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HERE is an urgent need for efficient and compact sources of coherent mid-infrared
T wavelength radiation (3-5 um). Cost-effective and bright mid-infrared sources will
lead to exciting new sensing applications, ranging from the remote sensing of greenhouse
gases, such as CO9 and methane, to analysis of trace gases in exhaled breath for disease

marker identification.

The last decade has seen a continuing increase in the output power of various types
of mid-infrared sources, such as optical parametric oscillators and amplifiers, quantum
cascade lasers and fibre lasers. However, advances in brightness, efficiency, peak power

and tunability are still necessary for many applications.

In this thesis, we describe a new concept for a fibre laser based on Er** doped ZBLAN
glass that operates in the mid-infrared with lasing centred around 3.5 pum. We used a
novel dual-wavelength pumping (DWP) scheme to achieve world-leading efficiency for

this material and an output power of 260 mW.

The DWP technique uses long-lived excited states in our Er®>* ion doped ZBLAN glass
gain medium to improve the Stokes efficiency. A low power, 985 nm pump source excites
ions from the 415 /2 ground state to the long lived 14 /2 state. A large fraction of the
ion population can be stored in this level because of its long lifetime, creating a “virtual
ground state.” A concurrent 1973 nm pump source is then used as the main pump
source. This pump excites the ions further to the upper laser level 4F /2. Post lasing,
the 1973 nm pump cycles the ions between the “virtual ground state” at %I, /2 and the
4F, /2 level. The first pump at 985 nm maintains the population in the “virtual ground”
as this population is diminished by spontaneous emission and energy-transfer processes,

which eject ions from the lasing cycle.
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In this thesis, we review the literature and the current state-of-the-art in mid-infrared
fibre lasers. An overview of the spectroscopic properties of Er®t:ZBLAN relevant to
mid-infrared operation is presented. The difficulties and issues associated with the
creation of mid-infrared radiation are discussed and our spectroscopic investigations of

ZBLAN glass and glass fibres are summarised.

Multiple wavelengths were used as pump sources for our DWP laser. Our investigation
of the optimal wavelength for the DWP technique and the development of suitable
sources is described as well. The 3.5 um laser system is discussed, including the full
characterisation of the laser. The thesis is concluded with a summary of the results and

an outlook for the future.
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