
PUBLISHED VERSION  

http://hdl.handle.net/2440/102441 

 

 

Saba Mahjourimajd, Julian Taylor, Beata Sznajder, Andy Timmins, Fahimeh Shahinnia, Zed Rengel, 
Hossein Khabaz-Saberi, Haydn Kuchel, Mamoru Okamoto, Peter Langridge 
Genetic basis for variation in wheat grain yield in response to varying nitrogen application 
PLoS ONE, 2016; 11(7):1-18 

Copyright: © 2016 Mahjourimajd et al. This is an open access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. 

Originally published at: 
http://doi.org/10.1371/journal.pone.0159374 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERMISSIONS 

  

 

27 April 2017 

 

 

http://hdl.handle.net/2440/102441
http://doi.org/10.1371/journal.pone.0159374


RESEARCH ARTICLE

Genetic Basis for Variation in Wheat Grain
Yield in Response to Varying Nitrogen
Application
Saba Mahjourimajd1, Julian Taylor3, Beata Sznajder1, Andy Timmins1,
Fahimeh Shahinnia1¤, Zed Rengel4, Hossein Khabaz-Saberi4, Haydn Kuchel2,3,
Mamoru Okamoto1*, Peter Langridge3*

1 Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen
Osmond, SA, 5064, Australia, 2 Australian Grain Technologies, PMB1, Glen Osmond, SA, 5064, Australia,
3 School of Agriculture, Food andWine, Waite Research Institute, The University of Adelaide, PMB 1, Glen
Osmond, SA, 5064, Australia, 4 Soil Science and Plant Nutrition M087, School of Earth and Environment,
University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia

¤ Current address: Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466,
Gatersleben, Germany
* peter.langridge@adelaide.edu.au (PL); mamoru.okamoto@acpfg.com.au (MO)

Abstract
Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments.

Nitrogen fertilisers represent a significant production cost, in both monetary and environ-

mental terms. Developing genotypes capable of taking up N early during development while

limiting biomass production after establishment and showing high N-use efficiency (NUE)

would be economically beneficial. Genetic variation in NUE has been shown previously.

Here we describe the genetic characterisation of NUE and identify genetic loci underlying N

response under different N fertiliser regimes in a bread wheat population of doubled-haploid

lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a

similar production environment. NUE field trials were carried out at four sites in South Aus-

tralia and two in Western Australia across three seasons. There was genotype-by-environ-

ment-by-treatment interaction across the sites and also good transgressive segregation for

yield under different N supply in the population. We detected some significant Quantitative

Trait Loci (QTL) associated with NUE and N response at different rates of N application

across the sites and years. It was also possible to identify lines showing positive N response

based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dis-

secting the complexity of the N effect on yield through QTL analysis is a key step towards

elucidating the molecular and physiological basis of NUE in wheat.

Introduction
Wheat (Triticum aestivum L.) is the most widely grown crop globally and a major source of
carbohydrates and proteins in human nutrition. Nitrogen (N) fertilisation is critical for obtain-
ing high grain yield (GY) and high grain protein content in this crop. The global demand for N
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has been increasing and was predicted to exceed 112 million tonnes in 2015, indicating the reli-
ance of world food and fibre production on N inputs [1]. However, the increasing cost of
energy is driving up the price of N fertiliser, and there are growing environmental concerns
related to N pollution from runoff and leaching. The annual consumption of N fertiliser in
Australian agriculture exceeds 1 million tonnes, but varies due to climate variability and price
fluctuations [2]. Therefore, improving NUE in wheat, while maintaining high grain produc-
tion, is an important target for breeders. NUE is also a high priority in low-yielding areas with
a Mediterranean-type climate such as southern Australia. These environments are character-
ised by low rainfall and high temperature during late stages in the wheat growing season.

Nitrogen use efficiency (NUE) is defined as the ratio of GY to N supplied and indicates how
much supplied N a plant can (i) take up (N uptake efficiency; NupE) and (ii) utilise for grain pro-
duction (N utilisation efficiency; NutE) [3]. NUE and its components, NupE and NutE, are influ-
enced by genotypic variation, environmental factors (the interaction of climate, soil, water
availability and other factors) and Nmanagement [4]. Cyclic and low rainfall in low-yielding envi-
ronments can intensify the side effects of excess N and result in low NUE and GY, a phenomenon
known as haying-off [5]. Angus and VanHerwaarden [6] found that increased transpiration during
the vegetative phase of growth (due to excessive plant vigour in response to N fertiliser) can lead to
particularly inefficient water use. Increased N status can also reduce the soluble carbohydrate
reserves available for re-translocation to grain after anthesis. Climate conditions, particularly rain-
fall amount and distribution, have an important role in N uptake and assimilation in cereals after
anthesis [7]. Soil moisture is required both during and after vegetative growth to support N uptake.

To improve NUE, consideration needs to be given to genotype, environmental effects, N
management and the interaction of these factors [8]. In order to improve wheat germplasm for
NUE, plant breeders have assessed the genetic variation for NUE and associated traits, and
G×N interaction. Previous studies revealed genetic variability for NUE, N uptake efficiency
and N utilisation efficiency in maize [9], wheat [10], [11] and rice [12]. It has also been impor-
tant to identify genotypes showing high NUE, but also able to yield well under both high and
low N supply conditions [13]. Segregating populations made from varieties differing in N
response have been used to study the genetic basis of NUE and associated traits. In a multi-
environment study, Cormier et al. [14] assessed recent breeding progress on NUE in wheat
and emphasised the value of improving NUE in varieties grown at low N supply to counteract
the increasing cost of N fertiliser [15]. In addition, N management could be improved by opti-
mising N application and synchronising crop N demand and soil N supply, reducing environ-
mental pollution and saving money and energy [13].

QTL mapping helps provide a genetic understanding of quantitative traits and the genes
controlling complex traits. Many significant QTL have been detected at high and low N in dif-
ferent growth conditions. For example, in wheat, An et al. [16], Laperche et al. [17] and Guo
et al. [18] reported significant QTL in controlled conditions, and several significant genomic
regions underlying NUE were detected in field trials [19], [20].

Habash et al. [21] undertook a QTL analysis for 21 traits related to growth, yield and leaf N
assimilation during grain filling in hexaploid wheat using a mapping population from a cross
between Chinese Spring and SQ1 (a high abscisic acid-expressing breeding line). They detected
major QTL on chromosomes 2A, 4A and 6B for glutamine-synthetase (GS) activity, ear num-
ber per plant, peduncle N, grain N and GY. In a recent study by Xu et al. [22] on mapping QTL
for yield and N-related traits in wheat, regions on chromosomes 2D, 4B, 4D, 5A (2), 6A and
7A showed significant effects on N concentration in grain and shoots and NutE. Bordes et al.
[23] identified 54 regions involving almost all chromosomes that influenced yield and its com-
ponents, plant height, heading date and grain protein concentration. These chromosomal
regions were proposed as good candidates to be used in breeding programs to improve the
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performance of wheat varieties at moderate N fertilisation rates [24], and ultimately as a
resource for positional cloning of genes involved in NUE. However, the large number and vari-
able performance of these QTL means it is unlikely breeders would actually use the informa-
tion. Ideally, QTL should be identified in well-adapted germplasm and show stable
performance across multiple environments or known environmental responses. The present
study aimed to characterise the genetic basis of N response in a bread wheat doubled haploid
(DH) population. The population used for this study was derived from a cross between two
highly adapted genotypes, both bred for low-input, low-rainfall areas of Australia’s southern
grain belt. Therefore, any identified QTL are of direct relevance to local breeding programs.
The main objectives were to determine the genetic basis for variation in NUE for selection of
N-responsive genotypes in the low-yielding environments of southern Australia.

Materials and Methods

Plant material
In this study we used a doubled haploid (DH) mapping population derived from a cross
between the bread wheat genotypes RAC875 (female) and Kukri (male). RAC875 and Kukri
have both been bred for the Mediterranean-type environment of southern Australia, but have
shown marked differences in performance under severe drought and heat stress [25]. 156 DH
lines from the population were planted in the South Australia (SA) trials in 2011 and 2012, and
148 DH lines in the Western Australia (WA) trials in 2013. The lines were selected from a
larger DH population of 324 lines, showing similar maturity to minimise the impact of phenol-
ogy on the measured traits [26].

Field experiments
The field trials were conducted under the authority of The University of Adelaide, in South
Australia and the University of Western Australia, for the Western Australian trials and
adhered to the policies and practices of these two universities. A split-plot design with incom-
plete replication was used for all experiments. Parental lines and local genotypes as checks were
always included. The local genotypes in South Australia were Correll, Drysdale, Excalibur,
Frame, Gladius and Mace. In Western Australia the studied genotypes included Brookton, Bul-
laring, Calingiri, Datatine, Gladius, GW3118, IFlood0844, IGW2971, IGW3073, IGW3114,
IGW3119, IGW3277, IGW3308, IGW3318, Mace, Machete, Reeves, Scout, Sunco, Westonia,
Wyalkatchem and Yitpi. The genotypes were planted in sub-plots, with different rates of N
(urea) application as the main plots (low N; no fertilisation, high N; half fertilisation and full
fertilisation, depending on the usual N application practice at each site, Table 1). Soil analyses
were performed by CSBP Future Farm Analytical Laboratories (Bibra Lake, Australia, Table 1).
Standard regional management practices were applied to all fields and years. Heading and
maturity dates, and GY (kg ha-1) were recorded for all plots. For each genotype, responsive
grain yield (RGY) values were calculated as the difference between GY at high N and low N.

Genotyping
RAC875 and Kukri population were genotyped using SNP data from an Illumina 90 K array.

Raw intensity (.idat) files for all 322 DH lines plus two replicates of the parents
(RAC875 × Kukri) were imported into the polyploid version of GenomeStudio software[27]
along with a custom sample-sheet and a SNP manifest file (Wheat90k_ConsAkhunovK-
SU_15033654_A.bpm). Prior to running the clustering algorithms within GenomeStudio, a
number of quality control checks were made. Firstly, the intensity plots for measures such as
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signal intensity and staining controls were manually inspected in order to ensure that the
intensities fell within the normal range. Secondly, low performing samples were identified by
generating scatter plots, but were not excluded from the cluster calling at this stage.

Cluster patterns were generated for each SNP using a semi-automated procedure described
by Wang et al. [27]. At the conclusion of each step, SNPs were filtered based upon metrics
including call frequency and number of clusters. The filtered SNPs were then annotated follow-
ing the published workflow. For example, at the conclusion of step 2, SNPs which exhibited a
‘# Clusters’metric equal to 1 were annotated as ‘Monomorphic’. SNPs that did not fall within
the criteria specified by the published workflow were assigned to a ‘No Annotation’ category. A
visual examination of the cluster patterns was made and, if possible, the clusters were manually
curated and the SNP annotated accordingly. From this process, there were a total of 37437
monomorphic markers, 17830 polymorphic markers and 26410 markers that exhibited multi-
ple clusters or ambiguous cluster patterns.

Genetic linkage map construction
Before linkage map construction, the 63757 monomorphic markers and markers with ambigu-
ous cluster patterns were removed and the 17830 polymorphic SNP markers across the 322
DH lines were diagnostically checked. Initially, three lines containing more than 20% missing
values across the marker set as well as three lines that were considered to be clones, were
removed. From this reduced set, 2233 markers were removed that showed significant (p-value
< 0.05) segregation distortion patterns that deviated from the usual 1:1 allele ratio assumed for
a bi-parental population. To check the quality of the remaining SNP marker set, an initial link-
age map was constructed using the MSTmap algorithm [28] integrated into the linkage map
construction functions of the R/ASMap package [29] available in the R Statistical Computing
Environment [30]. From this initial map the genotypes were checked across the complete
genome and a total of 82 lines were removed that exhibited excessive recombination counts.

Table 1. The location, climate and basic soil characteristics, growing conditions and average grain yield (GY, kg ha-1) of five southern and western
Australian trial sites used for nitrogen use efficiency field trials in this study.

Site Year Abbreviation Lata

(o S)
Lonb

(o E)
Elvc

(m)
Total
raind

(mm)

Hot
daye

(d)

Soil
texturef

pH
(CaCl2)

pH
(H2

O)

NH4
+

nitrogen
(mg kg-1)

NO3
-

nitrogen
(mg kg-1)

Nitrogen
fertiliser
levels (kg

ha-1)

Average
GY (kg
ha-1)

Pinery, SA 2011 PIN 11 34.2 138.6 260 165 16 Clay 7.6 8.2 3 36 0; 75; 150 2236

Yanco,
NSW

2011 YAN 11 34.6 146.4 164 221 22 n.a. n.a. n.a. n.a. n.a. 0;75; 150 1805

Lameroo,
SA

2012 LAM 12 35.3 140.5 99 144 15 Loamy 8.2 9 2 8 18; 52; 87 2007

Pinery, SA 2012 PIN 12 34.2 138.6 260 185 23 Clay 7.7 8.5 3 54 0; 75; 150 2112

Esperance
Down, WA

2013 ED 13 33.6 121.8 158 293 8 Loamy-
sand

5.7 6.3 3 25 0; 60 3065

Wongan
Hills, WA

2013 WH 13 30.8 116.7 305 163 26 Loamy-
sand

6.5 6.9 4 22 0; 35 2559

a Latitude (o S)
b Longitude (o E)
c Elevation above sea level (m)
d Total rainfall during the growing season
e Number of days during the growing season with a maximum temperature above 30 o C
f Soil characteristics of top 10 cm depth of soil before fertilization

doi:10.1371/journal.pone.0159374.t001
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The complete set of 17830 polymorphic SNP markers for the 234 lines was then integrated
with the 226 matching genotypes of the simple sequence repeat (SSR) and DArTs markers
from the RAC875 × Kukri genetic linkage map described in Bennett et al. [24]. Prior to integra-
tion, markers in the SSR-DArTs linkage map containing more than 20% missing values were
removed. The integrated SSR-DArTs-SNP marker set contained a total of 18333 markers
across 226 genotypes, Marker segregation distortion was checked again and 2340 markers
were removed. With the remaining 15993 markers an initial map was constructed using the
MSTmap linkage map construction functions of R/ASMap. A further eight lines were removed
due to excessive recombination counts, and the map was re-constructed a final time. Linkage
groups with fewer than ten markers were deemed to be unlinked and omitted from further
construction. Linkage group assignment and orientation was determined through a compari-
son of the remaining 408 SSR-DArT markers in the newly constructed linkage map with the
SSR-DArT linkage map of Bennett et al. [25] as well as a comparison of SNP markers to the
90K SNP array based wheat consensus map. After this process, one linkage group remained
unassigned, while two pairs of linkage groups and one set of three linkage groups were merged.
The final integrated SSR-DArTs-SNP linkage map consisted of 218 individuals, including the
all lines used in the current study, with 15911 markers assigned to 26 linkage groups. After
removing co-located markers this was reduced to 1333 unique loci with a total map length of
2864.3 cM and average interval distance of 2.18 cM (minimum = 0.1 cM and maximum = 48.1
cM).

Linear mixed model analysis
Analysis of GY was conducted using a multi-treatment-environment trial (MTET) linear
mixed model that appropriately captured genetic and non-genetic sources of variation present
across the multiple treatments and environments [31], [32]. For each treatment by environ-
ment the fixed component of the MTET model contained a factor that consisted of one level
for the complete set of DH lines and a level for each of the parents and controls. The inclusion
of this term ensured that the parents and controls remained fixed in the analysis and did not
contribute to the genetic variation of the DH lines in any treatment by environment combina-
tion. In addition, for each treatment by environment combination the fixed component also
contained phenology genes ppdB1 and ppdD1 as numerical covariates [33] as well as modelled
linear trends possibly existing across the row and ranges of the environment. Extraneous non-
genetic sources of design variation, such as blocks or bays, were captured using independent
random effects. For each of the environment specific residuals, a separable AR1 × AR1
(AR1 = autoregressive process of order 1) process was used to adequately account for spatial
correlation of GY measurements induced by the rectangular layout of the experiment.

An important component of the MTET model was the inclusion of a random effects term to
model the variance-covariance structure for the genotype by treatment by environment (GTE)
interaction. This structure consisted of a genetic variance of the DH lines for each treatment
within an environment as well as covariances or correlations that reflect the genetic relation-
ship of the DH lines between varying levels of N within and between environments. Due to the
large number of treatment by environment combinations, this genetic random effects term was
parsimoniously approximated by a Factor Analytic model [31], [32].

After fitting the MTET model, the GY BLUPs for the DH lines were extracted for all levels
of N treatments within each of the environments. For any two levels of N in an environment
the responsiveness GY (RGY) BLUPs for the DH lines were determined by extracting the resid-
uals from the random regression of the GY BLUPs for the DH lines at the high level of the N
treatment on the GY BLUPs for the DH lines at the low level of the treatment. The random
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regression line therefore represents the average performance of a DH line for the two N levels.
Positive residuals from this regression indicate a genotype responded well on average to the
high application of N and conversely a genotype with negative residuals indicated a poor
responsiveness on average. Each two treatment combinations can then be viewed as having a
GY BLUP that is equivalent to the DH line BLUPs for the lower level of the N treatment and
RGY BLUP that is equivalent to the genetic response of the DH lines to the application of the
higher level of the N treatment given the lower level of N.

The genetic relationships of varietal efficiency and responsiveness across trials were
explored and a two-dimensional ranking system was applied to the efficiency and responsive-
ness of lines for all environment by treatment pair combinations. This system enabled lines to
be ranked and lines having common attributes of good efficiency and responsiveness to the
application of N could be selected. Similarly, the lines that showed poor efficiency and respon-
siveness across trials were identified. The lines were ranked in descending order based on their
BLUPs in trials.

For each N treatment by environment combination broad-sense heritabilities were calcu-
lated using the formula derived in Cullis et al. [34]. All statistical modelling was conducted
using the flexible linear mixed modelling package ASReml-R [35] available in the R statistical
computing environment [30].

QTL mapping
Using the 1333 unique loci of the integrated SSR-DArTs-SNP linkage map, QTL analyses were
conducted on the GY BLUPs of the DH lines for each treatment by environment combination
as well as the RGY BLUPs derived from each two level N treatment combination within each
environment. The QTL analyses used the CIM approach implemented in WinQTLCart-ver-
sion 2.5 (Model 6 standard analysis) [36]. LOD value thresholds were determined with 1000
fold permutations [37] and a family wise error rate P = 0.05. This corresponded to a minimum
LOD score of 2.9. Trait abbreviations and QTL designations follow the nomenclature suggested
in the wheat catalogue of gene symbols [38] with ‘asw’ signifying ‘Australian Spring Wheat’.
Significant QTL were summarised with their position on a linkage group and LOD score as
well as their contribution to the genetic variance.

Results

Grain yield analysis
156 and 148 RAC875 × Kukri DH lines were trialled in South Australia and Western Australia,
respectively, to identify significant genetic factors underlying NUE based on GY. Average GY
ranged from 1,805 kg ha-1 at YAN 11 to 3,065 kg ha-1 at ED 13 (Table 1). Under low N com-
pared to high N conditions, yield was reduced by an average of 15% at PIN 12 and 25% at LAM
12. Parental lines showed different trends for yield performance at different N fertilisation
across sites (Fig 1). For instance, the parents were significantly different for both no-fertilisa-
tion and 150 (kg N ha-1) levels at PIN 12, but not at other sites. In addition, at YAN 11, the
parents showed no response to increasing N. Variation for GY among the DH lines exceeded
the variation seen in the parental lines (Table 2 and Fig 2), demonstrating significant transgres-
sive segregation in the population. In the initial stages of fitting the GYMTET linear mixed
model we discovered there was no significant genetic variation for grain yield at 18 kg ha-1 of N
at LAM 12. This data set was excluded from further linear mixed model analysis. The final
MTET model incorporated an FA model of order 4 for the GTE interaction spanning all N
treatment levels across the sites in South Australia and Western Australia.
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The estimated genetic correlation matrix was extracted from the model and is presented in
Table 3. The table indicates there are mostly moderate genetic correlations (0.40–0.70) between
South Australian trial sites with stronger genetic correlations (0.71–0.99) existing between lev-
els of N within sites. Similarly, there are also strong genetic correlations between the two levels
of N within and between the Western Australian sites. Table 3 also indicates that the varying
levels of N at the South Australian sites have weak or negligible genetic correlation with the
two levels of N at the Western Australian sites. Broad sense heritability (the ratio of total
genetic variance to total phenotypic variance) for yield in PIN 11 was highest (0.90) at 75 kg
ha-1 N fertiliser, while it was very low at LAM 12 in all N treatments (S1 Table).

BLUPs analysis
The GY BLUPs for the DH lines were extracted from the final MTET model and RGY BLUPS
for the DH lines were calculated for all N treatment combinations within each environment.
For example, in PIN 12, GY BLUPs of the DH lines for N0, N75 and N150 kg ha-1 were

Fig 1. Grain yield (kg ha-1) of RAC875 and Kukri in six nitrogen (N) use efficiency field trials in southern Australia. The vertical error bars
represent the standard errors of the predicted means after spatial analysis.

doi:10.1371/journal.pone.0159374.g001

Table 2. Phenotypic performance of RAC875 × Kukri population for grain yield across Australian trial sites in three seasons (2011–2013).

Site and year Parents DH population

RAC875 Kukri Mean Max Min

PIN 11 2468 2370 2229 3279 593

YAN 11 1768 1893 1802 2651 795

LAM 12 1946 2200 2001 3724 739

PIN 12 2345 2012 2108 3253 871

ED 13 3151 3141 3003 4477 1472

WH 13 2683 2486 2475 3538 1316

Note: Maximum and minimum values for the population were calculated across all N fertilisation rates

doi:10.1371/journal.pone.0159374.t002
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extracted from the model and used to form RGY BLUPs for the DH lines denoted N75-N0,
N150-N0 and N150-N75, where, for example, N150-N0 represents the response of the DH
lines to the application of 150 kg ha-1 of N given the BLUPs for the DH lines at 0 kg N ha-1. Fig
3 presents a two dimensional scatter plot of the GY BLUPs for the DH lines against their RGY
BLUPs for all available two N treatment combinations within an environment.

To aid interpretation, each panel is divided into four sub-areas or quadrants. The upper
right quadrant (Q1) in each panel indicates DH lines that show above average GY and response
to the application of N whereas those in the lower left hand quadrant (Q3) indicate below aver-
age GY and N response.

To assess the individual genetic performance of DH lines across environments and two level
N treatment combinations, a two-dimensional ranking scheme was developed using the GY
and RGY BLUPs (see Methods). A suitable criterion to determine the ranking of the varieties

Fig 2. Distribution of doubled haploid lines for grain yield at high rate of nitrogen (N) fertilisation at six trial sites in South Australia andWestern
Australia. For each site, grain yields of RAC875 and Kukri are shown by the positions of the letters R and K, respectively.

doi:10.1371/journal.pone.0159374.g002

Table 3. Genetic correlation coefficients within sites for grain yield for all genotypes studied, parental lines and doubled haploid lines in nitrogen
use efficiency field trials in Australia.

Site and
year

Nitrogen Fertilisation
(kg ha-1)

PIN
11

PIN
11

PIN 11 YAN
11

YAN
11

YAN
11

LAM
12

LAM
12

PIN
12

PIN
12

PIN
12

ED
13

ED
13

WH
13

0 75 150 0 75 150 52 87 0 75 150 0 60 0

PIN 11 75 0.95

PIN 11 150 0.91 0.94

YAN 11 0 0.64 0.70 0.69

YAN 11 75 0.68 0.73 0.73 0.99

YAN 11 150 0.52 0.58 0.57 0.98 0.95

LAM 12 52 0.43 0.47 0.45 0.57 0.55 0.56

LAM 12 87 0.18 0.20 0.17 0.24 0.21 0.27 0.19

PIN 12 0 0.39 0.36 0.35 0.42 0.39 0.57 0.27 0.22

PIN 12 75 0.34 0.30 0.31 0.40 0.40 0.60 0.21 0.13 0.86

PIN 12 150 0.65 0.62 0.62 0.46 0.41 0.53 0.32 0.15 0.88 0.85

ED 13 0 0.14 0.13 0.06 -0.13 -0.20 -0.08 0.07 0.24 0.35 0.13 0.10

ED 13 60 0.06 0.06 -0.02 -0.18 -0.26 -0.12 0.05 0.25 0.33 0.09 0.03 0.82

WH 13 0 0.10 0.08 0.01 -0.33 -0.38 -0.30 -0.04 0.18 0.34 0.13 0.10 0.80 0.84

WH 13 35 0.06 0.02 -0.04 -0.41 -0.45 -0.38 -0.09 0.14 0.36 0.16 0.12 0.79 0.82 0.90

doi:10.1371/journal.pone.0159374.t003
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would then be based on the absolute angular differences of the varieties from these 45 degree
angles as well as their lengths from the origin. The lines for good efficiency and responsiveness
are ranked based on a numerical order showing consistent extension into Q1. Likewise, ranking
of varieties with poor efficiency and responsiveness are in the numerical order as a consistent
extension into Q3 (Fig 3).

Fig 4 shows the positions of the GY and RGY BLUPs for the top five (upper five panels) and
bottom five (lower five panels) ranked DH lines. The length of each line and the proximity of
the line to an optimal 45 degree angle provide an objective assessment of the DH genotype for
each two level N treatment combination in each environment. Across all two level N treatment
combinations and environments, each DH line was ranked by summing the angle differences
to the optimal 45 degree line and dividing by the mean of the line lengths. Using this ranking
scheme, DH_R214 was the best performing line and showed above average GY and N response

Fig 3. Responsive grain yield (RGY) against grain yield (GY) best linear unbiased predictions (BLUPs) of individual RAC875 × Kukri DH line
across nitrogen use efficiency field trials in Australia. RAC875 and Kukri are shown by yellow and red dots, respectively.

doi:10.1371/journal.pone.0159374.g003
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in 9 of the 10 two level N treatment combinations across environments, while DH_R241 was
the poorest performing line with below average GY and N response in 9 of the 10 two level N
treatment combinations across environments (Fig 4).

QTL associated with GY
In total, we identified 29 significant QTL for GY, including 17 GY-QTL on chromosomes 1A,
1B, 2A, 3D-2, 4A, 4B, 4D, 5A, 6A, 7A-1, 7B and 7D, across all treatments and environments
(S1 Fig). The GY-QTL with the highest LOD score (16), additive effect and proportion of the
genotypic variation explained (28%) was on chromosome 2A, for GY at high N at PIN 11
(Table 4). The only QTL that was specific for GY at low N, QYLD.asw-7B, explained only 5%
of the genotypic variance. The allele from Kukri, within the interval CAP12_c1816_325 − Kuk-
ri_c109962_396 on 7B, was responsible for an improvement in GY. There was also one QTL
on 6A under high N application carrying the positive allele from RAC875 for increased GY
detected only at PIN 11. The other GY-QTL were detected in both high and low N treatments,
with contributions coming from both parents, showing more QTL at high N. Among the 17
GY-QTL, there were nine site-specific QTL that accounted for a relatively high proportion
of the genetic variation (Table 4). These included three QTL on 4A, 4D and 7D recorded at
both low and high N in YAN 11, ED 13 and PIN 12, and one on 6A at N fertilisation levels,
and another one on 7B at no N. However, both Kukri (2A, 4A, 4B, 4D, 5A, 7B and 7D) and
RAC875 (1A, 6A and 7A-1), along with a shared locus on 1B and two loci (one from each par-
ent) on 3D-2 contributed to improving GY. The most significant QTL was on 2A and was
recorded at four sites and all levels of N application. No QTL were detected on 2B and 2D
where the Ppd-B1 and Ppd-D1 loci are located, confirming that the data had been adequately
adjusted for these maturity effects.

Fig 4. Positions of grain yield (GY) and responsive grain yield (RGY) best linear unbiased predictions (BLUPs) for all two-level nitrogen treatment
combinations across the South Australian field trials, of the top five (upper row of panels; DH_R214, DH_R013, DH_R364, DH_R200, DH_R170) and
bottom five (lower row of panels; DH_R241, DH_R329, DH_R054, DH_R069, DH_R016) ranked RAC875 × Kukri DH lines using a two dimensional
ranking scheme. Ranking of a genotype was determined on the basis of the length of each line shown in the panels and the proximity of the lines to an
optimal 45 degree angle.

doi:10.1371/journal.pone.0159374.g004
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Table 4. Genomic regions underlying the single effect of nitrogen (N) on grain yield-BLUPs, adjoiningmarkers (closest in bold), peak position
(cM), logarithm of odds (LOD), R2 (%) and additive effect in trials at various Australian sites.

Chr. QTL N treatment Site and
year

Adjoining markers Position (cM) LOD R2 (%) Allele
effect

1A 1 N52 LAM 12 Excalibur_c44711_453 − Excalibur_c11941_675 17.1 2.9 6 0.02

2 N150 PIN 11 RAC875_rep_c104986_200 − RAC875_c11899_366 43.7 5.8 9 0.1

N0 PIN 11 RAC875_rep_c104986_200 − RAC875_c11899_366 45.7 6.4 10 0.07

N75 PIN 11 RAC875_rep_c104986_200 − RAC875_c11899_366 45.7 6.7 10 0.12

N0 YAN 11 RAC875_rep_c104986_200 − RAC875_c11899_366 45.7 3.8 6 0.06

N75 YAN 11 RAC875_rep_c104986_200 − RAC875_c11899_366 45.7 4.4 7 0.05

N0 ED 13 RAC875_c11899_366 − wsnp_Ra_c20126_29372577 46.7 3.9 8 0.05

N60 ED 13 RAC875_c11899_366 − wsnp_Ra_c20126_29372577 46.7 3.5 7 0.07

N35 WH 13 RFL_Contig3715_263 − gwm0357 48.9 3.7 8 0.06

1B 3 N75 YAN 11 wsnp_Ex_rep_c66980_65419811 − Kukri_c1529_462 104.1 3.3 5 0.04

N0 ED 13 barc0207 − wsnp_Ex_c23992_33235984 116.8 3.9 8 -0.05

N60 ED 13 barc0207 − wsnp_Ex_c23992_33235984 116.8 3.6 7 -0.07

4 N0 WH 13 wsnp_Ex_rep_c66255_64400455 − barc0256 137 3.6 8 -0.06

N35 WH 13 wsnp_Ex_rep_c66255_64400455 − barc0256 137 3.9 9 -0.06

2A 5 N0 PIN 11 BS00011893_51 − Kukri_c46040_620 26.7 14.4 25 -0.11

N75 PIN 11 BS00011893_51 − Kukri_c46040_620 26.7 15.4 27 -0.2

N150 PIN 11 BS00011893_51 − Kukri_c46040_620 26.7 16 28 -0.18

N0 YAN 11 BS00011893_51 − Kukri_c46040_620 26.7 9.8 18 -0.1

N75 YAN 11 BS00011893_51 − Kukri_c46040_620 26.7 11.2 19 -0.08

N150 YAN 11 BS00011893_51 − Kukri_c46040_620 26.7 7.7 15 -0.07

N52 LAM 12 BS00011893_51 − Kukri_c46040_620 26.7 5.9 12 -0.04

6 N150 PIN 12 D_GB5Y7FA02HSMR1_278 − BobWhite_rep_c64012_389 40.8 6.5 14 -0.04

3D2 7 N0 PIN 11 cfd0064 − Excalibur_c3510_1888 18.7 5.4 8 -0.06

N75 PIN 11 cfd0064 − Excalibur_c3510_1888 18.7 6.9 10 -0.12

N150 PIN 11 cfd0064 − Excalibur_c3510_1888 18.7 6.7 10 -0.11

3D2 N75 YAN 11 cfd0064 − Excalibur_c3510_1888 18.7 5.6 9 -0.06

8 N60 ED 13 RAC875_c35801_905 − wsnp_Ex_rep_c101732_87042471 25.9 4.9 10 0.08

4A 9 N0 YAN 11 Excalibur_c11047_1145 − BS00064523_51 145.4 3.4 6 -0.06

N75 YAN 11 Excalibur_c11047_1145 − BS00064523_51 145.4 4.5 7 -0.05

N150 YAN 11 Excalibur_c11047_1145 − BS00064523_51 145.4 3.7 7 -0.05

4B 10 N60 ED 13 BS00004727_51 − RFL_Contig5846_1610 79.4 4 8 -0.07

N0 WH 13 BS00004727_51 − RFL_Contig5846_1610 79.4 4.9 11 -0.07

N35 WH 13 BS00068539_51 − BobWhite_c4818_173 83.1 3.7 8 -0.06

4D 11 N0 ED 13 wsnp_Ex_rep_c107564_91144523 −
wsnp_Ku_rep_c109720_94223856

1.8 4.4 9 -0.05

N60 ED 13 wsnp_Ex_rep_c79748_75305162 −wsnp_BF473052D_Ta_2_1 3.3 4.1 9 -0.07

5A 12 N150 YAN 11 BS00022867_51 − BS00081951_51 177.8 3.3 5 -0.04

N0 PIN 12 BS00022867_51 − BS00081951_51 177.8 4.5 9 -0.03

N75 PIN 12 BS00022867_51 − BS00081951_51 177.8 3.8 8 -0.04

6A 13 N75 PIN 11 wsnp_Ex_c2389_4479352 − barc0353b 69.5 4 6 0.09

N150 PIN 11 wsnp_Ex_c2389_4479352 − barc0353b 67.5 4.5 7 0.09

7A1 14 N75 PIN 12 wPt.8399 − Excalibur_c12996_775 82.7 4.3 9 0.04

N0 PIN 12 BobWhite_rep_c49790_351 − BobWhite_c16317_641 85.1 4.5 9 0.03

15 N0 YAN 11 Excalibur_c49272_174 −wPt.5558 114.4 6.1 11 0.08

N75 YAN 11 Excalibur_c49272_174 −wPt.5558 114.4 4.7 7 0.05

N150 YAN 11 Excalibur_c49272_174 −wPt.5558 114.4 6.2 11 0.06

(Continued)
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QTL for N response
The responsiveness of DH lines to N application was assessed by comparing yields at different
levels of N application to generate and score for RGY (Table 5). In total, 12 RGY QTLs were
detected, with the predominant proportion of desirable alleles coming from the Kukri parent.
These QTL were on chromosomes 1A, 1B, 2A, 2B, 3B, 3D-2 (2 loci), 5A, 6A, 6B, 7A-2 and 7B
with a LOD range of 3 to 11.8. All sites revealed loci that showed a differential response to the
rate of N application. Nine RGY-QTL, were classified as adaptive QTL since they were detected
at only one site. These were located on chromosomes 1A, 1B, 2B, 3B, 3D-2 (2 loci), 5A, 6B and
7A-2. QRGY.asw-2A explained the highest proportion of variance (R2 = 20%) and was stable
across three sites. Further, two putative QTL on 3D-2, delineated by markers cfd0064 − Excali-
bur_c3510_1888 and RAC875_rep_c79167_809 − CAP12_c1384_314, were associated with
RGY in both South Australia and Western Australia.

Table 4. (Continued)

Chr. QTL N treatment Site and
year

Adjoining markers Position (cM) LOD R2 (%) Allele
effect

N52 LAM 12 wPt.5558 − Ra_c114158_328 116.4 4.2 9 0.03

7B 16 N0 PIN 11 CAP12_c1816_325 − Kukri_c109962_396 13.4 3.4 5 -0.05

7D 17 N0 PIN 12 BobWhite_rep_c57051_479 − Ku_c884_1017 76.6 4.3 9 -0.03

N75 PIN 12 BobWhite_rep_c57051_479 − Ku_c884_1017 76.6 3.5 7 -0.04

N150 PIN 12 Kukri_c100613_331 − RAC875_c53629_483 83.3 4.6 9 -0.03

doi:10.1371/journal.pone.0159374.t004

Table 5. Genomic regions underlyg the response to nitrogen (N) for grain yield-BLUPs, adjoiningmarkers (closest in bold), peak position (cM), log-
arithm of odds (LOD), R2 (%) and additive effects in trials at various Australian sites.

Chr. QTL N treatment Site and year Adjoining markers Position (cM) LOD R2 (%) Allele

effect

1A 1 N150-N75 PIN 12 RAC875_rep_c104986_200 − RAC875_c11899_366 45.7 4.9 8 0.01

N150-N0 PIN 12 Ex_c4051_1826 −wsnp_Ra_c4664_8410628 53.9 5.3 9 0.02

1B 2 N150-N0 YAN 11 Kukri_c16382_396 − RAC875_c6789_838 111.4 3.6 7 0.01

2A 3 N150-N75 PIN 11 Ra_c18597_329 − BS00011893_51 17.7 4.3 9 -0.03

N75-N0 YAN 11 BS00011893_51 − Kukri_c46040_620 19.7 4.9 10 -0.01

N150-N0 PIN 12 BS00011893_51 − Kukri_c46040_620 24.7 9.6 20 -0.02

N150-N0 YAN 11 BS00011893_51 − Kukri_c46040_620 24.7 5.1 11 0.01

N150-N75 PIN 12 BS00011893_51 − Kukri_c46040_620 26.7 11.8 20 -0.02

2B 4 N150-N0 PIN 12 RFL_Contig3915_1042 − wsnp_RFL_Contig4402_5154408 70 3.2 5 -0.01

3B 5 N87-N52 LAM 12 Kukri_c32803_84 −wPt.7984 4.9 4 9 0.02

3D2 6 N150-N75 PIN 12 cfd0064 − Excalibur_c3510_1888 18.7 4.4 7 -0.01

7 N35-N0 WH 13 RAC875_rep_c79167_809 − CAP12_c1384_314 79.7 3.7 10 -0.01

5A 8 N75-N0 PIN 12 BS00028356_51 − BS00022646_51 154.1 3 7 -0.02

6A 9 N35-N0 WH 13 wsnp_Ex_c2389_4479352 − barc0353b 69.5 4.2 10 0.01

N60-N0 ED 13 wsnp_Ex_c2389_4479352 − barc0353b 70.2 4.1 10 -0.02

6B 10 N150-N75 PIN 12 Ex_c20409_854 − Ku_c2392_1692 38.2 3.3 5 0.01

7A2 11 N75-N0 PIN 11 BS00068055_51 − BobWhite_c23287_57 0 3.4 8 0.02

N150-N75 PIN 11 BS00068055_51 − BobWhite_c23287_57 0 3.4 7 0.02

7B 12 N150-N0 YAN 11 wPt.9887 − BobWhite_c25215_457 7.1 7.1 14 0.02

N75-N0 YAN 11 BobWhite_c25215_457 −wsnp_Ra_c3450_6434387 7.6 5.7 11 -0.01

N150-N75 PIN 12 CAP12_c1816_325 − Kukri_c109962_396 13.4 5.1 8 -0.01

N150-N0 PIN 12 CAP12_c1816_325 − Kukri_c109962_396 13.4 4.7 8 -0.02

doi:10.1371/journal.pone.0159374.t005
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Several RGY regions were overlapping with QTL regions for GY. These included the regions
on 1A, 1B, 2A, 3D-2, 5A, 6A and 7B (S1 Fig). Although the same regions were detected, they
were not necessarily detected from the same trials; for example, the 1A RGY locus appeared in
the PIN 12 trial with the same region detected in other sites for GY data. Similarly, the 3D-2,
6A and 7B RGY loci overlapped with GY-QTL from different trials (Tables 4 and 5). Two QTL
were detected for GY and RGY on 3D-2, but only the locus at 18.7 cM was common. The 2A,
6A and 7B RGY loci appear to show contribution of both parents depending on the trial, but
this may actually reflect two separate but closely linked loci given that the QTL peaks were
slightly shifted. The RGY regions on 2B, 3B, 6B and 7A-2 were not detected in GY analysis and
are therefore assumed to have no major effect on yield per se.

Discussion
In this study GY under different rates of N application was measured across multiple sites, giv-
ing a total of 16 N×E treatments (four sites at three N rates in South Australia in 2011–2012
and two sites and two N treatments in Western Australia in 2013). The study used a population
developed from two lines of bread wheat that had been bred for the same production environ-
ment, but with different genetic backgrounds. Thus, many key albeit well known adaptive traits
had already been optimised in the parents (such as plant height and maturity).

An important aspect of our study was the focus on field performance in low-yielding, Medi-
terranean-type environments found in southern Australia. In these environments strong vege-
tative growth, in response to abundant N early in the growing season, can negatively impact
yield due to increased water loss late in the season during flowering and grain filling [11].
Well-adapted plants are expected to be efficient in N uptake during vegetative growth, main-
tain optimal vegetative biomass and only mobilise N late in development. This contrasts to pre-
vious studies that have been conducted in relatively high yielding environments where large
early biomass is associated with increased GY [39]. The genetic correlations were moderate to
high among the South Australian sites (Table 3). This results supports the possibility of suc-
cessful selection for genotypes with both high GY and NUE in these sites. However, the nega-
tive genetic correlations between some sites in the South andWestern Australia suggests that
transferring results across different environments can be problematic emphasising the com-
plexity of NUE traits.

Different growth conditions in South Australia and Western Australia are likely to have
caused some of the instability detected in the present QTL study. However, regions on 1A, 1B
and 3D-2 for GY and also on 3D-2 for RGY were detected in both South Australia and Western
Australia.

Heritability and genetic variability tended to be lowest at the low N treatment, consistent
with previous studies [40], [4], [14], [41]. QTL detected on chromosomes 1A, 1B, 2A, 3D-2
and 7A-1 for GY and 2A for RGY, were producible at three or more locations and are the most
stable of the 41 QTL we identified (Tables 4 and 5). These genomic regions are the best candi-
dates for more extensive NUE studies and for positional cloning of gene(s) underlying the
QTL. The remaining QTL were only detected at one or two sites. These site-specific or unstable
QTL reflect regions associated with adaptation to specific environmental conditions rather
than the level of applied N alone [42]. Overall maturity effects were effectively managed in
these experiments by selecting lines that showed little variation for this important adaptive
trait. The regions associated with variation in maturity are presented in S2 and S3 Tables.

The magnitude and direction of allelic effects across QTL showed that both parents could
contribute to increased NUE and yield. This observation also helps explain the strong trans-
gressive segregation seen across the population. Although both parents contributed desirable
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alleles, Kukri alleles predominated. The QTL on chromosomes 4A, 4B, 4D, 7A-1 and 7D were
associated only with GY and were essentially independent of N response. Conversely, the
RGY-QTL on chromosomes 2B, 3B, 6B and 7A-2 led to increased yield, making these ideal tar-
gets for enhancing NUE in improvement programs.

Some QTL detected in this study require more detailed analysis. For example, the region
close to marker RAC875_rep_c104986_200 − RAC875_c11899_366 on 1A showed a major
effect on yield under low and high rates of N application at three sites, PIN 11, ED 13 and YAN
11, and is adjacent to a RGY-QTL identified at PIN 12. It seems probable that these are the
same QTL observed in three separate trials. However, this needs to be verified. Importantly,
these QTL regions would appear to represent a region where both N response and GY are con-
trolled and where significant genetic gain for NUE could be achieved. In a recent study focus-
sing on yield under drought and which used the same DH population, Bennett et al. [43]
identified QTL for GY on chromosomes 1A, 1B, 2A, 2B, 2D, 4D, 6D and 7A. Among these
QTL, regions on 1A, 1B, 2A, 4D and 7A-1 were common to the GY-QTL detected in our study,
as well as a QTL on 2B for RGY. The genomic regions controlling N response were detected
amongst all homoeologous chromosome groups, but the A and B genomes predominated. This
observation is consistent with results found by Bogard et al. [44].

Many QTL for NUE and related traits have been described in wheat [15], [20], [16], [19].
Bogard et al. [44] detected QTL on 2D, 3B, 5A, 6B, 7A, 7B, 7D in wheat grown at various N fer-
tilisation rates. They also found that several NUE regions co-located with QTL for grain pro-
tein content on chromosomes 2D, 3B, 5A, 7D. Similarly, Bordes et al. [45] found large
variability in response of grain yield to N fertilisation and detected major QTL using different
measures of NUE, including the difference between yield under high N versus low N (HN–
LN), the ratio of yield under high N relative to low N (LN/HN) and the joint regression. They
found significant regions for both GY and RGY on 1D, 2D, 3B and 5B and also for GY on 3D
and for RGY on 5D. Xu et al. [22] found major QTL on 2D, 4B, 6A and 7A for yield compo-
nents under different N supplement regimes. In their research, NUE was studied by assessing
the response of GY-related traits to N fertilisation. Several of the QTL presented here are co-
located with other known GY-QTL. For example, QYLD.asw-1B was detected for GY at the
three sites in South Australia and West Australia. This QTL lies near to the region identified
for a GY-QTL by Quarrie et al. [19]. Guo et al. [18] also reported chromosome 1B to be associ-
ated with both N uptake and utilisation in wheat.

Some of the QTL identified in these other reports are overlapping with regions identified in
our own study, suggesting that some NUE-related QTL may be common to both low and high
yielding environments. Interestingly, some QTL associated with N assimilation, GDH and GS
activities, in wheat found by Fontain et al. [20] and Habash et al. [21] are co-located with the
GY-QTL in this study. For example, coincidence of QTL for GDH activity and GY found on
2D and 5A [20] were similar to the significant regions in our study. The QTL results for both
GS activity and GY on 5A and 7A [21] were in line with the presented results. These findings
demonstrated the value of examining NUE components for increasing GY and the integration
of physiological and molecular approaches. Novel NUE-related QTL in this study were found
on 1A, 2A, 2B, 4A and 4D across various Australian sites. Identifying common genes and QTL
underlying NUE traits between crops using consensus maps and meta-analyses may be useful
to improve NUE in breeding programs [13].

In addition to the identification of QTL associated with GY and RGY, the present study
allowed the classification of individual lines in the population based on their genetic yield and
responsiveness to N fertilisation (Figs 3 and 4). The most valuable lines for breeding are those
that consistently showed both a high yield and a strong response to N. In contrast to most pre-
vious studies on NUE in wheat, the parents used to develop the populations are well-adapted
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and commercially relevant. Consequently, their progeny are directly relevant to breeders. The
most consistent high-yielding/high N response lines identified in this study have been provided
to breeding programs for further development. From a research perspective, the lines that
showed a consistent low N response and low yield are also of interest. These lines can be com-
pared with the high yielding/high N response lines in biochemical and physiological studies to
help determine the basis for the difference in performance and to improve screening and evalu-
ation methods.

Conclusion
Significant genetic variation for GY in wheat was documented at varying rates of N application.
The number of QTL detected at each trial was variable, but some loci were seen across multiple
trials. These loci would offer greatest benefit to breeders in selecting for improved NUE.

In addition to identifying key regions associated with NUE that could be used to track and
move the desirable alleles into breeding programs, this study has identified good target regions
for more detailed molecular analysis and ultimately cloning of the genes underlying the N
response. The analysis allowed us to separate the relationship between yield and N supply, and
also to differentiate N responsiveness of individual lines. Some QTL detected were common to
both GY and RGY and will be good targets for more detailed physiological studies. Lines that
show a strong response to the rate of applied N are not necessarily high yielding. However, we
developed a method to rank the performance of lines both at low N and in response to N fertili-
sation, and identified lines that were both high yielding and highly N-responsive across multi-
ple trials. These genotypes represent particularly attractive material for further crossing and
selection given that both parents are already well-adapted for southern Australian
environments.
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