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ABSTRACT 

 

Purpose: To demonstrate the technical feasibility of IMRT dose painting using 11C-

choline PET scans in patients with localized prostate cancer. 

 

Methods and materials: This was a radiotherapy planning study of eight patients with 

intermediate to high risk prostate cancer who had 11C-choline PET scans prior to 

radical prostatectomy.  Two different contours were semi-automatically generated on 

the basis of the PET scans for each patient: 60% and 70% of the maximum 

standardized uptake values (SUV60% and SUV70%).  Three IMRT plans were generated 

for each patient: PLAN78 which consisted of whole prostate radiotherapy to 78 Gy; 

PLAN78-90 which consisted of whole prostate radiotherapy to 78 Gy, a boost to the 

SUV60%  to 84 Gy and a further boost to the SUV70% to 90 Gy; and PLAN72-90 which 

consisted of whole prostate radiotherapy to 72 Gy, a boost to the SUV60% to 84 Gy 

and a further boost to the SUV70% to 90 Gy.  The technical feasibility of these plans 

was judged by their ability to reach prescription doses while adhering to published 

dose constraints.  Tumor control probabilities based on PET scan-defined volumes 

(TCPPET) and on prostatectomy-defined volumes (TCPpath), and rectal normal tissue 

complication probabilities (NTCP) were compared between the plans. 

 

Results: All plans for all patients reached prescription doses while adhering to 

published dose constraints.  The TCPPET values for PLAN78, PLAN78-90 and PLAN72-

90 were 65%, 97% and 97%, respectively.  The TCPpath values were 71%, 97% and 

89%, respectively.  Both PLAN78-90 and PLAN72-90 had significantly higher TCPPET (p 

= 0.002 and 0.001) and TCPpath (p < 0.001 and 0.014) than PLAN78.  PLAN78-90 and 

PLAN72-90 were not significantly different in terms of TCPPET or TCPpath.  There were 

no significant differences in rectal NTCPs between the three plans. 

 

Conclusions: IMRT dose painting for localized prostate cancer using 11C-choline PET 

scans is technically feasible.  Dose painting results in higher TCPs without higher 

NTCPs and therefore higher therapeutic ratios. 

INTRODUCTION 

 

There is a clear dose-response relationship between radiation dose and biochemical 

tumor control rates in prostate cancer (1).  A meta-analysis (1) shows that an increase 

of radiotherapy dose from 70 Gy to 80 Gy results in an increase in biochemical 

control (BC) rates by 19% in patients with high risk prostate cancer.  An extrapolation 

of that data suggests that in this population, doses higher than 90 Gy may be 

necessary to maximize tumor control rates.  However, such high doses are impossible 

to deliver using conventional external beam radiotherapy without an unacceptably 

high risk of severe toxicity (1, 2). 

 

“Dose painting” (3, 4) is a strategy that has been proposed to enable the delivery of 

such high radiotherapy doses without giving an unacceptably high risk of toxicity.  

This is the concept of using functional imaging to identify regions within the 

conventional target volumes that may have different biology and thus may require 

escalated doses of radiation to achieve tumor control 



Previous studies of local recurrence patterns support the use of dose painting in 

prostate cancer (5, 6).  These studies show that dominant intraprostatic lesions (DILs) 

identified on pre-treatment imaging are the main sites of local recurrence following 

radiotherapy.  It is reasonable then to hypothesize that if higher doses of radiation are 

delivered to DILs, lower local recurrence rates may result. 

 

Previous studies have examined the use of dose painting in prostate cancer using 

various imaging modalities including 18F-fluorocholine PET (7), 11C-acetate PET (8), 

dynamic contrast enhanced (DCE) MRI (9), magnetic resonance spectroscopy 

(MRS) (9, 10), and endorectal coil MRI (11). 

 

This study examines the use of dose painting in prostate cancer using 11C-choline PET 

scans.  11C-choline is a radiotracer based on choline, an essential component of the 

cell membrane (12, 13).  Choline is taken up into cells via the choline transport 

system.  Intracellularly, it is phosphorylated by choline kinase to phosphorylcholine 

and integrated into cell membrane phospholipids.  Prostate cancer cells show 

increased transport as well as increased expression of choline kinase compared with 

normal cells, providing the rationale for the use of 11C-choline as a radiotracer in 

prostate cancer. 

 

This study is an extension of a previous study performed at Austin Health (14).  In the 

previous study, eight men with intermediate to high risk prostate cancer who had 11C-

choline PET scans prior to radical prostatectomies were studied.  The patients’ 11C-

choline PET scans were compared with their prostatectomy specimens to quantify the 

degree of correlation for the purposes of target volume definition for prostate 

radiotherapy.  Several contouring methodologies were developed which could 

accurately define DILs.  The current study uses the same patient cohort and the 

contouring methods developed from that study to determine the technical feasibility 

of using 11C-choline PET for dose painting by contours. 

 

METHODS AND MATERIALS 

 

Study design 

 

This is a radiotherapy planning study designed to confirm the technical feasibility of 

delivering radiotherapy according to the “dose painting by contours” approach (4).  

The study cohort consisted of eight patients with intermediate to very high risk (15) 

prostate cancer who had 11C-choline PET scans prior to radical prostatectomy.  Their 

characteristics are described in Table 1. 

 

The patients’ pre-prostatectomy 11C-choline PET and CT scans as well as their 

prostatectomy specimens were analyzed.  The Austin Health Human Research Ethics 

committee granted approval for this study.  All patients consented to the collection 

and use of their data for research purposes. 

 

Imaging 

 



11C-choline PET scans were performed on an Allegro PET scanner (Philips 

Healthcare, Cleveland, OH, USA).  30-second transmission scans covering the 

prostate and lower abdominal regions were performed using a single 740 MBq 137Cs 

point source for accurate patient positioning and attenuation correction.  List-mode 

emission scans were acquired immediately after intravenous injection of 

approximately 370 MBq of 11C-choline and continued for 60 minutes.  Scans were 

acquired in a single bed position, with only the pelvis imaged.  All images were 

reconstructed using a 3D row action maximum likelihood iterative algorithm 

(RAMLA).   

 

CT scans were obtained separately at 5 mm slice thickness.  11C-choline PET scans 

were aligned and fused with the CT scans.   

 

Histopathology 

 

Following radical prostatectomy, the prostate was fixed overnight in 4% neutral 

buffered formalin.  Transverse sections were taken of the prostate perpendicular to its 

posterior surface at 3-5mm intervals.   Sections were then stained with hematoxylin and 

eosin.  A single pathologist reviewed the specimen and outlined each tumor focus on 

the histological sections.  Marked specimens were scanned directly on a flat-bed 

scanner. 

 

Image co-registration 

 

All images were co-registered and analyzed using MIMvista (MIM Software Inc., 

Cleveland, OH, USA).  The 11C-choline PET scan was manually co-registered with 

the CT scan using rigid body transformation (Fig. 1).  The JPEG images of the 

prostatectomy transverse sections were divided up, stacked, and reoriented to match 

the CT scan slices.  In order to account for shrinkage and distortion of the prostate ex-

vivo, these images were manually deformed using a mesh in Adobe Illustrator CS5 

(Adobe Systems Incorporated, San Jose, CA, USA) to match anatomical landmarks 

on the CT scan (e.g. urethra, seminal vesicle tissue in superior slices, edges of prostate) 

(Fig. 2).  This was then co-registered with the CT scan.  This stack of prostatectomy 

slice images (3-5 mm slice thickness) was then co-registered with the CT scan (5 mm 

slice thickness).  Both the prostatectomy images and the CT scan images represented 

averages across the thicknesses of the slices.  The similar slice thicknesses and 

averaging effect through the slices allowed easy registration. 

 

Generation of contours 

 

Contours for the prostate, seminal vesicles, and the surrounding normal structures 

were generated as per the RTOG 0126 protocol (16).  Contours for the dose painting 

volumes were generated using MIMvista. 

 

According to our previous study (14), the contour of 11C-choline PET resulting in the 

best correlation with the prostatectomy-defined DIL was SUV60% (60% of the 

maximum standardized uptake value), which had a dice similarity coefficient, 



sensitivity and specificity of 0.64, 79% and 72% respectively.   SUV70% (70% of the 

maximum standardized uptake value) had higher specificity at the expense of lower 

sensitivity, with a dice similarity coefficient, sensitivity and specificity of 0.59, 56% 

and 88% respectively.  As such, for the current study, SUV60% and SUV70% were used 

as the volumes for dose painting (Fig. 3). 

 

Four PTV volumes were generated for each patient.  PTV1 was defined as the 

prostate and seminal vesicles with a 6 mm isotropic expansion margin.  PTV2 was 

defined as the prostate alone with a 6 mm isotropic expansion margin.  PTV60 was 

defined as the SUV60% volume with a 6 mm isotropic expansion margin with 6 mm 

exclusions from the rectum and bladder.  PTV70 was defined as the SUV70% volume 

with a 6 mm isotropic expansion margin and 6-8 mm exclusions from the rectum and 

bladder. 

 

Using the co-registered prostatectomy specimen images, DILs were contoured for the 

biological modeling calculations and designated “PathDIL” (Fig. 3). 

 

Radiotherapy Treatment Planning 

 

All of the images and contours were imported into a treatment planning system, CMS 

Monaco 2.03 (Elekta CMS Software, St Louis, MO, USA).  Step-and-shoot IMRT 

treatment plans were created using seven equally spaced fields.  Inhomogeneity 

corrections were calculated using X-ray Voxel Monte Carlo algorithms.  A minimum 

of 5 monitor units was set for each segment. 

 

Three radiotherapy plans were generated for each patient: a standard whole-prostate 

radiotherapy plan (PLAN78) with a dose of 78 Gy prescribed to the PTV2; a dose 

escalation plan (PLAN78-90) with a dose of 78 Gy prescribed to the PTV2, 84 Gy to 

the PTV60 and 90 Gy to the PTV70; and a dose escalation/de-escalation plan 

(PLAN72-90) with 72 Gy prescribed to the PTV2, 84 Gy to the PTV60 and 90 Gy to 

the PTV70.  All plans also had a dose of 60 Gy prescribed to the PTV1 (which 

includes the seminal vesicles).  All of the treatment plans were based on schedules 

with 39 fractions.  The normalized total doses in 2 Gy fractions (NTD2Gy) are listed in 

Table 2. 

 

As per ICRU 83 recommendations (17), the prescribed dose for each PTV was 

defined as the median dose within the volume (D50).  In addition, the D98 within each 

PTV had to exceed 95% of the prescription dose, and the D2 within the highest dose 

PTV could not exceed 107% of the prescription dose. 

 

Dose constraints for OARs were combined from the QUANTEC review (2) and the 

RTOG 0126 protocol (16), taking the more conservative values from each.  As per the 

RTOG 0126 protocol, dose constraints were calculated on the basis of rectums 

including contents and bladders including contents.  These constraints are listed in 

Table 3. 

 

Biological modeling 

 



The tumor control probability (TCP) and normal tissue complication probability 

(NTCP) were calculated for each plan for each patient. 

 

TCP was calculated using the modified (18) Zaider and Minnerbo (19) formula.  The 

following parameters were used: α/β = 3.1, α = 0.15, β = 0.048, λ = 0.0165 and tumor 

cell density = 107clonogens/cm3 (20).  Two different TCP calculations were 

calculated for each plan for each patient, according to two different ways of defining 

the actual tumor volume: TCPPET was calculated using the above parameters, using 

SUV60% as the tumor volume; and TCPpath was calculated using the above parameters, 

using the prostatectomy-defined DIL volume as the tumor volume. 

 

The TCPPET metric, which takes SUV60% as the tumor volume follows the 

methodology of most previous planning studies (7-9), which assume that the imaging-

defined volume is representative of the actual tumor with 100% accuracy.  This is 

almost without exception an overestimation of the accuracy of imaging in prostate 

cancer.  However, this metric was included as it allows comparisons with previous 

planning studies.  The TCPpath metric, which takes the prostatectomy specimen-

defined DIL volume as the tumor volume is a more novel way of calculating TCP.  

Since PET scans do not always correlate well with the actual tumor location, this may 

be more representative of real world scenarios. 

 

A TCP calculation for microscopic extension of disease was also performed.  This 

calculation takes account of clonogens that may be present in the prostate outside of 

the prostatectomy-defined DIL volume or the PET scan-defined volume.  This used 

the same parameters as described above, except used a tumor cell density of 105 

clonogens/cm3 and used the prostate volume excluding either the prostatectomy-

defined DIL volume or the PET scan-defined volume.  Even at the lowest dose of 72 

Gy, the TCP for this region did not significantly affect the overall TCP, therefore was 

not included in the final analysis. 

 

NTCP was calculated for the rectum using the previously defined “rectum including 

contents” volume.  NTCP was calculated using the Lyman-Kutcher-Burman 

formula (21).  The following parameters were used for  rectal NTCP (for Grade ≥ 2 

late rectal toxicity): n = 0.09, m = 0.13 and TD50 = 76.9 Gy (22).  Doses were 

normalized to 2 Gy per fraction using α/β ratios of 3 Gy for the rectum (22). 

 

Statistical analyses 

 

Statistical analyses were performed using SPSS version 17 (IBM, Armonk, NY, USA).  

Biological modeling calculations were compared between the three plans (PLAN78, 

PLAN78-90, PLAN72-90) using ANOVA and paired t-tests. 

RESULTS 

 

In all 24 radiotherapy plans generated, the target volume objectives as well as the 

OAR dose constraints were met without exception.  The dose distributions for the 

three plans for a representative patient (Patient 8) are shown in Fig. 4.  The TCPPET 

and TCPpath values for each patient for each plan are shown in Table 4. 

 



The mean TCPPET values for PLAN78, PLAN78-90 and PLAN72-90 were 65%, 97% and 

96%, respectively.  PLAN78-90 had a 49% higher TCPPET than PLAN78 and this 

difference was statistically significant (p = 0.002).  PLAN72-90 had a 48% higher 

TCPPET than PLAN78 and this difference was statistically significant (p = 0.001).  

There was no statistically significant difference between PLAN78-90 and PLAN72-90 (p 

= 0.673).  For PLAN78-90, every single patient’s TCPPET was improved compared with 

PLAN78.  Similarly, for PLAN72-90, every single patient’s TCPPET was improved 

compared with PLAN78. 

 

The mean TCPpath values for PLAN78, PLAN78-90 and PLAN72-90 were 71%, 97% and 

89%, respectively.  PLAN78-90 had a 37% higher TCPpath than PLAN78.and this 

difference was statistically significant (p < 0.001).  PLAN72-90 had a 26% higher 

TCPpath than PLAN78 and this difference was statistically significant (p = 0.014).  

There was no statistically significant difference between PLAN78-90 and PLAN72-90 (p 

= 0.15).  For PLAN78-90, every single patient’s TCPpath was improved compared with 

PLAN78.  For PLAN72-90, however, one patient (Patient 8 on Table 4) actually had a 

drop in TCPpath compared with PLAN78.  This patient’s DIL contours and dose 

distributions are shown in Fig. 4. 

 

The mean rectal NTCP values for PLAN78, PLAN78-90 and PLAN72-90 were 4.6%, 

3.7% and 3.2%, respectively.  There were no statistically significant differences 

between the three plans (p = 0.082). 

 

DISCUSSION 

 

This study demonstrates the technical feasibility of dose painting for localized 

prostate cancer.  Two dose painting approaches were compared with standard 

radiotherapy and both were found to be achievable while staying within published 

dose constraints.  Both dose painting approaches had superior TCPs to standard 

radiotherapy, while not having significantly different NTCPs.  Overall, there was no 

significant difference in the TCPs and NTCPs between the two dose painting 

strategies; however, worryingly, one patient’s TCPpath actually decreased when 

comparing PLAN78 with PLAN72-90. 

 

This patient’s drop in TCPpath with PLAN72-90 is not surprising.  While 11C-choline 

PET has excellent overall accuracy for defining DILs in the entire patient cohort, in 

some individual patients the extent of disease may not be accurately defined (Fig. 4).  

With the PLAN72-90 approach, the region outside of the 11C-choline PET-defined PTV 

volume is dose de-escalated to 72 Gy.  Therefore, in a patient where 11C-choline PET 

does not accurately define the entire DIL volume, a large proportion of the DIL may 

be under-dosed, leading to a lower TCPpath. 

 

The strategy of dose escalation to the imaging-defined DILs and dose de-escalation to 

the rest of the prostate has been advocated by a number of previous studies.  Van Lin 

et al. (9) performed a radiotherapy planning study on five patients who had DILs 

defined using DCE-MRI and MRS.  Two plans were generated for each patient: a 

standard whole prostate radiotherapy plan to 78 Gy, and an experimental plan with 

DIL dose escalation to 90 Gy and rest of the prostate dose de-escalation to 70 Gy.  

The two plans had similar TCPs, however the experimental plans had lower NTCPs.  



The authors concluded that the experimental plan had a higher therapeutic ratio and 

therefore may be preferable.  Pinkawa et al. (7) performed a radiotherapy planning 

study on 12 patients who had DILs defined using 18F -fluorocholine PET scans.  Two 

comparisons were made: whole prostate irradiation to 76 Gy with or without a boost 

to the DIL to 80 Gy, or 66.6 Gy to the whole prostate with or without a boost to 83.25 

Gy.  Both comparisons resulted in increases in the EUDs of the DILs with only minor 

changes to the bladder and rectum EUDs.  Seppala et al. (8) performed a planning 

study on 12 patients who had DILs defined using 11C-acetate PET scans.  Six plans 

were compared for each patient: a whole prostate radiotherapy plan to 77.9 Gy, and 

DIL dose escalations to 77.9 Gy, 81 Gy, 84 Gy, 87 Gy and 90 Gy with rest-of-prostate 

dose de-escalations to 72 Gy.  They found that all of the DIL dose escalation 

approaches had superior TCP compared with the standard whole prostate radiotherapy 

plan, and that the highest probability of uncomplicated control was achieved with an 

average dose of 82.1 Gy to the dose-escalated volume. 

 

All of these studies calculated TCPs according to the way we calculated TCPPET; 

meaning they calculated the TCP based on imaging data alone.  For the purposes of 

calculating TCP, these studies assumed that imaging has 100% sensitivity for defining 

the DIL, which is almost without exception an overestimation.  As such, these studies 

assumed that their dose escalation volumes contained the DILs in their entirety, and 

that their dose de-escalation volumes did not contain any portions of the DILs.  It was 

therefore a foregone conclusion that dose de-escalation to volumes containing no 

DILs would not degrade the overall TCPs according to this method of calculation.  In 

fact, that is what we found with our TCPPET calculation – even PLAN72-90, which 

contains a dose de-escalation volume resulted in higher TCPs for every single patient. 

 

The reason these previous studies calculated their TCPs based on imaging data alone 

is that they did not have histopathological data available for comparison.  In our study, 

all patients underwent radical prostatectomy, therefore we could use the 

histopathological sections to correlate with the imaging data for calculating TCPpath.  

TCPpath takes into consideration scenarios where the imaging and the true location of 

the tumor do not correlate well, and therefore is a more appropriate metric for 

estimating differences in TCPs between plans. 

 

The drop in TCPpath for that single patient calls into question the safety of the 

PLAN72-90 approach, or in fact any dose escalation / de-escalation approach where the 

sensitivity of imaging is not close to 100%.  While the overall TCPpath for the entire 

patient cohort is improved with PLAN72-90 as compared with PLAN78, it is 

unacceptable that a dose painting strategy may result in poorer tumor control rates for 

some patients.  The PLAN78-90 approach however does not have a dose de-escalation 

component and thus ensures that the TCPpath is improved.  Additionally, the NTCPs 

associated with PLAN78-90 are non-statistically significantly different from the other 

two plans, so theoretically should not result in higher toxicity rates.  For this reason, 

the PLAN78-90 dose escalation strategy may be more preferable than the PLAN72-90 

dose escalation / de-escalation strategy. 

 

The magnitude of the improvement in TCPs with our dose painting strategies is 

comparable to the improvements in 5 year BC rates noted in previous studies.  

Miralbell et al. (11) studied 50 patients who received radiotherapy to the whole 

prostate to a dose of 64 Gy followed by a hypofractionated boost of two fractions of 5, 



6, 7 or 8 Gy to the DIL.  This corresponds to NTD2Gy values of 82 – 104 Gy (α/β = 2).  

The 5 year biochemical disease-free survival and disease-specific survival were 98% 

and 100%, respectively.  Vianni et al. (1) performed a meta-analysis of randomized 

controlled trials on prostate radiotherapy dose-escalation and developed a linear 

correlation model between radiotherapy dose and biochemical failure.  According to 

this model, high risk prostate cancer patients who receive a dose of 78 Gy are 

predicted to have 5 year BC rates of approximately 66%.  We prescribed two dose 

escalation levels – one at 84 Gy in 39 fractions (NTD2Gy(α/β = 2) = 87.2 Gy), and 

another at 90 Gy in 39 fractions (NTD2Gy(α/β = 2) = 96.9 Gy).  According to Vianni et 

al.’s linear correlation model, these two dose levels are predicted to result in 5 year 

BC rates of 84% and 100% respectively.  In our study, the mean TCPpath with PLAN78 

and PLAN78-90 are 71% and 98% respectively, which are very close to the results 

found in both the Miralbell et al. study (11) and the Viani et al. linear correlation 

model (1). 

 

Additionally, the values of the rectal NTCPs are comparable to that predicted by the 

QUANTEC review (16).  The QUANTEC review estimates the risk of grade 2 or 

higher late rectal toxicity to be less than 15% if none of the dose constraints are 

exceeded.  From our calculations, the mean rectal NTCPs range from 3.2% to 4.6%.  

The highest rectal NTCP for any patient was 6.7%.   

 

More important than the biological modeling calculations however, is the fact that 

both PLAN78-90 and PLAN72-90 can be deemed “technically feasible” according to 

published criteria.  Our prescription reporting complies with what is suggested by 

ICRU 83 (17) and our dose constraints comply with both the QUANTEC review (2) 

and the RTOG 0126 randomized controlled trial (16).  Previous prostate planning 

studies recorded their prescription doses according to a variety of criteria, and either 

did not include dose constraint data or used their own “in house” constraints.  Seeing 

that our data complies with contemporary standards, the “technical feasibility” of our 

plans should be easier to judge. 

 

Our study does have a number of limitations however.  Firstly, like most previous 

planning studies, the effects of inter- and intra-fractional movements are not simulated.  

It is therefore unknown how well our dose painted PTVs would cover the DILs, or 

how much additional dose the OARs may receive in real world scenarios.  In fact, 

because the PTV60 and PTV70 volumes had 6-8mm exclusions from the bladder and 

rectum (in order to meet dose constraints), these volumes may not give the DILs the 

same level of coverage as predicted by these plans in the face of significant antero-

posterior movement.  This is a similar issue to that experienced by clinicians giving 

prostate PTVs a reduced posterior margin.  However, because the PTV2 volume is 

isotropic without any exclusions in our study, the DILs should at least receive the 

PTV2 prescription dose. 

 

A second limitation is that we used the same patient cohort that we used to validate 

our contouring strategy.  Using the same contouring strategy on a different set of 

patients will not necessarily give the same degree of accuracy that we found in the 

original study.  However, our methodology is still preferable to previous radiotherapy 

planning studies which used unvalidated contouring strategies (7, 8). 

 



A third limitation, common to many planning studies, is the fact that none of the 

biological models have been clinically validated.  Markedly different results can be 

obtained if different models are used, or if different parameters are applied to these 

models (2).  As such, the values obtained from these models should be interpreted 

with caution, and be used only to compare the relative differences between the plans. 

 

The central premise of our study is that higher radiotherapy doses delivered to the 

tumor will result in higher local control rates (23).  Higher local control rates may 

then lead to decreased metastatic dissemination (24-26).  The ultimate aim of this 

study however, is to lead to work that can one day improve survival in patients with 

prostate cancer.  This is most likely not achievable with dose-escalation alone, due to 

factors such as the high prevalence of micrometastatic disease already present at the 

time of treatment (26).  Systemic therapies such as androgen deprivation (27) and 

other emerging systemic therapies (28) will probably need to be used in conjunction 

with dose escalation to lead to meaningful improvements in outcomes. 

 

CONCLUSIONS 

 

Dose painting by contours using 11C-choline PET scans is technically feasible.  Both 

PLAN78-90 and PLAN72-90 resulted in higher TCPs than PLAN78, while having similar 

NTCPs.  As such, both PLAN78-90 and PLAN72-90 have higher therapeutic ratios.  

Caution should be applied in using the dose escalation / de-escalation strategy as 

evidenced by the drop in TCPpath for a single patient when PLAN72-90 is compared 

with PLAN78. 
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