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Abstract 25 

Reforestation of agricultural lands has the potential to sequester C, while providing other 26 

environmental benefits. It is well established that reforestation can have a profound impact 27 

on soil physicochemical properties but the associated changes to soil microbial communities 28 

are poorly understood. Therefore, the objective of this study was to quantify changes in soil 29 

physicochemical properties and microbial communities in soils collected from reforested 30 

pastures and compare then to remnant vegetation and un-reforested pastures. To address 31 

this aim, we collected soil from two locations (pasture and its adjacent reforested zone, or 32 

pasture and its adjacent remnant vegetation) on each of ten separate farms that covered the 33 

range of planting ages (0-30 years and remnant vegetation) in a temperate region of 34 

southeastern Australia. Soils were analysed for a range of physicochemical properties 35 

(including C and nutrients), and microbial biomass and community composition (PLFA 36 

profiles). Soil C:N ratios increased with age of tree planting, and soil C concentration was 37 

highest in the remnant woodlands. Reforestation had no clear impact on soil microbial 38 

biomass or fungal:bacterial ratios (based on PLFA’s). Reforestation was associated with 39 

significant changes in the molecular composition of the soil microbial community at many 40 

farms but similar changes were found within a pasture. These results indicate that 41 

reforestation of pastures can result in changes in soil properties within a few decades, but 42 

that soil microbial community composition can vary as much spatially within pastures as it 43 

does after reforestation.   44 
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1. Introduction 45 

Carbon sequestration in vegetation and soils has substantial potential to help mitigate further 46 

climate change (Lal, 2004; Swift, 2001). Reforestation of pastures is an important means of 47 

sequestering C in the soil (Hoogmoed et al., 2012; IPCC, 2013). Reforestation can provide 48 

other environmental benefits, such as the provision of habitat for native flora and fauna, 49 

increasing habitat connectivity, and reducing non-point source pollution from agriculture 50 

(Cunningham et al., 2015b). For this reason, reforestation of marginal agricultural land is seen 51 

as an important form of land-use change (Mackey et al., 2013). 52 

 In addition to increasing soil C levels, reforestation can change the chemical nature of C 53 

inputs into the soil (de Alcântara et al., 1996; Smith et al., 2012). Trees being long-lived 54 

perennial plants typically produce nutrient poor and resistant to decomposition tissues, 55 

whereas agricultural plants typically allocate most of their C to photosynthetically active, high 56 

nutrient and readily decomposed tissues (Aerts and Chapin, 2000). This can have important 57 

implications for soil C cycling, as the residence time of C in the soil is linked closely to its 58 

chemical nature and its accessibility to microbes (Conte et al., 2010; de Alcântara et al., 1996; 59 

Smernik and Oades, 2001). Additionally, the cycling of C in soil is determined to some degree 60 

by its C:N ratio and management (e.g. Giardina et al., 2000). For example, an increase in soil 61 

C:N ratio is often associated with the conversion from pasture to woodland, due to increased 62 

C:N ratio of the litter inputs, and reduced disturbance and fertiliser inputs (Hoogmoed et al., 63 

2014; Hoogmoed et al., 2012; Ussiri et al., 2006). 64 

Reforestation can change physicochemical properties of the soil (see Cunningham et al., 65 

2015b, and references therein). For example, soil nutrient levels (especially N) often decrease 66 

following reforestation due to cessation of fertilizer addition, reduced levels of biological N 67 

fixation associated with leguminous species and increased nutrient immobilisation (Garten 68 
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and Ashwood, 2002; Hooker and Compton, 2003). However, increases in soil nutrients (both 69 

N and P) have been reported following reforestation of highly-degraded soils (Jiao et al., 70 

2012) and centuries after reforestation (Wilson et al., 1997). Removal of livestock associated 71 

with reforestation can change soil physicochemical properties due to reduced levels of 72 

nutrient redistribution and grazing effects on plant-soil feedbacks (Holland and Detling, 1990; 73 

Semmartin et al., 2008). These changes in soil properties may have significant effects on soil 74 

biotic communities, including those that regulate the cycling of C and nutrients in soils 75 

(Bardgett and Wardle, 2010; De Deyn et al., 2008; Ng et al., 2014b). 76 

The biomass, activity and diversity of soil microbial communities is affected strongly by 77 

changes in soil physicochemical properties (Bossio and Scow, 1998; Ng et al., 2014b), with 78 

most of this information coming from agricultural systems. In contrast, few insights have been 79 

gained about how soil microbial communities respond to reforestation. Soil microbial 80 

communities can differ between forested (plantations and native woodlands) and agricultural 81 

lands (Bossio et al., 2005; Singh et al., 2007), among different types of agriculture (Drenovsky 82 

et al., 2010), and within a few years among different methods of revegetating agricultural 83 

lands (Hedlund, 2002). However, how reforestation of pastures with mixed-species, affects 84 

soil microbial communities remains largely unknown.  85 

Despite the tremendous complexity of soil microbial communities, predictions can be 86 

made about how different groups of soil microbes, such as fungi and bacteria, will respond to 87 

revegetation. For example, following reforestation and afforestation (i.e. planting trees on 88 

areas that were historically treeless) of agricultural lands, soil C:N ratios generally increase 89 

(Berthrong et al., 2009; Cavagnaro, 2016), which is likely to cause a shift from bacterial to 90 

fungal dominance in soil communities (Busse et al., 2009; Fierer et al., 2009; Högberg et al., 91 

2007). Given that soil communities play an important role in soil C and nutrient cycling 92 
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(Bardgett and Wardle, 2010; De Deyn et al., 2008; Ng et al., 2014b), it is valuable to determine 93 

how reforestation alters the microbial composition of soils. 94 

Here, we quantify changes in the microbial community and soil physicochemical 95 

properties following the conversion of pastures to mixed-species plantings dominated by 96 

species belonging to the genera Eucalyptus L’Hér. and Acacia Mill. We selected mixed-species 97 

plantings because they are planted increasingly instead of single-species plantings, and their 98 

higher above-ground biodiversity potential. We hypothesized that with time, the soil 99 

physicochemical properties and microbial community composition of tree plantings would 100 

become increasingly divergent from that of the adjacent pasture. To test this hypothesis, we 101 

surveyed a replicated chronosquence of sites ranging from treeless pastures through to 102 

remnant woodlands on ten farms in a temperate region of southeastern Australia. In order to 103 

account for differences in soil properties among farms, at each farm we sampled soils from 104 

both the reforested or remnant vegetation zones and an adjacent un-reforested pasture. 105 

 106 

2. Materials and Methods 107 

2.1 Study area and design 108 

This study focused on tree plantings on formerly-grazed pastures in northern Victoria, 109 

Australia (Table 1). Prior to European settlement in the 1840s, the region was dominated by 110 

Eucalyptus woodlands (10-30 m tall, 10-30% projective foliage cover (i.e. percentage of the 111 

sky blocked out by leaves and stems), Specht, 1981) with grassy understoreys. Since 112 

European settlement the land has been cleared extensively and converted predominantly to 113 

dryland cropping and pasture-based grazing systems. Consequently, this region offers 114 

substantial opportunities for reforestation. The region has a temperate climate with seasonal 115 
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changes in mean monthly maximum temperature (12.8–31.0 °C) and minimum temperature 116 

(3.2–14.9 °C), and a winter-dominant annual precipitation of 500-700 mm year-1 (Table 1). 117 

This study involved a survey of ten grazing farms that were selected to cover a 118 

representative range of time since reforestation (Table 1). At each of the 10 farms two sites 119 

were established, one of which was a ‘reference pasture site’ and the other was a ‘treatment 120 

site’ (Fig. 1). The two sites on each farm were located 50 m apart from one another, but were 121 

in the same topographic position and on the same soil type (see below), and had the same 122 

management prior to re-forestation. The treatment sites were of the following classes: 123 

reforested patches, remnant woodland patches, or pastures. The reforested sites were planted 124 

with trees 10, 18 or 30 years prior to sampling (i.e. there were two farms per age class) and 125 

were included to provide an indication of changes in soil properties with time since tree 126 

planting. The remnant sites were included to represent a potential trajectory for plantings at 127 

maturity (two farms). The reference pasture –pasture comparison (two farms) was included 128 

to provide a temporal reference without reforestation (0 years) for soil properties, and a 129 

spatial reference for the variability of soil properties across a field. This paired design allowed 130 

us to assess changes in soil properties under various stages of reforestation (i.e. treatment 131 

sites) relative to a conventional pasture management scenario (i.e. reference pasture sites). It 132 

also allowed us to partially account for differences among farms due to variation in land-use 133 

history and local soil properties. 134 

The treatment sites on each farm included the whole tree planting or patch of remnant 135 

vegetation (approx. 2 ha), with an equivalent area sampled in the adjacent reference pastures. 136 

The adjacent references pasture sites were located away from any remnant paddock trees to 137 

remove the influence of trees. The soils at all sites were alfisols according to the FAO soil 138 
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classification system (IUSS Working Group WRB, 2014) and sodosols in the Australian soil 139 

classification system (Isbell, 2002). 140 

All tree plantings were planted with a mixture dominated by Eucalyptus L’Hér. and 141 

Acacia Mill. species native to the region. All plantings include the regional dominants 142 

Eucalyptus macrocarpa and E. sideroxylon, with seven to eleven woody species planted and 143 

tree densities from 389-604 plant ha-1 when surveyed (see also Cunningham et al., 2015a). 144 

The plantings were established by ripping the soil into furrows, fencing out livestock and 145 

hand planting tubestock seedlings into the furrows. Following reforestation there was no 146 

further active management intervention. The remnants patches were selected to represent 147 

the target vegetation (plains woodland dominated by Eucalyptus macrocarpa) being restored 148 

with these plantings and were among the most mature native woodlands in the region. While 149 

the exact age of the remnants was unknown, it is likely that they post-date the widespread 150 

clearance associated with the Gold Rush of the 1850s and 1860s in the region, and were not 151 

actively replanted. At all sites the pastures, which were un-cultivated since establishment, 152 

were dominated by perennial pasture species, typically including Phalaris aquatica L. and 153 

Lolium perenne L. 154 

 155 

2.2 Sample collection 156 

Fieldwork was completed at the ten farms during the austral autumn from late-April to mid-157 

May, 2012. At each farm, a treatment site and an adjacent reference pasture site were 158 

sampled (Fig. 1). Four 400-m2 sampling plots were established randomly across each site. 159 

These sampling plots were located in similar topographic positions so as to avoid potential 160 

impacts of any underlying gradients within the sites. Within each of these sampling plots, soil 161 

samples were sampled within five randomly-located quadrats. Soil was collected from the 0-162 
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10 cm soil layer where microbial activity is highest in these soils (Cavagnaro, unpublished). 163 

This sampling intensity within plot has been shown to provide a representative sample of soil 164 

C in this region; that is, the probability of estimating within 10% of mean at this sampling 165 

intensity is > 0.8 (see Cunningham et al., 2012). 166 

Prior to soil sampling, a 25 × 25 cm quadrat was placed at each soil sampling point. 167 

Digital photographs were taken of the quadrat and of the canopy directly above the quadrat 168 

for visual quantification of percentage cover of bare ground and canopy, respectively. Canopy 169 

cover represents the projected cover of the canopy as a percentage of the sky blocked by 170 

leaves and stems. Cover was estimated by placing a 25-cell grid laid over the image and 171 

counting the number of cells dominated by canopy or bare ground (Cunningham et al. 2012). 172 

All leaf litter and live plant biomass were collected from within the quadrats, and masses 173 

weighed after being oven-dried at 50 oC for 48 h. 174 

The five samples of soil from each 400-m2 plot were bulked in the field and mixed 175 

carefully to create one soil sample per plot. Consequently, there were four replicate soil 176 

samples, from each site, which were composited from a total of 20 cores (Fig. 1). Each 177 

composite sample was then stored at 4 oC (in a battery operated “car refrigerator”) in the 178 

field, and within 4 h it was divided into two sub-samples, the first of which was frozen (for 179 

microbial analysis), and the second was stored at 4 oC for physicochemical analysis. These 180 

samples were then returned to the laboratory for immediate analysis. 181 

 182 

2.4 Soil analysis 183 

Prior to physicochemical analysis, the soil samples stored at 4 oC (N = 4 per site) were sieved 184 

to < 2 mm to remove large rocks, roots and macroinvertebrates. These samples were analysed 185 

as follows. Gravimetric moisture was determined after drying 20 g of moist soil at 105 oC for 186 
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48 h. Duplicate soil samples (10 g moist soil) were extracted with 2M KCl, and inorganic N 187 

content determined colorimetrically using a modification (assays were downscaled for 188 

analysis on a 96 well plate reader) of the method for NO3--N (plus NO2--N) reported in 189 

Miranda et al. (2001) and the method for NH4+-N in Forster (1995). For each soil sample, 190 

potential mineralizable N (PMN) was determined by anaerobic incubation for 7 days 191 

(following Wong et al., 2015). Total soil C and N were determined in air-dried sub-samples by 192 

dry combustion, by the Environmental Analysis Laboratory, Southern Cross University 193 

(www.scu.edu.au/eal/; last accessed April, 2016). 194 

 Analysis of phopsholipid fatty acids (PLFA) allows the composition of the soil 195 

microbial community to be estimated, based on the profile of ester-linked fatty acids of 196 

phospholipids. This analysis provides information on the molecular composition of microbial 197 

communities, such as the relative biomass of bacteria and fungi or shifts in whole 198 

communities but cannot identify finer functional groupings (Bardgett and Wardle, 2010; 199 

Bossio and Scow, 1998). Presence of PLFA was estimated from the soil samples, frozen at -200 

20oC (in a battery operated “car freezer”) in the field, following the methods of Bossio and 201 

Scow (1998), with slight modification (Mosse et al., 2012). Briefly, PLFAs were extracted from 202 

4 g freeze-dried and finely ground soil samples, using a solvent containing citrate buffer (0.15 203 

M, pH 4.0), chloroform and methanol, followed by transesterification of the polar lipid fraction 204 

containing the phospholipids. Individual PLFAs were separated using gas chromatography 205 

(30 m (5%-phenyl)-methylpolysiloxane column, Varian CP 3800). Peaks were identified and 206 

quantified by comparing with Supelco Bacterial Acid Methyl Ester (BAME) standard mix 207 

(product number 47080-U, Supelco, USA). Nomenclature of PLFAs followed that described by 208 

Frostegård and Bååth (1996). The fatty acids i15:0, a15:0, 15:0, i16:0, 16:1ω7, i17:0, a17:0, 209 

17:0cy, and 17:0 were chosen as bacterial biomarkers and linoleic acid (18:2ω6,9) was 210 
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chosen as the biomarker for decomposer fungi, based on Ng et al. (2014b). These PLFA’s 211 

where then used to calculate Fungal:Bactirial PLFA ratios. 212 

 213 

2.5 Data calculations and analysis 214 

Data collected from the survey were analyzed, using the appropriate replicates. For the sites 215 

within each farm, we calculated the individual site means and standard errors (N = 4 plots per 216 

site; see Fig. 1). Differences in vegetation and soil properties between sites (e.g. reforestation 217 

versus pasture) within a given farm were identified using one-way ANOVA. 218 

As we were also interested in assessing changes in selected soil and vegetation 219 

variables following reforestation, we calculated the change in properties between sites within 220 

each farm by subtracting the mean of adjacent reference pasture site from the mean of the 221 

treatment site. For the pasture-pasture (i.e. time zero) pairs, differences were calculated 222 

between the two pastures by subtracting the lower value from the higher value, to provide a 223 

measure of the average differences between two spatially related pastures (i.e. on the same 224 

farm; see above). As the age of the remnant woodlands were unknown, a categorical approach 225 

was taken instead of regressions against time. Significant changes (P < 0.05) following 226 

reforestation were then identified by comparing treatment classes (i.e. 0, 10, 18 and 30 years 227 

after reforestation, and remnant woodland) using one-way ANOVAs based on the mean 228 

difference between paired sites at each farm (N = 2 farms per class; see Fig. 1). All ANOVAs 229 

were performed using JMP statistical software (version 10.0.0). 230 

Multivariate analyses were used to examine differences in the molecular composition 231 

(PLFAs) of microbial communities among farms and with between treatment and reference 232 

sites on each farm. We restricted these analyses to overall comparisons of molecular 233 

composition rather than a detailed analysis of individual PLFAs, as the specificity of such 234 
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biomarkers is the subject of growing debate (Frostegård et al., 2011). PLFA concentration 235 

values were ranged standardized (x - minimum / range) to avoid analyses being dominated 236 

by PLFAs with the highest values. Compositional differences among the samples were 237 

estimated using the Bray-Curtis dissimilarity index (Bray and Curtis, 1957). 238 

Analysis of Similarity (ANOSIM, Clarke and Green, 1988) was used to determine if 239 

microbial composition was significantly dissimilar (P > 0.05) among groups, using Primer 5 240 

(www.primer-e.com; last accessed March, 2015). ANOSIM is analogous to a multivariate 241 

ANOVA. It tests the null hypothesis that the mean rank similarity within a group is the same as 242 

the mean rank similarity among groups. Tests are based on the rank similarities between 243 

samples and a test statistic R is calculated, which is close to zero when groups are similar. 244 

Comparison can be made across all groups (global R) and between specific groups (pairwise 245 

R). We used ANOSIM to determine if there were differences in the microbial composition 246 

(PLFA): a) of the pastures among the farms (N = 4 plots per site) and b) between the 247 

treatment site – reference pasture site at each farm (N = 4 plots per site). Given the low 248 

replication for treatment classes (N = 2 farms per class), there were not enough possible 249 

permutations to test for a significant difference (P < 0.05). Compositional differences among 250 

site means were visualized with non-metric multidimensional scaling (NMDS), which creates 251 

an ordination from the dissimilarity values among samples, using Systat 10. This provided a 252 

multivariate comparison of the treatment classes (pasture, 10-year-old reforestation, 18-year-253 

old reforestation, 30-year-old reforestation and remnant woodland), with each class 254 

replicated by two farms. 255 

 256 

3. Results 257 

3.1 Ground layer 258 

http://www.primer-e.com/
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Reforestation and remnant woodland sites had more leaf litter mass than their adjacent 259 

pastures (Table 2). The difference in leaf litter biomass between the treatment and reference 260 

sites on each farm showed an increasing trend with time since planting (Fig. 2a), reaching a 261 

maximum in the 30-year-old plantings. However, the difference in leaf litter mass was only 262 

significantly higher (P = 0.04) in the 30-year-old plantings compared with the pasture-pasture 263 

(0-year-old) reference sites. The amount of bare ground was highly variable within and 264 

among farms with only three farms having significant differences, so significant changes 265 

following reforestation were not found (Table 2). 266 

 267 

3.2 Soil properties 268 

Several soil physicochemical properties showed significant differences between treatment 269 

and reference sites and with time since reforestation (Fig. 2, Tables 3 & 4). The difference in C 270 

concentration of soil between the treatment and reference sites was significantly higher (P = 271 

0.004) at the remnant pairs than in all other categories (Fig. 2b). At individual farms, there 272 

were significant increases in soil C concentrations in the forested sites compared with their 273 

adjacent pasture sites in the two remnant woodlands, and one of the 18-year-old plantings 274 

(Table 4). The largest increase in total N was found between remnant woodlands and their 275 

adjacent pastures (P = 0.04, Fig. 2c). Total N concentration showed the same pattern as total C 276 

concentration within individual farms  (Table 4). At all farms, soil C:N ratios were significantly 277 

higher in reforested sites than their adjacent pasture sites, except for one of the 10-year-old 278 

plantings (Table 4). The difference in soil C:N ratio between treatment and reference sites 279 

increased significantly after tree planting (P < 0.001; Fig. 2d). There were neither consistent 280 

nor significant (P > 0.05) changes in soil nitrate, ammonium, potentially mineralizable N 281 

(PMN), plant available (Colwell) P, pH or soil moisture content in response to reforestation 282 
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(change data not shown). When these soil physicochemical properties were compared within 283 

individual farms, there were some differences among treatment classes but no consistent 284 

patterns (Table 3). 285 

There were no significant differences (P > 0.05) in the changes in total PLFA, fungal 286 

biomass and F:B among the treatment classes (Fig. 2e, f, g). We do however, note the high 287 

fungal biomass in the pasture of Site 8, the reason for which remains unknown. When these 288 

microbial variables were compared at individual farms (Table 4), some differences were 289 

found between land uses. Fungal biomass was higher (P < 0.05) 18 years following 290 

reforestation, with the exception of one 30-year-old site where fungal biomass (and total 291 

PLFA) was very high in the adjacent pasture. To further explore total PLFA, fungal biomass 292 

and F:B ratio data, these data were correlated with the other soil physicochemical properties. 293 

The only significant correlation was between total PLFA and soil moisture, and this 294 

relationship was weak (P < 0.01, R2 = 0.37). 295 

We used ANOSIM to determine differences in microbial composition (PLFAs) among 296 

farms and treatment classes. The microbial composition of the pasture sites were significantly 297 

different among all farms (Global R = 0.89, P < 0.01; pairwise R, P = 0.03, N = 4 samples per 298 

pasture). Within a farm, the paired land uses contained different microbial compositions 299 

(Table 5). The 10-year-old reforestations tended (P = 0.06) to have different microbial 300 

compositions to their adjacent pastures whereas the 18-year-old and 30-year-old 301 

reforestations had significantly different (P = 0.03) microbial compositions to their adjacent 302 

pastures. Both the pasture-pasture and the remnant woodland-pasture pairs did not show 303 

consistent changes in microbial community composition, with one farm having a significant 304 

change while the other farm did not.  305 
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The non-metric multidimensional scaling (NMDS) ordination provided a robust visual 306 

representation (Stress = 0.10, variance explained = 96.7%) of the differences in microbial 307 

composition (PLFAs) among the samples (Fig. 3). The ordination showed clearly that the 308 

microbial composition of the pastures differed widely among the farms. Importantly, one of 309 

the pasture-pasture pairs had as much difference in microbial composition as many of the 310 

other pastures paired with a forested site. Therefore, there was not a trend of increasing 311 

difference in composition between paired sites along the chronosequence. Together, these 312 

results indicate that reforestation of pastures can result in significant changes in soil 313 

properties within a few decades, but that soil microbial community composition can change 314 

as much with local variation in pastures as it does with reforestation.  315 
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4. Discussion 316 

Reforestation of pastures had a significant impact on litter mass and selected soil 317 

physicochemical properties (Fig. 2, Tables 2-4). There were no clear changes in microbial 318 

biomass (measured as total PLFA), or soil fungal:bacterial ratios with reforestation (Fig. 2, 319 

Table 4). This was unexpected given the general increase in soil C:N ratio with reforestation 320 

(Table 4) and the well established link between soil C:N and fungal:bacterial ratios (Busse et 321 

al., 2009; Fierer et al., 2009; Högberg et al., 2007). However, it is important to note that the 322 

range of C:N values in the present study (10.5-19.4) are much narrower than those in the 323 

earlier work by Fierer et al. (2009) (approx. 4-38) in which this correlation was observed. 324 

Nevertheless, there was a trend towards increased fungal biomass at most sites 18 years after 325 

reforestation (Fig. 2g). Further, whole soil microbial community profiles (based on PLFAs) 326 

differed with reforestation at some farms (Table 5, Fig. 3). We had anticipated a shift towards 327 

more distinct microbial communities with reforestation but it was not possible to attribute 328 

changes in whole soil microbial community profiles to specific soil physicochemical 329 

properties. Despite the fact that every effort was taken to ensure sites within farms were as 330 

similar as possible prior to reforestation (i.e. soil type, topography, prior management), at 331 

these farms it appears that spatial variation at the site level was the major determinant of 332 

microbial community composition. These differences may also be associated with the greater 333 

heterogeneity in the reforested sites (mixed species plantings) than in their adjacent pastures 334 

(pasture grasses), both in terms of litter composition and spatially.  335 

There was a substantial and steady increase in leaf litter mass following reforestation 336 

of pastures, with the mass reaching that of the remnant woodlands within 30 years. This 337 

increase in litter mass, although less stable than soil, represents an important store of C in 338 

these low-rainfall ecosystems (Cunningham et al., 2015b). For example, working in the same 339 
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region we found a consistent increase in litter mass C over a 45 year period post-340 

reforestation, where stocks equivalent to those in remnant woodlands were reached within 341 

ca. 25 years after reforestation (Cunningham et al., 2015a). This increase in leaf litter is 342 

presumably due to an increase in tree biomass at the site, which was, in part supported by a 343 

positive correlation between leaf litter and canopy cover (P=0<0.0001; R2 = 0.80). Further 344 

work on the chemical nature of those inputs is needed. A shift from pasture to Eucalyptus-345 

dominated woodland would be predicted to increase the relative amount of recalcitrant C 346 

containing compounds (e.g. lignin and cellulose) entering the soil compared with pasture 347 

(Smith et al., 2012), which may affect the residence time of C in the soil (Conte et al., 2010; 348 

Smernik and Oades, 2001), and its availability to soil microbes (Ng et al., 2014b). Further 349 

studies into the chemical nature of the C pools in these and other ecosystems are needed, if 350 

we are to develop a complete understanding of the residence time of C in these systems. 351 

Reforestation of pastures affected significant change in some soil physicochemical 352 

properties (Fig. 2). There was a clear increase in the difference in soil C:N ratio between 353 

reference and treatment sites, between the different treatment classes (Fig. 2d). The larger 354 

difference in total soil C concentration between the pastures and the adjacent remnant 355 

vegetation plots compared with all other land-uses is consistent with earlier work indicating 356 

that an increase in the C concentration of soil is often found > 30 years after reforestation 357 

(Guo and Gifford, 2002; Paul et al., 2002; Post and Kwon, 2000). The increase in soil C:N ratio 358 

is likely due to larger C inputs (i.e. litter mass), and an increase in the C:N ratio of the litter 359 

produced by tree species compared with that of pasture species (Aerts and Chapin, 2000; De 360 

Deyn et al., 2008). This is further supported by a positive correlation between soil C:N leaf 361 

litter at the sites (P<0.001; R2 = 0.56). 362 
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 The impact of reforestation of pastures on soil microbial communities was considered 363 

at the levels of the total microbial biomass (measured as PLFA), fungal:bacterial ratio, fungal 364 

biomass (Fig. 2), and molecular composition (PLFA, Fig. 3). There was no consistent change in 365 

the microbial community with reforestation at the level of total biomass or fungal:bacterial 366 

ratio. There was no clear relationship between soil C:N ratio and fungal:bacterial ratio. Given 367 

the wide range of C:N ratios (10-22) and fungal:bacterial ratios (0.04-0.47) in the soils studied 368 

here, and earlier global studies showing a relatively strong relationship between these 369 

ecosystem properties (Fierer et al., 2009; Waring et al., 2013), this was unexpected. The lack 370 

of an observed relationship here may be associated with not only changes in soil C:N ratios, 371 

but also the forms of C present in the soil. This further highlights the need to consider 372 

composition of litter inputs as well as amounts of litter (Cunningham et al., 2015a; Giardina et 373 

al., 2000; Hoogmoed et al., 2014).  374 

While there were clear changes in microbial communities among the sites, the 375 

underlying reasons for these changes remain elusive. When we compared (correlations) total 376 

PLFA, F:B ratios and fungal biomass to all soil physicochemical and ground layer data, there 377 

was only a weak relationship between total PLFA and soil moisture (P = 0.004, R2 = 0.37). 378 

Given that samples were collected at the same time of year, this response is not due to 379 

seasonal differences, but variation in soil moisture among and within sites. The lack of a clear 380 

response of the microbial community, to what was a major shift in above-ground community 381 

composition, was unexpected given the clear links between above- and below-ground 382 

communities (see Bardgett and Wardle, 2010, for detailed review). Soil microbial community 383 

composition differed not only among farms, but also within farms (i.e. between the reference 384 

and treatment sites, Fig. 3). These differences suggest a stronger response to local variation in 385 
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soils, as suggested by the significant differences in community composition between pasture-386 

pasture pairs sampled on the same farm, than to reforestation. 387 

 Here, there was a clear difference in the C:N ratio of the reforestation soils compared 388 

with their adjacent pastures with increasing time since reforestation. The results also indicate 389 

that it will take > 30 years for total soil C concentrations to reach levels similar to those in 390 

remnant forests in the region. Changes in soil microbes with reforestation were less clear. 391 

With the importance of above-ground communities well recognised as drivers of below-392 

ground communities (and vice versa) (Bardgett and Wardle, 2010), we conclude that the 393 

apparent lack of differences in microbial community composition is due more to high spatial 394 

variation within sites, than land-use having little impact on microbial community 395 

composition. This conclusion is supported by the fact that the remnant sites did not have a 396 

distinct microbial community compared to the other land-uses. This further highlights the 397 

need to study changes in soil physicochemical properties and microbial communities at sites 398 

that have been reforested for a longer time and with higher replication (N > 20). Finding older 399 

sites (> 30 yr) was not possible in this system, and may not be possible in many systems due 400 

to the recent development of such land practices (e.g. mixed-species plantings). There is also 401 

need for further studies that investigate changes in the nature of C containing compounds in 402 

soils, and link them to microbial community composition and activity (Ng et al., 2014a; Ng et 403 

al., 2014b). Understanding the forms of C stored in the soil following reforestation will tell us 404 

about the potential cycling of that carbon, and will be invaluable to including microbial 405 

responses in predictive models for C and nutrient cycling.  406 
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Table 1: Environmental characteristics of the survey sites from the ten farms. 

 

Farm Land Use Age  Latitude  Longitude  Rainfall Max temp.  Elevation  Landform Soil Texture Basal area Tree density  

  (yr)† (oS) (oE) (mm yr-1) (oC) (m)   (m2 ha-1) (trees ha-1) 

1 Pasture 0 36.65 145.58 581 21.3 150 plain sandy loam 0 0 

2 Pasture 0 36.39 145.95 563 22.0 225 gentle slope sandy loam 0 0 

3 Planting 9 36.46 145.77 556 21.8 145 plain sandy loam 3.6 456 

4 Planting 10 36.50 146.13 629 21.6 180 gentle slope sandy loam 7.4 474 

5 Planting 17 36.00 145.91 487 22.5 120 plain clay loam 39.3 604 

6 Planting 18 36.58 146.11 684 20.6 240 gentle slope sandy loam 9.9 493 

7 Planting 30 36.53 145.75 581 21.6 175 gentle slope sandy loam 9.7 389 

8 Planting 31 36.17 146.95 510 22.2 190 plain sandy loam 39.1 581 

9 Remnant na 36.58 145.62 580 21.3 160 gentle slope sandy loam 13.5 342 

10 Remnant na 36.68 145.03 566 20.9 140 gentle slope loam 10.2 263 

†Age = years since planting. Age for the pastures was zero as they were not reforested and was unknown (na) for the remnant woodlands (see text). 
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Table 2. Key structural properties of the ground layer in the treatment site – reference pasture site pairs at each farm. Values are means ± SE (N = 4 plots 

for each site at a farm – see Figure 1). Results of one-way ANOVAs comparing the treatment sites (TREAT) and the reference pastures (PAST) sites within 

each farm are provided, with significant differences (P < 0.05) between sites are indicated by asterisks. 

Age† Farm Bare ground   Litter mass  

  TREAT PAST  TREAT PAST 

  --------(%)--------  -----------(g m-2)---------- 

0 
1 6 ± 3* 28 ± 5*  10±4 24±15 

2 0 ± 0 0 ± 0  26±21 12±7 

       

10 
3 9 ± 6 9 ± 5  528±76* 24±11* 

4 30 ± 7* 0 ± 0*  574±114* 233±39* 

       

18 
5 3 ± 2 0 ± 0  1906±186* 291±35* 

6 4 ± 3 1 ± 1  711±64* 9±5* 

       

30 
7 8 ± 7* 0 ± 0*  1435±211* 214±21* 

8 2 ± 1 1 ± 1  1977±192* 28±7* 

       

Remnant 
9 3 ± 3 55 ± 6  1425±328* 81±20* 

10 10 ± 4 18 ± 6  1169±101* 26±9* 

†N.B. Age = 0 are an unplanted pastures (see text). 
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Table 3. Key soil physicochemical properties of the treatment site – reference pasture site pair sites at each farm. Values are means ± SE (N = 4 plots for each 

site at a farm – see Figure 1). Results of one-way ANOVAs comparing the treatment sites (TREAT) and the reference pastures (PAST) sites within each farm are 

provided, with significant differences (P < 0.05) between sites are indicated by asterisks.  

 

 

 

 

 

 

 

 

 

 

†REM = 

Remnant. ‡PMN = potentially mineralizable N. §N.B. Age = 0 are unplanted pastures (see text).  

  Nitrate  Ammonium  PMN‡  Colwell P   pH  Moisture content 
Age§ Farm TREAT PAST  TREAT PAST  TREAT PAST  TREAT PAST  TREAT PAST  TREAT PAST 

  ----------(g g-1)----------  --------(g g-1)--------  ----------(g g-1)---------  ----------(g g-1)----------     ----------(%)---------- 

0 1 18.4±2.4 20.2±3.2 
 

5.2±2.6 4.0±2.0 
 

37.7±4.2 30.2±4.8 
 

52.2±3.8 58.5±6.8 
 

5.3±0.1 5.4±0.0 
 

12.2±1.5* 
18.0±0.5

* 
2 6.8±1.5 3.3±0.5  5.9±2.2 5.5±2.5  45.6±5.8 57.5±6.2  57.6±4.8 55.4±5.0  6.2±0.0 6.2±0.1  7.1±0.4 7.0±0.3 

                   

10 
3 32.8±3.51 2.2±0.4  1.6±0.3 2.6±0.4  35.9±1.3* 52.1±5.4*  26.2±1.6 39.0±8.8  5.2±0.1* 5.5±0.1*  9.0±0.7 8.9±0.5 

4 23.3±3.3 14.8±4.0 
 

0.4±0.2* 8.1±1.6* 
 

38.4±5.6 44.9±2.9 
 

12.7±1.1 14.4±0.6 
 

5.0±0.0* 5.5±0.1* 
 

7.1±1.0* 
15.8±2.8

* 
                   

18 
5 13.4±4.4 11.0±1.1  0.9±0.1* 2.0±0.3*  50.9±7.9 30.3±10.0  36.2±4.4* 20.6±1.9*  6.2±0.1* 5.6±0.0*  6.3±0.9 7.7±1.0 

6 2.7±0.5 13.6±5.6 
 

1.0±0.3* 7.9±0.7* 
 

39.8±2.8 66.3±17.5 
 

10.9±1.2* 62.8±4.3* 
 

5.0±0.1* 6.3±0.3* 
 

14.3±0.3* 
18.5±0.9

* 
                   

30 
7 6.2±4.6 4.5±1.6  1.7±0.3* 5.2±0.6*  26.8±2.2 23.7±2.5  8.3±1.0 7.6±0.8  5.1±0.1* 5.4±0.0*  10.9±0.8 12.7±1.6 
8 11.8±2.3* 2.3±0.6*  6.0±4.2 5.4±0.9  55.1±10.9 29.7±6.4  9.9±3.4 10.4±0.7  5.4±0.1 5.2±0.1  18.0±7.5 22.6±1.3 

                   

REM† 
9 11.6±4.2* 72.4±21.1*  0.9±0.2* 0.1±0.1*  50.7±15.4 28.6±9.5  18.0±4.6* 287.8±10.2*  6.1±0.2* 6.7±0.0*  9.9±1.0 13.1±1.4 

10 1.5±0.4 3.8±2.4  0.6±0.2 0.5±0.1  27.9±6.9 24.2±4.0  16.4±8.0 5.3±0.5  5.4±0.2 5.5±0.1  9.6±0.8 9.7±0.4 
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Table 4. Total soil carbon and nitrogen (concentrations), and microbial biomass (measured as total PLFA – see text), fungal:bacterial (F:B) ratio and fungal 

biomass (measured using PLFA – see text),  (0-10 cm soil layer). Values are means ± SE (N = 4 plots for each site at a farm – see Figure 1). Results of one-way 

ANOVAs comparing the treatment sites (TREAT) and the reference pastures (PAST) sites within each farm are provided, with significant differences (P < 0.05) 

between sites are indicated by asterisks.  

Age‡ Farm Total C  Total N  C:N  Total PLFA  F:B ratio  Fungal biomass 
  TREAT PAST  TREAT PAST  TREAT PAST  TREAT PAST  TREAT PAST  TREAT PAST 
  ----------(%)---------  --------------(%)--------------    ------------(nmol g-1)-------------    ---------(nmol g-1)-------- 

0 
1 3.1±0.2 3.0±0.3  0.29±0.02 0.28±0.02  10.4±0.0 10.5±0.2  175.7±29.1* 261.1±5.0*  0.09±0.02 0.08±0.02  12.8± 1.2 19.5± 4.6 
2 2.5±0.2 2.6±0.1  0.23±0.01 0.23±0.01  11.1±0.2 11.1±0.1  145.5±28.2 119.4±7.6  0.23±0.01 0.24±0.01  27.6± 6.2 23.2± 1.8 

                   

10 
3 3.4±0.1 3.1±0.3  0.31±0.01 0.26±0.02  11.0±0.2* 11.7±0.2*  94.5±8.0 95.7±16.8  0.15±0.01* 0.20±0.02*  11.8± 0.5 15.6± 2.1 
4 2.7±0.1 2.6±0.3  0.23±0.00 0.24±0.03  11.6±0.4 11.1±0.2  65.1±4.7 79.0±10.3  0.22±0.03 0.15±0.02  11.6± 1.0 10.9± 2.8 

                   

18 
5 2.6±0.2 2.4±0.3  0.19±0.02 0.21±0.03  13.7±0.4* 11.3±0.3*  139.7±21.8 103.2±5.6  0.15±0.02 0.10±0.01  17.0± 0.8* 9.5± 1.2* 
6 5.0±0.3* 6.1±0.3*  0.35±0.02* 0.48±0.03*  14.3±0.1* 12.7±0.5*  160.6±11.4 197.2±11.2  0.15±0.01 0.11±0.02  21.1± 1.1 19.3± 3.4 

                   

30 
7 5.8±0.7 4.0±0.4  0.30±0.04 0.27±0.03  19.4±1.0* 14.8±0.6*  134.9±14.5* 80.7±16.6*  0.20±0.03 0.21±0.09  22.2± 3.4* 11.0± 1.2* 
8 3.8±0.3 3.0±0.1  0.23±0.02 0.26±0.01  16.3±0.1* 11.5±0.1*  89.5±19.6* 502.4±38.9*  0.36±0.04* 0.17±0.02*  22.9± 4.4* 73.9± 10.1* 

                   

REM† 
9 6.2±0.6* 2.6±0.1*  0.34±0.03* 0.22±0.00*  17.9±1.0* 11.9±0.4*  185.4±19.8* 112.9±7.6*  0.18±0.02 0.18±0.02  26.9± 2.5* 17.3± 2.2* 

10 6.2±0.4* 2.0±0.1*  0.32±0.03* 0.17±0.01*  19.3±0.6* 12.3±0.3*  184.1±33.4 103.3±16.3  0.18±0.02* 0.33±0.05*  28.1± 6.1* 23.9± 1.5* 

†REM = Remnant. ‡N.B. Age = 0 are unplanted pastures (see text). 
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Table 5. Results of ANOSIM comparing the molecular composition (PLFAs) between each 2 

treatment site – reference pasture site pair within a farm (N = 4 plots for each site at a farm – 3 

see Fig. 1). 4 

 5 

Age Farm R P 

0 
1 0.656 0.03 

2 0.479 0.09 

    

10 
3 0.510 0.06 

4 0.552 0.06 

    

18 
5 0.708 0.03 

6 0.719 0.03 

    

30 
7 0.438 0.03 

8 0.865 0.03 

    

Remnant 
9 0.771 0.03 

10 0.573 0.06 

 6 

 7 

 8 
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Fig. Captions 11 

Fig. 1. Schematic diagram of the sampling hierarchy used in the field survey: farm > paired 12 

reference pasture - treatment sites > plot > quadrats. Each treatment class (e.g. 18-year-old 13 

planting) was replicated at two farms, giving a total of 10 farms (boxes with dashed lines). 14 

Within a farm, a treatment class was represented by a treatment site (e.g. remnant 15 

vegetation) and an adjacent reference pasture site, with the average distance between paired 16 

sites (within farms) also indicated. Four plots (dimension shown) were established randomly 17 

within each site and five quadrats were established within each plot. Note the Fig. is not 18 

drawn to scale and farms were not uniformly distributed across the landscape. 19 

 20 

Fig. 2. Difference (Diff.) (treatment site – reference pasture) in (a) leaf litter mass, (b) soil C 21 

concentration, (c) soil N concentration, (d) soil C:N, (e) total PLFA, (f) fungal:bacterial (F:B 22 

ratio) and (g) fungal biomass following reforestation. Values are means (±SE, N = 2 farms, Fig. 23 

1) of the difference in mass between treatment sites and the adjacent reference pasture sites. 24 

For the pasture-pasture pairs, one of each pair was treated as a treatment site and the other 25 

as the reference pasture in this calculation (see Methods). Means followed by the same letter 26 

are not significantly different (P > 0.05, see text for further details). 27 

 28 

Fig. 3. NMDS ordination of sites based on their soil microbial composition (PLFAs). Symbols 29 

are the mean PLFA composition from a site with land uses denoted as follows: pasture (P), 10-30 

year-old reforestation (10), 18-year-old reforestation (18), 30-year-old reforestation (30) and 31 

remnant woodland (R). Treatment and reference pasture sites from the same farm are linked 32 

by dashed lines. 33 
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