
PUBLISHED VERSION 
 

E. Cetin and P.A. Dowd 
Multiple cut-off grade optimization by genetic algorithms and comparison with grid 
search method and dynamic programming 
Journal of the Southern African Institute of Mining and Metallurgy, 2016; 116(7):681-688 
 
 
© The Southern African Institute of Mining and Metallurgy, 2016. All the contents of this 
journal, except where otherwise noted, is licensed under a Creative Commons Attribution 
License 

 

Published version http://dx.doi.org/10.17159/2411-9717/2016/v116n7a10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

http://hdl.handle.net/2440/102579 
 
 

PERMISSIONS 

http://creativecommons.org/licenses/by/4.0/ 

        

 

17 November 2016 

http://dx.doi.org/10.17159/2411-9717/2016/v116n7a10
http://hdl.handle.net/2440/102579
http://creativecommons.org/licenses/by/4.0/


Determination of optimum cut-off grades is a
fundamental issue in mineral extraction as it
assigns the boundaries between ore and waste
over time. 

The profit from a mining operation is a
direct function of the sequences of cut-off
grades and associated ore tonnages that define
the life-of-mine production schedule. As profit
varies with these sequences there will be a
sequence, or sequences, that optimize any
specified profit criterion. The most widely used
cut-off grade optimization criterion is
maximum net present value (NPV) of profits.
The NPV can be maximized by maximizing
profit per unit time. This process necessitates
applying, in the early years of operation, the
highest cut-off grade that can provide
sufficient ore to satisfy the requirements of the
processing plant. As time passes, the cut-off
grade must be lowered, thereby lowering the
opportunity cost. Hence, the highest NPV is
achieved.

The objectives of this paper are to develop
general methods for determining optimal
sequences of cut-off grades for multi-mineral
deposits by means of genetic algorithms, to
implement this method in computer programs,
and to assess the performance of the method.
In order to assess the performance of the

genetic algorithms method, the grid search
method and the dynamic programming method
are used and compared with the results of the
case of genetic algorithms. The computer
programs developed for this purpose are
capable of determining optimal sequences of
cut-off grades for multi-mineral deposits that
contain up to three valuable minerals.

Mine planning and the financial evaluation
of mineral deposits that contain more than one
valuable mineral are generally done on the
basis of parametric cut-off grades or the
equivalents. However, because of problems
related to this method, an alternative method
of individually optimizing the cut-off grades of
the component minerals has been used. The
main problem arises from the fact that the
revenue and the costs must be calculated on
the basis of the average grades of the
individual minerals from the calculated
equivalent grade. If the constituent minerals
are highly correlated, the average grades can
be estimated by iteration and by defining some
additional parameters for the equivalent grade-
tonnage data (Dowd and Xu, 1999). However,
if there is very little correlation between the
minerals, the validity of the equivalents
method is not obvious. Because of the
problems the equivalents method brings about,
in order to optimize a multi-mineral deposit,
the constituent minerals are best dealt with
separately.
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Multiple cut-off grade optimization by genetic algorithms

Genetic algorithms constitute a class of stochastic algorithms
that use a search method based on the principles of biological
genetics and natural evolution. Holland (1975) proposed the
basic principles of genetic algorithms. In this approach,
individuals of a population are represented as chromosomes
and an expanded set of genetic operations takes place. It is
presumed that the potential solution of any problem is an
individual and can be represented by a set of parameters.

The vocabulary of genetic algorithms is borrowed from
genetics science. In nature, each cell of every living organism
has a set of chromosomes that make up DNA. Chromosomes
are made up of genes, which control different characteristics
of an organism. In genetic algorithms, a potential solution to
a problem is called an individual or chromosome. Individuals
make up a population. Genetic operations, such as crossover,
mutation, and reproduction, are also used in genetic
algorithms.

Genetic algorithms are particularly suited to the solution
of large-scale optimization problems. They belong to the class
of probabilistic algorithms but are very different from random
algorithms as they combine directed and stochastic searches.
Another important property of genetic-based search methods
is that they maintain a population of potential solutions.
Genetic algorithms can also easily escape from local optima
by using genetic operators, such as mutation. 

A genetic algorithms flow chart is given in Figure 1.
The basic principles of genetic algorithms are as follows:

1.  A set of strings composed of finite elements, generally
a binary code, is assigned. Each string refers to a point
in the search space or a solution to the problem among
the alternatives. Genetic algorithms work on these
strings, which are called chromosomes or individuals

2.  A first generation, i.e. a population, of individuals, is
selected. Generally, the selection is done at random 

3.  The individuals are evaluated on the basis of their
return values. Fitness values are assigned to the
individuals in order to rank them on the basis of their
return values. The values assigned to better solutions
result in higher fitness values

4.  Some of the individuals are selected on the basis of
their fitness values. The individuals with lower fitness
values lose in competition

5.  Parents are chosen from among the selected
individuals. They are crossed over by pairs. The result
is two new individuals from each parent

6.  Some chromosomes enter a mutation process. That is,
one or more digits of a string are changed at random.
A new population is ready

7.  The process is repeated from step 3 until it converges
to a stable value or an assigned number of generations
is reached.

�
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Genetic algorithms work with representations of solutions.
The representation is a symbol string, which carries all the
information about the individual. The string has a fixed
length and is called a chromosome or individual. The length
of the string of an individual depends on the precision
requirements. The string can be composed of real decimal
numbers or characters, but the most widely used string
representation is binary numbers.

The mapping value of a binary string into a real number
is straightforward. The binary string is converted into a real
number, which is an integer. Then a corresponding real
number, which is the mapping value, is found.

In order to initialize an individual composed of binary
strings, all bits are to be initialized randomly.

In genetics science, individuals make up a population. The
bigger the population, the more extended the search area.
However, the number of individuals adversely affects the
speed of a computer program based on genetic algorithms.

After initialization of a population made up of binary or real
number strings, an evaluation process takes place. Each
individual is assigned a fitness value, which is calculated on
the basis of objective function for the problem.

Good individuals with better fitness values are selected in a
selection process. Each generation produces new individuals
from the current population. Selection is a process of finding
how many times each individual from the current population
should be copied to generate a new set of solutions or a new
population. The process resembles natural selection in that
individuals that give better results in the evaluation process
have a greater chance of reproducing. The selection process
consists of determining the number of times that a particular
individual is chosen to have offspring. The selection process
can be deterministic or probabilistic.

In deterministic selection, better individuals are
determined to have more offspring than poor ones.
Individuals with very low fitness values have no chance of
survival. Deterministic selection helps to get rid of poor
individuals and to generate a quick result. 

The roulette wheel  method is the most widely used
selection method in genetic algorithms. It is a probabilistic
method in which individuals with better fitness values are
more likely to reproduce, although weak individuals still have
a chance of survival. Individuals are represented on the
wheel as a proportion of their fitness values. 

There are other parameters that can be applied to the
deterministic and probabilistic approaches. Scaling is one of
these. When the fitness values of individuals of a population
are sufficiently distinct, there is no need for any kind of

scaling. But if the fitness values are close to each other,
which is generally the case as generations pass and most of
the individuals have relatively good fitness values, good
individuals will lose competitiveness. Scaling is used to
improve the situation. The individuals are scaled in order to
improve the competition abilities of the good individuals
during the selection process. This is generally achieved by
subtracting the same number from all the fitness values of
the individuals. Consider a problem with only two
individuals. Suppose that their fitness values, based on their
performances, are 495 and 497. If one of them is to be
selected randomly, the chance of the first individual being
selected is 49.9% and that of the second is 50.1%. Although
one of the individuals is obviously better, the chances of
selection are almost the same.  However, if the fitness values
of the individuals are scaled by subtracting 490 from both,
the chances of being selected change to 41.7% and 58.3%
respectively.

Another commonly used method of improving the
performance of a genetic algorithms process is elitist
selection. In genetic algorithms there is always a risk of
losing the best individual when generations pass. In elitist
selection, the most fit individual, or individuals, after each
evaluation phase could be carried to the next generation
unchanged (Zalzala and Fleming, 1977). 

As in nature, there are mainly two types of classical genetic
operators in genetic algorithms: crossover and mutation.

Crossover is the basic operator for the production of new
chromosomes. It mimics the sexual reproduction of living
organisms. Two parents come together and they produce two
infants whose genes resemble those of the parents. The
common forms of crossover are 1-point crossover, 2-point
crossover, n-point crossover, and uniform crossover (Green,
1999).

In 1-point crossover, a crossover point is randomly
selected for each couple. Each half of the chromosomes then
crosses over to find two new offspring that resemble both
parents.

The basic difference in 2-point crossover is that there are
two crossover points assigned for each couple. The sections
between the two crossover points are swapped for the new
individuals.

In n-point crossover, there are n crossover points. The
parts of the strings of the parents between every two
crossover points are swapped for the new infants. As a result,
the infants would get the parts of the string of a parent
between every successive crossover point.

In uniform crossover, a number of points are selected at
random. Each selected point is swapped over rather than
swapping a part of the string.

Parents are chosen from among the selected individuals
randomly according to an explicitly assigned crossover
probability. 

Multiple cut-off grade optimization by genetic algorithms
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Multiple cut-off grade optimization by genetic algorithms

In nature, copying DNA to create offspring can sometimes
result in errors. These errors, called mutations, generally do
not have a positive effect on the fitness of the individual,
although they can sometimes result in beneficial features and
they can be passed to succeeding generations via
reproduction. Mutation is so important for the evolution of
living organisms that without it nature would have been in a
vicious circle rather than an evolutionary process.

Genetic algorithms are very different from other
stochastic search methods in the method used for searching.
Searching starts as a randomly selected population and future
solutions depend on mutual relationships of the individuals.
Without the mutation process, the search area would be so
restricted that finding the global maximum point would be
almost impossible in large-scale problems. The search area
can be widened gradually by the mutation process and
deepened by the crossover process; the features of
individuals are improved by the selection process. Individuals
evolve gradually until the solutions converge to a maximum
point or a predetermined number of generations is reached.

As in the crossover process, mutation points are selected
randomly. However, the probability of mutation should be
comparatively low, since it is not a common process like
crossover. There are different types of mutation. In bit-by-bit
mutation, random numbers are generated for each digit of the
whole population and, depending on the assigned mutation
probability, the digit might be changed. In binary code this is
a trivial exercise. If the original digit value were 0, the
changed value would be 1, and vice versa. In string mutation,
however, the mutation probability value is assigned on the
string basis. After random numbers have been generated, if a
string is mutated, another random number is generated and
assigned to the mutation point for the string.

Many cut-off grade optimization problems have huge
numbers of local optimum values, which are widely separated
from the global optimum point and from each other.
Stochastic search methods can easily fail to find the global
optimum point for such problems. The real challenge in such
problems is finding solutions close to the global optimum
point for a restricted time. Genetic algorithms are more robust
in this context than many other existing search methods.

Yun et al. (1998) applied genetic algorithms to the
Jingtieshan iron ore mine in China in order to optimize cut-off
grade and minimum average grade, which is a criterion used
in China to define ore for mining purposes. They used net
present value as a fitness value, binary representation,
roulette wheel selection, and 100 iterations (number of
generations).

Encoding and evaluation processes used in this paper for
the application of genetic algorithms to cut-off grade
optimization are described below.

Encoding of an individual for the optimization of a single cut-
off grade for an ore deposit with only one valuable mineral is

straightforward. The string is composed of only one gene,
which represents a cut-off grade. The size of the string
depends on the number of cut-off grades to be evaluated
(searched). If the binary representation is used, the string
will be long. A 5-bit string can represent 25 = 32 cut-off
grades. To derive real values from the binary code (i.e.
mapping) the string the formula is:

where
X: the mapping value
Xmin: the minimum cut-off grade to be searched for
Xmax: the maximum cut-off grade to be searched for
L: the length of the binary string
Y: the value of binary representation.

The value of the binary representation for a 5-bit string
would be an integer between 0 for string 00000 and 31 for
string 11111.

The application of genetic algorithms to the solution of
the optimum cut-off grade problem requires a crucial increase
in the length of the string. Since in each year in the mine life
there might be a different optimum cut-off grade, there
should be different genes in the same string. If the mine life
is 20 years, the string will be composed of 20 genes, each
with a length of  five bits, making the total length of the
chromosome 100. 

In genetic algorithms, every individual is assigned to a fitness
value depending on its performance. In cut-off grade
optimization, the objective function is maximum NPV. The
higher the discounted profit, the better the individual.

The optimization of cut-off grades for multi-mineral deposits
is significantly more complex than for single-mineral
deposits. A multivariate grade distribution must be used and
consequently the dimension of the data increases. This
increase in dimension causes an exponential increase in the
area to be searched for the optimum. 

Besides, genetic algorithms work on representatives of
solutions, known as chromosomes.  The structures of
chromosomes for single-mineral deposits and for multi-
mineral deposits differ in that as the number of minerals
increases, the length of the related chromosomes increases
arithmetically.

The application of genetic algorithms to the optimization
of cut-off grades for multi-mineral deposits brings about a
further increase of the length of the string. Since for each
year of mine life there might be a different optimum cut-off
grade, there should be different genes in the same string. In
the case of a two-mineral deposit, if the mine life is 20 years,
the string would be composed of 40 genes, each five bits in
length, making the total length of the chromosome 200.

�
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The genetic algorithms computer program developed in
this research work is capable of optimizing cut-off grades for
mineral deposits that contain up to three minerals. Binary
representation is used and if 32 different cut-off grades are to
be searched for each mineral, 5-bit genes must be used.
Three minerals require a 15-bit string length. Therefore, if
the maximum mine life is 20 years, an ore deposit that
contains three minerals requires a string size of 300.

The process of scaling is used in order to improve the
selection process. Fitness values are scaled by subtracting the
fitness value of the worst individual from the fitness values
of all the individuals of the population.

One safeguard has proved necessary to improve the
computation results. We know that true maximization of NPV
necessitates a sequence of declining cut-off grades. However,
only a very small part of randomly selected populations can
have cut-off grades in declining order for the life of the mine.
Consequently, the algorithm has been changed in such a way
that if the depletion rate for a specific year is more than that
of the previous year, the cut-off grade for the specified year is
set deterministically to that of the previous year. This policy
enables the program to search for the optimum among the
alternatives that are limited to sequences of declining cut-off
grades, and brings about a substantial improvement in the
performance of the algorithm.

With respect to the other two methods used in this
research, genetic algorithms use four additional parameters
that are not directly related to technical or economic
constraints. These parameters are population size, generation
size, crossover rate, and mutation rate. These parameters
have been tested in order to determine an optimum range of
control values that will generate the highest discounted
profit. As a result of the tests, a population size between 250
and 500, a generation size between 400 and 500, a crossover
rate of 20% to 50%, and a mutation rate of 40% to 100% are
proved to be reasonable.

For the sake of comparison, the results have been tested
by other methods that were used in multi-mineral cut-off
grade optimization. These are the grid search method and the
dynamic programming method. The grid search method used
here is explained by Cetin and Dowd (2013). The use of
dynamic programming in multi-mineral cut-off grade
optimization used in this work is explained by Cetin and
Dowd (2011).

A case study has been included here to illustrate the
application of the software for determining optimal cut-off
grades for multi-mineral deposits.

The case study is of a gold, lead, and zinc deposit. 
The technical and economic data are shown in Table I and
Figure 2. The results are given in Table II.

For the sake of comparison, the deposit shown in Figure1
is applied to the grid search method and dynamic
programming method. The technical and economic data for
the grid search method are shown in Table III and Figure 2.
The results are given in Table IV. The technical and economic
data for dynamic programming method are shown in Table V
and Figure 2. The results are given in Table VI.

Table VII compares the results of the three methods. 
The results indicate that all three method give reasonable

results but genetic algorithms deliver a better result. Genetic
algorithms is a more robust search engine since it can easily
escape from a local optimum point by means of crossover and
mutation tools, and its natural selection environment.

The paper shows the applicability and robustness of genetic
algorithms methods to multi-mineral cut-off grade
optimization.

Determination of a complete mine production schedule
requires complex modelling of an orebody and the inclusion
of access constraints. The work described serves to find
broad indications of optimum cut-off grades and a mining
sequence that gives optimum discounted profits by using
technical and economic constraints only. Detailed mine
scheduling that includes physical, or access, constraints is
beyond the scope of this research. The orebody is defined by
a grade-tonnage distribution, which gives the ore tonnage for
different grade intervals. Access constraints are not included,
so that any parcel of the orebody is assumed to be
immediately accessible. In other words, the grade-tonnage

Multiple cut-off grade optimization by genetic algorithms
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Table I

Lower limit of cut-off grades for gold (%) 0

Upper limit of cut-off grades for gold (%) 0.009

Lower limit of cut-off grades for zinc (%) 0

Upper limit of cut-off grades for zinc (%) 3

Lower limit of cut-off grades for lead (%) 0

Upper limit of cut-off grades for lead (%) 1.5

Mining capacity (t/a) 1 200 000

Mineral processing capacity (t/a) 1 000 000

Marketing and/or refining capacity for gold (t/a) 10

Marketing and/or refining capacity for zinc (t/a) 11000

Marketing and/or refining capacity for lead (t/a) 1600

Selling price for gold (dollars per ton) 11 000 000

Selling price for zinc (dollars per ton) 1 400

Selling price for lead (dollars per ton) 600

Marketing and/or refining cost for gold (dollars per ton) 3 000 000

Marketing and/or refining cost for zinc (dollars per ton) 300

Marketing and/or refining cost for lead (dollars per ton) 150

Recovery rate for gold (%) 46

Recovery rate for zinc (%) 80

Recovery rate for lead (%) 85

Variable mining cost of material mined (dollars per ton) 0.4

Variable concentration cost of material 0.4
processed (dollars per ton)

Fixed costs (dollars per year) 1 000 000

Discount rate (%) 10

Population size (number of individuals 500
in the population)

Number of generations 500

Crossover rate (%) 50

Mutation rate (%) 60



Multiple cut-off grade optimization by genetic algorithms

�

686 VOLUME 116     

Table II

1 82 319 950 74 836 319 1 164 693 1 000 000 9 10 564 1526 0.0012 3 000 0.800

2 82 319 950 68 033 017 1 164 693 1 000 000 9 10 564 1526 0.0012 3 000 0.800

3 82 020 659 61 623 335 1 158 748 1 000 000 9 10 582 1526 0.0012 2 600 0.800

4 82 020 659 56 021 214 1 158 748 1 000 000 9 10 582 1526 0.0012 2 600 0.800

5 82 020 659 50 928 376 1 158 748 1 000 000 9 10 582 1526 0.0012 2 600 0.800

6 79 839 492 45 067 312 1 114 896 1 000 000 9 10 342 1507 0.0012 0.800 0.700

7 79 839 492 40 790 283 1 114 896 1 000 000 9 10 342 1507 0.0012 0.800 0.700

8 72 691 453 33 911 099 1 000 000 1 000 000 8 9482 1462 0.0000 2 400 1 100

9 18 589 355 8 463 256 255 730 255 730 2 2425 374 0.0000 2 200 0.800



Multiple cut-off grade optimization by genetic algorithms

VOLUME 116                                       687 �

Table III

Lower limit of cut-off grades for gold (%) 0

Upper limit of cut-off grades for gold (%) 0,009

Interval between cut-off grade decisions gold (%) 0,0006

Lower limit of cut-off grades for zinc (%) 0

Upper limit of cut-off grades for zinc (%) 3

Interval between cut-off grade decisions zinc (%) 0,2

Lower limit of cut-off grades for lead (%) 0

Upper limit of cut-off grades for lead (%) 1,5

Interval between cut-off grade decisions lead (%) 0,1

Mining capacity (tons per year) 1 200 000

Mineral processing capacity (t/a) 1 000 000

Marketing and/or refining capacity for gold (t/a) 10

Marketing and/or refining capacity for zinc (t/a) 11000

Marketing and/or refining capacity for lead (t/a) 1600

Selling price for gold (dollars per ton) 11 000 000

Selling price for zinc (dollars per ton) 1 400

Selling price for lead (dollars per ton) 600

Marketing and/or refining cost for gold (dollars per ton) 3 000 000

Marketing and/or refining cost for zinc (dollars per ton) 300

Marketing and/or refining cost for lead (dollars per ton) 150

Recovery rate for gold (%) 46

Recovery rate for zinc (%) 80

Recovery rate for lead (%) 85

Variable mining cost of material mined (dollars per ton) 0,4

Variable concentration cost of material 0,4

processed (dollars per ton)

Fixed costs (dollars per year) 1 000 000

Discount rate (%) 10

Table IV

1 82 423 897 74 930 816 1 167 041 1 000 000 9 10 572 1527 0.0012 2,600 1,500

2 82 423 897 68 118 923 1 16 7041 1 000 000 9 10 572 1527 0.0012 2,600 1,500

3 82 423 897 61 926 294 1 167 041 1 000 000 9 10 572 1527 0.0012 2,600 1,500

4 82 344 016 56 242 071 1 165 144 1 000 000 9 10 564 1526 0.0012 2,600 1,300

5 82 344 016 51 129 155 1 165 144 1 000 000 9 10 564 1526 0.0012 2,600 1,300

6 80 753 096 45 583 017 1 131 110 1 000 000 9 10 377 1513 0.0006 2,600 1,300

7 80 75 3096 41 439 107 1 131 110 1 000 000 9 10 377 1513 0.0006 2,600 1,300

8 80 30 1619 37 46 1298 1 122 803 1 000 000 9 10 374 1510 0.0006 1,600 1,100

9 5 350 339 2 269 066 74 718 66 991 1 693 101 0.0006 0.800 1,400

Table V

Lower limit of cut-off grades for gold (%) 0

Upper limit of cut-off grades for gold (%) 0.009

nterval between cut-off grade decisions gold (%) 0.0006

Lower limit of cut-off grades for zinc (%) 0

Upper limit of cut-off grades for zinc (%) 3

nterval between cut-off grade decisions zinc (%) 0.2

Lower limit of cut-off grades for lead (%) 0

Upper limit of cut-off grades for lead (%) 1.5

Interval between cut-off grade decisions lead (%) 0.1

Mining capacity (t/a) 1 200 000

Mineral processing capacity (t/a) 1 000 000

Tonnage interval between decisions to mine or not (t/a) 20 000

Marketing and/or refining capacity for gold (t/a) 10

Marketing and/or refining capacity for zinc (t/a) 11000

Marketing and/or refining capacity for lead (t/a) 1600

Selling price for gold (dollars per ton) 11 000 000

Selling price for zinc (dollars per ton) 1 400

Selling price for lead (dollars per ton) 600

Marketing and/or refining cost for gold (dollars per ton) 3 000 000

Marketing and/or refining cost for zinc (dollars per ton) 300

Marketing and/or refining cost for lead (dollars per ton) 150

Recovery rate for gold (%) 46

Recovery rate for zinc (%) 80

Recovery rate for lead (%) 85

Variable mining cost of material mined (dollars per ton) 0.4

Variable concentration cost of material 0.4

processed (dollars per ton)

Fixed costs (dollars per year) 1 000 000

Discount rate (%) 10
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distribution is identical for all parts of the orebody and for all
parcels of ore.

It is very clear from this work, and that done by others,
that maximum NPV can be achieved only by a declining cut-
off grades policy. That is, the mining operation should start
with a relatively high cut-off grade that declines gradually
over the life of the mine. For that reason, and in order to
increase the speed of the computations, production schedules
that do not have declining cut-off grades are eliminated
explicitly in the computer program.

The genetic algorithms method is a very robust search
engine. The crossover, mutation and natural selection
behaviour of the method ensures that it escape from a local
optimum point.

The software developed for this study includes programs
for the determination of optimum cut-off grades for multi-
mineral deposits by means of the genetic algorithms, grid
search method, and dynamic programming are written in C++
code. Although all the programs written are basically for cut-
off grade optimization, they are slightly different in terms of
data requirements.
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Table VI

1 81 144 899 73 76 8090 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

2 81 144 899 67 06 1900 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

3 81 144 899 60 96 5364 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

4 81 14 4899 55 42 3058 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

5 79 199 360 49 17 6571 1 120 000 997 909 9 10349 1507 0.0012 2 800 0.200

6 79 19 9360 44 70 5974 1 120 000 997 909 9 10349 1507 0.0012 2 800 0.200

7 79 19 9360 40 64 1795 1 120 000 997 909 9 10349 1507 0.0012 2 800 0.200

8 71 81 4509 33 50 1999 1 000 000 1 000 000 8 9482 1462 0.0000 3 000 0.000

9 20 90 8899 8 867 414 291 151 29 1151 2 2761 426 0.0000 3 000 0.000

Table VII

1 0.0012 3 000 0.800 0.0012 2 600 1 500 0.0024 3 000 0.300

2 0.0012 3 000 0.800 0.0012 2 600 1 500 0.0024 3 000 0.300

3 0.0012 2 600 0.800 0.0012 2 600 1 500 0.0024 3 000 0.300

4 0.0012 2 600 0.800 0.0012 2 600 1 300 0.0024 3 000 0.300

5 0.0012 2 600 0.800 0.0012 2 600 1 300 0.0012 2 800 0.200

6 0.0012 0.800 0.700 0.0006 2 600 1 300 0.0012 2 800 0.200

7 0.0012 0.800 0.700 0.0006 2 600 1 300 0.0012 2 800 0.200

8 0.0000 2 400 1 100 0.0006 1 600 1 100 0.0000 3 000 0.000

9 0.0000 2 200 0.800 0.0006 0.800 1 400 0.0000 3 000 0.000




