current sensing, control buttons and LEDs (figure 22).

LP2992 and LM1117 LDOs have the typical input and output stabilizing capacitors, but LP2992

requires another dedicated bypass 10 nF capacitor. LMP8645 current sense amplifier uses a 0.1 Ω

shunt  resistor  to  measure  the  voltage  drop  and  50  kΩ resistor,  which  defines  the  gain  of  the

amplifier. The current consumed by the whole board is measured.

FT230XS, FT220XS and FT200XD are FTDI USB interfaces require 27  Ω resistors on the USB

signal lines to stabilize the signals. Two LEDs were connected to FT230XS ICs, because it will be

the main debugging interface and indicators of its activity are needed.

There are five mechanical switches to control the board. Three of the switches are used to control

the power of the board. Fourth switch select the boot mode of the processor. Fifth switch resets the

processor. All switches have debouncing circuits in form of 10 µF and 100 nF capacitors to make

level transitions smoother.

There are 15 LEDs in total on the board. One is part of the MCU group. Two are UART to USB

driver indicators. Three LEDs are power indicators. There rest is are debug LEDs connected to

either MCU or I/O expanders.

6. Connectors

There are several connectors for different purposes on the board (figures  23 and  24). Some are

interfaces to external AOCS hardware like sun sensor connectors, cold gas thruster interface or coil

driver interfaces. Others are meant for communication to other subsystems of the satellite like the

common bus and OBC interface. There are also two connectors for additional sensors, which are

needed in case some sensor is added to the test list at later development stages. There is a battery

connector with a rectifier diode to prevent wrong polarity connection of the battery and a jumper,
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which is meant to allow connecting USB and battery 5 V source in case power source must be

switched  without  powering  down  the  whole  board.  And  there  are  of  course  the  debugging

interfaces: SWD two-wire interface for STM32F4 debugging and the USB connectors for the USB

drivers.  USB  connectors  require  27  pF  capacitors  for  the  signal  lines  to  stabilize  the

communication.   

4.4.2  Board Layout

This section describes the concepts involved, strategy used and decisions made during board design

for the prototype board. Board design by layer can be found under Appendix B.

A 4 layer board design is used, which allows using a ground plane as one of the layers. A whole

layer dedicated to ground provides low ground impedance and allows avoiding ground loops in

most  cases.  This  also significantly simplifies  the design,  because practically each circuit  has  a

ground connection.

Appendix C contains the full  bill  of materials  for AOCS prototype board.  Several  hundreds of

components with about 1500 connections is difficult to organize without a strategy. The design

strategy must take into account that certain components have to be placed in certain respect with

each  other  and  that  there  are  only  3  layers  available  for  routing,  excluding  ground  plane.

Decoupling capacitors for example as well as other signal integrity related components are required

to be placed next to the IC dedicated pins. Taking that into consideration the first step of the strategy

is to combine components in to groups according to schematic blocks.

Second step is to organize the groups within them selves. Placing external electronics components

next to the IC dedicated pins is critical to simplify further organization. At this point similarity of

the board layout design to the schematic ends. Result of this step should consist of groups organized

on one of the sides of the board.

The third step is to organize the groups into power management units with a single power supply

and bus interface. For example a sensor is combined with the dedicated power and bus switches.

The outcome of the this step is usually a two side unit with relatively small amount of external

connections. At this point some routing could be done, but only on the layers that the components

are placed. 

The  fourth  step  is  to  organize  these  units  into  the  overall  structure  of  the  board,  taking  into

consideration  communication  buses  and  the  main  power  supply.  Separating  analog  and  digital

signals is also advised, especially if high accuracy measurements are performed. Usually it takes

several tries to get a suitable structure.
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After  the  main  structure of  the  board is  established,  the  last  step  must  be taken:  optimization.

Optimization  means  readjusting  the  components  for  optimal  space  and  connectivity.  Usually

unoptimized groups take more space and have interwined signals in respect to the board structure.

Optimization is needed to improve the final composition of the board. The last step typically takes

the most time of the board layout design. Visual representation of the strategy can be found under

Appendix D.

In addition to general strategy of the board layout design, certain decisions were made to simplify

the structure of the board. It was decided to place all of the sensors on the top side of the board and

mark the measurement  directions  with silkscreen.  Similarly power management  ICs are mostly

placed on the bottom of the board. This allows creating the power management units described in

the design strategy.
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Figure 7: Main ICs of AOCS prototype board. 1-4 – digital gyroscopes. 5-6 – digital accelerometers, 

7-9 – magnetometers, 10-13 – 12-bit ADCs, 14-15 – 24-bit ADCs, 16 – analog accelerometer, 17-18 – 

analog gyroscopes, 19 – 3.3 V LDO, 20-22 – USB interfaces, 23-24 – RS-485 drivers, 25 – RTC, 26-27

– FRAM, 28-29 – I/O Expanders, 30 – MCU.



Figure 7 highlights the main ICs on the prototype excluding power and bus switches. The logical

units of the board were grouped in 3 different ways: by function, by communication bus and by I/O

expander reach. Grouping is described according to Figure 7.

First of all, units are grouped by functionality. MCU with its dedicated bus switches is placed in the

center (30). Debugging components were brought to the right side of the board (19-22). Analog

sensors with ADCs were placed near the bottom of the board (10-18). Digital sensors were placed

on the left side of the board (1-9). MCU supplementary ICs were place at the top of the board

(23-27). I/O expanders (28-29) are placed close to  the MCU.

Secondly, devices were grouped according to the communication buses used by the devices. Seven

devices communicate through SPI4 (1-3, 25-28). Only four ICs (4-7) communicate through SPI2,

but SPI2 is also used to communicated to any additional sensors that can be connected to the board.

Similarly to SPI4, SPI3 is used by seven ICs (10-15, 29) to communicate with the MCU.

Thirdly ICs were grouped by separating the influence of two I/O expanders. I/O expanders are only

used for mostly constant signals like power and bus switch enable or analog sensors selftest or

mode select signals. First I/O expander controls seven ICs (12-18), which include analog sensors

and their signals. Second I/O expander controls devices 13 ICs (1-11, 26-27).

Some  very  sensitive  ICs  like  ADCs  and  magnetometer  require  explicit  layout  considerations.

Magnetometer is a sensitive IC. It recommended to avoid placing traces with currents higher that 10

mA closer than at a few millimeters distance, or it will affect magnetic field measurements [43].  It

is  recommended  not  to  place  digital  signal  traces  under  the  ADCs,  thus  avoid  digital  signal

interfering with the measurements. Actually all analog and digital electronics should be separated,

but  it  was  impossible  to  separate  the voltage and temperature  measurement  traces  from digital

electronics entirely. Thence it was attempted to minimize the digital signal influence by bringing the

analog signals to the side of the board, maximizing the distance between analog and digital signals

and occasionally placing traces on the inner layer .

Communication interface are mostly placed at sides of the board to allow easy access and reduce

interference of additional wires.

The prototype board is  planned to be ordered from Brandner PCB manufacturer company. The

design has to take into consideration manufacturer capabilities and recommendations. Pushing to

the  manufacturer  limits  will  increase  the  price  of  board  manufacturing,  which  should  be  also

avoided. For example Brandner allows 0.1 mm drilled holes, but the prototype uses a minimum hole

diameter of 0.3 mm. The minimal allowed gap between traces is 0.05 mm, but the prototype board

31



layout has been done with a minimum of 0.14 mm gap. This increasing the possible error margin for

the manufacturer. [71]

4.4.3  Result

A 110 mm × 115 mm AOCS prototype board has been designed. The design satisfies all of the

prototype requirement stated in this thesis.

• The double switch concept and its implementation allows turning off all sensor and ADCs

independently.

• Redundancy for each type of sensors is provided by the prototype board design.

• The  board  allows  testing  of  a  range  of  different  sensors  by  exploiting  the  redundancy

requirement.

• Interfaces for communication testing and evaluation of external devices are provided.

• Interrupts  are  used  for  measurement  completion  indication  to  simplify  the  firmware

development.

• Each sensor power supply voltage and temperature are measured by an on-board ADC.

• Prototype is able to work from a battery, which simplifies hardware testing.

• Board design provides debugging facilities for hardware and software.

Explicit hardware requirements are fulfilled. Summary of most important integrated circuits used in

the design:

• Six gyroscopic sensors, two analog and four digital;

• Three accelerometers, one analog and two digital;

• Three magnetometers, all digital;

• Two 24-bit low noise analog-to-digital converters for analog sensors;

• Four  12-bit  analog-to-digital  converters  for  Sun  sensor,  temperature  and  power  supply

measurements;

• A MCU with FPU, sufficient peripherals and low power consumption;

• 20 load switches for power management;

• 4-bit, 10-bit and 24-bit bus switches for power management;

• USB interface for different communication buses;

• LDOs for standalone usage.
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4.5  AOCS Prototype Analysis and Firmware Development

This section shortly describes further prototype development plan as well as current developments

in AOCS firmware. The result of this thesis is a board design, which has to be assembled, tested and

analyzed for flaws before it can be used for firmware development.

The prototype  is  planned  to  be  assembled by the  author  after  submission  of  this  thesis.  Tartu

Observatory will provide all required tools for the assembly and testing. Even though great effort

was put into the design to avoid schematic and board layout errors, it cannot be assumed that the

board is flawless. Therefore all flaws found in the board design will be reported and analyzed. This

analysis will be used in further AOCS main board development.

After  the  platform is  assembled  and  tested,  it  can  be  used  for  firmware  development.  AOCS

algorithms require very strict scheduling, which could be achieved only by a real-time operating

system. Currently two possibilities are considered.

First solution would be to reuse the ESTCube-1 Command and Data Control Systems freeRTOS

operation system. ESTCube team is more familiar it and some drivers would be easily rewritten for

the new platform. At the same time there will be a different operating system for the On-Board

Computer, which will complicate the ESTCube-2  firmware as a whole.

The  second  solution  would  be  to  also  migrate  to  a  Linux  like  operating  system of  On-Board

Computer. Similarity of the operating systems will simplify future development, but initial firmware

development will be staggered because of the lack of experience.

Selection of the operating system will be performed after initial tests on AOCS prototype will be

performed. After the selection, drivers for all hardware components must be written. That includes

information  gathering  and  actuator  control  drivers.  Power  management  drivers  should  be  also

thoroughly tested.  Consequently AOCS algorithms can be developed and tested as well  as it  is

possible on Earth.

ESTCube-2 mission is to test the satellite technologies in orbit for ESTCube-3 mission, hence the

next step will be to test the AOCS algorithms in low Earth orbit.
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5  Summary

ESTCube-1, the first Estonian student satellite, has been in orbit for more than a year. It already has

fulfilled most of its objectives. The main scientific experiment is yet to be performed, but ESTCube

team gained enourmous amount of space technology development experience. Therefore it should

come as no surprise that the team is already planning the future space missions, which depend on

having a high accuracy Attitude and Orbit Control System (AOCS).

First the thesis introduces future ESTCube missions and their objectives. Then requirements and

structure of ESTCube-2 AOCS are described, followed by an analysis of the previous attitude and

orbit determination and control hardware solutions from other nanosatellites.

The prototype board of ESTCube-2 AOCS has been designed as a result  of  this  work. Design

included  new  hardware  selection,  introducing  a  new  double  bus  switch  concept  for  power

management, creating the electronics schematics and designing the layout of the board. The design

fulfills all of the AOCS prototype board requirements.

Although fulfillment of main AOCS requirements cannot be confirmed before an actual flight, the

AOCS prototype should provide desired accuracy according to previous attitude and orbit control

solutions review. Naturally the hardware requires development of AOCS algorithms, which would

allow to achieve such accuracy.

The AOCS prototype main board with its hardware is yet to be assembled and tested, so the work is

to be continued after this thesis is submitted. After hardware assembly and testing is done, AOCS

firmware is to be developed on the designed platform.

34



6  Acknowledgements

I would like to thank my supervisors Andris Slavinskis and Viljo Allik for their support and sharing

their  knowledge.  They guided me in  topics  of  satellite  building  and electronics  design.  I  have

learned a lot from them.

I would like to express my gratitude to all ESTCube team members as well as instructors, who

shared their knowledge with me. Many thanks to Tõnis Eenmäe, Jaan Viru and Erik Ilbis in that

respect. Special thanks to Indrek Sünter, Kaspars Laizans and Jaanus Kalde for helping me design

and reviewing the prototype board. Thanks to Karoli Kahn for managing the ETSCube-2 project.

I  would  like  to  thank  Silver  Lätt  and  Mart  Noorma  for  managing  the  whole  student  satellite

program.

Finally I am grateful to my family who supported me morally throughout the project.

35



ESTCube-2 asendi ja orbiidi juhtimissüsteemi prototüüpi disain

Georgi Olentšenko

Kokkuvõte

Esimene Eesti satelliit ESTCube-1 viidi edukalt maalähedasele orbiidile 2013. aasta maikuus ning

aasta  vältel  on  satelliit  täitnud  peaaegu  kõik  oma  eesmärgid  välja  arvatud  päikesepurje

eksperiment [7].  Eksperimendi  jooksul  pannakse  satelliit  pöörlema  kiirusega  1  pööre  sekundis,

keritakse 10 m pikkune mikrojuhe välja ning laetakse see kõrge potentsiaalini. Teoreetiliselt peaks

laetud  mikrojuhtme  ja  Maa  ionosfäärilise  plasma  vastasmõju  toimel  satelliidi  pöörlemiskiirus

kahanema  [14].  Kuigi  missioon  pole  veel  lõppenud,  plaanitakse  juba  Eesti  Tudengisatelliidi

programmi raames järgmisi missioone [11].

Üks  ESTCube-2  ja  ESTCube-3  missioonide  eesmärkidest  on  jätkata  päikesepurje  testimist,

kasutades 1 km pikkusega mikrojuhet. Teiseks eesmärgiks on demonstreerida NanoSpace Cold Gas

thruster'i  kasutamist  asendi  ja  orbiidi  juhtimissüsteemi  mootorina  [12].  Mõlemat  meetodit  saab

potentsiaalselt kasutada kosmoses reisimiseks [13].

Magistritöö jooksul arendati uut satelliidi  asendi ja orbiidi juhtimissüsteemi, mis on hädavajalik

missioonide teaduslike eesmärkide täitmiseks. Magistritöö eesmärkideks oli:

• tuua välja nõuded ESTCube-2 asendi ja orbiidi juhtimissüsteemi jaoks;

• kirjeldada süsteemi struktuuri;

• tuua välja nõuded satelliidi asendi ja orbiidi juhtimissüsteemi prototüüpplaadi jaoks;

• valida riistavara prototüüpplaadi jaoks;

• arendada satelliidi asendi ja orbiiti juhtimissüsteemi esimene prototüüpplaat.

Prototüüpplaadi  konstuktsioon  põhineb  ESTCube-1  asendi  juhtimissüsteemil  ja  ESTCube

meeskonna  kogemustel.  Tulevalt  uute  missioonide  poolt  esitatavatest  nõuetest  on  vajalik  ka

täiendava riistvara lisamine ning süsteemi suurema jõudluse garanteerimine. On analüüsitud teiste

nanosatelliitide lahendused. Töö jooksul  oli  valitud uued elektroonikakomponendid ja kasutatud

uued konstruktsioonilahendusi, mis välistavad ESTCube-1 konstruktsioonis leitud puudusi.

Tulemuseks on saadud kõikidele nõudmistele vastav prototüüpplaadi konstuktsioon. Prototüüpplaat

võimaldab välja lülitada kõik andurid ühe kaupa, võimaldab korraga läbi testida valikut sobivaid

andureid ja võimaldab efektiivselt testida vajalikke riistvara- ja tarkvarakomponente.

Töö  tulemuseks  on  prototüüpplaadi  konstuktsioon,  mida  on  valmis  kokkumonteerimiseks  ja

testimiseks. Seega peale magistritöö esitamist kavatseb autor tööd jätkata ning arendada tarkvara

konstrueeritud platvormi jaoks.
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Appendices

Appendix A – Prototype Board Schematic

Sensors group

43

Figure 8: MAX21000, BMG160, MPU-6000, L3GD20H, LPY403AL and LPR403AL gyroscopes.



44

Figure 9: Upper left: HMC5883L, LIS3MDL and MAG3110 magnetometers. Upper right: 

KXRB5,FXC8700CQ and LSM303D accelerometers. Bottom: six LMT86 temperature sensors.



ADCs group

45

Figure 10: Top: AD7710 and AD7173 24-bit analog-to-digital converters. Bottom: two voltage 

references.
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Figure 11: Top: two MAX11633 and two AD7490 12-bit analog-to-digital converters. Bottom: 

voltage dividers for power supply and Sun sensors measurements.



Power management group

47

Figure 12: There are 20 power switched for all sensors, ADCs and FRAMs.
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Figure 13: Three 10-bit bus switches for ADCs.
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Figure 14: Top: two 10-bit bus switches for digital gyroscopes. Bottom: one 10-bit bus 

switch for digital accelerometers.



50

Figure 15: Left: two I/O expanders for power management. Right: three 4-bit bus switches for 

digital magnetometers.
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Figure 16: Top: two 4-bit bus switches for FRAMs. Bottom: a 4-bit bus 

switch external I²C buses.



MCU group

52

Figure 17: STM32F401 microprocessor. 



53

Figure 18: two 24-bit bus switches for MCU.



54

Figure 19: A 24-bit and a 4-bit bus switches for MCU.



Debugging group
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Figure 20: Top: two RS-485 converters. Bottom left: a real-time clock. Bottom right: two FRAMs.

Figure 21: 3.3 V and 5 V LDOs.
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Figure 22: Top: current sensing amplifier. Middle: Indicator and debug LEDs. Bottom: buttons.



Connector group
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Figure 23: AOCS functionality connectors.



58

Figure 24: Power supply and debug connectors.



Appendix B – AOCS Prototype Board Layout (Full scale)
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Figure 25: Top silkscreen.

Figure 26: Top copper layer.
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Figure 27: Inner 2 layer, ground plane.

Figure 28: Inner 3 layer.
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Figure 29: Bottom copper layer.

Figure 30: Bottom silkscreen.



Appendix C – Prototype Board Bill of Materials

Amount Name/Value Package Farnell ID Mouser ID Notes

1 MAX21000 LGA-16 700-MAX21000+ Digital gyroscope

1 BMG160 LGA-12 262-BMG160 Digital gyroscope

1 MPU-6000 QFN-24 1862383 Digital gyroscope
and accelerometer

1 L3GD20H LGA-16L 511-L3GD20HTR Digital gyroscope

1 LPY403AL LGA-28 1838539 Analog gyroscope

1 LPR403AL LGA-28 1838534 Analog gyroscope

1 HMC5883L LPCC-16 1971743 Digital magnetometer

1 LIS3MDL VFLGA-12 511-LIS3MDLTR Digital magnetometer

1 MAG3110 DFN-10 841-MAG3110FCR1 Digital magnetometer

1 KXRB5 LGA-14 912-KXRB5-2050 Analog accelerometer

1 FXC8700CQ QFN-16 841-FXOS8700CQR1 Digital acceleromter
and magnetometer

1 LSM303D LGA-16 511-LSM303DTR Digital accelerometer
and magnetometer

6 LMT86QDCKQT
Q1

SC-70-5 2361481 Temperature sensor

2 ADR3430ARJZ SOT-23 1827386 3 V reference

1 AD7718 TSSOP-28 584-AD7718BRUZ 24-bit ADC

1 AD7173-8 LFCSP-40 2377349 24-bit ADC

2 MAX11633 QSOP-24 700-MAX11633EEG+ 12-bit ADC

2 AD7490 TSSOP-28 9605231 12-bit ADC

20 TPS22941 SC-70-5 1778215 Load switch

2 MCP23S17 QFN-28 579-MCP23S17-E/ML I/O expander

7 SN74CBTLV3126 TVSOP-14 595-
SNCBTLV3126DGV

R

4-bit bus switch

6 SN74CBTLV3384 TVSOP-24 595-
SNCBTLV3384DGV

R

10-bit bus switch

3 SN74CBTLV1621
1

TVSOP-56 595-
SN74CB3T16211DG

V

24-bit bus switch

15 NC7SC04P5X SC-70-5 1467340 Inverter

1 STM32F401 LQFP-100 2393646 MCU
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1 DS3234 SO-20 1593294 Real-time clock

2 FM25V20 SOIC-8 877-FM25V20-G FRAM

2 SN65HVD75 SOIC-8 2127163 RS-485 converter

1 LP2992 SOT-23-5 926-
2992AIM53.3/NOPB

3.3 V LDO

1 LM11171MPX-
5.0/NOPB

SOT-223-4 2323593 5 V LDO

1 LMP8645MKE SOT-23 1798345 Current sense
amplifier

1 FT230XS-R SSOP-16 2081321 USB to UART
converter

1 FT220XD SSOP-16 2081322 USB to SPI converter

1 FT200XD DFN-10 2081320 USB to I²C converter

2 ABMM2-
16.000MHZ-E2-T

2101343 16 MHz crystal

2 FC-13F 1907465 32 kHz crystal

2 CDSOT23-SM712 SOT-23 1824869 TVS diode

2 PMEG6020ETR SOD-
123W

2311226 Diode

4 JS202011CQN 2320018 Slide switch

1 PTS810 611-
PTS810SJM250SMT

R

Tacktile switch

4 Header pins 9731091  2.56 mm pitch
4 contacts

1 row

3 Header pins 9731113  2.56 mm pitch
6 contacts

1 row

1 Header pins 9731121  2.56 mm pitch
8 contacts

1 row

1 Header pins 2254695 2.56 mm pitch
16 contacts

2 rows

1 Header pins 9731075 2.56 mm pitch
2 contacts

1 row

1 Header pins 1926382 5.08 mm pitch
2 contacts

1 row
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3 10033526-
N3212MLF

2112367 Mini USB receptacle

8 18 pF C0603 1759056

6 47 pF C0603 1759062

6 1 nF C0603 1759088

1 2.2 nF C0603 1759093

3 4.7 nF C0603 2310555

5 10 nF C0603 1759102

95 100 nF C0603 2280883

2 220 nF C0603 431199

2 470 nF C0603 2280913

36 1 µF C0603 1759398

2 2.2 µF C0603 2310406

8 4.7 µF C0805 2310410

17 10 µF C0805 2310738

1 0.1  Ω R0805 2008297

4 10 Ω R0603 2078895

6 27 Ω R0603 1697354

2 150 Ω R0603 2078902

12 500 Ω R0603 2331261

2 3.3 kΩ R0603 2078912

6 4.7 kΩ R0603 2078913

2 10 kΩ R0603 2078915

13 33 kΩ R0603 2078918

1 50 kΩ R0603 2331242

8 68 kΩ R0603 2078920

46 100 kΩ R0603 2078921

22 1 MΩ R0603 2078928

2 TBD R0603

15 LED 0603 2322071

Total of 451 components
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Appendix D – Board Layout Design Strategy
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Appendix E – CD Contents

Table 6: Contents of the accompanying CD.

AOCS prototype design Schematics and layout in DesignSpark

and Gerber formats

georgi_thesis.pdf A copy of the thesis

readme.txt Description of  the CD contents
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